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Abbreviations (anatomical nomenclature according to Franklin and Paxinos, 1997). 

5-HT: serotonin 

AR: androgen receptor 

ARC: arcuate nucleus 

ARO: aromatase 

BAOT: bed nucleus of the accessory olfactory tract 

BST: bed nucleus of the stria terminalis 

cGMP: cyclic guanosine-monophosphate 

DA: dopamine 

E2: estradiol 

ERalpha: estrogen receptor alpha 

ERbeta: estrogen receptor beta 

GnRH: gonadotrophin hormone-releasing hormone 

-IR: -immunoreactive 

L-NAME: L-nitro-arginine methyl ester 

MeA:  medial amygdala 

MeAV: medial amygdala, anteroventral subdivision  

MPA: medial preoptic area 

MPOM: medial preoptic nucleus, medial pars 

NADPH: nicotinamide adenine dinucleotide phosphate 

nNOS: neuronal nitric oxide synthase 

NO: nitric oxide 

PVN: paraventricular nucleus 

T: testosterone 

VMH: ventromedial nucleus 
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Abstract 

Nitric oxide (NO)-containing neurons are widely distributed within the central 

nervous system, including regions involved in the control of reproduction and sexual 

behavior. The expression of neuronal NO-synthase (nNOS) is influenced by 

testosterone in male rat, and by estrogens in female. Moreover, nNOS may co-localize 

with gonadal hormones’ receptors. Gonadal hormones may influence nNOS 

expression in adulhood as well as during the development. In fact, in mice knockout 

for estrogen receptor alpha, the nNOS-expressing population is deeply reduced in 

specific regions. In physiological conditions, the female in mammalian species is 

exposed to short-term changes of gonadal hormones levels (estrous cycle). Our recent 

studies, performed in the rat vomeronasal system and in mouse hypothalamic and 

limbic systems reveal that, in rodents, the expression of nNOS-producing elements 

within regions relevant for the control of sexual behavior are under the control of 

gonadal hormones. The expression of nNOS may vary according to the rapid 

variations of hormonal levels that take place during the estrous cycle. This seems in 

accordance with the hypothesis that gonadal hormone activation of NO-cGMP 

pathway is important for lordosis behavior, as well as that this system is activated 

during mating behavior. Finally, comparative data available for other vertebrates 

suggest that class-specific and species-specific differences occur in the nNOS system 

of hypothalamus and limbic structures. Therefore, particular caution is needed to 

generalize data obtained from studies in rodents. 

 

 

Keywords: sex steroids, NADPH-diaphorase, BAOT, amygdala, hypothalamus, 

estrous cycle 
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Nitric oxide (NO) is an inorganic free radical gas (.N=O), whose synthesis from L-

arginine requires an enzyme known as NO synthase (NOS), and contributes to the 

formation of citrulline. Besides these substrates, NO synthesis requires also 

coenzymes (as reduced nicotinamide adenine dinucleotide phosphate, NADPH), 

cofactors, the presence of calmodulin (Knowles et al., 1989) (Fig.1A), as well as the 

co-operation of the superoxide dismutase (Schmidt et al., 1996). NO is believed to be 

a neuronal messenger (Vincent, 1994), whose action takes place primarily by 

inducing an increase of soluble cyclic guanosine monophosphate (cGMP) in target 

cells (Miki et al., 1977). Molecular cloning and the study of immunological properties 

suggested that there are at least three isoforms of NOS that have been purified and 

characterized from nervous tissue, macrophages, and endothelial cells (Alderton et al., 

2001). All these isoforms are present within the brain in different cellular 

compartments (Fig.1B), but the neuronal isoform (nNOS) is largely predominant 

(Bredt et al., 1990).  

 

The neuronal nitric oxide synthase. 

NO is an unusual neuronal messenger molecule that revolutionized our conceptions of 

how neurons communicate (Dawson and Snyder, 1994). It was first recognized as a 

neuronal messenger molecule when it was demonstrated that glutamate, acting on the 

N-methyl-D-aspartate receptor in cultures of cerebellar granule cells, releases a factor 

with properties resembling NO. The neuronal NO-forming enzyme (nNOS) is 

activated by increases in intracellular calcium, which subsequently binds to 

calmodulin to activate the enzyme. Due to the importance of NADPH as H+ donor for 

the functioning of nNOS, it was quickly understood that the old histochemical 

reaction for NADPH-diaphorase (Thomas and Pearse, 1964) could be utilized to 

detect nNOS positive neurons (Bredt et al., 1991). Subsequent investigations have 

shown that NOS catalytic activity accounts for NADPH diaphorase staining (for a 

review see Dawson and Dawson, 1996). 

 

Neuroanatomical distribution 

NO-producing neurons have been localized, with both histochemical and 

immunohistochemical methods, in several parts of the mammalian and non-
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mammalian central nervous system including the olfactory system, the cerebral 

cortex, the diencephalon, the brainstem, the cerebellum and the spinal cord (Vincent 

and Kimura, 1992, Brüning et al., 1994, Egberongbe et al., 1994, Holmqvist et al., 

1994, Panzica et al., 1994, Rodrigo et al., 1994, Brüning and Mayer, 1996, Gotti et al., 

2005). Based on the present literature, it appears that the nNOS system in the brain 

does not overlap completely with any other known neurotransmitter system, even 

though several studies demonstrated co-localization with cholinacetyltransferase, 

serotonin (5-HT), and numerous neuropeptides (see for reviews: Panzica et al., 1998, 

Prast and Philippu, 2001).  

In particular, nNOS-immunoreactive (nNOS-IR) neurons and fibers were described in 

several hypothalamic and limbic nuclei of rodents (Bhat et al., 1996, Hadeishi and 

Wood, 1996, Ng et al., 1999). Many of these nuclei are implicated in the control of 

reproduction: e.g., medial preoptic nucleus (MPOM) (Fig.1C, D), paraventricular 

nucleus (PVN) (Fig. 1E, F), supraoptic nucleus, arcuate nucleus (ARC), ventromedial 

nucleus (VMH) (Fig.1G, E), bed nucleus of the stria terminalis (BST), and 

amygdaloid complex (Fig.1G, F). The nNOS-IR elements are generally weakly or 

moderately stained small neurons, with a large supply of positive fibers. In the PVN, 

positive neurons are mainly situated in the ventral part, in the medial parvicellular 

portion, and around the fornix (Fig.1F). A dense network of fibers covers the VMH, 

whereas the weakly stained neurons are localized in its more lateral subdivision 

(Fig1H).  

 

PUT FIGURE 1 ABOUT HERE 

 

Nitric oxide, neuroendocrine functions and behaviors 

The localization of nNOS in diverse cell types, belonging to a variety of neuronal 

systems, suggests a widespread role in neuromodulation for the free radical NO. The 

effects on blood vessel tone and neuronal function form the basis for the important 

role that NO has on neuroendocrine function and behavior. This messenger molecule 

appears to be involved in a variety of physiological activities, such as long-term 

potentiation, neuroprotection, neural degeneration, and the regulation of peptidergic 

secretion (for reviews see: Dawson and Snyder, 1994, Dawson and Dawson, 1996). In 

particular, nitric oxide plays a crucial role in reproduction at various level in the 

organism. In the brain, it activates the release of gonadotrophin hormone-releasing 
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hormone (GnRH) enabling the lordosis reflex to be elicited by stimuli from the male. 

In the periphery, NO via cGMP induces erection in males and ovulation in females 

(for reviews see: McCann et al., 1999, McCann et al., 2003). 

Finally, NO influences several motivated behaviors including aggressive, ingestive, 

and sexual behaviors. Learning and memory are also influenced (for reviews see: 

Nelson et al., 1997, Nelson and Chiavegatto, 2001) 

 

Nitric oxide and reproductive behaviors  

Several studies have suggested complex relations among NO producing elements and 

sexual behavior. In females, the NO/cGMP/protein kinase G pathway is involved in 

the lordosis induced by progesterone and some of its ring A-reduced metabolites 

(Gonzalez-Flores and Etgen, 2004). Moreover, treatment with competitive inhibitors 

of nNOS attenuates progesterone-induced lordosis, whereas administration of a NO 

donor facilitates sexual behavior. This last effect is blocked by the administration of a 

GnRH antiserum. Since progesterone-facilitated lordosis is mediated by GnRH 

release, these results indicate that NO induces GnRH release that then plays a role in 

the control of female sexual behavior (Mani et al., 1994). In male rats, the treatment 

with L-arginine, the natural nNOS substrate, facilitates male sexual behavior (Benelli 

et al., 1995, Sato et al., 1998), whereas administration of nNOS inhibitors reduces the 

number of mounts and prevents ejaculations (Benelli et al., 1995, Sato et al., 1998). In 

addition, disruption of the nNOS gene in knock out mice results in an inappropriate 

sexual behavior of males (Nelson et al., 1995). 

Other studies suggest the involvement of NO in the maternal behavior, in particular 

the participation of NO in the aggressive behavior that lactating females express 

against intruders during this period. It has been demonstrated that disruption of the 

nNOS gene in mice produces important deficits in maternal aggression (Gammie and 

Nelson, 1999). Moreover, intracerebroventricular administration of the NO inhibitor 

L-nitro-arginine methyl ester (L-NAME) during postpartum not only attenuates 

maternal aggression, but also disrupts the expression of maternal behavior, 

eliminating pup retrieval (Popeski and Woodside, 2004).  

In summary, these studies suggest that NO facilitates the expression of sexual 

behavior in males and females and also that this neurotransmitter has a relevant role in 

aggression in lactating females. 
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Direct or indirect control of NO on sexual behavior 

Is the effect of NO on the reproductive behaviors the results of its direct control or is 

mediated by some other neurotransmitter system? Some reports seems to indicate that, 

in rats, the involvement of NO in the control of reproductive behavior is modulated by 

gonadal hormones and probably mediated by interactions with other neurotransmitter 

systems such as dopamine (DA) in males (for reviews see: Hull et al., 1997, Hull et 

al., 1999, Hull et al., 2002) and noradrenaline in females (Chu and Etgen, 1997, 

Lagoda et al., 2004). In the male rat, testosterone (T) acts by increasing nNOS 

immunoreactivity (Du and Hull, 1999), NO, in turn, stimulates the release of DA in 

the medial preoptic area (MPA) (Lorrain and Hull, 1993, Lorrain et al., 1996, 

Dominguez et al., 2004). The increased DA release enhances responsiveness to 

stimuli from an estrous female and increases the probability, rate, and efficiency of 

copulation (Lorrain et al., 1996). It was not known, however, which metabolite(s) of T 

regulate(s) DA and/or nNOS in the MPA of male rats. The results of a recent study 

indicate that estradiol (E2) up-regulates nNOS-IR in the MPA and it maintains tissue 

content of DA at levels similar to those in T-treated rats. Dihydrotestosterone did not 

influence nNOS-IR, while attenuating the effect of castration on tissue DA content 

(Putnam et al., 2005). 

In the females rat, it has been recently demonstrated that microinjection of L-NAME, 

an NO synthesis inhibitor, into the MPA blocked copulation in naive rats and 

impaired copulation in sexually experienced males (Lagoda et al., 2004). Moreover 

the NO-cGMP system may mediate the facilitator effect of α1–adrenoreceptors on 

lordosis behavior in female rats (Chu and Etgen, 1997).  

In summary, these studies suggest that NO might facilitates the expression of rodents’ 

sexual behavior in both sexes, probably through its action on specific neurotransmitter 

systems. 

 

Neuronal nitric oxide synthase and gonadal hormones 

The distribution of nNOS in several brain regions of mammals overlaps that of 

gonadal hormones’ receptors. Regions like the BST, the amygdala, the preoptic 

region, the mediobasal hypothalamus, or the magnocellular nuclei are characterized 

by the presence of two types of estrogen receptors (ERalpha and ERbeta) (Shughrue 

and Merchenthaler, 2001, Merchenthaler et al., 2004), of androgen receptors (AR), 
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(Simerly et al., 1990) and of progesterone receptors (PR), (Lauber et al., 1991). Only 

a few studies have, however, detailed the co-expression of nNOS (or NADPH-

diaphorase activity) with these receptors.  

In particular, in the female guinea pig, quantitative analysis showed that 

approximately 16% of the nNOS-IR cells in the rostral preoptic area and 55% of 

nNOS-IR cells in the ventrolateral nucleus displayed PR immunoreactivity 

(Warembourg et al., 1999), a similar distribution was observed also in the ewe 

(Dufourny and Skinner, 2002).  

In male and female rats, ERalpha co-localize with NADPH-diaphorase elements in 

the VMH (Okamura et al., 1994b), whereas AR co-localize with nNOS-IR cells in the 

premammilary nucleus of the male rats (Yokosuka and Hayashi, 1996, Yokosuka et 

al., 1997). A recent study (Sato et al., 2005) detailed in a greater detail the co-

localization of ERalpha and AR with nNOS-IR cells in male rat preoptic and anterior 

hypothalamic regions. In particular, in the anteroventral periventricular nucleus 

ERalpha co-localize with 77% and AR with 60% of nNOS cells, in the MPOM 

ERalpha co-localize with the 53% and AR with 52% of nNOS cells.  

In male mouse, ERalpha co-localize with 90% of nNOS cells in the MPA and 50% of 

nNOS cells in the medial amygdala (MeA), whereas a more limited number of nNOS 

cells co-localize in the BST (16%) or in the PVN (10%) (Scordalakes et al., 2002). 

AR co-localize with a more limited number of nNOS cells in the same nuclei (e.g.: 

20% in MPA, 6% in BST, 20% in MeA, 10% in PVN) (Scordalakes et al., 2002).  

These results indicate that in all the investigated mammalian species a relationship 

between gonadal steroids’ receptors and nNOS or NADPH-diaphorase is present. 

However, species-specific differences have been detected in the proportion of the 

colocalization. 

The regionally specific distribution of nNOS-IR elements and their co-existence with 

gonadal hormones’ receptors suggest the existence of significant neuroendocrine 

relationships. Therefore, several studies investigated the role played by gonadal 

hormones in the regulation of the nNOS system. In mammals, sex steroids control the 

expression of nNOS in the preoptic-hypothalamic region. In the male, castration 

decreases the number of nNOS-IR neurons in the rat (Du and Hull, 1999) and the 

hamster (Hadeishi and Wood, 1996) MPA. In the female, E2 increases, the NADPH–

diaphorase staining in the guinea pig ventrolateral nucleus (Warembourg et al., 1999) 

and in the rat PVN (Sanchez et al., 1998), and MPA (Okamura et al., 1994a). It 
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increases also the nNOS mRNA in the ventrolateral subdivision of the rat VMH 

(Ceccatelli et al., 1996). However, effects of hormonal manipulations are not 

univocal; in fact other studies demonstrated either no effects of castration or an 

increase of mRNA for nNOS in the hypothalamus of male rat (Shi et al., 1998, Singh 

et al., 2000). A recent study evidenced an E2-induced decrease, mediated by the 

ERbeta, in the number of nNOS-positive neurons in rat hypothalamic slices cultures 

of PVN (Gingerich and Krukoff, 2005).  

These discrepancies in the effects of gonadal hormones on the nNOS could be due to 

a combination of several factors: differences between species, methodology used, 

parameter studied or even a regional specificity. Changes in mRNA content (Shi et 

al., 1998, Singh et al., 2000) may not be directly related to changes in immunoreactive 

material (Du et al., 1998), as was previously demonstrated for other peptidergic 

systems (Miller et al., 1992). In addition, the presence of NOS-IR cells is not always 

reflecting the same amount of NADPH-diaphorase positive elements as recently 

demonstrated for the mouse basal forebrain (Gotti et al., 2004). Differential 

expression of protein inhibitor of nNOS (Jaffrey and Snyder, 1996) should also be 

considered in the future to better clarify these relationships. 

Estrogen receptors seem to be important also for the differentiation of the limbic-

hypothalamic nNOS system. A first study on the distribution of nNOS in mice 

knockout for ERalpha (ER�KO) demonstrated significant changes in the limbic-

hypothalamic region, when compared to that observed in wild-type mice (Panzica et 

al., 2000). However, what we have observed was a nucleus-specific decrease rather 

than a total disappearance of the system. In particular, a significant decrease in NOS-

IR cell number has been observed in PVN and ARC, as well as a significant decrease 

in the density of NOS immunostained fibres in MPA. Other regions that are important 

targets for estrogens in females, as the VMH, do not show significant differences. In 

the BST we have, on the contrary, observed an increase in the cell number at the more 

caudal level of the nucleus. To confirm the important role of estrogens, we observed a 

significant decrease of nNOS-IR elements in the MPA of aromatase knockout mice 

(ArKO) (Sica et al., 2002). A moderate decrease in immunoreactivity was also 

detected in the PVN and VMH.  

By using a double mutant mouse in which males lacked functional ERalpha, AR, or 

both, Scordalakes et al. (2002) investigated the roles of these steroid receptors in 



 10 

nNOS-IR cell numbers and immunoreactive area staining under T and E2 treatments. 

Their data demonstrated that functional ERalpha is correlated with more nNOS-IR 

cells under T treatment and more immunoreactive area staining in the MPA under 

both T and E2 treatments. However, the presence of ERalpha decreases nNOS-IR cell 

number in the BNST under E2 treatment. AR has action on posterior ventral region of 

MeA and both receptors show action on PVN. In summary, these data suggest that 

ERalpha and AR interact to regulate nNOS in male and female brain in a site-specific 

manner. 

 

Sex differences and effect of estrous cycle. 

In general, all the reported studies were based on medium or long treatments with 

gonadal hormones (from one to several weeks). Obviously, this is a not physiological 

condition in adult laboratory rodents, where, in the female, the levels of circulating 

ovarian hormones change in a very short period (the total duration of estrous cycle is 

4-5 days). Based on the presumption that gonadal hormones may influence the 

expression of nNOS, we wondered if short-term changes might influence the number 

of nNOS-IR elements and if this fact could also influence the demonstration of sexual 

dimorphism for this system.  

In a study performed in mice (Martini et al., 2004) we considered four hypothalamic 

and limbic nuclei that are involved in the control of sexual behavior and targets for 

gonadal hormones: MPA, BST, ARC, VMH (Nishizuka, 1978, Leedy et al., 1980, 

García-Segura et al., 1988, Claro et al., 1995, Kato and Sakuma, 2000). In some of 

these nuclei (e.g.: MPA, ARC) we observed statistically significant changes in the 

population of nNOS-IR elements throughout the estrous cycle, whereas, in the other 

two nuclei (e.g. BST and VMH) we have not detected any statistically significant 

variation (see Fig. 2a-d). Changes in the number of nNOS-IR cells in MPA and ARC 

do not follow the same pattern. In MPA, the highest number of positive neurons was 

detected during estrus, whereas in proestrus and diestrus we have the lower values. In 

ARC, the highest number of nNOS-IR cells was detected in proestrus, this value is 

significantly different from metestrus and diestrus.  

Sex differences were statistically significant only in the BST, with females showing 

more nNOS-IR cells than males. For the MPA and ARC, in which nNOS-IR varied 

with the estrous cycle, significant sex differences depended on the phase of the 
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estrous cycle. Therefore, this indicates the presence of a sexual diergism (i.e. 

functional sex difference, Rhodes and Rubin, 1999) rather than a real dimorphism. 

In the rat, variations in expression of nNOS, or associated NADPH-diaphorase 

activity, during the estrous cycle were studied in two structures belonging to the 

vomeronasal system: the bed nucleus of the accessory olfactory tract (BAOT) and the 

anteroventral subdivision of medial amygdala (MeAV) (Collado et al., 2003, Carrillo 

et al., 2004). These two nuclei are implicated in the control of reproductive behaviors 

(Masco and Carrer, 1984, Del Cerro et al., 1991, Izquierdo et al., 1992, Kondo, 1992, 

Dominguez and Hull, 2001, Sheehan et al., 2001). In both structures two types of 

positive neurons were identified: intensely- and medium-stained elements. The 

sensitivity to E2 of these two subpopulations of NO producing cells may vary 

depending on the investigated nucleus. In the BAOT, there was a greater density of 

medium-stained cells in estrous females then in males or diestrous females (Fig. 2E) 

(Collado et al., 2003). However, in the MeAV nucleus the intensely stained cells were 

the most sensitive group. Estrous females had significantly more NADPH-diaphorase-

positive cells than did male and diestrous female (Fig. 2F) (Carrillo et al., 2004). 

These hormone-dependent fluctuations in NADPH-diaphorase activity suggest that 

distinct subpopulations in the BAOT-medial amygdala pathway might regulate the 

expression of reproductive behaviors in which these two structures are involved. As 

was the case of MPA and ARC in mice, a functional diergism occurs also in rat 

BAOT and MeAV. 

 

PUT FIGURE 2 ABOUT HERE 

 

Comparative studies 

The study of the distribution and characteristics of nNOS or NADPH-diaphorase 

positive neurons has been performed mostly in mammalian species. However, several 

papers described the presence and distribution of this system also in the brain of other 

vertebrates, such as fishes, amphibians, reptiles, and birds (for a review see Panzica et 

al., 1998). The general pattern of distribution of nNOS or NADPH-diaphorase 

positive neurons is similar in all vertebrates, with some noteworthy variation. Hence, 

populations of positive neurons were observed in the basal ganglia and in the so-

called mesopontine system of all vertebrates, whereas neuronal populations located in 

the diencephalon or in higher telencephalic centers showed a high degree of variations 
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of the distribution according to the investigated species (for discussions see Panzica et 

al., 1998). 

In birds a series of investigations, partly done in our laboratories, have elucidated that 

differences are even more marked when considering the extent of co-localization with 

neurotransmitters or neuropeptides (Panzica et al., 1996, Sanchez et al., 1996, Panzica 

and Garzino, 1997). No sex dimorphism was observed in the hypothalamus of 

Japanese quail (G.C. Panzica and C. Dermon, unpublished results). In a recent study 

(Balthazart et al., 2003), we investigated the anatomical relationships between 

aromatase (ARO) and nNOS-containing neurons. Major groups of nNOS-

immunoreactive/ NADPH-positive neurons were adjacent to the main ARO-IR cell 

groups, such as the MPOM, the BST and the VMH. However, examination of 

adjacent sections indicated that there is very little overlap between the NOS-IR and 

ARO-IR cell populations. This notion got further support by double-labeled sections 

where no double-labeled cells could be identified. In sections stained simultaneously 

by histochemistry for NADPH and immunohistochemistry for ARO, many NADPH-

positive fibers and punctate structures were closely associated with ARO-IR 

perikarya. Taken together, these data indicate that nNOS is not or very rarely co-

localized with ARO, but that nNOS elements (cell bodies, processes, presumptive 

synaptic terminals) are closely associated with ARO-IR cells, suggesting that they 

might rise inputs modulating the expression or the activity of ARO in the quail brain. 

Further studies should clarify these suggested relationships. 

Following this study as well as the mammalian model, we investigated if, in male 

quail, gonadal hormones may regulate the nNOS system (Martini et al., 2005). We 

have therefore studied the nNOS system in adult male quails that were either intact, 

gonadectomized or treated with Silastic implants of T. The study was performed in 

regions where both nNOS-IR neurons and gonadal hormones’ receptors are present 

(Panzica et al., 1994, Gahr, 2001), namely BST, VMH, area ventralis tegmentalis, and 

substantia grisea centralis. Quantitative analyses revealed no significant effect of 

gonadectomy or of exogenous T on the number of nNOS-IR cells within these nuclei. 

In conclusion, these data indicate that the hypothalamic nNOS system of male quail is 

not under the control of T. This suggests that the role played in mammals by NO in 

the control of male sexual behavior, as well as other functions such as osmoregulation 

or regulation of cerebral blood flow (Nilsson and Soderstrom, 1997), may not be 

considered a general feature of all vertebrates or may be exerted by other mechanism 
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than those hypothesized for mammals. 

 

Conclusions 

The studies reported in this short review indicate that, in mammals, gonadal hormones 

directly influence the expression of nNOS in a wide population of hypothalamic and 

limbic neurons. The effects of sex steroids have been chiefly demonstrated after 

medium- or long-term treatments, but they are also very significant in physiological 

situations, as during the estrous cycle. Changes are not similar in the whole system, 

but they vary in a very specific way according to each nucleus that has been 

investigated. It is difficult to differentiate true sexually dimorphic distributions of 

nNOS-IR elements from sexually diergic ones. Only for those nNOS populations that 

are insensitive to the estrous cycle (e.g.: VMH or BST), it is relatively easy to test 

whether their distribution is dimorphic. However, short-term effects may differ from 

long-term ones. For example, in female rat, the VMH is strongly stimulated by the 

long-term administration of estrogens (Ceccatelli et al., 1996), whereas, in mice, we 

have not detected any significant changes during the estrous cycle (Martini et al., 

2004). At the moment no clear conclusion can be drawn on this topic, in particular, 

studies on genetically altered mice cannot fully clarify among organizational versus 

activational effects. Therefore, additional studies are needed following the strategies 

recently indicated for studying sex differences in the brain (Becker et al., 2005). 

In addition, data that are available so far in other vertebrate models are even more 

disperse. As we have reported for the Japanese quail, one of the more studied avian 

species for the control of sexual behavior, they are apparently in strong contradiction 

to the physiological implications of nNOS in the control of reproduction that have 

been suggested for mammals (Martini et al., 2005). Therefore, the comparative 

studies are not clarifying our knowledge, but, on the contrary, point to species-

specific or class-specific differences, mainly targeted to the hypothalamic and limbic 

system. 
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Legends to the figures. 

 

Figure 1.  

A – Diagram illustrating the synthesis of nitric oxide (NO) through the action of nitric 

oxide synthase (NOS). B – Cellular localization of different types of NOS within the 

central nervous system. E – endothelial cell; M – microglia; A – astrocyte; N – 

neuron. 

C, E, G – Drawings illustrating the distribution of nNOS-IR cells in mouse 

hypothalamus (redrawn from Gotti et al., 2005). D, F, H, I – Microphotographs 

showing nNOS positive elements in mouse hypothalamus and limbic system. 3V, 

third ventricle; aca, anterior commissure, anterior; AM, anteromedial thalamic 

nucleus; ARC, arcuate hypothalamic nucleus; BST, bed nucleus of the stria 

terminalis; D3V, dorsal third ventricle; DM, dorsomedial hypothalamic nucleus; f, 

fornix; HDB, nucleus of the horizontal limb of the diagonal band; ic, internal capsule; 

LA, lateroanterior hypothalamic nucleus; LH, lateral hypothalamic area; LSV, lateral 

septal nucleus, ventral part; MePV, medial amygdaloid nucleus, posteroventral part; 

MPOM, medial preoptic nucleus; opt, optical tract; ox, optic chiasm; PaLM, 

paraventricular hypothalamic nucleus lateral, magnocellular part; PaMM, 

paraventricular hypothal nucleus medial, magnocellular part; PaMP, paraventricular 

hypothalamic nucleus medial, parvicellular part; PaV, paraventricular hypothalamic 

nucleus, ventral part; SCh, suprachiasmatic nucleus; SO, supraoptic nucleus; VMH, 

ventromedial hypothalamic nucleus; VMPO, ventromedial preoptic nucleus. 
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Figure 2. Changes in the density of nNOS-IR cells in female mice (A-D) and female 

rats (E-F) and comparison with males. Histograms represent means and standard 

errors. The maximum mean value for each nucleus was put equal to 100. ARC, 

arcuate hypothalamic nucleus; BAOT, bed nucleus of the accessory olfactory tract; 

BST, bed nucleus of the stria terminalis; MeAV, medial amygdaloid nucleus, 

anteroventral part; MPA, medial preoptic area; VMH, ventromedial hypothalamic 

nucleus; M – male; PR – proestrus; ES – estrus; ME – metestrus; DI – diestrus.  

*statistically different from estrous females. ∆ statistically different from proestrous 

females. ● males statistically different from proestrous females. 

Data from Collado et al. (2003), Carrillo et al. (2004), Martini et al. (2004). 
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