
13 March 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Co-clustering Numerical Data under User-defined Constraints

Published version:

DOI:10.1002/sam.10064

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/72757 since 2016-08-31T16:04:15Z

This is an author version of the contribution published on:

R. G. Pensa, J-F. Boulicaut, F. Cordero, M. Atzori
Co-clustering Numerical Data under User-defined Constraints
STATISTICAL ANALYSIS AND DATA MINING (2010) 3

DOI: 10.1002/sam.10064

The definitive version is available at:
http://doi.wiley.com/10.1002/sam.10064

http://doi.wiley.com/10.1002/sam.10064

Co-clustering Numerical Data under User-defined Constraints

Ruggero G. Pensa1,3 Jean-Francois Boulicaut2 Francesca Cordero1,4

Maurizio Atzori3

1. Dept. Computer Science, University of Torino, I-10149 Torino, Italy

2. INSA-Lyon, LIRIS CNRS UMR5205, F-69621 Villeurbanne, France

3. Pisa KDD Laboratory, ISTI-CNR, I-56124 Pisa, Italy

4. Dept. Clinical and Biological Sciences, University of Torino, I-10043 Orbassano, Italy

Abstract

In the generic setting of objects × attributes matrix data analysis, co-clustering appears as an

interesting unsupervised data mining method. A co-clustering task provides a bi-partition made of co-

clusters: each co-cluster is a group of objects associated to a group of attributes and these associations

can support expert interpretations. Many constrained clustering algorithms have been proposed to

exploit the domain knowledge and to improve partition relevancy in the mono-dimensional clustering

case (e.g., using the must-link and cannot-link constraints on one of the two dimensions). Here, we

consider constrained co-clustering not only for extended must-link and cannot-link constraints (i.e.,

both objects and attributes can be involved), but also for interval constraints that enforce properties

of co-clusters when considering ordered domains. We describe an iterative co-clustering algorithm

which exploits user-defined constraints while minimizing a given objective function. Thanks to a

generic setting, we emphasize that different objective functions can be used. The added value of

our approach is demonstrated on both synthetic and real data. Among others, several experiments

illustrate the practical impact of this original co-clustering setting in the context of gene expression

data analysis, and in an original application to a protein motif discovery problem.

1 Introduction

Large datasets that record numerical values of given attributes for given objects (say objects×attributes

matrices) are quite common and supporting data mining processes on them remains challenging. For

instance, we will consider gene expression datasets that record gene expression values for given genes in

Xr =

3 0 0 2 4
1 4 5 1 2
4 1 0 4 5
2 0 1 3 4
1 4 5 1 2
1 4 6 0 0
0 5 6 0 0

Figure 1: A toy example Xr

given biological samples (see, e.g., microarray data analysis in [2] and the example dataset Xr in Fig. 1).

In Xr, attributes may denote biological samples and each object may be associated to one particular

gene. For instance, the gene expression value for Gene 2 in Experiment 3 would be 5. Exploratory data

analysis processes are often based on clustering methods to get insights about global patterns that hold

in the data. A clustering task provides a partition of objects and/or of attributes such that a grouping

quality measure is optimized. Many techniques however suffer from the lack of explicit characterization

for clusters, and this has motivated the research on co-clustering [34, 19, 4]. The objective of co-

clustering is to compute co-clusters that are associations of (possibly overlapping) sets of objects with

sets of attributes. A co-clustering algorithm computes simultaneously linked partitions on both row

and column dimensions. An example of a bi-partition in Xr would be {{1, 2, 3, 4, 5}, {6, 7}} for objects,

{{1, 4, 5}, {2, 3}} for attributes. It indicates that the characterization of objects from {1, 2, 3, 4, 5} is

that they tend to share similar values for attributes from {1, 4, 5}. Also, attributes in {2, 3} can be used

to characterize objects in {6, 7}. From this perspective, it is clear that performing a separate clustering

on objects and attributes is substantially different from performing simultaneous clusterings of objects

and attributes. In the former case, each partition is computed independently from the other one. In the

latter, the two partitions are linked. Two different (and suboptimal) partitions on one dimension of the

matrix correspond, in general, to two different (and suboptimal) partitions on the other dimension.

Unconstrained co-clustering has been studied in the context of co-occurrence or contingency tables,

e.g. in documents × words matrices, where the goal is to find similar documents and their interplay with

word clusters [19]. Co-clustering and the related task of bi-clustering [12, 30] have been well studied in

the context of gene expression data analysis. They indeed provide valuable information about putative

regulation mechanisms and biological functions. Intuitively, a co-cluster extracted from a gene expression

dataset denotes a set of genes with similar expression profiles along its associated set of biological samples.

We are interested in new co-clustering methods for enforcing the relevancy of computed bi-partitions

in general and their application to gene expression data analysis in particular. Given a (co-)clustering

algorithm, the analyst has generally a weak control on the clusters he/she obtains. Typically, he/she

can decide for ad-hoc parameter settings which are quite operational and conceptually far from the

declarative specification of desired properties. A co-clustering algorithm tries to optimize an objective

function (e.g., Goodman-Kruskal’s τ coefficient in [34] or the loss of mutual information in [19]) but it

may also ensure that some user-defined constraints are satisfied (e.g., the fact that some objects and/or

attributes have to be together or not). However, enforcing constraints can lead to lower values for the

considered objective functions. Furthermore, it is clear that combining objective function optimization

and the satisfaction of other user-defined constraints is challenging. The last 5 years, several researchers

have studied “single-sided” constrained clustering for rather simple types of user-defined constraints,

mainly the so-called must-link and cannot-link constraints [38, 7, 27, 8, 17, 16, 9]. To the best of our

knowledge, constrained co-clustering has been rarely studied. We are only aware of [32, 33]. In [32]

(whose an extended version is [33]), the authors address constrained co-clustering when at least one of

the dimensions is ordered and when interval constraints are defined w.r.t. orders. A typical application

for interval constraints concerns kinetic gene expression data analysis. In this case, objects denote gene

expression level measurements performed for successive time points. For many organisms, we see that

during their life cycle, groups of genes can be activated and then inhibited, being somehow characteristics

of development stages. Using interval constraint supports the discovery of such groups from experimental

data.

In this paper, we propose a constraint-based co-clustering approach which is different from [32, 33].

First, these articles concern only 0/1 data mining. More importantly, we propose here to work directly

on the data, i.e., without any postprocessing of collections of local patterns that have to be computed

beforehand (See Section 2). Our new method builds a bi-partition that satisfies the user-defined

constraints while optimizing objective functions based on sum-squared residues [13]. Furthermore,

this paper is a significant extension of [31]. The genericity of the method is here emphasized and

different objective functions are considered. More details are given on the algorithms and the related

unconstrained co-clustering framework from [4]. Finally, the empirical validation has been revisited and

considerably extended. The rest of the paper is organized as follows. Section 2 discusses the related

work. Section 3 is dedicated to the problem setting for constrained co-clustering. Section 4 describes

our generic algorithms where the considered co-clustering objective functions are left undefined. Section

5 studies two useful objective functions based on residues and thus concrete instances of the algorithms

introduced in Section 4. Section 6 is an empirical study about the added-value of our framework on

both synthetic and real-life data. It includes gene expression data analysis tasks and on a protein motif

discovery problem. Section 7 briefly concludes.

2 Related work

Constrained co-clustering is a new approach to gene expression data analysis. To the best of our

knowledge, only the previous work [32] extended in [33] has addressed the problem of co-clustering under

user-defined constraints. We consider that optimizing the objective function and enforcing the number

of co-clusters are more or less implicit constraints. In other terms, we would say that an algorithm like

CoCluster [19] just performs co-clustering and not constrained co-clustering.

Furthermore, co-clustering is related to bi-clustering [30], and the two terms are sometimes

used interchangeably. Bi-clustering algorithms search for an a priori unspecified number of possibly

overlapping bi-clusters. A bicluster is a set of objects and an associated set of attributes. Each object

belonging to a bicluster is strongly correlated to any other object belonging to the same bicluster w.r.t.

the set of associated attributes. A set of biclusters does not provide a model of the data, since they

capture local associations rather than providing a global insight of the data. In other terms, we may say

that it does not provide a clustering structure but this is related to subspace clustering techniques. On

the other hand, such algorithms provide meaningful groups that may possibly diverge from the global

trend of the data. Co-clustering algorithms, instead, look for a generally pre-specified number of co-

clusters that form a bi-partition, i.e., a partition of objects which is strongly related to a partition of

attributes. Each cluster of objects is such that each object belonging to it is strongly and differently

related to any other objects belonging to the same cluster w.r.t. all clusters of attributes, and vice versa.

Co-clustering provides a descriptive model of the data, where the partition of objects is described by

the partition of attributes and vice versa. Alternatively, the result of a co-clustering can be viewed as a

collection of bi-clusters that satisfy some properties, e.g., the condition that all bi-clusters constitute a

bipartition in the sense of a co-clustering result.

Let us discuss further this question in the context of bioinformatics: using bi-clustering or co-

clustering depends on the biological question the experimenter wants to answer. Considering gene

expression analysis, if the final goal of one experiment is finding the module networks characterizing the

cell activity [36], bi-clustering can be considered as an optimal strategy. Network modules consist in a

set of co-expressed genes characterized by the same cis-regulatory binding sites (also called regulatory

modules) in the upstream region of those genes. Each regulatory module contains a dispersed collection

of short sequences, each of which specifically binds to a particular transcription factor protein. As a

result, the network modules are composed by a set co-regulated genes and all their regulators. The

main feature that links each gene in a module is the expression values that must be very similar in a

specific experimental condition. What we expect here is not to cluster all the genes involved in this

experiment, but to find groups of genes that are very similar among them. In other words, we look for

local signatures of gene expression. On another hand, if we consider a microarray experiment for studying

the development of a specific organism (see, e.g., [20]), the final goal is to obtain some expression pattern

groups associated to each developmental stage. In such a case, the biologist looks for a global pattern

of the gene expression. From this point of view, co-clustering provides a useful and global descriptive

model of the data.

We now discuss the previous work on (constrained) co-clustering. Then, we consider the relationship

to (constrained) bi-clustering. Finally, we briefly compare our approach to previous work on constrained

clustering.

2.1 Co-clustering Many co-clustering methods have been developed, possibly dedicated to gene

expression data analysis. Kluger et al. [28] propose a spectral co-clustering method. First, they perform

an adequate normalization of the dataset to emphasize co-clusters if they exist. Then, they consider that

the correlation between two columns is better estimated by the expression level mean of each column

w.r.t. a partition of the rows. The bi-partition is computed by the algebraic eigenvalue decomposition

of the normalized matrix. Their algorithm critically depends on the normalization procedure. Dhillon

et al. [19] and Robardet et al. [34] have considered the two searched partitions as discrete random

variables whose association must be maximized. Different measures can be used. Whereas Cocluster

[19] uses the loss in mutual information, Bi-Clust [34] uses Goodman-Kruskal’s τ coefficient to evaluate

the link strength between the two variables. In both algorithms, a local optimization method is used

to optimized the measure by alternatively changing a partition when the other one is fixed. The main

difference between these two approaches is that the τ measure is independent of the number of co-clusters

and thus Bi-Clust can automatically determine the number of co-clusters. Lazzeroni et al. [29] propose

to consider each matrix value as a sum of variables. Each variable represents a particular phenomenon

in the data and corresponds to a co-cluster. In each co-cluster, column or row values are linearly

correlated. Then, the method consists in determining the model minimizing the Euclidean distance

between the matrix and the modeled values. This method is similar to the eigenvalue decomposition

used in [28] without the orthogonal constraint on the computed variables. Notice also that, the problem

of matrix partitioning has been investigated in other contexts, such as for parallel processing purposes

[23], where the goal is to provide a block diagonal structure of sparse matrices in order to parallelize

some common and frequent operations like matrix-vector products. A new and significant result has

been presented in [1]. The authors show that the co-clustering problem is NP-hard, and they propose

a constant-factor approximation algorithm for any norm-based objective functions. Concerning recent

contributions to co-clustering, they have focused on hierarchical [25], overlapping [18] and Bayesian

[37] models. Recently, Banerjee et al. have proposed in [4] a co-clustering setting based on matrix

approximation. The approximation error is measured using a large class of loss functions called Bregman

divergences. They introduce a meta-algorithm whose special cases include the algorithms from [19] and

[13]. We come back on such a meta-algorithm in Section 4 when introducing our iterative approach to

constrained co-clustering.

Let us now consider the previous work on co-clustering under user-defined constraints. In [32, 33],

a local-to-global approach has been designed to support the computation of bi-partitions given interval

constraints. This is performed by postprocessing collections of local patterns (e.g., closed sets) extracted

from 0/1 datasets. The basic idea is to translate the interval constraint into a relaxation which can be

enforced in the collection of local patterns. Then, it uses a k-means-based approach to obtain a partition

of local patterns. Finally, such a partition can be post-processed to determine a co-clustering structure

over the data. It also discussed possibilities to process co-clustering counterparts of the popular must-link

and cannot-link constraints introduced for standard clustering. The main difference of our contribution

w.r.t. this previous work, is that we compute co-clustering directly by alternatively computing clusters

on columns and rows w.r.t. a common objective function. A second difference is that we ensure, when

needed, the satisfaction of the interval constraint on the computed bi-partition while this was not the

case for the method in [32, 33]. Third, our proposal works on numerical data and it it is not limited to

0/1 data. Last, but not least, we significantly improve must-link and cannot-link constraint processing

over both sets of objects and attributes.

2.2 Bi-clustering In the context of gene expression data analysis, several authors have considered

the computation of potentially overlapping local patterns that they call bi-clusters (see [30] for a survey).

Ihmels et al. [26] propose a simple algorithm which builds in two steps a single association called a bi-

cluster starting from a column set. First, they consider that the rows having a high score (greater than

a threshold on the normalized matrix) on these columns belong to the bi-cluster. Then, they use the

same principle to increase the original column set. In [12], Cheng et al. propose a so-called bi-clustering

approach for gene expression data. They define a bi-cluster as a subset of rows and subset of columns

with a low mean squared residue. When the measure is equal to 0, the bi-cluster contains rows having

the same value on the bi-cluster columns. When the measure is greater than 0, one can remove rows

or columns to decrease the value. Thus the method consists in finding maximal size bi-clusters such

that the measure is inferior to a threshold. Various heuristics can be used for this purpose. The same

definition of residue is used in [13] to define the objective function which is also used in our current

proposal. Authors propose two different residue measures, and show that the one proposed by Cheng

et al. fits better to gene expression data analysis. Then, they introduce their co-clustering algorithm

which optimizes the sum-squared residue functions. This approach has been the starting point for our

contribution.

2.3 Constrained clustering Constrained clustering is a recent and active research domain (see, e.g.,

[9] for a state-of-the-art survey). It has been mainly studied in the context of semi-supervised learning for

which an alternative approach is the so-called metric-based method (i.e., learning a metric considering

labeled data before applying standard clustering). Semi-supervised clustering can support classification

tasks when labeled data are limited and/or expensive to collect. A solution is to use the knowledge given

by available labeled instances within a clustering algorithm. In [38], a simple adaptation of k-means which

enforces must-link and cannot-link constraints during the clustering process is described. [7] proposes a

constrained clustering approach which uses labeled data during the initialization and clustering steps.

An example of metric-based approach is given in [27]. Notice that [10] integrates both constraint-based

and metric-based approaches in a k-means-like algorithm. In [8], the authors propose a probabilistic

model for semi-supervised clustering, which also combines the two approaches. Other related work

focuses on constraint feasibility on a k-means-like scheme [17], and on an agglomerative hierarchical

clustering scheme [16]. In such a related work, the goal is to improve accuracy in classification when

only few instances are labeled, whereas our goal is not to support prediction: we are working within an

unsupervised framework. For us, constraints are used to specify user expectation, also called subjective

interestingness, and thus to improve the a priori relevancy of computed groups. Interval constraints are

not pair-wise constraints (such as must-link and cannot-link): the analyst specifies whether he/she wants

intervals or not, without knowing if a particular object x is in the same cluster than another object y.

Moreover, constraints can be applied both on objects and attributes. Other applications of constrained

clustering are the so-called sensor network and k-anonymity problems. In both applications, a possible

solution is to find compact clusters containing a balanced number of objects. For instance, the discovery

of balanced clusters is considered in [5, 6]. [21] describes an algorithm which finds an unspecified number

of compact clusters under the combination of minimum significance constraints and minimum variance

constraints. Similarly to such approaches, our algorithms enable to define constraints which are more

related to the shape of the clusters rather than to pairs of objects.

3 A constrained co-clustering setting

Let X ∈ Rm×n denote a data matrix. In the rest of the paper, the dataset to be mined is the matrix X,

and we always talk about rows and columns instead of objects and attributes. Let xij be the element

corresponding to row i and column j. For instance, xij might contain the expression level of gene i in

the experimental condition j. Let xi. and y.j denote the vectors associated to, respectively, row i and

column j.

A co-clustering Ck×l over X produces simultaneously a set of k× l co-clusters (a partition Cr into k

groups of rows associated to a partition Cc into l groups of columns). To obtain a first quality criterion,

we first try to optimize a certain objective function.

Definition 3.1. (optimization constraint) Let us assume an objective function f(X, Ck×l), an

optimization constraint copt(f,X, Ck×l) is satisfied iff Ck×l = argminφ∈LCk×l
f(X, φ) where LCk×l is the

the collection of all possible co-clusterings.

Some examples of objective functions are the Goodman-Kruskal’s τ coefficient and the loss of mutual

information [34, 19]. In this paper, we use the sum-squared residue function introduced in [13] and

we consider two different definitions for residues. For computational feasibility reasons, co-clustering

algorithms always relax these optimization constraints, e.g., using local optimization heuristics.

One can be interested in other kinds of constraints which are now defined.

Definition 3.2. (must-link/cannot-link) If rows ia and ib (resp. columns ja and jb) are involved

in a must-link constraint, denoted c=(ia, ib) (resp. c=(ja, jb)), they must be in the same cluster of

Cr = r1, . . . , rk (resp Cc = c1, . . . , ck). If rows ia, ib (resp. columns ja and jb) are involved in a cannot-

link constraint, denoted c6=(ia, ib) (resp. c6=(ja, jb)), they cannot be in the same cluster of Cr = r1, . . . , rk

(resp Cc = c1, . . . , ck).

Such types of constraints have been studied in the context of semi-supervised clustering [10]. It is

here generalized in order to apply them on both row and column sets. In a gene expression matrix,

it is then possible to exploit the knowledge about genes and/or experimental conditions. For example,

if we know that gene ia and gene ib have the same function (say F) in the biological process, we can

enforce a must-link constraint between these two genes to focus the search for co-clusters associating

genes having such a function F . We could also add some cannot-link constraints to avoid associations

between experimental conditions which we want to separate, e.g., avoiding to mix conditions that are

related to different stages of a disease.

Let us now assume that a real value sc(j) (resp. sr(i)) is associated to each column j (resp. row

i). Then we have sr : {1, 2, . . . , m} → R and sc : {1, 2, . . . , n} → R. For example, sc(j) (resp. sr(i))

could be a temporal or spatial measure related to j (resp. i). In microarray data, sc(j) might be the

sampling time related to the DNA chip (say experiment) j. Another example would be to consider sr(i)

as a measure of the absolute spatial position of a gene i in the DNA sequence of the studied organism.

The two functions sr and sc enable to define an order ¹ over the set of columns and/or rows. Indeed, we

say that ja ¹ jb iff sc(ja) ≤ sc(jb). In the rest of the paper, we say that, if a function sc exists, then all

the elements j are ordered, i.e., ∀ja, jb s.t. ja < jb, sc(ja) ≤ sc(jb) (the same property holds for rows).

It appears interesting to search for co-clusters which are coherent with the order defined by functions

sr and sc. For instance, let us assume that we are interested in the different development stages of a

given living organism, and that we want to discover those genes that are mainly involved in each stage.

Therefore, we can look for clusters whose elements are contiguous w.r.t. time, i.e., enforcing an interval

constraint.

Definition 3.3. (interval constraint) If an order (¹) is defined over the column set (resp. row

set), an interval constraint over this set, denoted cint(Cc), specifies that each cluster in Cc has to be an

interval: ∀c ∈ Cc, if ja, jb ∈ c then ∀jc such that ja ¹ jc ¹ jb, jc ∈ c.

In general, the satisfaction of the must-link, cannot-link and interval constraints decreases the

theoretical optimum of the objective function. We want a co-clustering algorithm which is able to

take into account such constraints while trying to optimize the retained objective function. Notice that

the satisfaction of a conjunction of constraints c=, c6= and cint is not always feasible. For instance, for

three objects i1, i2, i3 such that s(i1) < s(i2) < s(i3), the conjunction c=(i1, i3) ∧ c6=(i1, i2) ∧ cint(Cr)

can never be satisfied, even though the sub-constraints of this conjunction do not cause any problem. In

this paper, we assume that the processed conjunction of constraints is feasible. We refer to [17, 16] for

studies on constraint feasibility for both partitioning and hierarchical clustering methods.

4 A generic constrained co-clustering scheme

A large class of objective functions, the so-called Bregman divergences, can be optimized via a

meta-algorithm called Bregman Co-clustering [4] (see Algorithm 1). Its principle is quite simple: it

alternatively refines row and column clusters, while optimizing an objective function which takes into

account both partitions. In the first step, an initialization (e.g., a random initialization) is given for

column clustering C0
c and row clustering C0

r . In the next step, a matrix approximation (e.g., by means of

clustering centroids) is computed for this pair of partitions. Then, a new column partition is computed

while the row partition is kept fixed. Finally, the algorithm holds the column partition fixed, and

it updates the column clustering. The last three steps are repeated until a convergence criterium is

satisfied. Clearly, our goal is to extend such a general approach to a constrained co-clustering setting.

Algorithm 1: GenCoClust(X,k,l)
Input: Data matrix X, k, l
Output: Partitions Cc, Cr

Initialize C0
c and C0

r ;
t = 0;
repeat

With respect to co-clustering Ct
c and Ct

r, compute the matrix approximation;
Hold the column clustering Ct

c fixed, and find a better row co-clustering, say, Ct+1
r ;

Hold the row clustering Ct+1
r fixed, and find a better column co-clustering, say, Ct+1

c ;
t = t + 1;

until convergence ;

4.1 Satisfying must-link and cannot-link constraints The transitivity of must-link constraints

is a well known property. We can transform a set of must-link constraints over rows into a collection

Mr = M1, . . . , MN , where each Mi is a set of rows involved by the same transitive closure of must-link

constraints. Let us denoteMc the same set built for columns and let Cr and Cc be the sets of cannot-link

constraints for rows and columns respectively.

Algorithm 2 enables to co-cluster data when conjunctions of must-link et cannot-link constraints are

given. It starts with some initialization (e.g., a random initialization) of partitions Cr and Cc. During

each iteration, the algorithm associates each column (resp. row) to the nearest column (resp. row)

cluster which does not introduce any cannot-link violation. If a column (resp. row) is involved in a

must-link constraint, the algorithm associates the whole set of columns (resp. rows) involved in the

transitive closure of this constraint to the closest column (resp. row) cluster controlling that there is

no cannot-link constraint which is violated by this operation. Then the algorithm updates the column

clustering Cc (resp. row clustering Cr) following the assignment schema resulting from the previously

described operations. This process is iterated until a convergence criterium is satisfied.

Notice that we do not need to consider constraint satisfiability at the initialization step: it is tackled

by the first iteration of the algorithm. A possible improvement would be to enhance the assignment

criterion for objects involved in cannot-link constraints. Moreover, we know that the satisfaction of a

set of cannot-link constraints for a given number of clusters is an NP-complete task [17].

4.2 Satisfying the interval constraint Algorithm 3 enables to solve the satisfaction problem for the

interval constraint. For such a constraint, the initialization (?) of partitions has to produce a number

Algorithm 2: GenCoCoClust1(X,k,l,Mr,Mc,Cr,Cc)
Input: Data matrix X, k, l, cannot-link sets Cr and Cc, collections Mr et Mc

Output: Partitions Cc, Cr

Initialize C0
c and C0

r , possibly considering Mr, Mc, Cr and Cc;
t = 0;
repeat

With respect to co-clustering Ct
c and Ct

r, compute the matrix approximation;
foreach column j do

if ∃Mv ∈Mc s.t. j ∈ Mv then
assign all columns in Mv to the closest column cluster s.t. no cannot-link constraint is
violated;

else
assign j to the closest column cluster s.t. no cannot-link constraint is violated;

end
end
Define Ct+1

c following the previous assignment step;
foreach row i do

if ∃Mu ∈Mr s.t. i ∈ Mu then
assign all rows in Mu to the closest row cluster s.t. no cannot-link constraint is
violated;

else
assign i to the closest row cluster s.t. no cannot-link constraint is violated;

end
end
Define Ct+1

r following the previous assignment step;
t = t + 1;

until convergence ;

l (resp. k) of intervals over columns (resp. rows). Then, the assignment process only considers the

frontiers between intervals (where needed). Notice that, contrary to [32, 33], the satisfaction of the

interval constraint on the computed bi-partition is here ensured.

In this paper, we do not consider the combination of these two algorithms to process a conjunction

of must-link, cannot-link and interval constraints. However, let us sketch research guidelines for this

purpose. We first have to ensure that each set Mr ∈Mr (or Mc ∈Mc) is an interval. For instance, for a

set of objects {i1, i2, i3, i4, i5}, and a set Mr = {i2, i4}, we should include object i3 into Mr because of the

definition of intervals. Then, we need the initialization to produce a partition which takes into account

the whole set of constraints (notice again that the satisfaction of a conjunction of cannot-link constraints

is a NP-complete problem). Finally, it is possible to reuse the strategy described by Algorithm 2 only on

the frontiers, following the schema presented in Algorithm 3. Finally, let us emphasize that this approach

Algorithm 3: GenCoCoClust2(X,k,l)
Input: Data matrix X, k, l
Output: Partitions Cc, Cr

Initialize C0
c and C0

r (?);
t = 0;
repeat

With respect to co-clustering Ct
c and Ct

r, compute the matrix approximation;
if Interval constraint on rows then

Hold the column clustering Ct
c fixed, and find a better row co-clustering, say, Ct+1

r by
redefining cluster frontiers;

else
Hold the column clustering Ct

c fixed, and find a better row co-clustering, say, Ct+1
r ;

end
if Interval constraint on columns then

Hold the row clustering Ct+1
r fixed, and find a better column co-clustering, say, Ct+1

c ;
by redefining cluster frontiers;

else
Hold the row clustering Ct+1

r fixed, and find a better column co-clustering, say, Ct+1
c ;

end
t = t + 1;

until convergence ;

is intrinsically different than applying existing mono-dimensional constraint-based clustering algorithms

alternatively on row and column vectors. In fact, each column (row) reassignment step of the algorithm

takes into account the previous row (column) reassignment step through the common objective function.

As a consequence, constraints on one dimension can influence the partition on the other dimension.

5 Using sum-squared residues

Our framework for constrained co-clustering can be adapted to many different co-clustering objective

functions (see [4] for an in-depth study of such functions). We consider instances that iteratively minimize

the sum of squared residues. The loss in mutual information, i.e., the objective function minimized by

the co-clustering approach in [19], would be another possibility. This is out of the scope of this paper to

discuss this issue further. We decide however to focus on two distinct definitions of residues such that

we provide two instances of our generic constrained co-clustering algorithm. These objective functions

have been introduced in [13] for gene expression data unconstrained co-clustering.

We look for a partition of a data matrix X ∈ Rm×n into k row clusters, and l column clusters. Let

I be the set of indices of the rows belonging to a row cluster, and J the set of indices of the columns

belonging to a column cluster. The sub-matrix of X determined by I and J is called a co-cluster.

Definition 5.1. (residue) Given an element xij of X, the residue of xij in the co-cluster defined by

the sets of indices I and J , and whose respective cardinalities are |I| and |J |, is given by

hij = xij − xIj − xiJ + xIJ(5.1)

hij = xij − xIJ(5.2)

where xIJ =
∑

i∈I,j∈J xij

|I|·|J | , xIj =
∑

i∈I xij

|I| , xiJ =
∑

j∈J xij

|J | .

The first formulation (Equation 5.1) is the measure designed Cheng and Church [12] for local pattern

discovery in gene expression data. The second (Equation 5.2) corresponds to the measure used by

Hartigan [22] in one of the earliest co-clustering setting.

Let H = [hij] ∈ Rm×n denote the matrix of residues computed using the previous definitions. The

objective function to be minimized is the sum of squared residues [13] computed as follows:

||H||2 =
∑

I,J

||hIJ ||2 =
∑

I,J

∑

i∈I,j∈J

h2
ij(5.3)

We can rewrite the residue matrix in a more compact form. Let us introduce the matrices R ∈ Rm×k

and C ∈ Rn×l which are defined as follows: each element (i, r) (1 ≤ r ≤ k) of R is equal to m
−1/2
r if i

is in co-cluster r (mr is the number of rows in r), 0 otherwise. Each element (j, c) (1 ≤ c ≤ l) of the

matrix C is equal to n
−1/2
c if j is in c (nc being the number of columns in c), 0 otherwise. The residue

matrix becomes:

H = (I −RRT)X(I − CCT)(5.4)

for the Cheng and Church’s residue, and

H = RRT XCCT(5.5)

for the Hartigan’s residue.

The proof of validity of these equations is given in [13]. The authors first demonstrate that

(RRT X)ij = xIj , (XCCT)ij = xiJ and (RRT XCCT)ij = xIJ , before showing that Equations 5.4

and 5.5 are correct. They conclude that, if we consider the projections (I −RRT)X and RRT X of the

matrix X, then ||H||2 gives the objective function of k-means for this modified matrix.

Let us now consider our algorithmic contribution. Our approach uses the introduced “ping-pong”

technique that processes alternatively by means of a k-means method columns and rows. It means that

matrix C is updated only after determining the nearest column cluster for each column (and similarly

for rows). Therefore, we propose to decompose the objective function captured by Equation 5.4 in terms

of columns. Given XP = (I − RRT)X, XC = (I − RRT)XC, and X̂P = (I − RRT)XCCT = XCCT ,

we can rewrite the specified objective function as follows:

||XP − X̂P ||2 =
l∑

c=1

∑

j∈Jc

||XP
.j − X̂P

.j ||2

=
l∑

c=1

∑

j∈Jc

||XP
.j − (XCCT).j ||2

=
l∑

c=1

∑

j∈Jc

||XP
.j − n1/2

c XC
.c ||2.

In the same way, setting XP = X(I−CCT), XR = RT X(I−CCT), and X̂P = RRT X(I−CCT) = RXR,

we obtain the following decomposition in terms of rows:

||XP − X̂P ||2 =
k∑

r=1

∑

j∈Ir

||XP
i. −m1/2

r XR
r. ||2.

Then, matrices XC and XR correspond to the cluster centroids for columns and rows respectively.

If we now consider the objective function specified by Equation 5.5, given XC = RRT XC,

XR = RT XCCT , and X̂ = RRT XCCT = XCCT , we obtain the following decompositions, respectively

in terms of columns and rows:

||X − X̂||2 =
l∑

c=1

∑

j∈Jc

||X.j − n1/2
c XC

.c ||2

||X − X̂||2 =
k∑

r=1

∑

j∈Ir

||Xi. −m1/2
r XR

r. ||2

We can now provide our constrained co-clustering algorithmic instances. First, we give a version

to solve the satisfaction problem for a conjunction of must-link and cannot-link constraints. Then, we

introduce a version which processes the interval constraint.

Algorithm 4 instantiates the generic algorithm for conjunctions of must-link and cannot-link

constraints (see Algorithm 2). The lines labeled with A refer to the objective function specified by

Equation 5.4. The lines labeled with B refer to the version which optimizes the objective function

specified by Equation 5.5. First, the algorithm initializes matrices C and R. Then, during each iteration,

the algorithm associates each column (resp. row) to the nearest column (resp. row) cluster which does

not introduce any cannot-link violation. If a column j (resp. row i) is involved in a must-link constraint

(see Algorithms 5 and 6), the algorithm associates the whole set of columns Mv (resp. set of rows Mu)

involved in the transitive closure of this constraint to the column (resp. row) cluster such that the

average distance is minimum, and controlling that there is no cannot-link constraint which is violated by

this operation. Since the assignment step is order-dependent, rows and columns are randomly ordered

at each iteration. Then the algorithm updates the matrix C (resp. R) following the assignment schema

resulting from the previously described operations. This process is iterated until the diminution of the

objective function value turns to be smaller than a user-defined threshold τ .

Algorithm 7 instantiates the generic algorithm for exploiting an interval constraint (see Algorithm 3).

Again, we have in Algorithm 7 the two instances that correspond to the two different types of residue

(A for Cheng and Church’s residue, and B for Hartigan’s residue). The initialization of partitions (?)

concerned by this interval constraint should produce a number l (resp. k) of intervals over columns (resp.

rows). Then, the assignment process only considers the frontiers between intervals. More precisely, it

first processes the left frontier, then the right frontier iteratively. A column (resp. row) can be assigned

to the adjacent interval if the distance is smaller than the distance computed over its original interval.

In this case, we continue processing the remaining columns (resp. rows). When the left frontier and the

right frontier of an interval correspond to the same column (resp. row), the algorithm starts to process

the next frontier. If there is no necessity to reassign the column (resp. row), the algorithm stops the

current frontier processing and it skips to the following one. The row clustering computation step is

straightforward and it is omitted here (??) for the sake of brevity.

According to the objective function defined by Equation 5.4, an optimal co-clustering result for Xr

(i.e., the toy example from Fig. 1), is given by matrix X1
r in Fig. 2. If we enforce Object 1 and Object

Algorithm 4: CoCoClust1(X,k,l,Mr,Mc,Cr,Cc)
Input: Data matrix X, k, l, cannot-link sets Cr and Cc, collections Mr and Mc

Output: Matrices R and C
Initialize R and C;
∆ = ||X||2; τ = 10−5||X||2;
t = 0;
A. objt = ||(I −RRT)X(I − CCT)||2;
B. objt = ||RRT XCCT ||2;
while ∆ > τ do

t = t + 1;
A. XC = (I −RRT)XC; XP = (I −RRT)X;
B. XC = RRT XC; XP = X;
foreach 1 ≤ j ≤ n do

L = ∅;
if ∃Mv ∈Mc s.t. j ∈ Mv then

MLColumnAssign(X,l,L,Mv,Cc);
else

L = {1 ≤ c ≤ l | @jc | γt[jc] = c ∧ c6=(j, jc) ∈ Cc};
γt[j] = argminc∈L ||XP

.j − n
−1/2
c XC

.c ||2;
end

end
Update C using γ;
A. XR = RT X(I − CCT); XP = X(I − CCT);
B. XR = RT XCCT ; XP = X;
foreach 1 ≤ i ≤ m do

L = ∅;
if ∃Mu ∈Mr s.t. i ∈ Mu then

MLRowAssign(X,k,L,Mu,Cr);
else

L = {1 ≤ r ≤ k | @ir | ρt[ir] = r ∧ c6=(i, ir) ∈ Cr};
ρt[i] = argminr∈L ||XP

i. −m
−1/2
r XR

r. ||2;
end

end
A. objt = ||(I −RRT)X(I − CCT)||2;
B. objt = ||RRT XCCT ||2;
∆ = |objt − objt−1|;

end

Algorithm 5: MLColumnAssign(X,l,L,Mv,Cc)
foreach jv ∈ Mv do

L = L ∪ {1 ≤ c ≤ l | @jc | γt[jc] = c ∧ c6=(jv, jc) ∈ Cc};
end

γt[Mv] = argminc∈L

∑
jv∈Mv

||XP
.j−n

−1/2
c XC

.c ||2
|Mv | ;

Algorithm 6: MLRowAssign(X,k,L,Mu,Cr)
foreach iu ∈ Mu do

L = L ∪ {1 ≤ r ≤ k | @ir | ρt[ir] = c ∧ c6=(iu, ir) ∈ Cr};
end

ρt[Mu] = argminr∈L

∑
ru∈Mu

||XP
i.−m

−1/2
r XC

r. ||2
|Mu| ;

1 4 5 2 3 1 4 5 2 3 1 2 3 4 5

X1
r=

3 2 4 0 0
1 1 2 4 5
4 4 5 1 0
2 3 4 0 1
1 1 2 4 5
1 0 0 4 6
0 0 0 5 6

1
2
3
4
5
6
7

X2
r=

3 2 4 0 0
4 4 5 1 0
2 3 4 0 1
1 1 2 4 5
1 1 2 4 5
1 0 0 4 6
0 0 0 5 6

1
3
4
2
5
6
7

X3
r=

3 0 0 2 4
4 1 0 4 5
2 0 1 3 4
1 4 5 1 2
1 4 5 1 2
1 4 6 0 0
0 5 6 0 0

1
3
4
2
5
6
7

Figure 2: Three co-clustering results on Xr (with permutations to emphasize obtained co-clusters)

2 to be in two different clusters by setting a cannot-link constraint c6=(1, 2), then we obtain the results

shown by matrix X2
r . Notice that, even if Object 5 is not concerned by this constraint, in the final bi-

partition it is clustered together with Object 2. In fact, Object 2 and Object 5 share the same attribute

values. If we set an interval constraint on the set of columns (namely cint(Cc)), we obtain the co-cluster

structure shown by X3
r in Fig. 2. Notice that, though only the column set is constrained, the resulting

object partition is also different from the one obtained when no constraint is given. Indeed, our objective

function takes into account both object and attribute partitions.

Let us briefly comment the complexity of our algorithms. Considering Algorithm 4, computing

(I − RRT)X(I − CCT) (or RRT XCCT) only requires the number of operations needed to compute

RT XC, i.e., kn(m+ l). It gives O(N) time complexity (when N = mn) under the reasonable hypothesis

that k ' l << m ' n. Assigning columns and rows to the new clusters can be performed in O(N(k + l))

time at each iteration. The overall complexity of the algorithm is then O(N(k + l)t), where t is the

number of iterations to achieve co-clustering. Complexity of Algorithm 7 is trivially the same. In general,

the fact that we only process the interval frontiers increase the performances during the assignment step.

Algorithm 7: CoCoClust2(X,k,l,introw,intcol)
Input: Data matrix X, k and l, two boolean values introw and intcol
Output: Matrices R and C
Initialize R, C, left, right; (?)
∆ = ||X||2; τ = 10−5||X||2;
t = 0;
A. objt = ||(I −RRT)X(I − CCT)||2;
B. objt = ||RRT XCCT ||2;
while ∆ > τ do

t = t + 1;
A. XC = (I −RRT)XC; XP = (I −RRT)X;
B. XC = RRT XC; XP = X;
if intcol = true then

foreach 1 ≤ c ≤ l do
stop = false;
while c > 1 ∧ stop = false ∧ right[c] > left[c] do

j = left[c];
if ||XP

.j − n
−1/2
c−1 XC

.c−1||2 < ||XP
.j − n

−1/2
c XC

.c ||2 then
γt[j] = c− 1; left[c] = left[c] + 1; right[c− 1] = right[c− 1] + 1;

else
stop = true;

end
end
stop = false;
while c < l ∧ stop = false ∧ right[c] > left[c] do

j = right[c];
if ||XP

.j − n
−1/2
c+1 XC

.c+1||2 < ||XP
.j − n

−1/2
c XC

.c ||2 then
γt[j] = c + 1; left[c + 1] = left[c + 1]− 1; right[c] = right[c]− 1;

else
stop = true;

end
end

end
else

foreach 1 ≤ j ≤ n do
γt[j] = argminc∈L ||XP

.j − n
−1/2
c XC

.c ||2;
end

end
Update C using γ;
A. XR = RT X(I − CCT); XP = X(I − CCT);
B. XR = RT XCCT ; XP = X;
{Reassign rows}(??);
A. objt = ||(I −RRT)X(I − CCT)||2;
B. objt = ||RRT XCCT ||2;
∆ = |objt − objt−1|;

end

6 Experimental validation

We now provide a comprehensive set of experimental results to illustrate the behavior of our algorithms.

We study both the quality of the results and time performances w.r.t. various combinations of mining

parameters. Experiments have been performed on artificially generated datasets for Section 6.1. Several

useful applications on real datasets are reported in Section 6.2 for gene expression data analysis and in

Section 6.3 for protein motif extraction.

6.1 Experimental setting and results on synthetic data To show the impact of constraints

on co-clustering, we need to compare the results w.r.t. a target partition. Consequently, given four

parameters m, n, k and l, we first generate a partition of m rows into k clusters and a partition of n

columns into l clusters. Then, we choose a random value x for each of the kl co-clusters, and fill each

co-cluster by generating random values following a gaussian law having a mean of x and a standard

deviation of δx (0 ≤ δ ≤ 1). For these experiments, we generated three datasets: the first one, called

data3x3 with an embedded 3× 3 bi-partition over a set of 1000 rows and 100 columns; the second one,

called data10x5, generated from a 10× 5 bi-partition over a set of 1000 rows and 100 columns; the third

one, called datax20x10, with a built-in 20 × 10 bi-partition over the same sets of rows and columns.

Constraints are generated by considering the three embedded bi-partitions. We randomly pick two

objects and generate a must-link constraint if those two objects share the same cluster label, otherwise

we generate a cannot-link constraint.

Our algorithms are implemented in C, and all the experiments have been performed on a PC

(Windows, Intel Core 2 Duo 2.00GHz, 2GB RAM). In all our experiments the value of the stopping

parameter τ was set to 10−5||X||2. The experiments described in this section have been performed using

the Hartigan’s definition of residue.

To evaluate the agreement between the embedded bi-partition and the ones discovered by our

constrained algorithm, we use the adjusted Rand index [24]. If C = {C1 . . . Cz} is the partition built

by the clustering algorithm and P = {P1 . . . Pz} is a predefined partition, each pair of points can be

assigned to the same cluster or to two different clusters in each partition. Let a be the number of pairs

belonging to the same cluster of C and to the same cluster of P. The expected value of a denoted exp(a)

(p being the number of points) is computed as follows:

exp(a) =
|π(C)| · |π(P)|

p(p− 1)/2

where

|π(C)| =
∑z

k=1 |Ck|(|Ck| − 1)
2

|π(P)| =
∑z

k=1 |Pk|(|Pk| − 1)
2

.

Then, the maximum value for a is:

max(a) =
1
2

(|π(C)|+ |π(P)|)

The agreement between C and P is estimated as follows:

AR(C,P) =
a− exp(a)

max(a)− exp(a)

Notice that when AR(C,P) = 1, we have identical partitions.

We also evaluate the final objective function value, as well as the average number of iterations

performed by the algorithm to achieve the convergence criterion. Finally, we measure how many times

the algorithm fails because of the impossibility to satisfy a cannot-link constraint. Notice that even if

this situation is possible, we expect the failure rate to be quite small in practice.

We are interested in the behavior of our algorithm w.r.t. the number of constraints. Therefore, we

generated various sets of constraints with an increasing number of pair constraints for rows and columns.

The size of the constraint set for rows varies between 0 and 50 (the incrementing step is 10). The size

of the column constraint set varies between 0 and 30 (with an incrementing step of 5). We consider all

the possible combinations of constraint sets. Moreover, for each combination, we generated 5 different

constraint sets, in order to reduce the bias introduced by the particular choice of pairs. As initial co-

clustering is randomly initialized, we run our algorithm 10 times on each constraint set. All measures

are averaged over these 50 trials.

Figures 3 and 4 show the results for this set of experiments. The average values for the adjusted Rand

index (see Fig. 3) increase with the number of constraints on rows and columns. In general, constraints

on one dimension influence the partition on the other dimension as well. This behavior is however more

obvious on column partitions (See Figures 3a, c and e). The results show that our approach is robust

w.r.t. the number of clusters. In the first dataset (Figures 3a and b), a few number of constraints enable

to obtain perfect bi-partitions. When the number of clusters is higher (Figures 3c to f), the gain in

terms of cluster agreement is even more convincing. The analysis of the average final objective values

(Figure 4a, c and e), confirms the effectiveness of using constraint in a co-clustering framework: the more

we introduce constraints, the more the objective function is optimized. In particular, most of the results

show that using constraints on both sides leads to better results than using constraints on only one side.

Notice that we omitted the standard deviations of the computed parameters in these figures. In all these

experiments, the stability of the co-clustering algorithm increases with the number of used constraints

on both sets (i.e., the standard deviations decreases). In particular, for data3x3, when the number of

constraints is high, the standard deviations are equal to zero, i.e., each randomly initialized instance of

our algorithm finds exactly the desired result. As a counterpart, the average number of iterations before

convergence is slightly higher (Figure 4b, d and f), but it seems that it is not influenced by the size of

the constraint set. In this sets of experiments, the average failure number is always 0, except for the

data3x3 matrix when the column constraint set size is 30. In this case, it is about 2%. We estimate

that this rate is acceptable and it could be improved by using more sophisticated techniques to process

cannot-link constraints.

6.2 Application to gene expression data analysis We studied the impact of our constraint-based

co-clustering approach on the well-documented microarray dataset drosophila [2]. It concerns the gene

expression of the Drosophila melanogaster during its life cycle. The expression levels of 3 944 genes

are evaluated for 57 sequential time periods divided into embryonic, larval and pupal stages. It has

been retrieved from http://smd.stanford.edu (the preprocessed and cleaned version of this dataset is

available on http://kdd.di.unito.it/~pensa/site/datasets/). Missing values (less than 1%) were

replaced by zeros. In the first bunch of experiments (must-link and cannot-link constraints), the value

of the stopping parameter τ was set to 10−5||X||2. In the second one (interval constraint), τ was set to

10−4||X||2. Running time is about 30 seconds.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0
5

10
15

20
25

300

 10

 20

 30

 40

 50

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Number of constraints
 on columns

Number of constraints
 on rows

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0
5

10
15

20
25

300

 10

 20

 30

 40

 50

 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

Number of constraints
 on columns

Number of constraints
 on rows

a) b)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0
5

10
15

20
25

300

 10

 20

 30

 40

 50

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Number of constraints
 on columns

Number of constraints
 on rows

 0.35
 0.4
 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8

0
5

10
15

20
25

300

 10

 20

 30

 40

 50

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

Number of constraints
 on columns

Number of constraints
 on rows

c) d)

 0.35
 0.4
 0.45
 0.5
 0.55
 0.6
 0.65
 0.7
 0.75
 0.8

0
5

10
15

20
25

300

 10

 20

 30

 40

 50

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

Number of constraints
 on columns

Number of constraints
 on rows

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

0
5

10
15

20
25

300

 10

 20

 30

 40

 50

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

Number of constraints
 on columns

Number of constraints
 on rows

e) f)

Figure 3: Average adjusted Rand indexes computer over columns (left) and rows (right) for data3x3 (a
and b), data10x5 (c and d), and data20x10 (e and f).

 140000
 150000
 160000
 170000
 180000
 190000
 200000
 210000
 220000
 230000
 240000

0
5

10
15

20
25

300

 10

 20

 30

 40

 50

 140000
 150000
 160000
 170000
 180000
 190000
 200000
 210000
 220000
 230000
 240000

Number of constraints
 on columns

Number of constraints
 on rows

 4

 4.5

 5

 5.5

 6

 6.5

 7

0
5

10
15

20
25

300

 10

 20

 30

 40

 50

 4

 4.5

 5

 5.5

 6

 6.5

 7

Number of constraints
 on columns

Number of constraints
 on rows

a) b)

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000
 500000
 550000

0
5

10
15

20
25

300

 10

 20

 30

 40

 50

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000
 500000
 550000

Number of constraints
 on columns

Number of constraints
 on rows

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

0
5

10
15

20
25

300

 10

 20

 30

 40

 50

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Number of constraints
 on columns

Number of constraints
 on rows

c) d)

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 600000

0
5

10
15

20
25

300

 10

 20

 30

 40

 50

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 600000

Number of constraints
 on columns

Number of constraints
 on rows

 0

 5

 10

 15

 20

 25

 30

 35

 40

0
5

10
15

20
25

300

 10

 20

 30

 40

 50

 0
 5

 10
 15
 20
 25
 30
 35
 40

Number of constraints
 on columns

Number of constraints
 on rows

e) f)

Figure 4: Average final objective function values (left) and number of iterations (right) for data3x3 (a
and b), data10x5 (c and d), and data20x10 (e and f).

 0.78
 0.8
 0.82
 0.84
 0.86
 0.88
 0.9
 0.92
 0.94
 0.96
 0.98

0
3

6
9

12
15 0

 15

 30

 45

 60

 75

 0.78
 0.8

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

Number of constraints
 on columns

Number of constraints
 on rows

 0.86
 0.87
 0.88
 0.89
 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96

0
3

6
9

12
15 0

 15

 30

 45

 60

 75

 0.86
 0.87
 0.88
 0.89
 0.9

 0.91
 0.92
 0.93
 0.94
 0.95
 0.96

Number of constraints
 on columns

Number of constraints
 on rows

a) b)

 137000
 137100
 137200
 137300
 137400
 137500
 137600
 137700
 137800
 137900
 138000

0
3

6
9

12
15 0

 15

 30

 45

 60

 75

 137000
 137100
 137200
 137300
 137400
 137500
 137600
 137700
 137800
 137900
 138000

Number of constraints
 on columns

Number of constraints
 on rows

 12

 14

 16

 18

 20

 22

 24

 26

0
3

6
9

12
15 0

 15

 30

 45

 60

 75

 12

 14

 16

 18

 20

 22

 24

 26

Number of constraints
 on columns

Number of constraints
 on rows

c) d)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0
3

6
9

12
15 0

 15

 30

 45

 60

 75

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

Number of constraints
 on columns

Number of constraints
 on rows

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

0
3

6
9

12
15 0

 15

 30

 45

 60

 75

 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0.22

Number of constraints
 on columns

Number of constraints
 on rows

e) f)

Figure 5: Average adjusted Rand indexes computer over columns (a) and rows (b), final objective
function values (c) number of iterations (d), and standard deviations of the objective function value (e)
and adjusted Rand index on columns (f) for the drosophila dataset.

6.2.1 Results for must-link et cannot-link constraints Let us first try to discover one fixed

partition by using the co-cluster label to define sets of pairwise constraints, both on gene and biological

sample sets. We measured the impact of combining constraints over row sets and column sets on the

drosophila data using the Hartigan’s definition of residue. For this purpose, we selected a bi-partition

among the unconstrained co-clustering results. In particular, we chose the co-clustering results with the

minimum objective function value obtained at the end of the iterative process. This value is 1.36935×105.

We use the resulting bi-partition to generate various sets of constraints. The size of the constraint set

for rows varies between 0 and 75 (the incrementing step is 15). The size of the column constraint set

varies between 0 and 15 (with an incrementing step of 3). For each combination, we generated 5 different

constraint sets, and we have been using our algorithm 10 times on each constraint set. The results are

given in Fig. 5.

The gain in using constraints on both dimensions is clear from Figures 5a and b, which plot the

average Rand index values computed over columns and rows respectively. The objective function value

almost reaches the target value when the number of constraints on both sides increases. Moreover, the

average number of iterations is always between 12 and 26. It seems to be independent from the size of the

constraint sets on columns. The constraints on rows seems to influence this parameter more significantly

(though not drastically). Finally, using constraints on columns improves the stability of the co-clustering

algorithm, as shown in Figures 5e and f. Constraints on rows seem to negatively influence the stability

for the Rand index computed on columns (the standard deviation on columns is omitted, since there

are no significant variations), while the do not influence significantly the stability of the final objective

function value. This is also due to the fact that the percentage of row constraints on the number of

rows is small. In conclusion, this study confirms that the overall stability is similar or better than the

stability obtained by the unconstrained algorithm. Last but not least, the failure rate is not significant,

since our algorithm failed in finding a solution only in one performed trial over a total number of 1250

trials.

6.2.2 Results for the interval constraint We evaluated the added value of the interval constraint

by applying our algorithm to the drosophila dataset. Here, our goal is to rediscover the three phases of

the drosophila life cycle using, as unique information, the number of clusters (k = l = 3).

We compared the adjusted Rand index for the constrained and unconstrained versions of our

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10 20 30 40 50

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Number of iterations

Unconstrained
Constrained Init.

Constrained

Figure 6: Object value vs. iterations

AR ||H||2 Nb.Iter.
Const. 0.76±0.23 8.23±0.40×104 11.60±2.96
Unconst. 0.41±0.17 7.73±0.48×104 14.60±7.60
Const.Init. 0.54±0.17 7.86±0.44×104 11.05±3.50

Table 1: Adjusted Rand index, final objective function value and number of iterations.

algorithm (both optimizing the Cheng and Church’s objective function) and for a collection of 20

randomly initialized runs. The results (see Tab. 1), show that using an interval constraint enables

to find more accurately the three stages of the drosophila life cycle (the measured improvement for

the adjusted Rand index is about 85%). Moreover, the number of iterations needed to complete the

co-clustering process is considerably smaller when enforcing such a constraint. Notice that the final

value of the objective function for the unconstrained version of the algorithm is better than for the

constrained version. It means that the structure which our algorithm is able to discover is unlikely to

be the global optimum for this dataset. Despite of this, the unconstrained algorithm has never managed

to find intervals. Notice that, in this case, using the interval constraint improve the stability of the

co-clustering algorithm for all the measured parameters.

In Fig. 6, we plot the average behavior of the objective function value w.r.t. iterations. For this

type of dataset, an interval-based initialization step gives rise to a smaller initial objective function.

Interestingly, the objective function value for the unconstrained co-clustering algorithm starts to be

better after the first iteration. Afterwards, the difference between the two curves is just an offset,

while the two convergence speeds are quite similar. This example illustrates the tradeoff between the

objective function optimization and the constraint satisfaction processes. We can comment such a process

considering the metaphor of the “tug of war” game. When the only competitor is the objective function,

the only limit is its global optimum. When a second competitor (say constraints) plays, it reduces the

objective function strength.

In order to measure the impact of the initialization method on the iterative behavior of the algorithm,

we measured all the performances parameters already used for the previous comparison (see Table 1).

Initializing the column partitions with a set of intervals improve the average adjusted Rand index value

over 20 runs, but this value is still far from the one achieved by the constrained version. The number of

iterations is the only performance index which improves w.r.t. both unconstrained and constrained

algorithms. Notice that, even if a constraint-oriented initialization has been used, none of the 20

executions has been able to find intervals.

Finally, Fig. 6 also illustrates that, after an improvement in the initial objective function, there

are no significant difference between the unconstrained algorithm and the interval-initialized one. It

means that the active constraint process introduced within Algorithm 7 is critical: a constraint-oriented

initialization is not sufficient to enforce the interval constraint.

 155000

 160000

 165000

 170000

 175000

 180000

 185000

 190000

 195000

 200000

 0 10 20 30 40 50

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Number of iterations

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 0 10 20 30 40 50

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Number of iterations

a) b)

Figure 7: Object value vs. iterations with the Hartigan (a) and Cheng & Church (b) objective functions.

6.2.3 Convergence analysis We now provide an experimental evidence of the convergence of our

algorithm under the interval constraint. We apply our algorithm to the drosophila dataset using both

the Hartigan’s residue and the Cheng & Church’s residue. We performed 20 trials and stopped the

execution after 50 iterations. The averaged objective function values at each iteration are plotted in

Figure 7. Clearly, the two objective functions decrease monotonically. Moreover, the convergence speed

is quite high in both experiments: the algorithm needs less than 10 iterations to achieve a good objective

function optimization level.

6.3 Application: Protein motif extraction Let us now propose the use of constrained co-clustering

as a technique to discover protein motifs. The novelty of our approach relies on two main ideas:

exhaustive search and automatic association of motifs with protein sub-families.

We extracted all possible motifs of a given length from protein sequences and stored them in a

prefix tree. All patterns are stored along with the protein name and frequency. Then, the constrained

co-clustering algorithm is used to find both protein motif classes and protein groups: in such a way, it

is possible to correlate every protein group with one or more motif classes.

Formally, let Σ be a finite alphabet. Let S = {σ1, ..., σm} be a set of protein sequences, such that

σi ∈ Σ∗ and let π1, ..., πn be the motifs stored in the prefix tree. We build a matrix X of n ×m such

that:

Xij = frequency of pattern πi in the protein sequence σj

We create a set of must-link constraints and a set of cannot-link constraints only on rows. We set a

must-link constraint on every pair of motifs having an edit distance less than εmin = 2, and a cannot-link

constraint on every pair of motifs πi, πj having edit distance greater than εmax = max(|πi|, |πj |) − 1,

where |π| is the length of motif π. We run the co-clustering algorithm on the matrix X and using the

aforementioned constrains. The result of the algorithm is a partition P(σ) of the protein sequences as

well as a partition P(π) of the motifs. Each element of P(σ) is then associated with an element of P(π)

by means of a statistical measure based on cluster cardinality [14].

The empirical assessment of the system exploited a protein dataset created by mixing sequences from

different protein families (Brazma et al. [11]). We retrieved the sequences from four protein families

stored in PROSITE [3] (release 13.0, January 2008). The families are: TP1 (prositeID: PS00541)

containing 6 sequences, TP2_1 (prositeID: PS00970) containing 5 sequences, SAR_1 (prositeID:

PS01020) containing 4 sequences and SPASE_II (prositeID: PS00855) containing 4 sequences. By

construction, each protein family in the dataset is characterized by one specific motif.

In the experimentation we used all 630 constraints. Our frequency matrix has 7491 rows and 19

Figure 8: The pairs of protein clusters and motif clusters is shown.

columns, we set the program parameters as follows: the number of row clusters varied from 50 to 120;

the number of column clusters varied from 2 to 7; residues have been computed using the Hartigan’s

definition; the value of the stopping parameter τ was set to 10−3.

Results corresponding to the combination of parameters that minimizes the objective function are

summarized in Figure 8. In this particular experiments the number of row clusters and column clusters

have been set to 50 and 4 respectively.

The whole set of protein sequences are reported in the central (white) box, whereas the four colored

boxes corresponds to the column clusters found by the algorithm. It is worthwhile to notice that

each column cluster contains only protein sequences belonging to the same protein family. This is

particularly interesting since those clusters are found by the co-clustering algorithm on the basis of the

sole information provided by motifs/proteins co-occurring frequencies.

Nearby each column cluster we report the associated motif clusters. Each motif cluster has been

represented in a graphical way, after the necessary multi-alignment step, by means of sequence logos

generated with WebLogo [15]. A sequence logo is a graphical representation of an amino acid or nucleic

acid multiple sequence alignment developed by Schneider and Stephens [35]. Each logo consists of stacks

of symbols, one stack for each position in the sequence. The overall height of the stack indicates the

sequence conservation at that position, while the height of symbols within the stack indicates the relative

frequency of each amino or nucleic acid at that position. In general, a sequence logo provides a richer

and more precise description of, for example, a binding site, than would a consensus sequence.

Below each motif, we report the PROSITE pattern characterizing the unique protein family contained

in the corresponding column cluster. Amino acids that appear both in the PROSITE pattern and in

the motif logos have been highlighted in red and green. The common portion of the sequences is large.

Moreover, it should be pointed out that our results are equivalent to those found by Brazma et al. on the

same dataset. In both approaches, all four protein families are recovered and the most frequent motifs

are identified. In our case we are also able to automatically find the association of motif and protein

patterns.

7 Conclusion

Co-clustering is an interesting conceptual clustering approach. Improving co-cluster relevancy remains

a difficult task in real-life exploratory data analysis processes. First, it is hard to capture subjective

interestingness aspects, i.e., the analyst’s expectation given her/his domain knowledge. Next, when

these expectations can be declaratively specified, using them during the computational process of bi-

partitions is challenging. In [32, 33], a simple approach was suggested that was dedicated to 0/1 data

analysis and incomplete w.r.t. constraint processing. In this paper, we have proposed a new constrained

co-clustering algorithm that is related to the the generic co-clustering setting from [4]. We explained how

to exploit user-defined constraints like must-link, cannot-link, and interval constraints when co-clustering

numerical matrices. Applications on kinetic gene expression data analysis and protein motif discovery

tasks have been considered. Many other applications rely on ordered data analysis and may benefit from

such constrained co-clustering approaches.

A short-term perspective is to combine properly the strategies for exploiting must-link and cannot-

link constraints one one hand, and interval constraints on another hand. So far, our approach does not

look for overlapping co-clusters while this may be interesting for many applications. We may study the

possibility to discover overlapping co-clusters, like many local bi-clustering approaches already do (see,

e.g., [12, 26]). Also, we are convinced that our approach can be easily extended towards other kinds

of objective functions (e.g., mutual information [19]) since we already demonstrated that it works for

different objective functions. It is also appealing to study other types of user-defined constraints (e.g.,

balancing constraints [6]).

Acknowledgements. This research is partially funded by EU contract GeoPKDD IST-FP6-014915

and the French ANR MDCO Project Bingo2. Ruggero G. Pensa and Francesca Cordero are co-funded

by Regione Piemonte.

References

[1] A. Anagnostopoulos, A. Dasgupta, and R. Kumar. Approximation algorithms for co-clustering. In

Proceedings PODS 2008, pages 201–210, Vancouver, BC, Canada, 2008.

[2] M.N. Arbeitman, E.E. Furlong, F. Imam, E. Johnson, B.H. Null, B.S. Baker, M.A. Krasnow, M.P. Scott,

R.W. Davis, and K.P. White. Gene expression during the life cycle of drosophila melanogaster. Science,

297:2270–2275, september 2002.

[3] A. Bairoch. Prosite: a dictionary of sites and patterns in proteins. Nucleic Acids Res, 19:2241–2245, 1991.

[4] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D.S. Modha. A generalized maximum entropy approach

to bregman co-clustering and matrix approximation. Journal of Machine Learning Research, 8:1919–1986,

2007.

[5] A. Banerjee and J. Ghosh. On scaling up balanced clustering algorithms. In Proceedings SIAM SDM 2002,

Arlington, VA, USA, 2002.

[6] A. Banerjee and J. Ghosh. Scalable clustering algorithms with balancing constraints. Data Min. Knowl.

Discov., 13(3):365–395, 2006.

[7] S. Basu, A. Banerjee, and R. J. Mooney. Semi-supervised clustering by seeding. In Proceedings ICML 2002,

pages 27–34, Sydney, Australia, 2002.

[8] S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. In

Proceedings ACM SIGKDD 2004, pages 59–68, Seattle, WA, USA, 2004.

[9] S. Basu, I. Davidson, and K. Wagstaff (Editors). Constrained Clustering: Advances in Algorithms, Theory

and Applications. Chapman & Hall/CRC Press, Data Mining and Knowledge Discovery Series, 2008.

[10] M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints and metric learning in semi-supervised

clustering. In Proceedings ICML 2004, pages 81–88, Banff, Canada, 2004.

[11] A. Brazma, I. Jonassen, E. Ukkonen, and J. Vilo. Discovering patterns and subfamilies in biosequences. In

Proceedings ISMB 2009, pages 34–43, St. Louis, MO, USA, 1996. AAAI press.

[12] Y. Cheng and G. M. Church. Biclustering of expression data. In Proceedings ISMB 2000, pages 93–103, San

Diego, CA, USA, 2000. AAAI Press.

[13] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared residue co-clustering of gene expression

data. In Proceedings SIAM SDM 2004, Lake Buena Vista, FL, USA, 2004.

[14] F. Cordero, A. Visconti, and M. Botta. A new protein motif extraction framework based on constrained

co-clustering. In Proceedings SAC 2009, pages 776–781, Honolulu, Hawaii, USA, 2009. ACM.

[15] G. E. Crooks, G. Hon, J-M. Chandonia, and S. E. Brenner. Weblogo: A sequence logo generator. Genome

Research, 14:1188–1190, 2004.

[16] I. Davidson and S. S. Ravi. Agglomerative hierarchical clustering with constraints: Theoretical and empirical

results. In Proceedings PKDD 2005, volume 3721 of LNCS, pages 59–70, Porto, Portugal, 2005. Springer.

[17] I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues and the k-means algorithm. In

Proceedings SIAM SDM 2005, Newport Beach, CA, USA, 2005.

[18] M. Deodhar, G. Gupta, J. Ghosh, H. Cho, and I. S. Dhillon. A scalable framework for discovering coherent

co-clusters in noisy data. In Proceedings ICML 2009, pages 241–248, Montreal, Quebec, Canada, 2009.

[19] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In Proceedings ACM

SIGKDD 2003, pages 89–98, Washington, DC, USA, 2003.

[20] E.E. Furlong, E.C. Andersen, B. Null, K.P. White, and M.P. Scott. Patterns of gene expression during

drosophila mesoderm development. Science, 293:1629–1633, 2001.

[21] R. Ge, M. Ester, W. Jin, and I. Davidson. Constraint-driven clustering. In Proceedings of ACM SIGKDD

2007, pages 320–329, San Jose, CA, USA, 2007.

[22] J. A. Hartigan. Direct clustering of a data matrix. Journal of the American Statistical Association,

67(337):123–129, March 1972.

[23] B. Hendrickson and T. G. Kolda. Partitioning rectangular and structurally unsymmetric sparse matrices

for parallel processing. SIAM J. Sci. Comput, 21:2048–2072, 1999.

[24] L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2(1):193–218, 1985.

[25] D. Ienco, R. G. Pensa, and R. Meo. Parameter-free hierarchical co-clustering by n-ary splits. In Proceedings

ECML PKDD 2009, volume 5781 of LNCS, pages 580–595, Bled, Slovenia, 2009. Springer.

[26] J. Ihmels, G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv, and N. Barkai. Revealing modular organization

in the yeast transcriptional network. Nature Genetics, 31:370–377, august 2002.

[27] D. Klein, S. D. Kamvar, and C. D. Manning. From instance-level constraints to space-level constraints:

Making the most of prior knowledge in data clustering. In Proceedings ICML 2002, pages 307–314, Sydney,

Australia, 2002.

[28] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein. Spectral biclustering of microarray data: coclustering

genes and conditions. Genome Research, 13:703–716, 2003.

[29] L. Lazzeroni and A. Owen. Plaid models for gene expression data. Technical Report Stanford University,

2000.

[30] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: A survey. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, 1(1):24–45, 2004.

[31] R. G. Pensa and J-F. Boulicaut. Constrained co-clustering of gene expression data. In Proceedings SIAM

SDM 2008, pages 25–36, Atlanta, GA, USA, 2008.

[32] R. G. Pensa, C. Robardet, and J-F. Boulicaut. Towards constrained co-clustering in ordered 0/1 data sets.

In Proceedings ISMIS 2006, volume 4203 of LNCS, pages 425–434, Bari, Italy, 2006. Springer.

[33] R. G. Pensa, C. Robardet, and J-F. Boulicaut. Constraint-driven co-clustering of 0/1 data. In Constrained

Clustering: Advances in Algorithms, Theory and Applications, pages 123–148. Chapman & Hall/CRC Press,

Data Mining and Knowledge Discovery Series, 2008.

[34] C. Robardet and F. Feschet. Efficient local search in conceptual clustering. In Proceedings DS 2001, volume

2226 of LNCS, pages 323–335, Washington, DC, USA, 2001. Springer.

[35] T. D. Schneider and R. M. Stephens. Sequence logos: A new way to display consensus sequences. Nucleic

Acids Res., 18:6097–6100, 1990.

[36] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman. Module networks:

identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet.,

34:166–176, 2003.

[37] H. Shan and A. Banerjee. Bayesian co-clustering. In Proceedings ICDM 2008, pages 530–539, Pisa, Italy,

2008. IEEE Computer Society.

[38] K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means clustering with background

knowledge. In Proceedings ICML 2001, pages 577–584, Williamstown, MA, USA, 2001.

