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Abstract

We consider closed type II and orientifold backgrounds where supersymmetry is spontaneously broken
by asymmetric geometrical fluxes. We show that these can be used to describe thermal ensembles with
chemical potentials associated to “gravito-magnetic” fluxes. The thermal free energy is computed at the
one-loop string level, and it is shown to be free of the usual Hagedorn-like instabilities for a certain choice
of the chemical potentials. In the closed string gravitational sector, as well as in the open string matter sector
of the proposed orientifold construction, the free energy turns out to have “Temperature duality” symmetry,
F (T /TH ) = F (TH /T ), which requires interchanging the space–time spinor representations S ↔ C. For
small temperatures, T → 0, the anti-spinor C decouples from the spectrum while for large temperatures,
T → ∞, the spinor S decouples. In both limits the free energy vanishes, as we recover a conventional type
II superstring theory. At the self dual point T = TH , the thermal spectra of S and C are identical. At this
point there are extra massless scalars in the adjoint representation of an SO(4) non-Abelian gauge symmetry
group arising from the closed-string sector.
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1. Introduction

The thermal partition function of a (supersymmetric) field theoretic system can be obtained via
an Euclidean path integral, where the Euclidean time is compactified on an S1 cycle with period
inversely proportional to the temperature: 2πR = T −1. Bosonic fields obey periodic boundary
conditions along this cycle while fermionic fields obey anti-periodic boundary conditions. Equiv-
alently, the thermal partition function can be derived by summing over particle paths in a first
quantized approach. The spin–statistics connection requires that each path be weighted by the
phase (−1)m̃F , where the integer m̃ counts the number of times the path winds the S1 cycle,
and F is the space–time fermion number. As a result, supersymmetry is always broken in the
effective thermal theory.

This construction can be generalized to superstring theories [1–4]. Here, one encounters new
phenomena due to the extended nature of strings and due to the presence of both momentum and
winding states. For closed strings, the world-sheet degrees of freedom split into left-moving and
right-moving excitations, both contributing to the space–time fermion number: F = FL+FR . We
denote by FL the contribution of the world-sheet left-movers to the space–time fermion number,
and similarly for FR . In the heterotic string, FR is always even. FL is even in the Neveu–Schwarz
(NS) sector and odd in the Ramond (R) sector. Therefore the spin–statistics properties of space–
time particles are determined only by the left-moving world-sheet degrees of freedom. In the
type II superstrings on the other hand, both FL and FR can be even or odd. In fact, these theories
admit two independent Z2 symmetries, (−1)FR and (−1)FL , under which the right-moving and
left-moving R sectors change sign, respectively.

In the heterotic string, the thermal partition function is obtained by the temperature phase
insertion [1,2]

(1.1)(−1)m̃FL+nF̃L+m̃n.

This definition is indeed unique, dictated by the spin–statistics connection and modular invari-
ance. In the type II closed strings the thermal phase insertion

(1.2)(−1)m̃(FL+FR)+n(F̃L+F̃R)

breaks the initial N � 8 supersymmetry giving rise to a non-trivial free energy density similar to
the heterotic string case. In the type II case, the free energy is well defined as long as

(1.3)T � TH , R0 � RH = 1√
2
,

where TH is the Hagedorn temperature [1–5]. In the heterotic string, although there are tachyonic
instabilities beyond the Hagedorn temperature, thanks to “Temperature duality”, T → 1/T , there
is a phase transition to a stable vacuum characterized by a condensation of thermal winding states
[4]. We would like to stress here that in the type II closed string theories, as well as in standard
orientifold constructions [6], the canonical thermal system does not possess such a “Temperature
duality” symmetry, and it was not known until now how to stabilize the high temperature phase,
although some ideas to overcome this problem in lower dimensions have been presented in [7].
As we show in this work, type II freely acting asymmetric orbifold constructions share similar
self-duality properties with finite temperature heterotic strings, and moreover a stable vacuum
can be found at the perturbative string level.



C. Angelantonj et al. / Nuclear Physics B 809 (2009) 291–307 293
In a very similar way to the thermal supersymmetry breaking, string models with spontaneous
breaking of supersymmetry can be constructed, adapting the Scherk–Schwarz mechanism [8] in
superstrings [2,6,7,9–12], which involves the introduction of non-trivial geometrical fluxes [13].
These fluxes can be described naturally in the framework of freely acting orbifolds [11]. The
breaking of supersymmetry via gravito-magnetic fluxes, associated to an R-symmetry charge Q,
is achieved by the following phase insertion:

(1.4)(−1)m̃(QL+QR)+n(Q̃L+Q̃R),

where we introduce a non-trivial coupling of Q to the winding numbers (m̃, n) along a spatial S1

cycle. As in the temperature breaking case, here also tachyonic instabilities arise when the radius
of the compact spatial cycle is smaller than the Hagedorn radius. However, when both thermal
and flux breakings are present, a vast range of possibilities exists, which may or may not bypass
the Hagedorn instabilities, as in [7].

In this work we will present type II closed string and orientifold models, where supersymme-
try is spontaneously broken by asymmetric geometrical fluxes along a two-dimensional space–
time torus. One cycle of the torus is taken to be the compact Euclidean time direction. As we
will show, these models admit a thermal interpretation, where additional sources of spontaneous
supersymmetry breaking in the form of gravito-magnetic fluxes are turned on. A very interesting
result is that the usual Hagedorn-like instabilities are absent for certain choices of chemical po-
tentials associated to the gravito-magnetic fluxes. As the resulting spectrum is free of tachyonic
excitations, the free energy is finite for any value of the temperature.

The structure of the paper is as follows. In Section 2 we present the tachyon-free, asymmetric
type II models and discuss their thermal interpretation. Section 3 is devoted to the orientifold
construction, where the open string matter is introduced. The free energy turns out to possess a
novel “Temperature duality symmetry”, F (T /TH ) = F (TH /T ), in both the closed-string gravi-
tational sector as well as in the open-string matter sector of the orientifold. Fermions are massive
for any value of T . At the self dual point, T = TH , extra massless scalars emerge, transform-
ing in the adjoint representation of an SO(4) non-Abelian gauge symmetry group, originating
from the close-string sector. Finally, in Section 4 we draw our conclusions and speculate about
possible cosmological consequences due to the absence of a Hagedorn transition in this class of
models.

2. The closed string sector

Our starting point is the type IIB superstring compactified on a two-torus with coordinates
(x0, x1). Depending on the context, these coordinates label two internal (compact) space-like
directions or, alternatively, the Euclidean time x0 and an additional space-like direction [14,15].
The first case can be used to describe string compactifications where supersymmetry is spon-
taneously broken by geometrical fluxes (e.g. stringy Scherk–Schwarz compactifications) [2,
10–12], with the internal T 2 moduli corresponding to physical, fluctuating fields [15]. The sec-
ond case is suitable to describe statistical, thermal-like ensembles [14,15]. As we will see, in this
second case the Euclidean T 2 geometrical data appear as thermodynamical parameters of the
thermal ensemble. In particular, they do not give rise to any fluctuating fields in the low-energy
description since local worldsheet symmetries allow us to gauge away all oscillator modes in the
X± ∼ X1 ± iX0 string coordinates.
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The initially supersymmetric partition function is given by

(2.1)

Z = 1

4

∫
F

d2τ

τ2

1

(ηη̄)12
Γ(2,2)Γ(8,8)

∑
a,b=0,1

(−1)a+b+abθ4
[

a

b

]

×
∑

ā,b̄=0,1

(−1)ā+b̄+āb̄ θ̄4
[

ā

b̄

]
,

where the two-dimensional Γ(2,2) lattice describes the contribution of the zero-modes of the
(x0, x1) coordinates, while the Γ(8,8) lattice describes the contribution of the zero-modes of the
remaining coordinates. We compactify all ten Euclidean directions, regularizing the volume of
space, in order to obtain a well defined, finite free energy in the cases for which supersymmetry
is broken by thermal and quantum corrections [14,15].

When the metric of the two-torus is diagonal, G01 = 0, and the antisymmetric tensor field B01
vanishes, the Γ(2,2) lattice factorizes in terms of two Γ(1,1) lattices, Γ(2,2) = Γ(1,1)(R0)Γ(1,1)(R1),
which are parameterized by the radii R0,R1 of the corresponding circles, respectively. The Γ(1,1)

lattice is given by

(2.2)Γ(1,1)(R) = R√
τ2

∑
m̃,n

e
−π R2

τ2
|m̃+nτ |2 =

∑
m,n

Γm,n,

where

(2.3)Γm,n = q
1
4 p2

L q̄
1
4 p2

R , q = e2πiτ , and pL,R = m

R
± nR

are the left-moving and right-moving momenta. The expression in terms of pL and pR is obtained
as usual via a Poisson re-summation over the winding number m̃.

For later use, it is convenient to express the partition function (2.1) in terms of the SO(8)

characters,

(2.4)O8 = θ4
3 + θ4

4

2η4
, V8 = θ4

3 − θ4
4

2η4
, S8 = θ4

2 − θ4
1

2η4
, C8 = θ4

2 + θ4
1

2η4
,

as follows:

(2.5)Z =
∫

F

d2τ

τ2

1

(ηη̄)8
|V8 − S8|2Γ(1,1)(R0)Γ(1,1)(R1)Γ(8,8).

Our main goal is to deform the initially supersymmetric theory, and in particular break space–
time supersymmetry asymmetrically by coupling the x0 lattice to the left-handed space–time
fermion number FL and the x1 lattice to the right-handed space–time fermion number FR . Under
(−1)FL ((−1)FR ), the left- (right-) moving R sector changes sign. This property and genus-one
modular invariance allow us to replace the x0 and the x1 lattices in the integrand of (2.5) with

R0√
τ2

∑
m̃0,n0

e
− πR2

0
τ2

|m̃0+n0τ |2
(−)m̃0a+n0b+m̃0n0,

(2.6)
R1√
τ2

∑
m̃1,n1

e
− πR2

1
τ2

|m̃1+n1τ |2
(−)m̃1ā+n1b̄+m̃1n1 .
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In this way, the x0 lattice is “thermally” coupled to the left-moving world-sheet degrees of free-
dom, while the x1 lattice is “thermally” coupled to the right-moving world-sheet degrees of
freedom. Notice however that modular invariance does not fix uniquely the deformation but, as
we discuss later on, allows for the possibility of having non-trivial discrete torsion.

After Poisson re-summations over the winding numbers m̃0, m̃1, we find the following shifts
to the left-moving and right-moving momenta along the x0 and x1 circles:

(2.7)p0
L,R = m0 − 1

2 (a + n0)

R0
± n0R0, p1

L,R = m1 − 1
2 (ā + n1)

R1
± n1R1.

So the spectrum is deformed and space–time supersymmetry is spontaneously broken. In ad-
dition, the left GSO projection is reversed in the n0-odd winding sector, while the right GSO
projection is reversed in the n1-odd winding sector [1–4]. The partition function takes the form

(2.8)

Z =
∫

F

d2τ

τ2

Γ(8,8)

(ηη̄)8

∑
m0,n0

(V8Γm0,2n0 + O8Γm0+ 1
2 ,2n0+1 − S8Γm0+ 1

2 ,2n0
− C8Γm0,2n0+1)

×
∑

m1,n1

(V̄8Γm1,2n1 + Ō8Γm1+ 1
2 ,2n1+1 − S̄8Γm1+ 1

2 ,2n1
− C̄8Γm1,2n1+1).

As a result, the only massless states emerge in the V V̄ sector that comprises the (reduction of)
the ten-dimensional metric, Kalb–Ramond field and dilaton field. The initially massless fermions
get a mass inversely proportional to the compactification radii

(2.9)2m2
V S̄

= 1

(
√

2R1)2
, 2m2

SV̄
= 1

(
√

2R0)2
.

Fermions arise also from the V C̄ and CV̄ sectors, which carry non-zero winding charges, and
their lightest masses are given by

(2.10)2m2
V C̄

= (√
2R1

)2
, 2m2

CV̄
= (√

2R0
)2

.

For this asymmetric model the RR sectors are also lifted, with masses

(2.11)

2m2
SS̄

= 1
(
√

2R0)
2 + 1

(
√

2R1)
2 , 2m2

CC̄
= (√

2R0
)2 + (√

2R1
)2

,

2m2
SC̄

= 1
(
√

2R0)
2 + (√

2R1
)2

, 2m2
CS̄

= (√
2R0

)2 + 1
(
√

2R1)
2 .

The reason is that the RR fields are charged under both the Z2 symmetries (−1)FL and (−1)FR .
Thus the asymmetric breaking of supersymmetry also leads to a spontaneous breaking of the
U(1) gauge symmetries associated to the RR fields.

Particularly interesting is the OŌ sector. It includes the NS–NS vacuum, which typically
in other models becomes tachyonic in some regions of the moduli space. When this happens,
the free energy diverges and the system undergoes a first-order phase transition. In our case,
however, the NS–NS vacuum always carries non-vanishing momentum and winding excitations,
and its lightest mass is given by

(2.12)

2m2
OŌ

=
(

1

2R2
0

+ 2R2
0 + 1

2R2
1

+ R2
1

)
− 4

=
(

1√ − √
2R0

)2

+
(

1√ − √
2R1

)2

.

2R0 2R1
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The mass is always positive, except for the “fermionic point” at radii R0 = R1 = 1/
√

2, where
new massless states emerge.

In the infinite radii limit, R0, R1 → ∞, we recover the massless chiral spectrum of the super-
symmetric type IIB theory: m2

V S̄
,m2

SV̄
,m2

SS̄
→ 0. All other masses listed above become infinite

in this limit, and so the corresponding states decouple from the spectrum. In the small radii limit,
R0,R1 → 0, we get the massless chiral spectrum of the (equivalent) supersymmetric type IIB’
theory [18,19]: m2

V C̄
,m2

CV̄
,m2

CC̄
→ 0. In fact by two T-duality transformations, one along the

x0 cycle and one along the x1 cycle, it is easy to see that the model at radii (R0,R1) is equivalent
to the asymmetric type IIB’ model at radii (1/2R0,1/2R1). Under T-duality transformations,
we have now that

√
2R → 1/

√
2R, and as usual the S and C sectors get interchanged. At the

boundaries of moduli space, R0, R1 → 0 or ∞, the O sector together with either the S or the C

Ramond sectors become infinitely massive and half or all of supersymmetries are recovered.
The appearance of extra massless states at the fermionic point

√
2R0 = √

2R1 = 1 is a signal
of enhanced gauge symmetry. This point is self-dual under the two T-dualities we mentioned
above. At this point, the sectors V Ō and OV̄ can be level matched, giving rise to extra massless
gauge bosons. The underlying reason is extended symmetry on the world-sheet. When both radii
are at the fermionic radius, each of the left-moving bosons X0

L and X1
L is equivalent to two left-

moving real fermions. Together with ψ0 and ψ1, these generate an SO(4)L ∼ SU(2)2 × SU(2)2
current algebra on the left side of the world-sheet [20–23]. Similarly we have a right-moving
SO(4)R ∼ SU(2)2 × SU(2)2 current algebra. Consequently, the spectrum includes non-Abelian
gauge bosons in the adjoint of the SO(4)L × SO(4)R gauge group.

2.1. Thermal interpretation

In order to exhibit the thermal nature of the deformation, it is convenient to shift the winding
numbers associated to the x1 cycle as follows:

(2.13)m̃1 → m̃1 + m̃0, n1 → n1 + n0.

The T 2 lattice takes now the form

(2.14)

R0R1

τ2

∑
m̃,n

e
− π

τ2
[R2

0 |m̃0+τn0|2+R2
1 |m̃1+Gm̃0+τ(n1+Gn0)|2]e2iπB(m̃1n0−m̃0n1)

× (−1)m̃0(a+ā)+n0(b+b̄)(−1)m̃1ā+n1b̄+m̃1n1 .

It is then clear, that along the x0 cycle the deformation acts as a standard temperature deforma-
tion, since the x0 cycle is coupled to the total fermion-number operator F = FL + FR . The x1

cycle couples only to the right-moving fermion number FR . The latter deformation breaks the
initial N = (4,4) supersymmetries to N = (4,0), which in turn are broken by thermal effects.
Notice that in this representation the metric of the two-dimensional torus is not diagonal and
there is a non-trivial B-field background

(2.15)ds2 = R2
0

(
dx0)2 + R2

1

(
dx1 + Gdx0)2

, Bab =
(

0 B

−B 0

)
.

Our model corresponds to the special values G = 2B = 1, although one may consider other
generic values (see also the discussion at the end of this section). After a Poisson re-summation
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over m̃1, one obtains

(2.16)

R0√
τ2

∑
m̃0,n0

e
− πR2

0
τ2

|m̃0+τn0|2(−1)m̃0(a+ā)+n0(b+b̄)

×
∑

m1,n1

q
1
4 p2

Lq̄
1
4 p2

R (−1)n1b̄e−iπm̃0[2B(n1+Gn0)−2Gm1+G(ā+n1)]

where the left-moving and right-moving momenta associated to the x1 cycle are given by

(2.17)pL,R = m1 − 1
2 (ā + n1 + 2Bn0)

R1
± (n1 + Gn0)R1.

The thermal interpretation of the model becomes transparent when we decompose the inte-
grand of the partition function in modular orbits:

• The (m̃0, n0) = (0,0) orbit, which is integrated over the fundamental domain,
• The (m̃0, n0) = (m̃0,0) orbit (with m̃0 
= 0), which is integrated over the strip.

Thanks to the initial supersymmetry, the contribution of the (m̃0, n0) = (0,0) vanishes. For the
latter orbit, where we set n0 = 0, the integrand is given by

(2.18)
R0√
τ2

∑
m̃0

e
− πR2

0
τ2

m̃2
0(−1)m̃0(a+ā)

∑
m1,n1

q
1
4 p2

L q̄
1
4 p2

R (−1)n1b̄e2iπm̃0[GQ+−BQ−],

where we have denoted with

Q+ = m1 − 1

2
(ā + n1) ≡ 1

2
R1(pL + pR), Q− = n1 ≡ 1

2
R−1

1 (pL − pR)

the U(1) charges associated to the graviphoton G01 and axial vector B01, respectively. As a
result, the integral over the strip is nothing but the one-loop thermal partition function for the
N = (4,0) supersymmetric model compactified on S1(R1)×T 8. In addition, chemical potentials
for the U(1) charges Q± have been turned on. These chemical potentials are imaginary. In the
Euclidean context, they arise in the presence of background, classical electrostatic potentials for
the U(1) graviphoton and axial vector fields, or when we insert Wilson lines across the x0 cycle
for the time-like components of these fields [16,17]. The Wilson lines are actually analogous to
the Polyakov loops of finite-temperature gauge theories.

The complete space–time partition function is then given by

(2.19)Z(β,G,B) = tr e−βH e2iπ(GQ+−BQ−),

where β is the inverse temperature, and the trace is over the Hilbert space of the N = (4,0)

theory. Notice that since the Hamiltonian H is quadratic in the charges Q+ and Q−, the partition
function is real. In the case of interest, G = 2B = 1, and thus the contribution from the chemical
potentials is nothing but the right-moving fermion index

(2.20)e2iπ(GQ+−BQ−) = e−iπā = (−1)FR .

Therefore, the partition function reads

(2.21)Z
(

β,1,
1
)

= tr e−βH (−1)FR = Str e−βH (−1)FL,

2



298 C. Angelantonj et al. / Nuclear Physics B 809 (2009) 291–307
where in the last equality we have introduced the graded trace. This expression makes manifest
the chiral supersymmetry breaking to the FL and FR fermion numbers.

When G = B = 0, one recovers the conventional thermal partition function of the N = (4,0)

supersymmetric model that suffers from tachyonic instabilities beyond the Hagedorn temper-
ature. As a result, the point G = 2B = 1 is a very special point in the thermodynamic phase
diagram since only at this point the model is free of tachyons, for any values of the radii, and
thus no Hagedorn instabilities occur. Although expression (2.19) is very useful to elucidate the
general structure of the thermal partition function, we find it more convenient to analyze the
G = 2B = 1 point in terms of a left–right asymmetric non-supersymmetric deformation, since
the various dualities are there manifest.

Thermal partition functions with imaginary chemical potentials have been considered in the
literature before, in the context of non-Abelian gauge theories, and the phase structure has been
related to the confining properties of these theories [16]. It is thus interesting to consider such
partition functions in the string theoretic context as well, even though their applicability for
cosmology may turn out to be a subtle issue. In fact, if we Fourier transform the partition function
(2.19) with respect to the periodic parameters G and B , we obtain a canonical thermal partition
function at fixed values for the U(1) charges Q+ and Q−:

(2.22)Z(β, Q̂+, Q̂−) = Tr
(
e−βH δ(Q+ − Q̂+)δ(Q− − Q̂−)

)
.

Therefore, the partition function at imaginary chemical potential contains physical information.
It is well known that thermal deformations, as well as deformations that lead to spontaneous

breaking of supersymmetry, are equivalent to freely-acting symmetric or even asymmetric orb-
ifolds, which combine a symmetry-breaking action with shifts along some compact cycle [11,12].
The shifts along the compact directions make the symmetry breaking spontaneous, where the
breaking scale is set by the (inverse) size of the compact cycle. In this language, the type II ther-
mal partition function is obtained by modding out with (−1)FL+FRδ, where δ is an order-two
shift along the compact Euclidean time direction. In the case at hand, the deformation consists
of a Z2 × Z′

2 orbifold where the two asymmetric generators are

(2.23)g = (−1)FLδ0 ∈ Z2 and g′ = (−1)FRδ1 ∈ Z′
2,

with δ0,1 order-two shifts along the two x0,1 cycles. The associated modular invariant partition
function is not unique in this case and depends on a discrete torsion coefficient, ε = ±1, in front
of the disconnected twisted orbit. This discrete torsion affects the spectrum of the twisted sectors,
and in particular in the gg′ sector it can affect the Kaluza–Klein and winding excitations of the
NS–NS vacuum so that it is lifted as in Eq. (2.12).

The discrete torsion has a suggestive geometrical interpretation in terms of non-trivial discrete
holonomy for the NS–NS B-field, and indeed the non-tachyonic model actually involves 2B = 1,
which corresponds to the choice ε = −1, as appears in the discussion above.

The interpretation of the model as a standard temperature deformation of an N = (4,0) model
is equally transparent in the orbifold language, inserting in the trace the Z2 × Z′

2 orbifold pro-
jector

(2.24)P = (1 + g)(1 + g′)
4

= (1 + gg′)(1 + g′)
4

,

where the last equality holds since both g and g′ are order-two elements. It is then clear that the
projector 1 (1 + g′) breaks N = (4,4) → N = (4,0) spontaneously along the x1 cycle, while
2



C. Angelantonj et al. / Nuclear Physics B 809 (2009) 291–307 299
the projector 1
2 (1 + gg′) is a standard finite-temperature effect with non-vanishing graviphoton

and magnetic fluxes.

2.2. Touring the moduli space

We have described a thermal model in which we have taken the x0 cycle of the torus T 2 to be
the one associated with the compact Euclidean time direction. Very similar expressions can be
obtained when both the x0 and x1 coordinates are taken to describe spatial compact directions.
However, as we already remarked at the beginning of this section, the T 2 moduli in this latter case
correspond to propagating fields, and the interpretation of the model is dramatically different. In
fact, these models are unstable. To see this, it is sufficient to consider what happens in the field
direction R0 = R1 = R, with a diagonal metric and arbitrary B-field in the range 0 � 2B � 1. In
this case, the left- and right-moving momenta in the OŌ sector read

p0
L,R = m0 + 1

2 + B(2n1 + 1)

R
± (2n0 + 1)R,

(2.25)p1
L,R = m1 + 1

2 − B(2n0 + 1)

R
± (2n1 + 1)R.

The level-matching condition for the ground state

(2.26)
1

4

(
p2

L − p2
R

) =
(

m0 + 1

2

)
(2n0 + 1) +

(
m1 + 1

2

)
(2n1 + 1) = 0

is not affected by the presence of the B field, while the mass-formula (2.12) becomes

(2.27)m2
OŌ

=
(

1√
2R

− √
2R

)2

± 2B(1 − B)

R2
,

and reveals the emergence of tachyonic states whenever B 
= 0. However, the fluctuations δG01
and δB01 that can lead to tachyonic instabilities, in the case where both x0 and x1 are taken to be
spatial compact directions, could be eliminated upon further (asymmetric) orbifold or orientifold
projections, as in [6]. Such tachyon free models will be studied elsewhere.

On the other hand, if x0 is taken to be the Euclidean time direction, the moduli G01 and B01
are frozen, and they do not correspond to fluctuating fields. This is clear in the light-cone quanti-
zation, where all oscillators along the X± directions are set to zero. As a result, the moduli space
of the thermally deformed model consists of several disconnected components, each correspond-
ing to different choices for the background values G and B , having an interpretation in terms of
chemical potentials.

3. Adding O-planes and D-branes

The closed string sector of type II superstring theories does not by itself lead to interesting
phenomenological models, since for example in typical compactifications, the gauge fields are
Abelian and it does not contain matter that could describe the Standard Model particle content
and its interactions. A possible way to bypass this obstruction is to construct an orientifold [18,
19,24], where matter is localized on lower-dimensional hyper-surfaces (e.g. D-branes), which can
describe semi-realistically the particle content at low energies and can lead to interesting thermal
cosmological models. It is thus interesting to consider the proposed tachyon free model and
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examine the possibility of introducing open string matter sectors via orientifold constructions. It
is also challenging to obtain orientifolds starting from asymmetric realizations of spontaneous
supersymmetry breaking, and studying the thermal interpretation of the matter sector.

Inspection of the closed sector partition function (2.8) indicates the Z2 symmetry that can be
used to define the orientifold projection. Clearly, the amplitude is not invariant under the bare
world-sheet parity Ω . However, the combination of Ω with the permutation σ :x0 ↔ x1 leaves
the partition function invariant, if the radii of the two compact cycles are taken to be equal.
Therefore, in this special case, the Z2 generator Ωσ can be used to construct the orientifold.

Under the action of Z2, the transformation properties of the zero modes are not conventional.
In the usual orientifold constructions, the B-field is projected out from the spectrum. Here, how-
ever, due to the action of the permutation, the B-field remains. Also, the field R2

0 − R2
1 is odd

under the Z2 symmetry

(3.1)Z2 :
(
ψ0

− 1
2
ψ̃0

− 1
2
− ψ1

− 1
2
ψ̃1

− 1
2

)|0, 0̃〉 −→ −(
ψ0

− 1
2
ψ̃0

− 1
2
− ψ1

− 1
2
ψ̃1

− 1
2

)|0, 0̃〉,

and thus it is projected out from the spectrum.
We are well accustomed to the fact that in conventional orientifold projections, eventually

combined with T-dualities, the states that contribute to the Klein-bottle amplitude have vanish-
ing winding or vanishing Kaluza–Klein momentum quantum numbers [18,19]. The proposed
orientifold is different since

(3.2)Z2: p0
L = p1

R, p1
L = p0

R.

That is, m0 = m1 and n0 = −n1. These conditions imply that the Z2 invariant states that flow in
the Klein-bottle amplitude K carry the same Kaluza–Klein and opposite winding numbers. The
zero-mode contribution from the two-dimensional lattice to K takes the form:

(3.3)
∑

m0,n0

∑
m1,n1

q
1
4 ((p0

L)2+(p1
L)2)q̄

1
4 ((p0

R)2+(p1
R)2)δm0,m1δn0,−n1 =

∑
m,n

q( m
R

)2+(nR)2
,

where, as usual, q = e−2πτ2 in K. Taking this into account, the Klein-bottle amplitude reads

(3.4)

K = 1

2

∞∫
0

dτ2

τ2

P(8)

η8

∑
m,n

{
V8q

( m
R

)2+(2nR)2 + O8q
(

m+1/2
R

)2+((2n+1)R)2

− S8q
(

m+1/2
R

)2+(2nR)2 − C8q
( m

R
)2+((2n+1)R)2}

,

where P(8) denotes the contributions of the momenta of the eight-dimensional lattice. Eq. (3.4)
represents a proper symmetrization of the torus amplitude (2.8), while the low-lying spectrum
depends on the interpretation of the x0 coordinate. If x0 labels a compact space-like coordinate
then the massless spectrum comprises the eight-dimensional metric and dilaton, the single radius
of the internal coordinate, G01, the scalar B01 together with the combinations of graviphotons
Gμ1 + Gμ0 and Bμ0 − Bμ1, for a total of 36 bosonic degrees of freedom. However, as we al-
ready stressed in Section 2, if x0 is identified with the Euclidean time, then the light excitations
comprise the full metric and the dilaton field.
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The open-string sector is encoded in the annulus amplitude [18,19]

(3.5)

A = N2

2

∞∫
0

dτ2

τ2

P(8)

η8

∑
m,n

{
V8q

1
2 ( m√

2R
)2+ 1

2 (n
√

2R)2 + O8q
1
2 (

m+1/2√
2R

)2+ 1
2 ((n+ 1

2 )
√

2R)2

− S8q
1
2 ( m√

2R
)2+ 1

2 ((n+ 1
2 )

√
2R)2 − C8q

1
2 (

m+1/2√
2R

)2+ 1
2 (n

√
2R)2}

,

and in the Möbius-strip amplitude

(3.6)

M = −N

2

∞∫
0

dτ2

τ2

P(8)

η̂8

∑
m,n

{
V̂8q

1
2 ( m√

2R
)2+ 1

2 (n
√

2R)2 − Ô8(−1)m+nq
1
2 (

m+1/2√
2R

)2+ 1
2 ((n+ 1

2 )
√

2R)2

− Ŝ8(−1)nq
1
2 ( m√

2R
)2+ 1

2 ((n+ 1
2 )

√
2R)2 − Ĉ8(−1)mq

1
2 (

m+1/2√
2R

)2+ 1
2 (n

√
2R)2}

.

Notice the presence of all characters in the open-string sector despite of the presence of a single
Chan–Paton label, clearly indicating that only one type of D-brane has been introduced in this
orientifold. The vectors are the only massless states and transform in the adjoint representation
of the gauge group SO(N). The would-be open-string tachyon in the O8 sector carries non-
vanishing momentum and winding numbers and therefore it is always massive at generic values
of the R-modulus, while at the fermionic point it contributes with some additional massless
states that, as we will see later on, transform in the symmetric and antisymmetric representations
of SO(N).

As usual, the rank of the gauge group is determined by tadpole cancellation conditions for
massless states, extracted from of the transverse closed-string channel [18,19]:

(3.7)

2K̃ = 24 vol8

∞∫
0

d
W(8)

η8

∑
m,n

[
V8q

1
2 ( 2m

R
)2+ 1

2 (nR)2 + O8q
1
2 ( 2m+1

R
)2+ 1

2 ((n+ 1
2 )R)2

− S8q
1
2 ( 2m+1

R
)2+ 1

2 (nR)2 − C8q
1
2 ( 2m

R
)2+ 1

2 ((n+ 1
2 )R)2

]
,

(3.8)

2Ã = N2

24
vol8

∞∫
0

d
W(8)

η8

∑
m,n

[
V8q

1
2 ( 2m

R
)2+ 1

2 (nR)2 + O8q
1
2 ( 2m+1

R
)2+ 1

2 ((n+ 1
2 )R)2

− S8q
1
2 ( 2m+1

R
)2+ 1

2 (nR)2 − C8q
1
2 ( 2m

R
)2+ 1

2 ((n+ 1
2 )R)2

]
,

and

(3.9)

2M̃ = −2N vol8

∞∫
0

d
W(8)

η8

∑
m,n

[
V̂8q

1
2 ( 2m

R
)2+ 1

2 (nR)2 + Ô8(−1)m+nq
1
2 ( 2m+1

R
)2+ 1

2 ((n+ 1
2 )R)2

− Ŝ8(−1)mq
1
2 ( 2m+1

R
)2+ 1

2 (nR)2 − Ĉ8(−1)nq
1
2 ( 2m

R
)2+ 1

2 ((n+ 1
2 )R)2

]
,

where vol8 denotes the volume of the eight-dimensional space, and W(8) includes the contribution
of the associated closed-string winding modes. Clearly, this model is free of RR tadpoles since
in the deformed type IIB model (2.8), the RR sectors are massive. The dilaton tadpole reads

(3.10)K̃ + Ã + M̃ for V8: 24 + 2−4N2 − 2N = 0,
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and therefore fixes the gauge group to be SO(16). We should stress here that the dilaton tadpole
is always present at generic points of the moduli space, and can be canceled by (3.10).

At the special fermionic point, extra massless states arise from the O8 sector that require an
additional tadpole cancellation condition

(3.11)K̃ + Ã + M̃ for O8: 24 + 2−4N2 − 2N
∑

m,n=−1,0

(−1)m+n = 24 + 2−4N2 
= 0.

This cannot be satisfied since the term proportional to (−)m+n vanishes. We stress here that this
tadpole occurs only at the fermionic point. For cosmological considerations, we would like to
include the fermionic point, and furthermore use it to define the early phase of the cosmology.
Thus, it is crucial to seek other consistent projections involving a different choice of the Möbius
amplitude, leading to a cancellation of this tadpole. Had we left the tadpole uncanceled, the
SO(4) gauge symmetry enhancement at the fermionic point would be spoiled, since the relevant
massless states from the O8 sector are charged under this. The problem is similar to the one
occurring due to massless RR tadpoles in standard orientifolds.

A consistent choice for the Möbius amplitude which respects the SO(4) gauge symmetry at
the fermionic point is the following:

(3.12)

M′ = −N

2

∞∫
0

dτ2

τ2

P(8)

η8

∑
m,n

{
(V̂6Ô2 − Ô6V̂2)(−1)m+nq

1
2 ( m√

2R
)2+ 1

2 (n
√

2R)2

− (Ô6Ô2 + V̂6V̂2)q
1
2 (

m+1/2√
2R

)2+ 1
2 ((n+ 1

2 )
√

2R)2

− (Ŝ6Ŝ2 + Ĉ6Ĉ2)(−1)nq
1
2 ( m√

2R
)2+ 1

2 ((n+ 1
2 )

√
2R)2

− (Ŝ6Ĉ2 + Ĉ6Ŝ2)(−1)mq
1
2 (

m+1/2√
2R

)2+ 1
2 (n

√
2R)2}

,

where we have decomposed the SO(8) characters in terms of SO(6) × SO(2) ones, since after
all SO(6) × SO(2) is the residual symmetry group of this asymmetric model. Now, the massless
space–time vectors coming from the sector V6O2, with multiplicity N(N − 1)/2, are in the an-
tisymmetric (adjoint) representation of the gauge group SO(16), while the two massless scalars
coming from the sector O6V2, with multiplicity N(N + 1)/2, are in the 136-dimensional sym-
metric representation of SO(16), due to the change of sign of the corresponding term in M′. The
four extra massless scalars at the fermionic point coming from the sector O6O2, with multiplic-
ity N(N + 1)/2, are also in the symmetric representation of SO(16). Therefore, at the fermionic
point, where an enhanced SO(4) gauge symmetry emerges from the closed string sector, the
6 × N(N + 1)/2 massless scalars from the O6V2 and O6O2 sectors are simultaneously charged
under the gauge groups from the closed and open string sectors. In particular, they are in the rep-
resentation (6,136) of SO(4)closed × SO(16)open. To the best of our knowledge, this is the first
instance where open-string states carry, at the same time, non-trivial representations of Chan–
Paton and closed-string non-Abelian gauge groups.
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In order to analyze the tadpole cancellation we need the expression of M̃′ in the transverse
channel:

(3.13)

2M̃′ = 2N vol8

∞∫
0

d
W(8)

η8

∑
m,n

[
(V̂6Ô2 − Ô6V̂2)(−1)m+nq

1
2 ( 2m

R
)2+ 1

2 (nR)2

− (Ô6Ô2 + V̂6V̂2)q
1
2 ( 2m+1

R
)2+ 1

2 [(n+ 1
2 )R]2

− (Ŝ6Ŝ2 + Ĉ6Ĉ2)(−1)mq
1
2 ( 2m+1

R
)2+ 1

2 (nR)2

− (Ĉ6Ŝ2 + Ŝ6Ĉ2)(−1)nq
1
2 ( 2m

R
)2+ 1

2 ((n+ 1
2 )R)2

]
.

The dilaton tadpole in V6O2 is not canceled now,

(3.14)K̃ + Ã + M̃′ for V6O2: 24 + 2−4N2 + 2N 
= 0,

while the tadpole for the would-be tachyon O6O2 and for the internal metric components O6V2,
forming a full representation of the SO(4) symmetry, are both canceled:

(3.15)K̃ + Ã + M̃′ for O6O2 + O6V2: 24 + 2−4N2 − 2N = 0 when N = 16.

Thus as a consequence of the change of signs in the Möbius amplitude M′, the tadpoles for the
“charged” SO(4) closed-string states are now canceled, at the cost of a non-cancellation of the
dilaton tadpole. The latter however is harmless and indicates that the flat Minkowski vacuum is
unstable.

Notice that to map the direct-channel and transverse-channel Möbius amplitudes one must
use the P = T 1/2ST 2ST 1/2 transformation that on the SO(6) and SO(2) characters acts like [18]

(3.16)

Ô6 → 1√
2
(−Ô6 + V̂6), Ô2 → 1√

2
(Ô6 + V̂2),

V̂6 → 1√
2
(Ô6 + V̂6), V̂2 → 1√

2
(Ô2 − V̂2).

It is interesting to give a thermal interpretation of the amplitudes (3.5) and (3.6) (when x0 is
interpreted as the Euclidean time). To start with, we note that the amplitude is T-duality invariant
under the transformation

√
2R → 1/

√
2R, reversing also the chirality of the space–time spinors.

Moreover, the Ramond sectors S and C have dual masses while the O sector is self-dual and
massive. Therefore, on this open-string sector the R-modulus deformation acts precisely as a
self-dual thermal deformation, consistent with the low and high temperature limits β ≡ R → ∞
and β ≡ R → 0 of (3.5) and (3.6). In the former case, the V and S sectors survive while the others
become infinitely massive and decouple from the spectrum. In the latter case, the V and C sectors
survive while the others become infinitely massive and decouple. In either case, the would be
tachyons in the O sector decouple, together with one spinor representation, and supersymmetry
is recovered.

Before we conclude this section, let us try to give a geometrical interpretation of the O-planes
and D-branes involved by this asymmetric action. Clearly, the orientifold planes are localized at
the fixed points of the orientifold projector, Ωσ [18,19]. As a result, we have O8 planes stretched
along the diagonals of the T 2, since the x0 ± x1 = 0 is invariant under σ , modulo identifications
on the lattice. Moreover, from Eq. (3.7) one can determine that they have the same NS–NS
tension, while they carry opposite RR charges, and have opposite couplings to the would be
tachyon, so yielding together a neutral, though massive, configuration. This is actually consistent
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with the fact that, in the closed-string sector, there are no massless RR fields they can couple to.
Notice that the O8 planes here involved are suitable deformations of those that appear in type 0B
orientifolds [18], that in general have non-vanishing couplings to all NS–NS and RR sectors.

Turning to the D-branes, as already anticipated before, they have the peculiarity that all sectors
are simultaneously present on a given stack. This has to be contrasted to the conventional BPS
D-branes, where only the supersymmetric combination V8 −S8 is present, and indeed correspond
to the non-BPS branes of Sen [25]. They can be thought of as bound states of branes and anti-
branes [26] and therefore carry no charge with respect to the RR fields. Clearly the asymmetric
“thermal” deformations act also on the non-BPS D8-branes yielding non-trivial masses to the
fermions and the would-be open-string tachyon. Moreover, from the zero-modes contributions
to A, one can immediately deduce that also these D8-branes are stretched along the diagonal,
whose length is indeed

√
2R.

4. Conclusions and perspectives

In this work we study type II superstring models where supersymmetry is spontaneously bro-
ken via asymmetric gravito-magnetic fluxes. In the closed string sector, the partition function
is shown to be free of Hagedorn instabilities for a certain choice of the fluxes. The models
describe thermal ensembles which are deformed by chemical potentials. All fermions acquire
masses, as it is the case in finite temperature systems, however here the RR bosonic states also
acquire masses due to the gravito-magnetic fluxes. In the open string matter sector, the free en-
ergy is qualitatively similar to the conventional thermal free energy in that the initially massless
bosonic spectrum is unaffected by the deformation. In both sectors the free energy satisfies a
novel temperature duality F (T /TH ) = F (TH /T ). As the temperature approaches the Hagedorn
temperature, the behavior of the system deviates drastically from the conventional thermal one,
where now no tachyons are generated above TH due to the temperature duality. At the self-dual
point T = TH , extra bosonic states become massless. This point is characterized by enhanced
non-Abelian SO(4) gauge symmetry.

Changing the temperature adiabatically suggests the existence of a non-singular phase of the
Universe where the SO(4) gauge symmetry is restored. Since the free energy is non-trivial and
finite, the back-reaction on the initially flat background will presumably induce a cosmological
evolution. For small temperatures this evolution is very similar to that of a radiation-dominated
expanding Universe [14,15]. For relatively late times the corresponding cosmology is under
investigation. The cosmological backreaction around the self-dual point is very interesting to
examine, and hopefully it will shed some light on the structure of the early universe. We expect
that this structure is characterized by a stringy, non-geometrical phase. Following the lines of
[23], this suggests the absence of space-like singularities in the cosmology.

Furthermore, following references [3,27] the absence of Hagedorn-like singularities for any T

suggests an asymptotic spectrum degeneracy of bosonic and fermionic massive string states. This
can be easily shown to be valid using the properties of the SO(8) characters and their couplings
to the Γ(2,2) shifted lattice.
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