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Abstract
The chemotherapy late intensity schedule is revised to account for tumor growth instability, where
a small tumor cell fraction emerges that exhibits a higher proliferation rate than the parent strain.
Modeling this instability as simplified two-population dynamics we find that: 1) if this instability
precedes the onset of treatment, the slope of the linear increase of the drug concentration for the
standard “Norton-Simon late intensity schedule” changes and the initial value of the dose strongly
depends on the balance of the two tumor cell populations and on their distinct growth rates; and, 2)
if the instability trails the initial treatment, the effective chemotherapeutic drug concentration changes
as well. Both cases point towards necessary improvements of the “Norton-Simon late intensity”
schedule.

Introduction
Cancer therapy is aimed at targeting specific tumor (re)growth patterns to inhibit, or at least
control, local tumor proliferation and metastatic dissemination. Mathematical modeling
provides a promising tool by which to shed light onto these growth dynamics from a theoretical
perspective, using both experimental and clinical data as input. Such works range from
investigating various forms of exponential growth kinetics, e.g.,(1,2) to that of describing a
Universal growth law (3), with intriguing implications of the latter to radiotherapy (4). For
cytotoxic chemotherapy, a well documented case in which theoretical reasoning had an impact
on the therapeutic approach is that of breast cancer where, following the “Norton-Simon”
hypothesis (5), standard treatment has been adjusted to a “dose dense” regimen; that is, the
agent is given at a greater dose rate (i.e., multiple pulses of chemotherapy) to optimize efficacy,
and to keep toxic side effects comparatively low. The underlying hypothesis is that, in
comparison to the host organ, cancerous tissue exhibits a denser structure with higher fractal
mass dimension, and is composed of smaller, relatively faster growing sub-seeds, all of which
follow the Gompertz law. Differing from the traditional “log-kill” concept (6), Norton and
Simon then argued, based on a body of experimental and clinical studies on solid cancers, that
“therapy results in a rate of regression proportional to the growth rate of an unperturbed
neoplasm of that size” (7,8).

This hypothesis has been tested in a phase III clinical study led by the Cancer and Leukemia
Group B (CALGB 97-41) [http://www.calgb.org/](9) This large prospective randomized trial



demonstrated that shortening the time interval between each chemotherapy cycle while
maintaining the same dose size resulted in significant improvements in disease-free and overall
survival in patients with node-positive breast carcinoma. More recently, also a phase I study
in patients with metastatic breast cancer confirmed the therapeutic results predicted by the
Norton-Simon model (10). However, the issue of drug resistance is only considered at the
qualitative level within the framework of the Norton-Simon model, contrary to some leading
work addressing this issue performed by Goldie and Coldman (11,12). In a more recent
theoretical work, (13) Coldman and Murray investigated a stochastic model of non-cell cycle
phase specific cancer chemotherapy for exponentially growing tumours including the
development of drug resistance and the effect of chemotherapy on normal cells. The authors
concluded that early intensification, a feature shared with the Norton Simon model, is a
common aspect of successful regimes where drug resistance is likely. We note that the role of
intra-tumor heterogeneity and its implications for the evolution of drug resistance and cell
kinetics has already been considered by Gardner (14), who proposed a kinetically tailored
treatment (KITT model). Finally, Monro & Gaffney (15) recently proposed a model aiming at
a unifying description based on well founded approximations, i.e. Gompertzian tumour growth,
log cell kill by chemotherapy and Luria-Delbruck mutation to resistance (this assumption was
based on the Nobel Prize winning work of Luria and Delbruck in 1943 (16), who showed that
bacterial cultures developed resistance to bacteriophages at random). They were able to show
that palliative continuous chemotherapy achieves optimal results for intermediate (rather than
high) dosage levels with later (rather than earlier) intervention, due to the effects of competition
between resistant and sensitive cells. However, their approach focused only on the different
tumor response to therapy and not on the different growth rate (both before and after therapy)
that represents intrinsic tumor heterogeneity.

Here, we present evidence that cancer's inherent clonal diversity results in non-homogenous
growth patterns which in turn - even for its simplest form of two-population dynamics - will
require a modification of the “late intensification schedule” that has been put forward by
Norton-Simon (17). The next section introduces the underlying growth instability model and
its relevance for the current standard schedule for both situations, i.e. if the instability arises
prior or after the regimen. We also propose an approach more closely related to clinical therapy
and compare the results with data on survival probability.

Methods
Let us recall that for a homogeneous system the general growth law can be written as

[1]

where N is the number of individual cells at time t and α is their specific growth rate. The
growth laws can be classified according to the order of power expansion in α of the generating
function (18)

[2]

For instance, exponential growth, the Gompertz and logistic laws as well as various power
laws proposed to describe tumor growth can be obtained by using
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If N is a population composed of n sub-populations, each proliferating with a different specific
growth rate αi, i = 1,….,n,

[3]

then eqn. [1] can be restored, provided α is assumed to be the average of αi, i.e.

[4]

For simplicity, let us consider a cancer system where, at time tδ following a progression event,
a small cancer cell subpopulation emerges which grows at a distinctively different replication
rate. At any time one can write

[5]

Where N1 (t) and N2 (t) are the number of cells belonging to the two subpopulations, evolving
according to eqns.:

[6]

and

[7]

where θ (t - tδ) is 1 for t ≥ tδ and 0 for t < tδ.

The initial value is given by N(0) = N1(0), at t = tδ the cell population N2 (t) starts to grow and,
since the instability emerges when a small portion of tumor cells is more rapidly growing, let
us consider N1 (tδ) >> N2 (tδ).

To clarify the implications of the previous equations, let us assume that the two populations
both follow the Gompertz law (GL), i.e.

[8]

[9]
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This translates into the idea that the same type of cancer, in its sub-clones N1 (t) and in N2 (t),
follows the same functional form of the growth law but different values of the specific growth
rate. In the simplest model of this instability, with K = K1

g = K2
g, the difference in the specific

growth is related to the saturation value of the cell number N (t → ∞) = N∞ given by

[10]

According to previous eqns. [8,9], different specific growth rates are obtained for N1
∞ ≠

N2
∞. In order to evaluate the effects of the choices of the parameter values, various

configurations will be considered.

1. Let us first show the effects of the delay, i.e. the onset of growth of N2 at tδ ≠ 0, on

tumor growth assuming , that is for equal specific growth rates. Figs.1a
and 1b show the results for breast cancer with an asymptotic mass M∞ = 640g (the
mass is assumed to be proportional to the cell number N and an initial mass of M(0)
= 6.4 g. The delay tδ is 100 days in fig. 1a and 500 days in fig.1b. The corresponding
GL for a homogeneous cell population with the same initial and final mass is also
plotted.

2. Let us now consider another case, in which the second cell population develops with
the same delay of 500 days, but its specific replication rate (leading to a different
fraction of the final tumor mass) is modified. In both cases, N2 grows more rapidly
than N1, which is obtained by imposing N1

∞ < N2
∞.In fig.2a the result for M1

∞ = 0.4
M∞ and M2

∞ = 0.6 M∞ is depicted, while fig.2b shows the plot for M1
∞ = 0.2 M∞ and

M2
∞ = 0.8 M∞ respectively.

3. Let us now clarify the effects of the size of the sub-system N2 on tumor growth, at
time delay tδ, with respect to the sub-system N1. If the sub-clone N2 contributes
substantially to N∞ its specific proliferation rate must strongly increase to reach a
predefined fraction of the total final tumor mass, and such an increase is much larger
depending on how, at tδ its size compares to N1 (tδ).

In fig. 3a we show, for the same set of parameters used in fig. 2a, the dramatic impact of the
unstable system when N2 (tδ) is 10-6 smaller than N1 (tδ), for tδ = 500 days. The effect of
increasing the delay time is shown in Fig. 3b by considering the same set of values of the
parameter as in Fig. 3a and tδ = 1000 days. Let us note that a similar analysis can be performed
easily with other growth laws, for example the Universal law proposed by West et al (19,20).
The results are expected to be qualitatively the same as those obtained using the Gompertz law,
which is appropriately used here to relate the effects of tumor instability to chemotherapy
regimen.

To investigate the potential effects of such tumor instability on treatment, let us consider the
`Norton-Simon' hypothesis with regards to its `late intensity' schedule for chemotherapy.
Considering a monoclonal cell population that grows according to eqn.[1], and assuming that
the dose-response per cell to a non-specific chemotherapeutic cycle of treatment can be
described by a function C(t), the time evolution of the system is given by the following equation:

[11]

The tumor stops growing, and eventually regresses, when the therapeutic dose, delivered at
time t*, is larger than a critical value given by
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[12]

Moreover, assuming that, due to therapeutic impact, the cancer cell number decreases
exponentially with a rate ω, then

[13]

which implies that, substituting  in eqn. [11],

[14]

i.e. the time-dependent dose, according to the `Norton-Simon' hypothesis, depends on the tumor
growth rate α(t) of a single Gompertzian growth. By substituting for N the expression given
in eqn. [13] and collecting the constant and the time dependent terms, we obtain that C(t), in
the case of Gompertzian growth rate, is a linearly increasing function of time:

[15]

where A = ω + Kg ln  and B = ωKg and

[16]

Therefore a linear increase of the chemotherapeutic drug dose with time can reduce the number
of tumor cells exponentially. However, chemotherapeutic treatments based on the previous
considerations assume single population dynamics.

Indeed if one considers the simplest case of heterogeneity i.e. a system of two subpopulations,
with in general K1

g ≠ K2
g (see eqs.[8,9]), since N (t) = N1 (t) + N2 (t) the previous eqn.[13]

gives

[17]

The cancer populations N1 and N2 follow Gompertzian growth kinetics with the corresponding
specific rates and drug concentrations, that is

[18]

[19]
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and therefore for the time evolution of the total number of tumor cells, N(t), after onset of
treatment, i.e t > t* one arrives at the following equation:

[20]

Where

[21]

and

[22]

We will now discuss which modification of the `late intensity schedule' can be relevant for an
unstable, i.e. heterogeneous tumor exemplified by two-population dynamics, according to the
previous equations.

i) Onset of tumor instability after the beginning of chemotherapy
Let us first assume that tumor instability starts after the beginning of the therapy treatment, i.e.
tδ > t*. In this case, for t* < t < tδ, the time evolution is due to population N1 (t) only and the
corresponding drug concentration for a late intensity schedule is

[23]

Note that, in this time interval, the growth rate of population N1 (t) is that of the `one-population
Gompertzian law' with saturation value N∞, because N1 (t) = N(t).

By recalling that

[24]

and

[25]

therefore, by assuming that for t > tδ the exponential decrease of the total tumor cell number
elicited by the therapy is still effective, i.e.

[26]

it turns out
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[27]

Where

[28]

and

[29]

On the other hand, for a `one-population Gompertzian growth', with saturation value N∞, one
has

[30]

ii) Onset of tumor instability prior to the beginning of chemotherapy
Let us now assume that t* > tδ, i.e. the treatment (delivered at time t* follows the onset of
instability (at time tδ). Accordingly, the tumor grows following the `one-population Gompertz
law' up until time tδ (N (t) = N1 (t) for t < tδ) when the population N2 (t) emerges with a different
specific proliferation rate.

Through the aforementioned eq.(22), the drug concentration for t < t* turns out to be

[31]

Where

[32]

and

[33]

The role of tumor instability is crucial for the time behavior of the drug concentration because
it determines different populations, N1 (t*) and N2 (t*) at time t*, and different slopes in the
linear time dependence of . In fact, during the interval tδ < t < t* the two populations, N1
and N2, follow a Gompertzian growth with different specific rates. As we shall see in the next
section, the presence of instabilities, both before and after the time at which the therapy has
been administrated, postulates further improvements of the “Norton-Simon late intensity”
schedule based on an uniform rate of regression, ω, of the number of cells according to eqn.
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[13]. The previous eqns.[27,30,31] show that, for the two population dynamics following a
Gompertzian growth, the average drug concentration required to obtain such a result is different
from the drug concentration for a single tumor Gompertzian population. This general result is
obtained by mimicking the differential response of the two populations to the treatment by
different drug concentrations C1 and C2 and the same ω (see eqns.[17,18,19]). However, one
can consider another approach to the problem, that could, to some extent, be closer to the real
setting, where a “cocktail” of drugs is given which are expected to be effective against a
particular tumor on the basis of previous empirical data. Indeed, in the therapy modeled
according to the previous treatment, one expects that the drug concentration is uniformly
delivered among cells and that C1 = C2 = C but the “differential” effectiveness against a
cancerous clones, i.e. the reduction (for unit time) of cancer cells in the two populations, is
translated in a different rate of regression for populations N1 and N2, that is ω1 ≠ ω2.

To be more precise, let us consider the growth equations

[34]

[35]

and let us assume that, after the time t* at which the treatment started, the therapeutic result is

[36]

and

[37]

In this discussion the delay time, tδ, is neglected but it can be easily included. From the previous
equations for population N1 it turns out that (one assumes for simplicity that K1

g = K2
g = K)

[38]

which quantifies the linearly increasing drug concentration required for population N1 to
exhibit a decrease in time with constant rate ω1. Analogously, by assuming that ω2 is time
independent, for population N2 the required drug concentration turns out to be

[39]

In other terms, by requiring that the same dose C(t) can reduce the two populations with
different constant rates, one obtains that, at any time, the following condition should be
fulfilled:
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[40]

Apart from the trivial solution ω1 = ω2 and

[41]

eqn. [40] cannot be satisfied except when relaxing the requirement that some reduction rate is
time independent. This implies that eqn.[37] for the effect of the drug concentration on
population N2, for example, must be modified with a time dependent ω2, i.e.

[42]

obtaining for ω2 the linear differential equation:

[43]

where the last term has been obtained by imposing that there is a decrease of population N1
with constant rate ω1. By defining the parameter

[44]

the solution of the previous equation can be written as

[45]

with the boundary condition ω2 (t*) = ω1 - β.

This result allows us to compare the predicted evolution of the two different populations with
experimental data.

Results
Using the model described above, we now evaluate its effects on chemotherapeutic treatment
and its predictive power by using medical data on breast cancer survival probability.

The ratio  in eqns.[27,30] describes the effects in the drug therapy with respect to the
single Gompertzian growth when tumor instability starts after the beginning of the therapy, i.e.
tδ > t*. For t* <t <tδ this ratio is 1 and therefore one can set t* = 0. In Fig.4 DII is plotted for
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tδ = 60 days and ω = 0.1 per month, and different values of  are considered. For a one-
population Gompertzian growth, of course, DII = 1. With this set of parameters DII changes

less than 10%. Notice that, when , the value of DII can be less than one for some time
intervals. This is due to the fact that at the onset of instability the total tumor mass splits in two
subpopulations with different specific proliferation rates but also with different cell numbers
at tδ. Therefore a depletion of the large population N1 (tδ) occurs and it requires some time for

the growing instability, N2, to compensate this initial negative step. Then ratio  in
eqns.[30,31] (which is, by definition, equal to 1 for t < tδ) describes the effects for onset of
tumor instability prior to the beginning of chemotherapy. D strongly depends on the specific
proliferation rates of the two populations and on their relative fraction of the total cancer cell
population at the onset of instability and of treatment. In Fig.5a the ratio D is plotted as a

function of time for t* = 365 days and tδ =100 days for different values of .

In Fig.5b, D is plotted for the same tδ and t* values, and for the same ratios , but changing

the relative population  at the onset of instability and at saturation (i.e. when t →∞).

Depending on the value of , the ratio D increases from 20% to 70% (see figure captions
for details).

We note that the values of the ratios D and DII depend on many parameters, which should be
properly taken into account in a clinical context. On the other hand the presence of instabilities,
both before and after the time at which the therapy has been administrated, postulates further
improvements of the “Norton-Simon late intensity” schedule. For this reason, in the previous
section, a more general approach with different rates of regression for populations N1 and N2
(ω1 ≠ ω2) has been also considered. It can be applied to more realistic clinical cases. For
example, it is well known that primary breast cancer cells can express a variety of surface
receptors which correlates with clinical outcome. In particular, during their proliferative
activity, breast cancer cell populations may start expressing receptors for hormones, mainly
for estrogens and progesterone (21,22). Let us denote, in a breast cancer, the original cell
population N1, that fails to express estrogen receptor, as ER-, and the population N2, that starts
to express such receptors, as ER+. To be able to compare our model with experimental data,
one has to relate the survival probability of a patient at time t, P(t), after the end of chemotherapy
which occurred at time te, assuming a survival tumor cell fraction at time te computed according
to eqns.[36,37], in which t* = 0 : therefore

[46]

and

[47]
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where eqn.[45] has been used. By a simple calculation

[48]

At least for short time intervals after the end of chemotherapy, the survival patient probability
should be proportional to the regrowth rate at the end of the therapy: larger regrowth rate
corresponds to smaller survival probability. Therefore one can write

[49]

For not too large t - te, the value of the parameter α1 can be fitted by approximating the curve
ER- (ER/PgR absent) in fig. 1 of Colleoni et al. (23). This givesα1 ≈ 0.071 per year. To evaluate
the survival probability with ER+ we use the corresponding formula with α2 (te) (note that a
different te is simply a rescaling of β). By comparison with the corresponding clinical data, the
parameter β can be estimated by trial and error methods and turns out to be β~ 0.08 per year
for times in the range of 1-4 years. On the basis of such values, the survival probabilities can
be estimated and the comparison with the corresponding clinical data is given in Table 1. These
results are in good agreement with the data reported in (23) for the curve ER+ (ER/PgR present)
and suggest a generalization of eqn.[49] in exponential form, that is

[50]

which gives the results reported in Table 1 by using β~ 0.13 per year. One should note that the
previous comparisons have been done by considering ω1 time independent and without any
optimization of the parameter β. This preliminary analysis does not show the saturation of the
patient survival probability observed at long time intervals, however it suggests a simple
relationship between the drug dose required to obtain a given regression rate and the survival
probability of the patient which could be generalized in analogy to the so called “linear-
quadratic model” used in radiotherapy. We shall discuss this point in detail in a forthcoming
paper.

Discussion
In here we propose a model aimed at gaining more insights into how tumors respond to therapy,
taking into account some features which are normally disregarded, and in particular:

1. the well known cancer characteristics of clonal heterogeneity and the growth
instability it produces;

2. the analysis of the effects of such instabilities when occurring before and after the
administration of chemotherapy;

3. their potential impact on the overall survival probability of the patient.

We specifically investigated the case of an initially monoclonal tumor in which, at time tδ, a
secondary, faster replicating strain emerges from the parent tumor cell population. The
resulting “two population dynamics” is described in a way that is somewhat different from the
usual interspecific competition of the two populations for survival and access to resources
(prey-predator model, see, for example (24)) since the details about the dynamical evolution
of the two distinct populations in the tumor required by such a more “traditional” approach
would be unavailable, at least until the tumor is surgically approached and a biopsy taken for
histological evaluation. In our case, therefore, the competition between the two cell populations
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is encoded in the ratio  and in the boundary condition for long intervals: formally the
difference in specific growth is related to the saturation value of the cell number, N (t→δ) =
N∞, given by eqn. [10].

Since the maximum number of individuals N∞, the ratio and the delay in the onset of growth
between the two subpopulations results in different specific growth rates, a variety of distinct
realistic situations can be described without necessity of other “ad-hoc” assumptions. For
instance, the occurrence of “dormancy” phases during tumor development, which has been
simulated by Speer et al.(25) assuming that some parameters describing the overall
Gompertzian growth may experience stepwise variations (responsible for the appearance of
“plateaus” in the tumor growth curve), maybe generated by proper choices of the delay time
tδ (see Fig 3b). We also investigated how the conventional “late-intensity” chemotherapy
schedule proposed by Norton and Simon, based on the underlying assumption of single-
population dynamics (with the parameters of a unique homogeneous Gompertzian growth),
has to be modified when tumor time evolution is non uniform. We showed that in both case,
i.e. if the instability starts before or after the onset of treatment the chemotherapeutic dose
strongly depends on the balance of the two populations and on their specific growth rates.

Finally, by introducing a drug concentration non linear in time, the model was evaluated with
some available clinical data, comparing its predictions for the subpopulation ER+ that emerges
from the original breast cancer cells. Comparing the predicted survival probability following
therapy, we conclude that the model is capable to prefigure the different responses on the basis
of a small number of parameters, whose values can be easily fitted from clinical data. Most
importantly, our simplified analysis indicates already that a global, average chemotherapeutic
approach will not be successful if growth instabilities were to occur. It further argues that a
better phenomenological and theoretical understanding of such therapeutic effects requires a
more accurate description of these instabilities.
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Fig. 1.
Tumor mass predicted for each clone (M1 and M2), their sum (M = M1 + M2) and the overall
tumor according to the Gompertz Law (GL) assuming a delay tδ between the two populations
of 100 days (a) and 500 days (b). The other parameters values are: M∞ = 640 g, M (0) = 6.4 g,
M1

∞ = M2
∞ and M2 (t) = M1 (tδ) 10-2.
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Fig. 2.
Tumor mass predicted for each clone (M1 and M2), their sum (M = M1 + M2) and the overall
tumor according to the Gompertz Law (GL) assuming a delay tδ between the two populations
of 500 days. The ratio between the asymptotic masses are M∞

1 = 0.4 M∞ (a) and ∞ = 0.2 M∞

(b). The other parameters values are: M∞ = 640 g, M (0) = 6.4 g and M2 (t∞ = M1 (tδ) 10-2.
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Fig. 3.
Tumor mass predicted for each clone (M1 and M2), their sum (M = M1 + M2)) and the overall
tumor according to the Gompertz Law (GL). The time delay between the two populations is
500 days (a) and 2000 days (b). The other parameters values are: M∞ = 640 g, M (0) = 6.4 g,
M21 (tδ) = M1 (tδ) 10-6 and M1 = 0.4 M∞.
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Fig. 4.
Ratio when the instability starts at tδ = 60 days after the beginning of treatment. The parameters
are the asymptotic mass, M∞ = 640 g, M (0) = 6.4 g, M2 (t∞ = M1 (tδ)10-1, M1

∞ M∞, ω = 0.1
per month and Kg = 0.055 per month. Different values for the ratio between K1 and K2 are
depicted.
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Fig. 5.

Ratio  when the instability starts at t δ = 60 days prior to the beginning of treatment. (a)
M1

∞ = 0.1(M∞ - M(t∞)), M2
∞ =0.5 M1

∞, M2 t∞) 10-1; (b) M1
∞ = 0.5 M∞, M2 (t∞) = M2 t∞)

10-1. The other parameters values are: M∞ = 640 g, m(0) = 6.4 g, , ω = 0.1 per month and Kg
= 0.055 per month. Different values for the ratio between K1 and K2 are depicted.
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Table 1

Comparison with the experimental data for the linear interpolation as discussed in the text, eqns.[49,50]. The
experimental error is not included.

Time (yrs) P (Eqn. (49)) P (Eqn. (50)) Exp. value
1 0.85 0.82 0.87
2 0.70 0.67 0.65
3 0.55 0.54 0.5
4 0.40 0.45 0.45
5 0.25 0.38 0.45


