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Entropy of Self–Gravitating Systems from Holst’s Lagrangian⇤
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1 Department of Mathematics, University of Torino (Italy)
2 INFN- Iniziativa Specifica Na12
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Abstract: we shall prove here that conservation laws from Holst’s Lagrangian, often used in LQG, do not
agree with the corresponding conservation laws in standard GR. Nevertheless, these di↵erences vanish on-
shell, i.e. along solutions, so that they eventually define the same classical conserved quantities. Accordingly,
they define in particular the same entropy of solutions, and the standard law S = 1

4A is reproduced for
systems described by Holst’s Lagragian.
This provides the classical support to the computation usually done in LQG for the entropy of black holes
which is in turn used to fix the Barbero-Immirzi parameter.

1. Introduction

We have been recently investigating (see [1]) how conservation laws depend on the variational
principle when there are many dynamically equivalent frameworks to describe the same single
physical situation.

In GR there exist a number of di↵erent formulations able to catch gravitational physics:
purely–metric, metric–a�ne, purely–a�ne, purely–tetrad and tetrad–a�ne gravity are just the
most common ones; they di↵er by the choice of the fundamental fields, though in the end they
all produce as solution a metric which obeys Einstein field equations (possibly with cosmological
constant).

Besides the choice of fundamental fields, one can also modify the Lagrangian though preserving
the space of solutions. It is known, e.g., that the non-linear Lagrangian L = f(R)

p
g, in the

metric–a�ne (à la Palatini) formulation and in vacuum, for a generic analytical function f(R)
of the scalar curvature R induces field equations which are equivalent to Einstein field equations
with a (family of) suitable cosmological constants (see [2]).

In [1] we proved that in this non-linear first-order f(R) formulation of GR (which in vacuum
is exactly GR, not a modification of GR) conservation laws are described by a superpotential
which makes them to di↵er from the standard conservation laws in GR by terms which vanish
on-shell, i.e. when evaluated along any solution of field equations.

The superpotential was there computed by means of the so–called augmented variational prin-
ciple (see [3]). Augmented Lagrangians depend on two sets of fields, one representing the
dynamical physical field, the other representing a reference vacuum field. The conserved quan-
tities depend on both the configuration and the reference fields and they are interpreted as
the di↵erence of the corresponding conserved quantities (energy, momentum, charge, . . . ) be-
tween the vacuum field and the dynamical configuration. In the augmented Lagrangian a pure
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divergence (depending on both configuration and vacuum) is chosen in order to improve the
superpotential, so that the infinitesimal variation of the conserved quantity Q is

�XQ =
Z

�XU� iXF (1.1)

where U is the superpotential, iX denotes the contraction along any deformation X and F is
the boundary part of the action functional. There are many motivations to assume (1.1) as
physically sound; see, in particular, [4] and [5]. Moreover, augmented variational principles
have been proven to be e↵ective in describing black hole solutions and GR; see [3], [6], [7].

The situation for f(R)-theories is quite satisfactory for the physical intuition; conservation laws
depend on the Lagrangian in such a way that the corresponding conserved quantities are in fact
independent of the Lagrangian. In this way we argue that the conserved quantity is associated
to the solution of field equations more than to the specific Lagrangian used to find it. However,
terms vanishing on-shell as the ones found in f(R)-theories are not the most general corrections
which leave the corresponding conserved quantities unchanged. In fact, any correction which
reduces on-shell to a pure divergence would leave the conserved quantity unchanged.

We shall study here another dynamically equivalent formulation of GR, the so–called Holst
action; see [8], [9],[10]. The gravitational field is here described by (co)tetrads ea

µ and a suitable
SU(2)-connection !ab

µ ; see [11], [12]. The Hilbert Lagrangian is modified by a term which in the
end does not a↵ect the solution space. We shall show that Holst action defines a superpotential
which di↵ers from the superpotential of standard GR by terms which are pure divergences
on-shell. This provides an explicit example of the generic situation expected which leaves the
conserved quantities unchanged.

Besides the importance of having an explicit example of this general situation, Holst action is
important also for another reason. Holst-Barbero-Immirzi formulation is used in Loop Quantum
Gravity (LQG) and depends on a real parameter � called Barbero-Immirzi parameter, which is
fixed so that microstate counting of black hole entropy reproduces the standard law S = 1

4A,
i.e. one-quarter of the area of the horizon. However, the result S = 1

4A is obtained classically,
by relying on Nöther conserved quantities (see [13]). Now, if in Holst-Barbero-Immirzi gravity
such conserved quantities could be di↵erent from the standard GR ones, then the classical
prescription S = 1

4A would appear to loose its motivation. By proving that the conserved
quantities for Holst-Barbero-Immirzi formulation are the usual ones we also provide a solid
basis for the fixing of the Barbero-Immirzi parameter.

Let us finally remark that further investigations will be devoted to treat in greater generality
the issue of dynamically equivalent field theories and their conservation laws. In this direction,
to the best of our knowledge, no general result is available, yet.

2. The Holst’s formulation

The Holst Lagrangian (see [8], [9], [14]), used in the framework of Loop Quantum Gravity
(LQG), is defined as

Lh(ea, !ab) = Rab ^ ec ^ ed ✏abcd +
2
�

Rab ^ ea ^ eb = L1 +
2
�

L2

where L1 is the standard Lagrangian for General Relativity (GR) in the frame-a�ne formalism.
Here L2 is an additional term which does not a↵ect the solution space and � 2 R� {0} is the
Barbero-Immirzi parameter.
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The augmented Lagrangian is

LAug
h = Lh � L̄h + Div(↵1 + ↵2) (2.1)

where we denote by L̄h the Holst Lagrangian for the vacuum fields (ēa, !̄ab) and, in this case,
the correction terms are defined by

(
↵1 = (!ab � !ab) ^ ec ^ ed ✏abcd

↵2 = (!ab � !ab) ^ ea ^ eb

Here the configuration and the vacuum fields are chosen so that e = e but de 6= de at the
boundary surface.

The superpotential associated to L1 is U1 = K1 � i⇠↵1, using the definition of Kosmann lift
⇠ab
(v) = ea

↵ eb�r�⇠↵ (see [15]), where

K1 = ea
⇢ eb

� ⇠cd
(v) ✏abcd ✏µ⌫⇢� dsµ⌫ = 4

p
gr⌫⇠µ dsµ⌫

i⇠↵1 = ⇠�
�
!ab

⌫ � !ab
⌫

�
ec
⇢ ed

� ✏abcd ✏µ⌫⇢� dsµ� = 4
p

g g↵� wµ
↵� ⇠� dsµ� + �µ� dsµ�

where we have used the on-shell relation between the frame and the connection, namely

!ab
µ = ea

↵

�
�↵

�µ eb� + dµe
b↵

�

and set dsµ⌫ = @⌫ @µ ds, being ds the (local) volume element.

The superpotential associated to L2 is U2 = K2 � i⇠↵2

K2 = ea⇢ eb� ⇠ab
(v) ✏µ⌫⇢� dsµ⌫ ' Div (3⇠�✏µ⌫⇢� dsµ⌫⇢)

i⇠↵2 = ⇠�
�
!ab

⌫ � !ab
⌫

�
ea⇢ eb� ✏µ⌫⇢� dsµ� = ⇠�

�
eb� d⌫e

b↵ � eb� d⌫e
b↵

�
✏·µ⌫�
↵ dsµ�

Here the symbol ' refers to identity modulo boundary conditions.

Calculation is carried out on the boundary surface where e = e but de 6= de and we separated
the standard GR terms from the corrections �, K2 and �i⇠↵2.

Now using field equations together with boundary conditions and integrating by parts, these
corrections can be eventually recasted as

�µ� = 4
p

g
�
e⌫
b d⌫e

bµ � eµ
b d⌫e

b⌫ � e⌫
b d⌫e

bµ + eµ
b d⌫e

b⌫
�

⇠�

' 4d⌫

⇥p
g⇠�

�
e⌫
b ebµ � eµ

b eb⌫
�⇤

i.e. a pure divergence term which does not a↵ect the value of conserved quantities. An analogous
result is obtained for ↵2 that can be written on-shell as

i⇠↵2 ' d⌫

�
⇠�eb

� eb↵ ✏↵µ⌫�
�

while K2 is already a pure divergence.

Here we have an explicit example of two dynamically equivalent theories with di↵erent super-
potentials (and conservation laws). The di↵erence, however, reduces to a divergence on-shell so
that conserved quantities (as well as the entropy of solutions) are une↵ected.
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3. Conclusions and perspective

We have shown that the Holst Lagrangian induces conservation laws which only apparently
di↵er from the standard GR ones. The di↵erence, in fact, is just happening under the form of
terms which are pure divergences on-shell, hence not a↵ecting the values of conserved quantities.

Further investigations will be devoted to obtain general results about dynamically equivalent
theories, of which this specific case is an instructive example.
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