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Abstract
We establish continuity and Schatten—von Neumann properties for Fourier inte-
gral operators with amplitudes in weighted modulation spaces, when acting on mod-
ulation spaces themselves. The phase functions are non smooth and admit second
order derivatives again in suitable classes of modulation spaces.

0. Introduction

The aim of this paper is to investigate continuity and compactness properties for
Fourier integral operators with non-smooth amplitudes (or symbols), when acting on (gen-
eral, or weighted) modulation spaces. Especially we concern with detailed compactness
investigations of such operators in background of Schatten—von Neumann theory, when
acting on Hilbert modulation spaces. Here we recall that the spaces of trace-class or
Hilbert-Schmidt operators are particular classes of Schatten—von Neumann type. More
precisely, we establish sufficient conditions on the amplitudes and phase functions in or-
der to allow the corresponding Fourier integral operators to be Schatten—von Neumann
of certain degree. Since Sobolev spaces of Hilbert type are special cases of these Hilbert
modulation spaces, it follows that our results can be applied to certain problems involv-
ing them.

The phase functions are assumed to be continuous, with second orders of derivatives
belonging to appropriate modulation spaces (i.e. weighted “Sjostrand classes”) and satis-
fying appropriate non-degeneracy conditions. The amplitudes are assumed to belong to
appropriate (weighted) modulation spaces, or more generally, appropriate (weighted) co-
orbit spaces of modulation type, where each such space is defined by imposing a mixed
weighted Lebesgue norm on the short-time Fourier transform of distributions. These co-
orbit spaces contain various types of classical smooth amplitudes. For example, for any set
of the smooth functions which belong to a fixed mixed Lebesgue spaces, together with all
their derivatives, we may find a “small” such coorbit space which contains this set. Conse-
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quently, our main results apply on Fourier integral operators with such smooth amplitudes.

Furthermore, by letting the involved weight functions be trivially equal to one,
these Sobolev spaces are equal to L?. In this case, our results generalize those in [7, 8],
where similar questions are discussed when the amplitudes and second order of deriva-
tives belong to classical or non-weighted modulation spaces.

On the other hand, following some ideas of A. Boulkhemair in [5], the framework
of the investigations in the present paper, as well as in [7, 8], is to localize the Fourier
integral operators in terms of short-time Fourier transforms, and then making appro-
priate Taylor expansions and estimates. In fact, in [5], Boulkhemair considers a cer-
tain class of Fourier integral operators whose symbols are defined without any explicit
regularity assumptions and with only small regularity assumptions on the phase func-
tions. The symbol class considered by Boulkhemair, in the present paper denoted by
M™1 is sometimes called the “Sjéstrand class”, and contains S0 . the set of smooth
functions which are bounded together with all their derivatives. In time-frequency com-
munity, M79 is known as a (classical or non-weighted) modulation space with expo-
nents p € [1, o] and g € [1, oo]. The strict definition may be found below or e.g. in
{14, 17, 22]. Boulkhemair then proves that such operators extend uniquely to contin-
uous operators on L2, In particular it follows that pseudo-differential operators with
symbols in M are L>-continuous, as proved by JI. Sjostrand in [35], where it seems
that M°>! was used for the first time in this context.

Boulkhemair’s result was extended in [7, 8], where it is proved that if the am-
plitude belongs to the classical modulation space M 7. then the corresponding Fourier
integral operator is Schatten—von Neumann of order p € [1,00] on L?. In [8] it is also
proved that if the amplitude only depends on the phase space variables and belongs to
MP-P, then the corresponding Fourier integral operator is continuous from M PP o
MPP, where 1/p + 1/p/ = 1. If in addition 1 < p <2, then it is also proved that the
operator is Schatten—von Neumann of order p on L2

We remark that the assumptions on the phase functions imply that they are two
times continuously differentiable. This property is usually violated by “classical” Fourier
integral operators (see e.g. [24, 29, 30, 31, 32]). For example, this condition is not ful-
filled in general when the phase function is homogeneous of degree one in the frequency
variable. We refer to 9, 29, 30, 31, 32] for recent contributions to the theory of Fourier
integral operators with non-smooth symbols, and in certain domains with few regularity
assumptions of the phase functions.

In order to be more specific we recall some definitions. Assume that p. g € [1, 0],
x € SR\ 0 and that w € PR are fixed. (See Section 1 for strict definition of

2.) Then the modulation space M{/(R") is the set of all f € S (R™ such that

q/p l/q
(0.1 ||f|lM</;;4 = </R (/Rn|VXf(x, Sowlx, S)\”dx) dé’) < 00

(with obvious modification when p = oo or ¢ = o0). Here V, f is the short time Fourier
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transform of f with respect to the window function x, i.e. V, f(x, &) = F(fr,7TNE),
where 1, is the translation operator 7, x(y) = x(y — x), & is the Fourier transform on
S'(R") which is given by

FfE = f© = (27T)_n/2/ Fx)e 08 gx
R/l

when f € Z(R"). For simplicity we set M"9 = M when v = 1.

Modulation spaces were introduced by H. Feichtinger in [14]. The basic theory of
such spaces were thereafter extended by Feichtinger and Grochenig in [17, 18], where
the coorbit space theory was established. Here we note that the amplitude classes in
the present paper consist of coorbit spaces, defined in such way that their norms are
given by (0.1), after replacing the L” and L% norms by mixed Lebesgue norms and
interchanging the order of integration (see Subsection 1.2 and Section 2). During the
last twenty years, modulation spaces have been an active fields of research (see e.g. [14,
15,22, 27, 39, 42]). They are rather similar to Besov spaces (see [46, 37, 42] for sharp
embeddings) and it has appeared that they are useful in time-frequency analysis, signal
processing, and to some extent also in pseudo-differential calculus.

Next we discuss the definition of Fourier integral operators. For simplicity we re-
strict ourself to operators which belong to Z (¥ (R™), &' (R™)). Here we let .2(V;, V2)
denote the set of all linear and continuous operators from V; to V,, when V| and V,
are topological vector spaces. For any appropriate a € .%'(RY™™) (the symbol or ampli-
tude) for N = ny + n,, and real-valued ¢ € C(RN™™) (the phase function), the Fourier
integral operator Op,,(a) is defined by the formula

02 Op,@f(x)=@n) Y2 / / alx, v, ) f ()90 dy dt,
R/1]+/"

when f € #(R™). Here the integrals should be interpreted in distribution sense if
necessary. By letting m = n; = n, = n, and choosing symbols and phase functions in
appropriate ways, it follows that the pseudo-differential operator

03) Opta) ) = 2" [ [ atx v, &) 7nel 4 dy ag

is a special case of Fourier integral operator. Furthermore, if r € R is fixed, and a is
an appropriate function or distribution on R?" instead of R*", then the definition of the
latter pseudo-differential operators covers the definition of pseudo-differential operators
of the form

04)  alx. D)f(x) = @m)™" / /R L A =Dx + 1y, &) (e’ dy dt.
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On the other hand, in the framework of harmonic analysis it follows that the map
ava,(x, D) from . (R*™) to Z(.Z(R"), . (R")) extends uniquely to a bijection from
F(R™) 1o Z(LR"), ' (R").

In the literature it is usually assumed that @ and ¢ in (0.2) are smooth functions. For
example, if ny =ny =n,a € L(R* ™) and g € C®(R™*™) satisfy @ € 5§ ((R**"™)
when |a| = N, for some integer Ny > 0, then it is easily seen that Op,(a) is continuous
on .Z(R™) and extends to a continuous map from .’ "(R™) to Z(R"). Here recall Sgso(RN )
denotes the Hormander symbol class which consists of all smooth functions on R" which
are bounded together with all their derivatives. In [1] it is proved that if @ € S5 (R
for all multi-indices o such that jo| = 2 and satisfies

1 "
det( (/)(/\'/, ’ (p)/c/,é )
Pye Prg

for some d > 0, then the definition of Op,(a) extends uniquely to any a € SS,O(RZ”“’),

0.5) >d

and then Op,(a) is continuous on L*(R").

Next assume that ¢ instead satisfies @ € M°!(R*") for all multi-indices o such
that |«| = 2 and that (0.5) holds for some d > 0. This implies that the condition on
¢ is relaxed since SJ, € M°!. Then Boulkhemair improves the result in [1] by prov-
ing that the definition of Op,(a) extends uniquely to any a € M 0. L(RZF™) | and that
Op,(a) is still continuous on L2(R™.

In Section 2 we discuss continuity and Schatten—von Neumann properties for Fourier
integral operators which are related to those which were considered by Boulkhemair.
More precisely, assume that w, w; for j = 1, 2 and v are appropriate weight functions,

@ < vao)’l and 1 < p < oo. Then we prove in Subsection 2.4 that the definition of

a > Op,(a) from S to L(FRM), ' (R")) extends uniquely to any a € M(O(j)’l, and
that Op,,(a) is continuous from M(’ZUI ) to M(f;z). In particular we recover Boulkhemair’s
result by letting 0 = w; = v =1and p = 2.

In Subsection 2.5 we consider more general Fourier integral operators, where we
assume that the amplitudes belong to coorbit spaces which, roughly speaking, are like
M} for p,q €[1,00] in certain variables and like M(ff)’l in the other variables. (Note
here that ng)’l is contained in M(,;? in view of Proposition 1.1 in Section 1.) If
g < p, then we prove that such Fourier integral operators are continuous from M(’;)]f ,
to M5, Furthermore, by interpolation between the latter result and our extension
of Boulkhemair’s result we prove that if ¢ < min(p, p'), then these Fourier integral
operators belong to Jp(Mfa’j), M(za‘j)). Here .,(J1, 7#3) denotes the set of Schatten—
von Neumann operators from the separable Hilbert space #7 to the separable Hilbert
space 573 of order p. This means that T € S, (A, #3) if and only if T is a linear
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and continuous operator from %] to % which satisfy

1/p

170 = sup (DTS5 gml”) < o,

where the supremum should be taken over all orthonormal sequences (f;) in %] and
(g)) in 5.

In Section 3 we list some consequences of our general results in Section 2. For
example, assume that p, g € [1, ocl, a(x, y, &) = b(x, &), for some b € M(’;;)"(Rz”),

and that
(0.6) |det(gy ()| = d

holds for some constant d > 0. Then it follows from the results in Section 2 that if
g = p, then Op,(a) is continuous from M(’;lf " to M5, Furthermore, if in addition
(0.5) and g < min(p, p’) hold, then Op,(a) € .

In the last part of Subsection 3.2 we present some consequences for Fourier inte-
gral operators with smooth symbols, and finally, in Subsection 3.3 we show how the re-
sults in Section 2 can be used to extend some results in [41, 43] on pseudo-differential
operators of the form (0.3).

1. Preliminaries

In this section we discuss basic properties for modulation spaces. The proofs are in
many cases omitted since they can be found in [12, 13, 14,15, 17, 18, 19, 22, 40, 41, 42].

We start by discussing some notations. The duality between a topological vector
space and its dual is denoted by {-, ). For admissible ¢ and b in ¥'(R"), we set
(a, b) = {a, b), and it is obvious that (-, -) on L? is the usual scalar product.

Assume that 98, and %, are topological spaces. Then % — 9B, means that Z; is
continuously embedded in A;. In the case that %; and %, are Banach spaces, %) —>
2, is equivalent to %) € %, and ||x||@, < C|x| g, for some constant C > 0 which
is independent of x € 4.

Let o, v e LY (R") be positive functions. Then w is called v-moderate if

(1.1) w(x +y) = Cox)v(y), x,yeR’,

for some constant C > 0, and if v in (1.1) can be chosen as a polynomial, then w is
called polynomially moderated. Furthermore, v is called submultiplicative if (1.1) holds
for ® = v and v is even. In the sequel we always let v and v; for j € N stand for
submultiplicative functions, if nothing else is stated. We denote by Z(R") the set of
all polynomially moderated functions on R”.

Assume that w(x;, x2) € Z(R" ™), where x; € RY for j = 1,2. If wlxy, x3) =
wi(x1) for some w; € Z2(R™), then we identify w with w; and write w(x;) instead
of wi(xy), i.e. w(xy, x2) = w(x;). In such situations we sometimes consider w as an
element in Z2(R™). '
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1.1. Modulation spaces. Next we recall some properties on modulation spaces.
We remark that the definition of modulation spaces M{,7(R"), given in (0.1) for p,q €
[1, ocl, is independent of the choice of the window x € Z(R") \ 0. (See Propos-
ition 1.1 below). For the short-time Fourier transform in (0.1) we note that the map
(f, x)— V, f is continuous from .#(R") x .#(R") to .(R*") which extends uniquely
to a continuous map from .'(R") x .#'(R") to .&'(R™").
For convenience we set M, = M”. Furthermore we set M79 = MI? if w = 1.

The proof of the following proposition is omitted, since the results can be found
in [12, 13, 14, 15, 17, 18, 19, 22, 40, 41, 42]. Here and in what follows, p’ € [1, 0o]
denotes the conjugate exponent of p € [1, oc], i.e. 1/p+ 1/p’ = 1 should be fulfilled.

Proposition 1.1. Assume that P:q,pj.q; €[1,00] for j=1,2, and w, v, w,v €
?P(Rz”) are such that w is v-moderate and w, < Cw, for some constant C > 0. Then
the following are true:

(1) f € S (R") belongs 1o M} (R") if and only if (0.1) holds for x € M/, (RN 0.
Moveover, M(’;)q (R") is a Banach space under the norm in (0.1) and different choices
of x give rise to equivalent norms,
(2) if py = p2 and q\ = q> then

SR = M)V R > MEP(R") — (R,

(w3)

PnKI(Rn) %

(3) the L? product (-, -) on F(R") extends to a continuous map from M
M(';,’/‘IU;)(R”) to C. On the other hand, if ||a|| = sup|(a, b)|, where the supremum is taken

over all b € #(R") such that |[b|, v <1, then ||-|| and ||- ||M(ﬂ»)v are equivalent norms,
(1fw) @

(4) if p.g < oo, then S(R") is dense in M{/(R") and the dual space of MJ;!(R")

can be identified with M(’{’/qu;)(R”), through the form (-, -);2. Moreover, /(R") is weakly
dense in M (R").

Proposition 1.1 (1) allows us be rather vague concerning the choice of x € M(lv) \O
in (0.1). For example, if C > 0 is a constant and & is a subset of .%", then HaHM{jj =<
C for every a € &/, means that the inequality holds for some choice of x € M(lv)\O and
every a € &/. Evidently, a similar inequality is true for any other choice of x € M(lv)\O,

with a suitable constant, larger than C if necessary.
It is also convenient to let Mfa‘g(R”) be the completion of #(R") under the norm

(w)
that most of the properties which are valid for M{/(R"), also hold for M{!(R").
We also need to use multiplication properties of modulation spaces. The proof of
the following proposition is omitted since the result can be found in [14, 17, 41, 42].

I llagrs. Then MG € M{! with equality if and only if p < co and g < oo. It follows



SCHATTEN PROPERTIES FOR FOURIER INTEGRAL OPERATORS 745

Proposition 1.2. Assume that p, p;, q; € [1, co] and w;, v € PR™), for j =
0,..., N, satisfy

1 1 1 1 1 1
— b —=—, — 4+t —=N-1+4—,
P1 PN Po q1 4qnN qo
and
wo(x, &1 + o+ Ey) = Colx, &)~ wnlx, Ey), x,&,..., v €RY,

Sfor some constant C. Then (fi,..., fn) = fi -« fy from SR x--- x L R") 10
S (R") extends uniquely to a continuous map from MPT'(R") x - x MM (RY) 1o
MPPRY), and

(wo)

If- - vl = ClLf a1 lagcoy
) (wy) (wp)

Jor some consiant C which is independent of f; € M(C)’,)q’ R") fori=1,...,N.
Furthermore, if ug = Q when p < 00, v(x, &) = v(&) € L(R") is submultiplicative,

! . . . .
fe Ml (R, and ¢, Y are entire functions on C with expansions

$2) =Y m, Y@= |ul,
k=0 k=0

then ¢(f) € M[};) (R™), and
H¢(f)||M(/‘j_~)' = C¢<C“f”M[IL{-)*)’
Jfor some constant C which is independent of f € M(FU’)l (R™).

In the following remark we list some other properties for modulation spaces. Here
and in what follows we let {x) = (1 + |x|*)!/?, when x € R".

REMARK 1.3. Assume that p.q,q,. ¢, € [1, 00] and that w, v € Z(R*") are such
that « is v-moderate. Then the following properties for modulation spaces hold:
(1) if ¢y <min(p, p'), g2 = max(p, p') and w(x,§) = w(x), then M7 C L] < M.
In particular, M(Zw> = wa);
(2) if w(x, §) = w(x), then M{;](R") < C(R") if and only if ¢ = 1;
(3) M!*> is a convolution algebra which contains all measures on R" with bounded
mass;
(4) if xp € R" is fixed and wo(§) = w(xo, &), then M{Y N & = FL{, N &' Here
FLY (R") consists of all f € .’ (R") such that

(wp)

If wollzs < oo.
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Furthermore, if B is a ball with radius r and center at xp, then
—1qy A 2
S e, = Wl < CUF N, o S € &'(B)

for some constant C which only depends on r, n, @ and the chosen window functions;
(3) if w(x, &) = wo(—§, x), then the Fourier transform on .%'(R") restricts to a homeo-
morphism from M[, (R") to MJ,(R™). In particular, if w = wo, then M/, is invariant
under the Fourier transform. Similar facts hold for partial Fourier transforms;

(6) for each x, & € R" we have

1678 £ = o)l ppre < Cote, 1S Nz

{w)

for some constant C;

(7) if @(x, &) = w(x, —&) then f € M(;] if and only if feml

8) if s € R and w(x, £) = (§)°, then M(zw) agrees with HSZ, the Sobolev space of
distributions with s derivatives in L?. That is, H] consists of all f € ' such that
FN(- ) f) e L2 If instead w(x, §) = (x)*, then M2, agrees with L?, the set of all
f e Ll, such that ()" f € L.

See e.g. [12,13, 14,17, 18,19, 22,33, 42].

For future references we note that the constant C in Remark 1.3 (4) is independent
of the center of the ball B.
In our investigations we need the following characterization of modulation spaces.

Proposition 1.4. Let {x,}aes be a lattice in R", By = x4 + B where B & R" is
an open ball, and assume that f, € &' (By) for every o € 1. Also assume that p,q €
[1, o). Then the following is true:

(n if

1/p
12)  f=) fu and F(é)E(Zlfa(E)w(xa,é)\”> e LY(RY),

ael ael

then f € M{;, and f = || FllLs defines a norm on MPS which is equivalent to -1l
in (0.1);

(2) if in addition |J, B« = R", x € C§°(B) satisfies S x(—x) =1, f€ MR,
and fy = fx(+ —Xq), then fy € &' (By) and (1.2) is fulfilled.
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Proof. (1) Assume that x € C§°(R")\ 0 is real-valued and fixed. Since there is
a bound of overlapping supports of f,, we obtain

Ve f (s ©oolx, £)] = [ F(fX(- = 0))E)o(x, §)]
<D IFfax (- = ) E)(x, )|

= (X1 Gux =@t H17) "

for some constant C. From the support properties of x, and the fact that w is v-
moderate for some v € PR, it follows that

I (fax (- = 0)E)o(x, §)| < ClF (fux (- —x)NE)(x4, )],

for some constant C independent of a. Hence, for some balls B' and B, = x, + B’,
we get

/p
< /R JFAC = )Eol, sw’dx)

1/p
- C(Z /B/]g(fax(‘ _x))(s)w(xa,é)l”d)c)
p
<c (Z /B,<|faw<xa, D [xw(0, '>|<s>>f’dx>

1/p
< c/’(Z(ifawua, Dl 2000, .>|(s)>”> = C"F s |70(0, &),

for some constants C, C’ and C”. Here the last estimate follows from Minkowski’s
inequality. By applying the L9-norm and using Young’s inequality we get

[ gz = CPIF %000, Hlilze < CTIF 1ol 300, o

Since we have assumed that F € L9, it follows that || /|| mry s finite. By similar argu-
ments we get || Fzs < C|]f||M(n,7 for some constant C. This proves (1).

The assertion (2) follows immediately from the general theory of modulation spaces.
(See e.g. Chapter 12 in {22].) The proof is complete. O

Next we discuss (complex) interpolation properties for modulation spaces. Such
properties were carefully investigated in [14] for classical modulation: spaces, and there-
after extended in several directions in [18], where interpolation properties for coorbit
spaces were established, see also Subsection 1.2. The following proposition is an im-
mediate consequence of Theorem 4.7 in [17].
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Proposition 1.5. Assume that 0 <0 <1, pj.q; €11, ool and that w; € PR™)
for j=0,1, 2 satisfy

1 1-6 0 1 1—-0 ) -6 0
e =t and o= w| ;.
Po P1 P2 4o q1 qz2

Then

(ME R, MEFR) ) = MR
and

(ML (R, MU RD) g = M (RD:

Next we recall some facts in Section 2 in [44] on narrow convergence. For any
fe SR, we PR, x € SR and p € (1, o], we set

1/p
Hf,a),p(g) - </R“|V)(f(x’ g)w(xv 5)\]75“) .

DEFINITION 1.6. Assume that f, f; € M(’;;;’(R”), j=1,2,.... Then f; 1s said 1o

converge narrowly to f (with respect to p.q € [1,00], x € S RMH\0 and w € PR™M),
if the following conditions are satisfied:

(1) f;— fin S (R as j tends to ©0;

(2) Hywp8) — Hy o, p(§) in L4(R") as j tends to 00.

REMARK 1.7. Assume that f, f1, f2,... € (RM) satisfies (1) in Definition 1.6,
and assume that & € R”. Then it follows from Fatou’s lemma that

hm inf Hfjwp(g) > chu,p(‘g)
S o0

and

bim inf]l f; Waazs = I oz

(w)

The following proposition is important to us later on. We omit the proof since the
result is a restatement of Proposition 2.3 in [44].

Proposition 1.8. Assume that p, q € |1, 0o] with g < 20 and that w € PR™).
Then CSP(R") is dense in M[;J(R") with respect o the narrow convergence.
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1.2. Coorbit spaces of modulation space types. Next we discuss a family of
Banach spaces of time-frequency type which contains the modulation spaces. Certain
types of these Banach spaces are used as symbol classes for Fourier integral operators
which are considered in Subsection 2.5. (Cf. the introduction.) After submitting the
paper, we got knowledge that our coorbit spaces may be, in a broader context, con-
sidered as modulation spaces (cf. [16]).

Assume that V; and W; for j = 1,..., 4 are vector spaces of dimensions n; and
m ; respectively such that

(1.3) ViV, =@V, =R", Wi W, =W, W, = R".

We let the euclidean structure in V; and W; be inherited from R" and R™ respectively.
For convenience we use the notations

V=Wi....V), W=W, ..., Wy, and p=(p,q,7,9),
for quadruples of vector spaces and the numbers p, g, r, s € [1, co], and we set
LP(V) = L*(Vi; L (V3 LY (Vs LY (V).

Finally, if o € 2(R*), then we let L}, (V) be the Banach space which consists of
all F e L (R*) such that Fow € LP(V). This means that Ly, (V) is the set of all

loc

F e L. (R™) such that

q/p r/q s/r /s
£, ) = < /V ( /V ( / ( G, é)w(x,snﬂdxl) dXz) ng> dsz)
JVy 3 Va )

is finite (with obvious modifications when one or more of p, g, r, s are equal to in-
finity). Here dx;, dx;, d§, and d&, denote the Lebesgue measure in Vi, V,, V3 and Vj
respectively.

Next, for x € L(R")\ 0, we let @fw>(V> be the coorbit space which consists of

all f €' (R") such that V, f € Ly, (V), ie.

(1.4) Hf”@:’w)(V) = | fo”wa)(V) < 0.

p.r
(w) "

On the other hand, if p # ¢ or r # s, then @, (V) is not a modulation space on such
form. A more general definition of coorbit spaces can be found in [17, 18], where such
spaces were introduced and briefly investigated. :

The most of the properties for modulation spaces stated in Proposition 1.1 and Re-
mark 1.3 carry over to @fw) spaces. For example the analysis in [22] shows that the

We note that if p =¢q and r = s, then ®fw>(V) agrees with the modulation space M,
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following result holds. Here we use the convention

p <p, when p, = (pj.q,.t;s;) and pi = pr g =gz, 1 =12, 51 S8,
and

n<p<t when p=(p,g,7,5) t,hell,x] and f© <p,q.7r,s <h.

Proposition 1.9. Assume that p,p; € [1, 0] for j = 1,2, and w, w, w2, vV €
@(Rz”) are such that w is v-moderate and wy < Cwy for some constant C > 0. Then

the following are true:

(1) if x € MLRD\O, then f € O, (V) if and only if (1.4) holds. i.e. O, (V) is

independent of the choice of x. Moreover, @E’w)(V) is a Banach space under the norm
in (1.4), and different choices of x give rise to equivalent norms;

(2) if p1 = py then
FRY) — O (V) — O (V) = S (R").

(w2)

Later on we also need the following observation.

Proposition 1.10. Assume that (x,y) € V| & V, = R with dual variables
(E,n) € V4 @ Vi, where V| = V4 = R™ and V, = V3 = R". Also assume that f €
FRY), fo e L R, we PRYM) and wy € PRV satisfy

folx, )= f(») (n Z'(R™™)
and

wolx, v, £, 1) = oy, M{E)

for some t € R, and that p,q € [1,00). Then [ € MPIR" if and only if fo €
- (w)
O, (R and p = (00, p. q. 1), with V. = (Vy, Va, V5, V).

Proof. Let x0 = x1 ® x, where x; € #(R™) and x € #(R"). By straightforward
computations it follows that

(15) lVXOfO(Xa Y, é].s 77)600(3‘, Y, §> ’7)| = IVXf(y’ 77)60()’: 77)\ |21($)(§)1|

Since |§1(€)|(£)" turns rapidly to zero at infinity, the result follows by applying the
LP(V)-norm on (1.5). O

Since interpolation properties for coorbit spaces are important to us, we next recall
some of these properties. By Corollary 4.6 in [17] it follows that ©F, (V) is homeo-
morphic to a retract of L{,, (V). This implies that the interpolation properties of Ly, (V)
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spaces carry over to @fw(f/—) spaces. (Cf. Theorem 4.7 in [17].) Furthermore, since the
map f + w- f defines a homeomorphism from Lf, (V) to LP(V), it follows that L{, (V)

has the same interpolation properties as LP(V). From these observations together with
the fact that the proof of Theorem 5.6.3 in [2] shows that

(L"'(R"; By), L7*(R"; B2))e) = LP(R"; B),
, ) o 1 1-—-6 6
when p, pi, p» € [1,00], %= (%, #)p and — = —— + —,
p Pi P2

it follows that the following result is an immediate consequence of Theorems 4.4.1
and 5.1.1 {2]. The second part is also a consequence of Corollary 4.6 in [17] and
certain results in [26]. Here we use the convention

1 1 111
— == -, -, -] when p=(p,q.r,5).

Proposition 1.11.  Assume that V; S R" and W; CR"™ for j = 1,....4 are vector
spaces such that (1.3) holds, P;,q; € [1, o0]? for j =0, 1, 2 satisfy

1 1-6 0 1 1-6 0

Po P Py’ d 53

»

for some 6 €10, 1]. Also assume that w,w; € PR¥) for j = 1,2. Then the following
is true:

(1) the complex interpolation space (@ZL'))(V), QFi)(V))WJ is equal to G)f’w)(V);

(2) if T is a linear and continuous operator from OF' (V) + @le>(7) to @2:)2)(W) +

(wr) w
@ﬁzz)(W), which restricts to a continuous map from @p’])(V) 10O (W) for j=1,2,

{w (wy)

then T restricts to a continuous mapping from @me(V) to @f‘gz)(W}.

1.3. Schatten-von Neumann classes and pseudo-differential operators. Next
we recall some facts in Chapter XVIII in [24] concerning pseudo-differential operators.
Assume that @ € #(R*"), and that t € R is fixed. Then the pseudo-differential oper-
ator a,(x, D) in (0.4) is a linear and continuous operator on .#(R"), as remarked in
the introduction. For general a € .& "(R®), the pseudo-differential operator g,(x, D) is
defined as the continuous operator from . (R") to .%'(R") with distribution kernel

(1.6) Kio(x, y) = Qm)™H(F5 a)((1 — Hx + 1y, y — x),

where %, F is the partial Fourier transform of F(x, y) € ./(R*) with respect to the
y-variable. This definition makes sense, since the mappings .%, and F(x, y)+> F((1 —
)x +1y,y—x) are homeomorphisms on .#'(R*"). Moreover, it agrees with the operator
in (0.4) when a € (R*").
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We recall that for any 7 € R fixed, it follows from the kernel theorem by Schwartz that
the map a + a,(x, D) is bijective from .&'(R*") to ZL(F(R"), & (R")) (see e.g. [24]).
In particular, if ¢ € .77 "(R*) and s, t € R, then there is a unique b € .#'(R*) such that
as(x, D) = b,(x, D). By straightforward applications of Fourier’s inversion formula, it
follows that

(1.7) as(x, D) = b,(x, D) <= b(x, &) = " "Polelg(x, £).

(Cf. Section 18.5 in [24].)

Next we recall some facts on Schatten—von Neumann operators and pseudo-
differential operators (cf. the introduction).

For each pairs of separable Hilbert spaces J#7 and 573, the set J(J¢, F63) is
a Banach space which increases with p € [1, oo], and if p < oo, then £,(57, J5) is
contained in the set of compact operators. Furthermore, 4 (541, 5%3), % (541, 7¢) and
Il F1, 763) agree with the set of trace-class operators, Hilbert—Schmidt operators and
continuous operators respectively, with the same norms.

Next we discuss complex interpolation properties of Schatten—von Neumann classes.
Let p, p1, p2 €[], c0] and let 0 <8 < 1. Then similar complex interpolation properties
hold for Schatten—von Neumann classes as for Lebesgue spaces, i.e. it holds

1 1-6 %
(1.8) Ip = (I Fp ey, when  — = —— 4 —.
p P P2

(Cf. [34].) Furthermore, by Theorem 2.c.6 in [25] and its proof, together with the re-
mark which followed that theorem, it follows that the real interpolation property

2
(1.9 I = (S, Iaodo.p, When 0 =1-——
p

holds. We refer to [34, 43] for a brief discussion of Schatten—von Neumann operators.
For any 1 € R and p € [1, o0], let s, ,(w;, wy) be the set of all a € Z'(R*) such
that a,(x, D) € F(M¢, |, M2, ). Also set

()’

”a”su, = ”a”x,,p(wl,wz) = “at(X, D)||-7h(M(2(,),)vM(2wz>

when a;(x, D) is continuous from M(Zwl) to M(zwz). Since a — a,(x, D) is a bijective map
from &' (R*) to Z(Z(R"), &' (R")), it follows that the map a > a,(x, D) restricts to

. . e . 2 2
an isometric bijection from s; ,(w1, @2) t0 G (Mg, |, M(, ).
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Proposition 1.12. Assume that p, q, g, € [1, 00] are such that g, < min(p, p’)
and q; > max(p, p'). Also assume that w,, w, € PR*) and w, wy € PR™) satisfy

wyx =1y, §E+(1=1)m)
(110) wl(x-{—(l—t)y,g——«m) -——Cl)(.x, 57 77’ y)

and

(1.1D) wo(x, ¥, & m) = (I =0)x + 1y, 16 —=(1 = 1)n, § + 1, y — x).

Then the following is true:

(1) MR S sy (w1, 2) € MR,
(2) the operator kernel K of a;(x, D) belongs 1o M}, >(R2") if and only if a € Mp)(Rz")
and for some constant C, which only depends on t and the involved weight functions, it

holds Kz, = Clally,

We note that (1.10) and (1.11) are equivalent to

o(x, & y) =wx —ty, x + (L =t)y, E+ (1 =)y, tn—&) and
(1.12) wa(x, &)

= Caplx, y, &, n).
wl(y9 ‘“77)

Proof. The assertion (1) is a restatement of Theorem 4.13 in [45]. The assertion
(2) follows by similar arguments as in the proof of Proposition 4.8 in [45], which we
recall here. Let x, ¢ € #(R*") be such that

Wi = [ (1= 0x iy, e de.
R’
By applying the Fourier inversion formula it follows by straightforward computations that

|- (K Tty s (=W HE + (1 = D, =€ + )| = | Fatp.ex)M, Y.

The result now follows by applying the L(w) norm on these expressions, and using (1.12).

0

We also need the following proposition on continuity of linear operators with ker-
nels in modulation spaces.

Proposition 1.13. Assume that p € [1, 0], w; € PR, for ] =1,2, and wy €
PR¥™T2 fulfill for some positive constant C

(1.13) 208 oot v £ ).
@ (y, —1)
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Assume moreover that K € M{ZUO)

FR™) to S'(R™) defined by

(R"™"Y and T is the linear and continuous map from

(1.14) (TfHx) = (K(x, ), [)

when f € S(R"). Then T extends uniquely to a continuous map from M{;;])(R”]) to

M;, (R™).
On the other hand, assume that T is a linear continuous map from M}, (R")
to M5 (R™), and that equality is attained in (1.13). Then there is a unique kernel

K € M(’j{))(R”‘J“’lz) such that (1.14) holds for every M(lwl)(R"‘).

Proof. By Proposition 1.1 (3) and duality, it suffices to prove that for some con-
stant C independent of f € .(R™) and g € #(R™), it holds:

(K. 8 ® I = CUK Nz, Il 151y
1y ()

Let ws(x, &) = w,(x, —&). Then by straightforward calculation and using Remark 1.3
(7) we get

{wp)

= CliKllug, Mgy Ny -
(/) (wy)

(wy)

Al < ) Fll ., <(C , . o
(K. 8 ® NI CIK g, 18® = CllK g ey 11y

The last part of the proposition concerning the converse property in the case p = 00
is a restatement of Proposition 4.7 in [45] on generalization of Feichtinger—Grochenig’s
kernel theorem. O

2. Continuity properties of Fourier integral operators

In this section we discuss Fourier integral operators with amplitudes in modula-
tion spaces, or more generally in certain types of coorbit spaces. In Subsection 2.3 we
extend Theorem 3.2 in [4] to more general modulation spaces.

2.1. Notation and general assumptions. In the most general situation, we as-
sume that the phase function ¢ and the amplitude a depend on x € R™, y € R" and
¢ € R, with dual variables respectively £ € R™, n € R* and z € R™. For convenience
we use the notation:

Q.1 N=n +n and X=(x y,0)e R2HR" §R" =~ R"™,

In order to state the results in Subsection 2.5 we let V) be a linear subspace of RY ™™
of dimension N, V5 = V", and let V] ~ V; be the dual of V; for j =1,2. Also let
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any element X = (x, y, £) € R¥* and (£, n, z) € RY™ be written as
(X, ¥y, 0)=te + - +ityey +@1eny) + - + 0,,EN+m
=0 =@ 0vav,
and

G.ma)=Tier+ -+ Tyey Fureny o+ Upenim

]

(T.u) = (7, u)y,pv,,

for some orthonormal basis e, ..., ex,, in RV, We also let F é denote the gradient

of F e C'(RV*™) with respect to the basis ENtTs s CN -

In general we assume that the involved weight functions w, v € 2RVt x RV ),
wy € PR™) and w,, wy € PR and the phase function ¢ € C(RY™) fulfill the
following conditions: '

(1) v is submultiplicative and satisfies

X, 6. n, ) =v(, n,2) and v(-) < Cu,

(2.2)
X eRY™ £eR™ neR", ;eR",

for some constant C which is independent of ¢ € [0, 1]. In particular, v(X, &, n, 7) is
constant with respect to X e RV

(2) 9 € CRY™™) and ¢ ¢ M(?)’I(RNJ““) for all indices o such that |o| = 2;

(3) there exist some constants C, €, and C, which are independent of

X = (X, Y, é‘) € RN+m’ 57 517 $2 € ana ., me R”]7 21,22 € R"

such that
(,()2()6, S) ’ ’ /
oo S Croolx, 3.8, ) = Co(X, & — (X)), n— @l(X), —g,(X)),
(2.3 w1y, —1) :
(X, & + &, m +m, 21+ 22) < Cao(X, &1, ny, 20)0(E, M2, 20).

We note that the assumptions in (2) imply that the phase function ¢ belongs to
CY*RY™) and is bounded by second order polynomials, since the condition that v is
submultiplicative implies that ¢” € M(L°,°)'1 T M>CCnL>.

It is also convenient to set

Eoolt, 0. 1.0) = |V,a(X, £, 1, Dw(X, £, 1, 2),
Caw(x, y, u) =sup B, ,(t, 0. T, u),
(% 4

when a € ./ (RY™™). Here u € V; and the supremum should be taken over ¢ € R”
and T € V/.
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2.2. The continuity assertions. In most of our investigations we consider Fourier
integral operators Op,(a) where the amplitudes a belong to appropriate Banach spaces
which are defined in similar way as certain types of coorbit spaces in Subsection 1.3,
and that the phase function ¢ should satisfy the conditions in Subsection 2.1. In this
context we list now the statements which will be proved in the following under appro-
priate assumptions on a, ¢. Here the definition of admissible pairs (a, ¢) is presented
in Subsection 2.5 below.

(i) the pair (a, @) is admissible, the kernel K4, of Op,(a) belongs to M(Z)O), and

|Kagllgy, = Ca™ exp(le” ) lall

for some constant C which is independent of a € SRy and ¢ € CRNT™);
(ii) the definition of Op,(a) extends uniquely to a continuous operator from M(’;])(R”')
to M(]:Uz)(R”z). Furthermore, for some constant C it holds

0P, @,y o = € exp(l¢ )l
@] w3y v
(i) if in addition 1 < p <2, then Op,(a) € fp(M(zwl), M(zwz)).

23. Reformulation of Fourier integral operators in terms of short time Fourier
transforms. For each real-valued ¢ € C(RM*™) which satisfies (2) in Subsection 2.1,
and a € Z(RYT™), it follows that the Fourier integral operator f > Op,la)f in (0.2)
is well-defined and makes sense as a continuous operator from SR o F(R™),
that is

(Op,(@)f. ) = @m) ™" / (X)) ()3 dX,

RN+m

is well-defined when f € #(R™) and g € #(R™). In order to extend the definition
we reformulate the latter relation in terms of short-time Fourier transforms.

Assume that 0 < x, ¢ € CgO(RNJ“’”) and 0 < x; € Cg®(RY) for j =1, 2 are such
that ¥ = 1 in the support of x,

/// x(x, v, Ox1()xa(x)dx dy dg =1,

and let X; = (x1, y1, &1) € RV, By straightforward computations we get
@MV (Opy @) f. &)

= / a(X) f(y)g()e X dx
RN»‘rm

- /zw jax+ XX (XD F (4 yDx g’ + xn)xalepe VXN g X dX,.
J JRENm
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Then Parseval’s formula gives
Q)N 2(Op (@) f, &)

= //// - FX. &, NF (4 x=mF(glx + )& dX dE dn de,
R2(N+m)

— [[] ] PO 0V, = Vg Bre 100 ax a i
R +m

= /// </ F(X. &1, §l)d§1>vxlf(y, ) Vyg(r, Be W E b g x e an,
R2N+m . Rm

where

F(X,&,1,01) = Fpp(eVCeETL0g(x + (e, a))E, n).

Here #| ,a denotes the partial Fohrier transform of a(x, y, {) with respect to the x and
y variables.
By Taylor’s formula it follows that

Y (X)X + X1) = v (X)) x (X)) + o x(X0),
where

YLx(X) = o(X) + {¢(X), X;) and

(2.4) 1
Vo x(X1) = W(Xl)/o (I =" (X + 1 X)Xy, Xy) dt.

Inserting these expressions into the definition of F(X, &, n, ¢;), and integrating with
respect to the ¢;-variable we obtain

| ros
= Qu)"EF (V" al + X)0E — 9L (X), 1 = @y(X), —gp(X))
= (zn)N/ZHa,q)(Xv S, 77)7

where

Hao(X, &) = hx * (F(al(- + X)xNE — ¢ (X), n — ¢ (X), =g, (X))

(2.5) :
and hX = (Zn)—(N-mﬂ)(y(el\//zx X))
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Note here that the convolution of the function

(X, &, 1, 2) = Flal- + X)ONE, . 2)

should be taken with respect to the variables &, n and z only.
Summing up we have proved that

Op,@)f, 8)

(2.6) =Tau(f. 8)
= /// Hag (X, &, M(Vyy I =V 810 e A0 dX dg dy.

2.4. An extension of a result by Boulkhemair. Next we consider Fourier in-
tegral operators with amplitudes in the modulation space M(Oaf)’l(Rz’”m), where we are
able to state and prove the announced generalization of Theorem 3.2 in [5]. Here we
assume that n, = n, = n which implies that N = 2n.

Theorem 2.1. Assume that 1 < p < 00, ¢ € CR”™), w, v € PRV and
W, wr € PR fulfill the conditions in Subsection 2.1. Also assume that (0.5) holds
for some d > 0. Then the following is true:
(1) the map a — Op,(a) from FR¥T™Y 10 LS R, S (R") extends uniquely to
a continuous map from M(oaf;l(RZH'") to LR, L (R,

(2) ifac M(C’Li)’l(Rb’Jr"’), then the map Op,(a) from S (R") 1o S (R extends uniquely

r

to a continuous operator from M(’;I)(R”) to M,

it holds

)(R”). Moreover, for some constant C

2.7) 10D, @, e < €A™ allyx exp(CHO"lges)-

(w))

The proof needs some preparing lemmas.
Lemma 2.2. Assume that v(x, £) = v(&) € PR") is submultiplicative and satis-

fies v(t€) < Cv(&) for some constant C which is independent of t € [0, 1] and § € R".
Also assume that f € Mﬁo)o)‘l(R”), x € CP(R") and that x € R", and let

]
O, ik (Y) = x(y)/0 (1 =0 f(x + 1)y dr.

Then there is a constant C and a function g € M/,,(R") such that lgllay, = C| f Il ygeo
and | F (@x, ;1)) < §(&).
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Proof. We first prove the assertion when x is replaced by vo(y) = e 2P, For
convenience we let

iy =e b’
and

Va(y) = "
and

Heo, p(§) = supl.Z (fyn(- —x)E)I.

We claim that g, defined by

o
(2.8) g = / / (1 = 1) Hao, (e~ E1E/10 gy s,
0 JR"

fulfills the required properties.
In fact, if v1(§, x) = v(x, &) = v(&), then by applying M(lv) norm on g, and using
Remark 1.3 (6), (7) and Minkowski’s inequality, we obtain

1
A ). 2
lethg, = 18llay, = | [ [ 1= 0 st d a
g | 0 R" Ml

)

i
s//(1—z)Hoo,f(n)lle“'“’”‘“/IGHM&)d”d’
0 R/l K

1
= [ [ a=nteonle 0y v ana
0 JR !

IA

1
C: [ | =t muontet el anas
0 JR" )

Gl Hoo, pvlir = Callf lpgeers

]

for some constants C;, C, and Cs.

In order to prove that |7 (¢ ; 1)(&)] < g(&), we let Y(¥) = ¥ (y) = y;»eo(y).
Then

1
Px,jk(Y) = 1/f(y)/ (=10 f(x + ty)dr.
0
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By a change of variables we obtain

| F (@) E) =

1 .
Q™) / (1—r>< / Flx A+ P (e s dy) dt
0 R’

1
2.9) = / (1= DF Y = 0)D)E/De N dn

0

i
< /0 17101 — 1y sup [ F(FY(( — x)/ONE/D] dt.

xeR"

We need to estimate the right-hand side. By straightforward computations we get

|\F(fY((- = x)/D)E)
< @)y PNF S =) L F@C = x)/0P2( = DDE)
= QY "\ Ffn (- =) * [ F @ DY)DE)

where the convolutions should be taken with respect to the &-variable only. Then
(2.10) \F (Y- = x)/DNE)] < r) P (Hoo g x| F W (- /DOY2)DE).

For the estimate of the latter Fourier transform we observe that

(2.11) \F (/DY) = 1387 (ol - /D) Y2l

Since Yo and ¥, are Gauss functions and 0 <t < 1, a straightforward computation
gives

(2.12) Tl - JOUE) = w2 — 2y e O,
Thus a combination of (2.11) and (2.12) therefore give

(2.13) \F (- /) Y] < Crre S,

for some constant C which is independent of ¢ € [0, 1]. The assertion now follows by
combining (2.8)—(2.10) and (2.13).
In order to prove the result for general x € CP(R") we set

1
hy jn(y) = 1/fo(y)/o (1 =0 f(x +ty)y;yedt,

and we observe that the result is already proved when ¢, is replaced by By, jn-
Moreover @x j.x = Xihx, ks for some x; € CgQ(R”). Hence if go is equal to the right-
hand side of (2.8), the first part of the proof shows that

| F (e 0E)] = | F O ja @) < @021 * Go§) = (8-
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: i 1 1 . ) v concts
Since ilgOHM(lm < C||f[|M(3$,1 and M, %L, € M, we get for some positive constants
C), C; and C5 that

gy, = Coldly | < ColRilly Nollgy < Coll Fllys.
which proves the result. ]
As a consequence of Lemma 2.2 we have the following result.
Lemma 2.3. Assume that v(x, §) = v(&) € P(R") is submultiplicative and satis-
fies v(t&) < Cv(&) for some constant C which is independent of t € [0, 1] and & € R".

Also assume that f; i € M(?)"l(R”) for j.k=1,...,n x € CFR") and that x € R",
and let

' 1
oe(y) = Z @x.jk(y),  where wx,_,-,k(y)=x(y)/(1—t)fj,k(x+ty)yjykdt.
0

Jok=1,..., n

Then there is a constant C and a function W € M) (R") such that

19l < exp(c su]gnfj,kuM_»;,])
Js
and

(2.14) | Z (explig)(€))] < Qm)'/280 + V().

Proof. By Lemma 2.2, we may find a function g € M(lv) and a constant C > 0
such that

| Z (@) < 86, gl =C suf(uf,-.knml).
7

Set

Do, = (27)"?8, O, = |Fl) * % | F(@)], 1>1,
Yo=Qa)"%8, Yi=§*---xg, =1,

with [ factors in the convolutions. Then by Taylor expansion, there are positive con-
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stants C; and C; such that

= Clo, o= G
l%wwwmwmgjmhszzf
{=0 ’ ’

Hence, if

W

I

s
— I

then (2.14) follows with C = C,. Furthermore, since v is submultiplicative, it follows
from Proposition 1.2 that

Mgy, = @Ol gl = (Crlglh ), 1=,

[}

for some positive constant Ci. This gives

> Wl = (Cillgly )
I S
=1 ’ 1= ’
!
e (Cz Supj,k(“.fj,k”wﬁ?"))
ff: i () 5exp<C2 Sj}?}?ll]‘j’kilMﬁ'l)’
for some constants C; and C», and the result follows. [

Proof of Theorem 2.1. We shall mainly follow the proof of Theorem 3.2 in [5].
First assume that @ € CZ(R*™™™) and f, g € S(R"). Then it follows that Op,(a)
makes sense as a continuous operator from . to .. Since

(B )] £ @) RFE O« R] 1 F @+ X0l = ValXs ol
and M/, € L{,. it follows from Remark 1.3 (5) and Lemma 2.3 that
(2.15) Ha.o(X. &, M| < C(G x |V,a(X, DE — @ (X). 1= 9L (X), = (X)),

where G € L(lv) satisfies HGHL(]“) < Cexp(Cll¢"|| =), since |%| turns rapidly to zero

)

at infinity. Here H,,, is the same as in (2.5), vi(&, x) = v(£), and the convolution for
Vea(X, §,1m,2) should be taken with respect to the variables &, 7 and z only.
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Next we set
Ei (X, &, n,2) = |Va(X, & n, DX, &, 1, )|,
Eow(€. 1. 2) = sup B, (X, &, 1, 2),

(2.16) X

Fy(y, n) = [Vy, f(y, mon(y, nl,

Fr(x, §) = |Vy,8(x, §)/wa(x, &),
and
(217) Qa,w(xa 4’) - Ea,(u(Xv S - (/);(X)9 n— QD:(X)’ —¢é(X))s
and
218)  RawyX 0) = (Gv) % Eq (X, DE = @l(X), 7 = @y(X). =g/ (X)),
where

X=(x10 and X=(x,y & n.

Note here the difference between X and X. By combining (2.3) with (2.15) we get
///lHu,(p(X, 57 r])(v)mf)(y’ “n)(vng)(xa $)| dX dé d’?

<q / / (G * [V,a(X, )DE = @,(X), n— @,(X), —p}(X))
X A(Vy, Iy =m(Vy,8)(x, £)] dX dE dn

< e / / / Rung 6 OFi(y, —F(x, £) dX dt di.
Summing up we have proved that
(219 |Op,@f, ) =C / / / Rang 6 OFi(y, =) Falx, €) dX dE di.

It follows from (2.16), (2.18), (2.19) and Hélder’s inequality that
(2.20) |(Opw(a)f, DI =CJi- U,

where

. ® 1/p
h= </ / (Gv) * Eao(§ — ¢,(X), n — 9y(X), =g (XD Fi(y, =)’ dX d& dn> ,

~ / 1y
JZ proed (// (GU) * Ea,a)(g - (p)/c(X)a n— (ﬂ;(X), —(pé(X))Fz(x’ 5)17 dx d%— dn) )
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We have to estimate J; and J,. By taking z = ¢ (X), {0 = (p;(X), y, & and n as new
variables of integrations, and using (0.5), it follows that

. . I/p
J = <d“‘ // (Gv) % Bg o€ — €1(y, 2, C0)s 1 — S0, D) F1(y, =)' dy dz d& dn d§o>

: i 1/p
- (d“* / / / (Gv)  Bu o€, Loy ) Fy(y, —m)P"dy dz dE diy dCo)

= d7P)(Gv) * Eaoll P IF -

for some continuous function ;. It follows from Young’s inequality and (2.3) that
(Gv) * BaollLt = HG”L"“)“Ea,w”[.‘-

Hence

(221) = a7 (Cexp(Clle Ml ) 1 g

o

If we instead take x, yo = ¢, (X), &, n and o = @, (X) as new variables of integrations,
it follows by similar arguments that

' ~1/p ” 1/p'
@21) 5y = a7 (€ exp(Clle s V) ey
A combination of (2.20), (2.21) and (2.21) now gives

Op,(@)f. 1 = €™ ally 1 g, I8l @P(CI9" ).

which proves (2.7), and the result follows when a € ch(Rz"”') and f, g € S(R").

Since .# is dense in M, , and M(’{/wz), the result also holds for a € C§° and f €
M/, . Hence it follows by Hahn-Banach’s theorem that the asserted extension of the
map a — Op,(a) exists.

It remains to prove that this extension is unique. Therefore assume that a € M(w>
is arbitrary, and take a sequence a; € C§° for j =1,2,... which converges to a with
respect to the narrow convergence (see Definition 1.6). Then Ea w converges to E{, o
in L' as j turns to infinity. By (2.4)—(2.6) and the arguments at the above, it follows
from Lebesgue’s theorem that

(Op,(aj)f. &) = (Op,a)f. &)
as j tends to infinity. This proves the uniqueness, and the result follows. O

2.5. Fourier integral operators with amplitudes in coorbit spaces. A crucial
point concerning the uniqueness when extending the definition of Op, to amplitudes
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in M5! in Theorem 2.1 is that CJ° is dense in Ms" with respect to the narrow
convergence. On the other hand, the uniqueness of the extension might be violated
when spaces of amplitudes are considered where such density or duality properties are
missing. In the present paper we use the reformulation (2.6) to extend the definition
of the Fourier integral operator in (0.2) to certain amplitudes which are not contained
in M

(w) *

More precisely, assume that a € %' (RV™™), f e #(R"), g € S (R™) and that the

mapping
(Xa 57 77) > Ha,w(X» 57 U)(quf)(yv _U)(ong)(xa S)

belongs to L'(RY*™ x RY), where H,, is given by (2.5). (Here recall that N = n; +
ny, where, from now on, n; and n, might be different.) Then we let T.,(f, 8 be
defined as the right-hand side of (2.6).

DEFINITION 2.4, Assume that N = n; + n,y, v € ZRY ™™ x R¥*") is submul-
tiplicative and satisfies (2.2), ¢ € C(RY*™) fulfills the condition (2) in Subsection 2.1,
and that a € ./ (R¥*™) is such that S = Too(f, go) and g — T, ,(fo. g) are well-
defined and continuous from #(R™) and from .%(R™) respectively to C, for each
fixed fo € Z(R") and gy € #(R™). Then the pair (a, ¢) is called admissible, and
the Fourier integral operator Op,(a) is the linear continuous mapping from .#(R™) to
S (R™) which is defined by the formulas (2.4), (2.5) and (2.6).

Here recall that if for each fixed fy € #(R") and g € . (R™), the mappings f +—
T(f, go0) and g = T(fo, g) are continuous from .(R™) and from . (R™) respectively
to C, then it follows by Banach-Steinhaus theorem that (£, g) = T(f, g) is continuous
from #(R™) x .Z(R"™) to C.

The following theorem involves Fourier integral operators with amplitudes which
are not contained in Mgf;l.

Theorem 2.5. Assume that N, x, w, wj, v, ¢, Vj, V/-’, t. 1, pandu for j =

0, 1,2 are the same as in Subsection 2.1. Also assume that a € ./ (R¥™) fulfills
la| < oo, where

lla] = ess sup(/ < sup |Vya(X, &, n, Do(X, &, 7, z)!> du>,
v,

X,y ceR",teV,

and that |det(g, ,)| = d for some d > 0. Then (i)—(ii) in Subsection 2.2 hold for p = oo.

We note that the conditions on @ in Theorem 2.5 means that @ should belong to
a subspace of M7, which is a superspace of M(O(j)’l. Roughly speaking it follows that

a should belong to M) in some variables and to M<ff)‘l in the other variables. In
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fact, it follows that the amplitudes in Theorem 2.5 form a space of distributions which
is equal to 3:19?5)), where p = (00, 00, 1, 00), @ € Z(R*V™™) is appropriate, and
#, is an appropriate partial Fourier transform on L (RVT™), Therefore, this space
of distributions is not a coorbit space of that particular type which is considered in
Subsection 1.2. On the other hand, it is a coorbit spaces in a more general context,
considered in {17, 18].

Proof. It suffices to prove (i) in Subsection 2.2.

We use similar notations as in the proof of Theorem 2.1. Furthermore we let

g{/l,a)(x’ )’» u) = Sup E[l,w(Xa 5, 77, Z)
(4% 4

and

G o) = / G n. 2 d.
y

1

where E, ,, is given by (2.16). By taking x, y, —(pé(X), £, n as new variables of inte-
gration in (2.19), and using the fact that |det(g, )| = d we get

|(Op(p(a)f> g)| 5 Cd"l / ) ICa,w,Gv(X)Fl(y, ‘U)Fz(xv 5) dX
(2.22) RV
< Cd MK wcull=liFillo I F2 L

where X = (x, y, &, 1) and
Kaw.cu(X) = / ((GV) * (Bqu(x, y, k1, - DN(E, 1, O)gwven — (k2, W)yiv;) dU,
v;

for some continuous functions «y == «1(x, y, #) and ky = Kk2(x, y, u).
We need to estimate ||/C,. gollz=. By Young’s inequality and simple change of
variables it follows that

||ICG»CU,GU||L°° = ”GU”U * Ja,wa

where
Jo,w = €88 sup (/ Eoo(x, y, ki (x, y, w), (la(x, y, ), wviav;) du)
X v,
< ess sup </ sup Eq o (x, ¥, ¢, (T, Wviev)) du) = lla|.
X vy ¢t
Hence

(2.23) 1K 6ol < 1Gvliziliall < € exp(Cllg" [y 0liall-
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A combination of (2.22), (2.23), and the facts that || F||;; = “f”M(x and || i) =
wl

)
HgI[M‘ll/ _ now gives that the pair (a, ¢) is admissible, and that (i) in Subsection 2.2 holds.
o

The proof is complete. ]

Corollary 2.6. Assume that N, x, wo, w;, v and ¢ for j = 1,2 are the same
as in Subsection 2.1. Also assume that a € '(R¥*™), and that one of the Sollowing
conditions holds:

(1) [det(¢; )| = d and |la| < oo, where

(2.24) lal = SUP</ Sgprxa(X, &, n, DX, £ 1, 2) dz);

VY R™ ¢.&.n

(2) m=m, |det(y; )| = d and lla]| < oo, where

(2.25) lall = SUP(/R sup|Vya(X, &, n, Dw(X, &, 1, 2)] d€>;
SN/ N4

X,y

(3) m = ny, |det(y) )| = d and |a|| < oo, where

(2.26) lall = SUP</ SlgprXa(K &, 1, DX, &, 1, 2 dn)
x, ¥y \JR"2 &,z

Then the (1)—(i1) in Subsection 2.2 hold for p = 0.
Proof. If (1) is fulfilled, then the result follows by choosing

Vi=V/ ={¢n0) R £ cR>, neR"),
Vo=V, =1{0,0,¢) e RV r e R"},

0=2¢, 1= (& n) and u = z in Theorem 2.5. If instead (2) is fulfilled, then the result
follows by choosing

Vi= V]/ ={0,n,2) ¢ RN+"7; ne R", z¢ Rm}’
Vo=V ={(£,0,0) e RV £ e R™},

@ =x,T=(nz) and u = & in Theorem 2.5. The result follows by similar arguments
if instead (3) is fulfilled. The details are left for the reader. I

Next we discuss continuity and Schatten—von Neumann properties for Fourier inte-
gral operators with related conditions on the amplitudes belong to coorbit spaces which
are related to the amplitude space in Theorem 2.5. These computations are based on
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estimates of the short-time Fourier transform of the distribution kernels of these oper-

ators.

Assume that a € ' (RY*™), w, v e PRN) o (R™) and ¢ € CRY™™) sat-
isfy @ € Mﬁf)’l(RNJ"”) for each multi-indices « such that || = 2, (2.2) and (2.3), as
before. Formally, the kernel can be written as

Koy(x, y) = Q)™ / a(X)e* X dr.
RI?T
(Cf. Theorem 3.1.) Hence, if 0 < x; € C3°(R™) for j = 1,2 are the same as in Sub-

section 2.3, then it follows by straightforward computations that the short-time Fourier
transform of K can be expressed in terms of the formula

227 (VpouKap)t, v, €1 = (0, @00 (- — e M), (- —xe' ).

By letting f = xi(- — e 't and g = xof - — x)e'E it follows that

(2.28) Vo, FO1 )l = (Ve x0)1 =y, m+ )
and
(2.29) Vg, ED] = (Ve x2)x —x, & — &)

Now we choose Ny large enough such that wy is moderate with respect to {-)M, and
we set

FX) = [V x0)Gn =MV x2)(x, E)X)™], - where X = (x, y, &, m).

Then F is a continuous function which turns rapidly to zero at infinity. Furthermore,
it follows from (2.28) and (2.29) that

(2.30) [V £ =) Vi g(x1, EDwo(X)] = CF(Xy = Xywo(Xy),
where the inequality follows from the fact that
wo(X) < Can(X)(X —X;)™.

By combining (2.2), (2.3), (2.19) and (2.27)-(2.30) we obtain

Q31 |(VyepKeg)XanX)] < C / / Rao (X1, EF(X) — X) 2y dXy,
R2N+m

for some constant C, with R, , defined in (2.18).
We have now the following result related to Theorem 2.5.
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Theorem 2.7. Assume that N, x, w, w; for j =0,1,2, v and ¢ are the same
as in Subsection 2.1. Also assume that p € [1, oo, and that one of the following con-
ditions hold:

(1) a e L' R"™) and ||a| < oo, where

. 1/p r 1/p
ot = ([ (Loson( [ wracxen oo eonapaean) ac ) avay)

(2) |det(@] )| = d for some d > 0, a € ' (R¥™), and |a| < oo, where
(484

. 1/p P 1/p
la| = <// (/ sup(// IVXa(X,S,n,z)w(X,é,n,z)l”dédn) dz> dxdy) .
RY \JR" ¢ R”

Then the (1)-(iii) in Subsection 2.2 hold.

We note that if @ € M', then the hypothesis in Theorem 2.7 (1) is fulfilled for
w = w; = 1. Hence Theorem 2.7 generalizes Proposition 2.3 in [7] or [8].

Proof. It suffices to prove (i). We only consider the case when (2) and p < oo
are fulfilled. The other cases follow by similar arguments and are left for the reader.

Let G be the same as in the proof of Theorem 2.1, and let E,,,, Q.. and R,
be as in (2.16)—(2.18). It follows from (2.31) and Holder’s inequality that

;(Vx] ®x2 Ku¢)(x)w0(x)|

<c / / (Rarnp Xt COF X1 = X))V EX, =0V dey dXq
R’7Y+ZN

, P 1/p
<C|FI,Y (/ </ Rcl,w,(p(xl,cl)d;l) F(xl—xmxl) :
R-N R"

where |[F||,: is finite, since F turns rapidly to zero at infinity. By letting C, =

Cexp(CH(p”HM:o,]) for some large constant C, and applying the L? norm and Young’s
)

inequality, we get

14
151, =0 [ (] Ruwoox01ac) ax
() RZN R”
P
(2.32) §C1||G]IZ.)/ (/ Qu,we(X, {)d§> dX
w (RZN R”
P
¢ [ (] Buatx e = o0 =400, ~d (X ) ax

for Q, . as in (2.17) and some constant C;. It follows now from Minkowski’s in-
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equality that the latter integral can be estimated by

. . Y/p P
JJry \Jr" \. N
' ' 1/p P
- // (/ (// Eoo(X. £ 0, =0 (X)) d¢ dn) dc> dx dy.
. R"V R™ \J . RN

By letting C, = C; exp(Czllgo”HMfg,l), taking &, 7, —¢;(X), X, y as new variables of

integration, and using the fact that |det(¢; )] = d, we get for some function x that

C . 1/p 4
HKH\),[V = "ﬁ// </ <// Ea,(u(xs Y, K(X, VY, Z)v%‘, 1, Z)pdé dﬁ) dZ) dx dy
() d JRY \JR" RY
C . . 1/p P
< // (/ sup(// E.o(x,y, ¢, &0, D)7 d§ dn) d2> dx dy
d RY \JR" ¢ RV
= Cyliall”.
This proves the assertion (]

Next we have the following result, parallel to Theorem 2.7.

Theorem 2.8. Assume that N, x, @, w;, v, ¢, Vj, V]f, t, T, p and u for j =
0, 1,2 are the same as in Subsection 2.1. Also assume that p € [1,00], a € RN
fulfills ||a}| < oo, where

- p 1/p
flall =/ <// (ess sup|V,a(X, &, 0. Dw(X, &, n, z)l> dtdr) du,
v, Vix V| eV,

and that ldet((ﬁg,g)l > d. Then (1)—(iii) in Subsection 2.2 hold.

We note that the norm estimate on @ in Theorem 2.8 means that a € @fw)(V) with
p=(c0,p.p,)and V = (Vo, Vi, V[, V3). The proof of Theorem 2.8 is based on

Theorem 2.5 and the following result which generalizes Theorem 2.7 in the case p = L.

Proposition 2.9. Assume that N, x, o, @j, U, ¢, Vi, Vit T, p and u for j =
0, 1,2 are the same as in Subsection 2.1. Also assume that a € y/(RN)”“) satisfies
llall < oo, where

nan=// ess sup(// V,a(X. & 1. (X, £, 1, 2 dé dn> it ds.
My, eV J JRY

and that |det(¢, )| = d. Then (i)—(iii) in Subsection 2.2 hold for p = 1.
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Proof. We use the same notations as in Subsection 2.1 and the proof of The-
orem 2.1. It follows from (2.32) that

1Ky, = Cy //RWM Eoo(X, £ = g,(X), n — ¢\(X)., —¢, (X)) d¢ dX
=Cy //A CElo(X, & m, = (X)) dg dX

ey //V (// E.o(X, £, 1. w;(X))dédn> dt dg.
1%V

By taking ¢ and —¢, as new variables of integration in the outer double integral, and
using the fact that |det(p, ,)| = d, we get

g, 266 [ ([ Bt acan) )
0 R \Jv, v

< CiCpd™ / (/ sup (// E. (X, &, n, 2)d§ a’n) dt> dz
JR" Vi 0eVy RrRY
= C,C,d ' a].
This proves the result. U

Proof of Theorem 2.8. We start to consider the case p = 1. By Proposition 2.9
(1), Minkowski’s inequality and substitution of variables we obtain

1K, = Co a! / (/ ess 3up<// E,.(X. & n, 2)dé dn> dt) dz
Vi QEV;
Cpd //// sup(E,..(X. &, 1, 2)) dt d§ dn dz
Vi XRN”" o€V,
/ <// sup(By (X, £, n, 2)) dt dr> du,
VixV/ geVy

for some constant C;, and the result follows in this case.
Next we consider the case p = oo. By Theorem 2.5 (i) we get

IA

Il

IKllyzs,, = Cy sup < / sup(Eq,o(X, £, 11, 2)) du>
X,y V.

s

= Cw/ < €ss sup <Sup(Ea,o)(X> &, m, z)))) du
Vy \(t.t)eV)xV] \ecV2

and the result follows in this case as well.

The theorem now follows for general p by interpolation, using Proposition 1.11.
The proof is complete. O
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By interpolating Theorem 2.1 and Theorem 2.8 we get the following result.

Theorem 2.10. Assume that N, x, w, w;, v, ¢, V;, ij, t,t,pandufor j=0,1,2
are the same as in Subsection 2.1. Also assume that p,q € [1,00], a € S (RN fulfills
la|l < oo, where

p q/p 1/q
Ha\1=/ (/ (/ (SUPIan(X,Ew, DX, £, 7, z)l) dt> dr) du,
%4 VI’ Vi \esVz

2

and that in addition n\ = n, and (0.5) and |det(g, ;)| = d hold for some d > 0. Then
the following is true:
(1) if in addition p' < q < p, and p\, px € [1, 00] safisfy

1 1 1 1 1 1 1 1 1
q P1 P2 p q Pi P2 P q

o=

with strict inequality in (2.33) when q < p, then the definition of Op,(a) extends unique-
Iy to a continuous map from M{, 10 M[>

(2) if g < min(p, p), then Op,(a) € f,,(M(zwl), M(zwz)).

We note that the norm estimate on ¢ in Theorem 2.10 means that a € G)fw)(V)
with p = (00, p, g, 1) and Vo= (Vp, Vi, V], V).

Proof. In order to prove (1) we note that the result holds when (p, q) = (co, 1)
or ¢ = p, in view of Theorems 2.1 and 2.8. Next assume that g = p’ for p =2, and
set p; = (00,00, 1, 1) and p = (00, 2,2, 1). Then it follows from Theorems 2.1 and 2.8
that the bilinear form

T(a, f)=Op,la)f

is continuous from

G)f‘)pr to M{;z), 1< p<oo,

w (w1)
and from
P2 2 2
O, X M, to M,

By interpolation, using Theorem 4.4.1 in [2], Proposition 1.5 and Proposition 1.11, it
follows that if ¢ = p’ < 2, then T extends uniquely to a continuous map from

to M

(w2)?

P P
®(w> x M((Ul)

when p’ < p; = p» < p. This proves (1) when g = p or ¢ = p'.
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For g € (p’, p), the result now follows by interpolation between the case g = p’
and p; = py = po where p’ < py < p, and the case ¢ = p and p| = p, = p. In fact,
by interpolation it follows that T extends to a continuous map from

p P P2
®(w)><M(w]) to M

(w2)

when

1 -6 0 1 -6 0 1 1-6 6

q P’ P m po P

P2 Po P

P

It is now straightforward to control that these conditions are equivalent with those con-
ditions in (1), and the assertion follows for p’ < g < p.

In a similar way, the case p € [g, ¢] follows by interpolation between the cases
p; = (00, ¢, ¢, 1) and p, = (00, ¢’, ¢, 1). The details are left for the reader.

In order to prove (2), it is no restriction to assume that ¢ = min(p, p"). If p = cc
and g = 1, then the result is a consequence of Theorem 2.1. If instead 1 < g = p <2,
then the result follows from Theorem 2.8. The remaining case 2 < p = ¢’ < 00 now
follows by interpolation between the cases (p, ¢) = (2, 2) and (p, ¢) = (o0, 1), using
(1.8) or (1.9), and the interpolation properties in Section 1.2. The proof is complete.

]

3. Consequences

In this section we list some consequences of the results in Section 2. In Sub-
section 3.1 we consider Fourier integral operators where the amplitudes depend on two
variables only. In Subsection 3.2 we consider Fourier integral operators with smooth
amplitudes.

3.1. Fourier integral operators with amplitudes depending on two variables,
We start to discuss Schatten—von Neumann operators for Fourier integral operators with
symbols in M(‘;)" (R*") and phase functions which admit second order derivatives in

M(fj’)’l(R3"), for appropriate weight functions w and v. We assume here that the phase
functions depend on x, y, { € R" and that the amplitudes only depend on the x and ¢
variables and are independent of the y variable. Note that here we have assumed that
the numbers ny, 7o and m in Section 2 are equal to n. As in the previous section, we
use the notation X, Y, Z, ... for triples of the form (x, y, ¢) € RY.

The first aim is to establish a weighted version of Theorem 2.5 in [8]. To this pur-
pose, we need to transfer the conditions for the weight and phase functions from Sec-
tion 2. Namely here and in the following we assume that ¢ € C(R*), wp, w € P(R*),
v € P(R"), v, € PR and v € P(R®). A condition on the phase function is

3.1 det(g) (X)) = d, X =(x,y,¢) eR”
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for some constant d > 0, and the conditions in (2.3) in Subsection 2.1 are modified into:
wo(x, y, &, ¢,(X)) = Colx, ¢, & — @ (X), =g, (X)),

2008 i, v, £, ),
wl(ys ““77)

wolx, ¥, &, m + m) < Caglx, y, &, n)vi(m),
C()(X, ga él + ‘§29 21 + ZZ) S CU(,X, g’ %‘17 Zl)vz(gzv 12)7
(X, E ) = v, ), Xy, 225, 6. 6. ¢ €R

2.3y

For convenience we also set Op o ,(a) = Op,(ar) when a|(x, v, {) = a(x, ¢).

Proposition 3.1. Assume that p € [1,00], d> 0, v e PR is submultiplicative
and satisfies v(t-) < Cv when t € [0, 1], wg, © € PRM), v, w, € P(R*™) and that
@ € C(R™) are such that ¢ is real-valued, ¢\ € Mff)’] for all multi-indices « such
that |«| = 2, and (3.1) and (2.3) are fulfilled for some constant C. Then the following
s true:

(1) the map

ar> Kgulx, y) = /Cl(xv C)eimx’y’() de,

from ZL(R™) 10 7 (R™) extends uniquely to a continuous map from M )(Rz”) to
(wo)(Rzn)

(2) the map a — Op,, ,(a) from ZR™) 10 L(FRY), S (R")) extends uniquely to

a continuous map from M(w)(RZ") to LR, 7 (R,

(3) iface M(w)(Rz”) then the definition of Op, g ,(a) extends uniquely to a continuous

operator from M(w ,(R") 10 M? (R™. Furthermore, for some constant C it holds

(w2)

10P10p @y Ly = Cd™ exp(lle” |y ) lallgg,
(I)l 41)2 v

4) iface M(ouf)l(Rz”) and 1 < p < 0o, then the definition of Op, (@) from Z(R")
to . (R") extends uniquely to a continuous operator from M(w )(R”) o M(];h)(R”)'
(5) if ¢ < min(p, p), a € M(w) (Rz”) and in addition condition (0.5) holds, then
Opl,o,w(a) € ‘/P(M(wl)’ (wz))

Proof. We start to prove the continuity assertions. Let a;(x,y,¢) = a(x,{), and let

(I)(X, Y, {s ga . Z) = w(xv Cﬁ 59 Z)Ul(n)~

By Proposition 1.10 it follows that a; € ©f; (V) with p = (00, p, p, 1) and V =
(Va, V1, V|, V). Hence Theorem 2.8 shows that it suffices to prove that (2.3) holds
after w has been replaced by @.



SCHATTEN PROPERTIES FOR FOURIER INTEGRAL OPERATORS 775
By (2.3) we have
wo(x, y, &, ) < Caxlx, y, & @ (X)vi(n — ¢l (X))

= Clox, £, & = ¢'(X), —pL(X))i(n — ¢, (X))
= Clolx, y, £, & —¢'(X), n — )(X), =g, (X)).

This proves that the first two inequalities in (2.3) hold. Furthermore, since v, is sub-
multiplicative we have

DX, &+ &, n +na, 71+ 22) = wx, &, E + &, z1 +z22)vi(n + n2)
Co(x, ¢, &1, z0)v(&2, z2)vi(n)v(n2)

= Ca(X, &, n1, z0)v(€r, M2, 22),

IA

for some constant C. This proves the last inequality in (2.3), and the continuity asser-
tions follow.

It remains to prove the uniqueness. If p < oo, then the uniqueness follows from
the fact that 7 is dense in M[, .
Next we consider the case p = co. Assume that g € M(‘w)(Rz”) and b € M(ll/wo)(Rz”),
and let @(x, y, &) = —p(x, &, y). Since (3.1) also holds when ¢ is replaced by @, the first
part of the proof shows that K, ; € M(11 /- Furthermore, by straightforward computations

we have
(3.2) (Ka,(ps b) = (a, Kb@)

In view of Proposition 1.1 (3), it follows that the right-hand side in (3.2) makes sense
if, more generally, a is an arbitrary element in M(?j)(Rz"), and then

(@ Kop)l = €&l 1By, exp(Clle" ).
for some constant C which is independent of d, a € M(?j) and b € M(ll Jon)-
Hence, by letting K, , be defined as (3.2) when a € M, it follows that a — K, ,
on M! extends to a continuous map on M*. Furthermore, since . is dense in M
with respect to the weak™ topology, it follows that this extension is unique. The proof
is complete. O

Finally we remark that the arguments above also give Theorem 3.1" below, which
concerns Fourier integral operators of the form

g (D) = / / a(tix + by, ) f(p)e/ Pt gy ge
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It is then natural to assume that the conditions (3.1) and (2.3)" are replaced by
3.1y 41 =1 |det(g] (X)) >d,

and

wo(tix + tay, —0x + hy, 1§ + e, (X), —6E + 1@ (X))

= Colx, &, & — g (X), =9, (X))

2%, §) < Cawolx, y, &, 1),
(2.3)" w1 (y, —n)
wolx, v, & + tana, n1 + tine) < wolx, ¥, &, n1)vi(m2)
C()(.x, C& gl + 52, 2] + Zz) S (,()(X, C, 517 Zl)Uz(%—z, ZZ)7
U(X, S, n, Z) = Ul(n)v2(€:7 Z)v X, ¥, 2, Zja ‘i:’ ‘sh n, g € Rn'

Proposition 3.1'. Assume that p € [1,00],d >0, v € PR is submultiplicative
and satisfies v(t-) < Cv when t € [0, 1], wp, @ € PR™), w1, w, € P(R*™) and that
Y E C(R*) are such that ¢ is real-valued, ¢'@ e M(of)] for all multi-indices o such
that |a| = 2, and (3.1) and (2.3)" are fulfilled for some constants t|, t, and C. Then

the following is true:
(1) the map

ar> Kgu(x,y) = / a(tix + tyy, {)eirtiy=nxthye) ge

from LR to L (R™) extends uniquely to a continuous map from M/
Ml (R™);

(2) the map a ~ Op, , ,(a) from LR 10 L(FRY), & (R")) extends uniquely to
a continuous map from MP)(RM) to L(F (R, ' (R");

3) ifae M(w)(RZ”) then the definition of Op,, ,, ,(a) extends uniquely to a continuous

J(R™) 10

(w

operator from M(w])(R”) to M? )(R”). Furthermore, for some constant C it holds

(wr

”Optl,zz,w(a)”M(ﬁ)’ =Ml <cd™! eXP(”(P””M% )”a”M(’L)'
4) ifac M(ij)’l(Rz") and 1 < p < oo, then the definition of Op, , ,(a) from Z(R")
to ' (R") extends uniquely to a continuous operator from M o) 10 M(wz);
(5) if ¢ < min(p, p) a € M(w) (RZ”) and in addition condition (0.5) holds, then
Op,, ,,.,(a) € FH(M

2.9 (wl)’ (wz))

Proof. By letting

X1 =nx+hy, Yir=—hx+hy
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as new coordinates, it follows that we may assume that #; = 1 and £, = 0, and then
the result agrees with Theorem 3.1. The proof is complete. L

3.2. Fourier integral operators with smooth amplitudes. Next we apply The-
orem 2.10 to Fourier integral operators with smooth amplitudes. We recall that the con-
dition on a in Theorem 2.10 means exactly that ¢ € @fw)(-V) with p = (o0, p, ¢, 1) and

V= (V,, V,, V|, V3). In what follows we consider the case when n, = n, =m = n and

Vi=V/ =1{(x,0,0)eR"; x, eR"} and

(3.3) i
Vz = VZ/ e {(O’ ¥, O) I= RJI; y e R”}.

However, the analysis presented here also holds without these restrictions. The de-
tails are left for the reader. We are especially concerned with spaces of amplitudes
of the form

C(]Z))D(R?n) - {(/l c CN(R3H ||(1||CA . < OO}

where N > is an integer, v € Z(R") and
1/p
lalley = ( / / la' e, Owx, - O~ dx dc> :
|a|<N
We also set

‘) 3n N.,p ?n
(OO(J})] R )_ m C(w)l R
N=0
SR = {f € C®R"); wpd“ f € L™, Yu),

when wy € Z(RY).
The following proposition links C[y;” with ©F (V).

Proposition 3.2. Assume that (3.3) is fulfilled for V = (V5, Vi, Vi, Vo), N> 0
is an integer, p,q,r € [1,00], p = (00, p,g, 1), p; = (o0, p, 1, 1) and that p, =
(00, p, 00, r). Also assume that w € PR™), and let

wS(Xr 57 77, Z) = Cl)(X)(é, 777 Z)‘Y, N e R~

If s1 < —2n/q" when q > 1 and s\ <0 when q¢ = 1, and 55 > n(q + 2)/q, then the
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following embedding holds:

Py P P2
(34) 9((1)/\/) - ®(a) /) — ®(u)/v)’
P2 P1
(3.5) ®(w,\%z) > ®(w~) ®(w/v+s})
and
N+3n+1,p Py N,p
(36) C((,)) — 9((0/\) i C((/))

For the proof we consider the set Z,(R") of all w € Z(R") N C*(R") such that
0@ /w is bounded for all multi-indices «. (Cf. [43, 45].)

Lemma 3.3. Assume that p = (p,q,r,s) € [1,00]*, and that N > 0 is an integer.
Then the following is true:
(1) if w € PR, then it exists an element wy € Po(R") such that

3.7 C_l(,()() < w =< Cwy,

for some constant C;
) ifwe PR™), @; € Po(R™) for j = 1,2 are such that @\(x, §) = @(x) and
@a(x, &) = @3(&), and that a; € S5, (R"), then the mappings

fro-f, and [ oa:(D)f

(f —>dy-f, and [ aD)f)

are homeomorphisms (continuous) from G(w ol V) and from @fd)w}(V) respectively to
@fw)(\/). Furthermore, if

Ny W (X, §) = wlx, §)(x)NEWN,
then

3. 8)
ef, (V) =1{f € S R): x*f € @F,(V). la| =Nz, |B] = Ny}

—(fe SR £oxNf, DY f DN f e @), (V). 1< j. k<)
3) if w e PR and wy € PR are such that (X, &, 1, 2) = o(X) and

wO(X £, 1, 2) = wo(X), then the map a > wo - a is a bijection from C{Z);Z)(RB") to
(w) (R3n)

Proof. The assertion (1) follows from Lemma 1.2 in [44], and (3) is a straight-
forward consequence of the definitions. The continuity assertions on @; in (2) follows
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from Theorem 2.2 in [43] when @?w)(V) is a modulation space. The general case
follows by similar arguments as in the proof of that theorem. We omit the details.
(Cf. Remark 2.8 in [43].)

Next we prove the continuity for the map f > a; - f. Let
Wy, = Cc?)l +a1,

where the constant C is chosen such that ja,| < Ca;/2. Then it follows from the def-
initions that

CIAICT)I S w,, = Ciy,

for some constant C,. This proves that wy, € Po(R"), and the first part of (2) now
shows that the mappings

o - f and fra - f
are continuous from ®F; (V) to ©F (V). Since f +> a; - f is a linear combination
of these mappings, the result follows,

The continuity assertions for the map f + a2(D)f follows by similar arguments.

The details are left for the reader.
It remains to prove (3.8). It is convenient to set

onm (X, §) = ()N EVV

Furthermore, let M be the set of all f € ®F = such that x#3* f ¢ o7, when || <

(w)
Ny and |B] < N», and let M, be the set of all € ®P . such that oM e o}, for

(w) J

jok=1,..., N. We shall prove that My = M, = Of,, ..o Obviously, My C Mo. By
the first part of (2) it follows that @f%‘lvzw) C My. The result therefore follows if we
prove that My C GF”N;.NZW'

In order to prove this, assume first that Ny = N, N, = 0, f € Mo, and choose
open sets

S0=1{5 eR"; §| <2}
and
Q;=1{£eR" 1 < 5| <nlgl).

Then ;o ©; = R", and there are non-negative functions gy, ..., @, in SJ such that
supp¢; © 2 and 3°7_g¢; = 1. In particular, f = >0 fj when f; = ¢;(D)f. The

result follows if we prove that f; € OEWW) for every j.



780 J. ToFT, F. CONCETTI AND G. GARELLO

Now set o(§) = on(E)@o(§) and ¥,;(§) = £ ¥an(§)g;(§) when j = 1,...,n. Then
¥; € S for every j. Hence the first part of (2) gives

Ifiler < Cillon(D)fjllepr = Cil¥(D)3Y fllop, < Calld) fllep, < o0
{a () E {w) {w)

N,0%)

and

Ifoler = Cillon(D) follee, = Cill¥o(D) fller, < Call fller, < o0,
(on, {w) (w) (w)

0@

for some constants C; and C,. This proves that

{opy gw) (w)

N
(3.9) Ifller, = C(llf!l@gu) +> 197 Fller )

j=1

for some constant C, and the result follows in this case.
If we instead split up f into Y ¢, f, then similar arguments show that

log, yw)

N
(3.10) Ifles  =C (IlfH@ﬁu, + 30 f||@;;)>,
k=1

and the result follows in the case Ny = 0 and N, = N from this estimate.
The general case now follows if combine (3.9) with (3.10), which proves (2). The
proof is complete. O

Proof of Proposition 3.2. The first embeddings in (3.4) follows immediately from

Proposition 1.9. Next we prove (3.5). Let ¢ > 0 be chosen such that s, — 2¢ > n(g +
D/q. E, ., be as in Section 2, and set

1/p
Foun (&, n,z>=< / / supEa,wN<x,s,n,z>"dxdc) .
R

7 yeR”

Then Holder’s inequality gives

. ' 1/q

laler,,, = /R <//Rz Fowy (&, m, 2)7 dE dz> dn
_ /4
B / (// Faon.r, (€5 1, 26, m, 2) 727 dE d1> dn
" RJI
. 1/q ‘
: / (// Fuwy.y (6,1, 27 (E, 2) 7279 dg d2> (1)~ d
1 R2n 2
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= C||lF, = = Cllalige: .

N+
SN 45y i)

where

/g
—([[ eareoaear) [ oeran <o
RZM . n

This proves the first inclusion in (3.5). The second inclusion follows by similar argu-
ments. The details are left for the reader.

Next we prove (3.6). By Lemma 3.3 it follows that we may assume that w = 1
and N = 0. By Remark 1.3 (2) we have

OF Cc M™®!'ccnL®.

Furthermore, if x € #(R*) is such that x(0) = (277)">/2, then it follows by Fourier’s
inversion formula that

a(X) = /// VX, & n, 2)e (g m+E.2h d€ dndz.
R3n

Hence Minkowski’s inequality gives

p e
ot = (/[ (swplacor) axac)
i yERH
" p 1/p
<// Sup(/// |an(X9 ‘é;«:a n, Z>|dsd7]dz> d.xd{)
J IR yeR" NS J SR
¢ 1/p
= /// (// sup|Vya(X, &, n, 2)|"dx dg) dé dndz = ||a]em .
R \J JR¥ yeR"

This proves the right embedding in (3.6).
In order to prove the left embedding in (3.6) we observe that

A

[Vya(X, & n, 2)| < Qm)=>/? /IX(X1 — X)a(X)|dX) = Qr) " (la] * [} ])(X),

which together with Young’s inequality give

. I/p
ot = sun [ supivyacx. €. n o ac
.

&.1.2 yeR”

1/p
( [ sudan |5<|><X>f’dxd¢)
" yeR”

1/p
=l ([ swplacoraxae ) = il lalen,

ye R

!/\
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for some constant C. Hence if w(X, &, n,2) = (£, 7, z)">"!, then it follows from
Lemma 3.3 that

laler < Cilo™ (Diallgn = C2 Y lla®lign,

ja}<3n+1
< S e =6 S a@lco = Cillalicnr,
lo|<3n+1 jo|<3n+t
for some constants Cp, ..., C3. This proves (3.6) and the result follows. 0

Corollary 3.4. Let N, w; and p be as in Proposition 3.2. Then

oo, p p
C(w) - ﬂ ®(w/\r)'
Nz=0

REMARK 3.5. Similar properties with similar motivations as those in Propos-
ition 3.2, Lemma 3.3 and Corollary 3.4, and their proofs, also holds when the O

(wn)
spaces and C(]Z)‘)p spaces are replaced by the modulation space M[)J(R") for o €
2(R*) and

{f € Z/RY; £ e MEIRY), a| <N}
respectively. (Cf. [44].)

Now we may combine Proposition 3.2 with the results in Section 2 to obtain con-
tinuity properties for certain type of Fourier integral operator when acting on modula-
tion spaces. For example, the following result is a consequence of Theorem 2.10 and
Proposition 3.2.

Theorem 3.6. Assume that ny = ny = m = n, w € PR and & € PR™)
satisfy

(X, &, 1, 2) = &(X)E, 1, 7)Y

for some constant N, and that x, w;, v and ¢ for j = 0,1,2 are the same as in
Subsection 2.1. Also assume that p € [1, ], a € Cfg)’p(R3”), and that |det(¢] )| = d
and (0.5) hold for some d > 0. Then the following is true:

(1) (1)~(il) in Subsection 2.2 holds;

(2) Op,a) € FH(MZ, ), M2, ).

3.3. Some consequences in the theory of pseudo-differential operators. The
results in Secton 2 also allow us to extend some properties in [41, 43] for pseudo-
differential operators of the form (0.3). In this case we have that ¢(x,y,¢) = (x—y,),
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where x, y, ¢ € R”, and the conditions in (2.3) imply that

wy(x, & +0)
3.11 ————“—<C k3 3 bl ’_ b -
3.1 O - @(x, v, ¢, 8, ~n, y—x)

for some constant C which is independent of x, y, &, n, ¢ € R". Hence the following
result is an immediate consequence of Theorem 2.10.

Proposition 3.7.  Assume that w; € 2(R™) and w € P(R®") satisfy (3.11), V; and
ij are the same as in (3.3) for j = 1, 2, and assume that a € @?w)(V) for some p =
(00, p,q, 1) with p,q € [1, c0l. Then (1) and (2) in Theorem 2.10 hold for ¢(x,y, ) =
<X - Y, {)

We may now prove the following result.

Proposition 3.8. Assume that w; € P(R*) for j = 1,2 and @ € PR>) satisfy

D8 £). x. £ € R

3.12
( ) a)l(x’,s) -

and that a € C{;)OO(RM) Jor p €ll, 00]. Then (1) and (2) in Theorem 2.10 hold for
P, 3. 8) = (x =y, ¢)

Proof. Since w; and w are moderated by {-)" for some N > 0, it follows from
(3.12) that

wr(x, & +¢) -

< Cony(x,y, ¢, €, —n,y —x),
wi(y, n+¢) W% 3, £ 8 =1,y

for some constants C and Ny, where

wN(x, ¥, £ E 1, 2) = wlx, v, DIE, 7, 7)™,

Hence (3.11) is fulfilled after replacing w by wy,. The result follows now by combin-
ing Proposition 3.2 with Proposition 3.7. The proof is complete. O
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