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Abstract 

 

The Interferon-inducible gene, IFI16 has been implicated in the control of cell growth, 

apoptosis, angiogenesis and immunomodulation. In a previous study we demonstrated that 

restoring levels of IFI16 in a head and neck squamous cell carcinoma (HNSCC)-derived cell line, 

HNO136, reduced its growth in vitro accompanied by a marked increase in doxorubicin-induced 

apoptosis. To evaluate the ability of IFI16 to inhibit in vivo tumorigenesis of HNO136 cells and to 

characterize the molecular mechanisms responsible for its anti-tumor activity, IFI16 expression 

on cell growth was evaluated by an in vivo tumorigenicity assay. After excision, tumors were 

subjected to morphometric and immunohistochemical analyses with markers of apoptosis, 

angiogenesis, and inflammation. Restoring IFI16 expression significantly reduced the in vivo 

tumorigenesis of HNO136, decreased tumor vascularization and increased areas of tumor 

necrosis. Further analysis revealed that IFI16 expression triggered apoptosis of tumor cells, as 

evaluated using TUNEL assay. Finally, restoring IFI16 protein to HNO136 cells increased 

CD45+ inflammatory cell infiltration of the tumor burden, predominantly consisting of 

CD68/CD14 positive macrophages. In accordance with our previous in vitro experiments, this 

study demonstrates for the first time that IFI16 exerts in vivo anti-tumoral activity by promoting 

apoptosis of tumor cells, by inhibiting neo-vascularisation, and by increasing the recruitment of 

macrophages through the release of chemotactic factors. 

  

 

 

Keywords: Head and neck squamous cell carcinoma; Interferon; IFI16; Growth arrest; In vivo 

tumorigenesis  
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1. Introduction 

 

The Interferon (IFN)-inducible HIN200 gene family includes a group of human (IFI16, IFIX, 

MNDA, and AIM2) and mouse (Ifi202a, Ifi202b, Ifi203, Ifi204, and D3/Ifi205) genes [1,2]. The 

encoded proteins share at least one of three partially conserved repeated motifs with 200-amino 

acids, A, B, or C. Additionally, some of the proteins in the family, including the IFI16 protein, 

contain a DAPIN/PYRIN domain in their N-terminus [3,4].
 
This domain was identified as 

putative protein-protein interaction domain at the N-terminus of several proteins that are thought 

to function in apoptotic and inflammatory signalling pathways [5,6].
 
Of note, HIN200 proteins 

are primarily nuclear phosphoproteins involved in the transcriptional regulation of genes 

important for cell-cycle control, differentiation, and immunomodulation [7,8]. This function of 

the HIN200 proteins may be correlated with the binding and inhibition of several transcription 

factors, including c-Fos, c-Jun, E2F1, NF-κB, MyoD, c-Myc, and SP1 [7,9-11]. 

Since its original cloning, IFI16 was initially detected in human lymphoid cells [12,13]. 

However, further investigation demonstrated that in normal human adult tissues, it is expressed 

in a highly restricted pattern. It is only present in selected cells within certain organs. Prominent 

IFI16 expression is seen in stratified squamous epithelia, and it is particularly intense in basal 

cells of the proliferating compartment, while it gradually decreases in the more differentiated 

suprabasal compartment. In addition, all vascular endothelial cells from both blood and lymph 

vessels strongly expressed IFI16, suggesting a possible link to angiogenesis and inflammation 

[14,15]. Another line of evidence showing that IFI16 is involved in cell stress signalling has been 

illustrated in cells exposed to oxidative stress. We have found that H2O2, S-nitroso-N-

acetylpenicillamice (SNAP), and tert-butyl hydroperoxide (TBPH) can up-regulate IFI16 

expression in primary human umbilical vein endothelial cells (HUVEC). This change in IFI16 

levels in turn activates p53 as shown by increased expression of p53-inducible genes [16].
 

Consistent with these findings, overexpression of IFI16 in HUVEC efficiently suppressed tube 
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morphogenesis in vitro, which was accompanied by increased expression of proinflammatory 

molecules [17]. In agreement with a role for IFI16 as a proinflammatory protein, anti-IFI16 

autoantibody titres are significantly elevated in patients with autoimmune diseases such as 

cutaneous systemic sclerosis (lcSSc), systemic lupus erithematosus (SLE), and Sjogren’s 

syndrome (SjS) [18]. Increased levels of IFI16 are indeed correlated with triggering of 

proinflammatory molecules and cell death by apoptosis, providing further support for the idea 

that IFI16 could be an important mediator of the chronic inflammation and vascular involvement 

in systemic autoimmune diseases [19]. 

Evidence is also accumulating to link IFI16 with control of tumorigenesis. IFI16 has been 

isolated both as a molecule that is differentially regulated by the p210 BCR/ABL1 fusion 

oncogene in a cDNA microarray [20] and as a BRCA1-associated protein involved in the p53-

mediated apoptosis pathway [3]. A role for IFI16 in commitment to growth arrest or apoptosis 

under conditions of DNA damage induced by ionizing radiation or doxorubicin treatment has 

been recently demonstrated [21,22]. Moreover, overexpression of IFI16 inhibited growth and 

tumorigenicity of both osteosarcoma and chondrosarcoma cells and sensitized them to 

senescence accompanied by an increase of p21WAF1 and a decrease in the levels of cyclin E, 

cyclin D1, c-Myc, and Ras [23]. In accordance with these findings, increased levels of IFI16 in 

prostate epithelial cells contributed to senescence-associated irreversible cell growth arrest and 

inhibited the colony formation capability of prostate cancer cell lines lacking IFI16 [24]. Finally, 

immunohistochemical analysis of IFI16 expression in a series of primary head and neck 

squamous cell carcinomas (HNSCCs) revealed a strong correlation between IFI16 expression 

levels and tumor histopathologic grade. Sustained IFI16 immunoreactivity was present in low-

grade, less aggressive tumors, while IFI16 was barely detectable or negative in high-grade, more 

aggressive tumors [25].
 
Thus, the lower proliferation rate of IFI16 strongly-positive tumors may 

be related to the anti-proliferative activity of the HIN200 proteins. 
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In this study, we wished to gain further insight into the tumor suppressor activity of IFI16. 

For this purpose, we restored IFI16 expression in the HNSCC-derived cell line, HNO136, and 

analyzed its growth properties in nude mice. We demonstrate that restoring IFI16 expression in 

the head and neck tumor-derived cell lines negative for IFI16, significantly reduces their 

proliferation and clonogenic activity in vitro. Additionally, reduced IFI16 expression diminishes 

their capability to generate tumors in vivo. Moreover, we show for the first time that the tumor 

suppressor activity of this protein appears to somewhat correlate in vivo with IFI16 

proinflammatory, proapoptotic, and anti-angiogenic activities. 

 

2. Materials and methods 

 

2.1. Cell culture, cell growth, and soft agar assay 

 

Parental and stable, retrovirally transduced HNO136 cells, produced as previously described 

[21], were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Sigma-Aldrich, Milan, 

Italy) supplemented with 10% heat-inactivated fetal bovine serum (FBS; Sigma-Aldrich) at 37°C 

and 5% CO2. Mouse macrophage cell line RAW 264.7, purchased from American Type Culture 

Collection, was cultured in medium containing RPMI 1640 (Sigma-Aldrich), 10% FBS, and 

penicillin/streptomycin mix (final concentration: penicillin, 100 IU/mL; streptomycin, 100 

µg/mL). 

Cell growth in a monolayer was evaluated by the MTT (3-(4,5-dimethylthiazolyl-2)-2,5-

diphenyltetrazolium bromide) assay, as previously described [26]. Cells were plated in triplicate 

at a density of 15,000 cells/well in 24-well cell culture plates. Cells were allowed to adhere 

overnight and, at the indicated time points, cell growth was measured with the MTT assay. 

Briefly, 60 µL of MTT (5 mg/mL in PBS) were added to the medium for 4 hours. Medium and 
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MTT were then removed, dimethyl sulfoxide was added, and absorbance was measured at 570 

nm. 

Anchorage-independent cell growth was determined by analyzing the formation of colonies 

in soft agar. Pools of stable cell lines were harvested and aliquots were added to 60-mm dishes 

containing 0.5% (w/v) SeaPlaque agarose (Cambrex Bio Science) in complete medium on top of 

a layer of 1% (w/v) SeaPlaque agarose. Aliquots of 1000, 3,000, and 10,000 cells were plated in 

triplicate. After 14 days of culture, colonies were photographed and counted with the Gel Doc 

XR documentation system (Bio-Rad Laboratories, Milan, Italy). 

 

2.2. Western blotting analysis  

 

Whole cell protein extracts were prepared as previously described [16]. Briefly, proteins 

were separated using sodium dodecyle sulfate polyacrylamide gel elecrophoresis (SDS-PAGE) 

and an 8.5% gel. Proteins were than transferred to a polyvinylidene difluoride membrane 

(Millipore, Bedford, MA), according to the instruction manual. Filters were blocked overnight in 

5% w/v low-fat dry milk in 10mM Tris-HCl, pH 7.5, 0.1 M NaCl and 0.1% Tween-20 and 

incubated with affinity-purified anti-IFI16 rabbit polyclonal antibody and an actin antibody. 

Immunocomplexes were detected with appropriate secondary antibodies conjugated to 

horseradish peroxidase (Sigma-Aldrich) and visualised by enhanced chemiluminescence 

(SuperSignal, Pierce, Rockford, IL). 

 

 2.3. Xenografts  

 

Seven-week-old nude nu/nu (CD-1) mice (Charles River) were used. Each mouse was 

inoculated by s.c. injection of 5x10
6
 HNO136 cells mixed with liquid Matrigel (final volume 

250µl). This cell dose was chosen because was the lowest dose that gave 100% of tumor growth 
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with parental null HNO136 cells. Tumor size was examined three times per week, and palpable 

tumors were measured on two perpendicular axes. Tumor volume was calculated by assuming a 

spherical shape. All animal experiments were conducted in accordance with current national 

regulations and guidelines for the care and use of laboratory animals (D.L. 27/01/1992, n.116). 

After 27 days, a total of 19 tumors (nine from mice inoculated with HNO136-neo cells and ten 

from mice inoculated with HNO136-IFI16 cells), with the volumes ranging between 0.24 mm
3
 

and 2057 mm
3
 were harvested, weighed, and prepared for histopathological and 

immunohistochemical processing.  

 

2.4. Histopathological and morphometric analysis 

 

Excised tumors were fixed in 4% buffered formalin and embedded in paraffin. The tissue 

sections were processed for routine histological examinations, stained with haematoxylin eosin, 

and examined with a light microscope to determine histology.  Then, the morphometric analysis 

was performed by an automated image analyser connected to a Zeiss-Axioscope microscope, 

using the Image Pro Plus Software (Media Cybernetics, Silver Spring, MD). The following 

parameters were calculated: numerical density of independent necrotic areas, size (surface area 

of necrosis in the histological section), and volume density, which refers to the total volume 

occupied by necrosis in the compartment of the tumor tissue examined.    

 

2.5. TUNEL assay 

 

Apoptosis was evaluated by the In Situ Cell Detection Kit, AP (Roche Diagnostics GmbH, 

Mannheim, Germany).  The cells undergoing apoptotic changes were detected using the terminal 

deoxynucleotidyl-transferase-mediated dUTP-biotin nick end-labelling (TUNEL) assay, 

according to the manufacturer’s recommendations. Five fields (0.135mm
2
 fields at x200 
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magnification) were selected at random, and the apoptotic index of each field was calculated as a 

percent of TUNEL-positive cells on the tumor tissue section. 

 

2.6. Immunohistochemical analysis 

 

The following primary anti-sera were used: IFI16 (rabbit polyclonal, working dilution 1:800, 

generated as described in Gariglio et al. [14]); Ki67 (DAKO Cytomation, Denmark; clone MIB-

1, mouse monoclonal, working dilution 1:100); p16
INK4a 

(NeoMarkers, Fremont, CA, USA; 

clone16P07, mouse monoclonal, working dilution 1:50); CD34 (BioLegend, San Diego, CA, 

USA; clone MEC14.7, rat monoclonal, working dilution 1:100); CD45 (Caltag Laboratories, 

Burlingame, CA, USA; clone 30-F11, working dilution 1:50); CD68 (Imgenex, San Diego, CA, 

USA; clone KP1, working dilution 1:50), and CD14 (BD Biosciences, Milan, Italy; clone rmC5-

3, working dilution 1:100). 

Serial sections, 4 µm thick, were cut from each selected block, deparaffinised, and then 

rehydrated. For most of the markers analyzed, antigen unmasking was performed by 

microwaving in a conventional pressure cooker, where the slides were placed for 30 minutes in 

10mM citrate buffer at pH 6.0 (or Tris 10mmol/L, EDTA 1mmol/L at pH 9.0 for CD34).  

Endogenous-peroxidase activity was blocked with 3% hydrogen peroxide solution in 1x 

PBS. Slides were incubated sequentially with Protein Blocking Agent (Ultratech HRP 

Streptavidin_Biotin Universal Detection System, Immunotech, Marseille, France) to reduce non-

specific binding. 

Afterwards, the slides were incubated with the primary antibodies for 1 hour at room 

temperature in a humid chamber or overnight at 4°C for CD34 and CD45 antibodies. The 

biotinylated secondary antibody was then applied to the slides, followed by incubation with 

streptavidin-horseradish peroxidise complex (Immunotech, Marseille, France). As a negative 

control, the appropriate slides were incubated with 1xPBS instead of the primary antibody. The 
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immunologic reactions were developed at room temperature with 3’3’-diamino-benzidine 

tetrahydrochloride solution (Roche, Mannheim, Germany), counterstained with Mayer’s 

Haematoxylin, dehydrated, and finally mounted with EUKITT (Bio-Optica, Milan, Italy). 

 

2.7. Interpretation of immunohistochemical staining 

 

Ki67 and p16INK4a expression was evaluated by determining the percentage of 

squamous cells showing nuclear immunoreactivity for Ki67 and nuclear and/or cytoplasmic 

staining for p16INK4a. As IFI16 positive cells expressed equally intensive nuclear staining 

without observable nucleolar reactivity, IFI16 immunoreactivity was expressed as a percentage 

of the positive cells showing nuclear staining. Immunohistochemical stains for CD45, CD68 and 

CD14 were interpreted semiquantitatively by assessing the intensity and the extent of staining for 

the entire tissue section presented on the slide.  First, the total percentage of positively staining 

tumor cells was determined, and the extent of staining was assessed using a five-grade scale: 

grade 0 (1-10% of positive cells on the tissue section), grade 1 (11-25% positive cells), grade 2 

(26-50% positive cells), grade 3 (51-75% positive cells) and grade 4 (76-100% positive cells). 

The percentage of weakly (1), moderately (2), and strongly (3) staining cells was determined, so 

that the sum of these categories was equal to the overall percentage of positive cells. A staining 

score was then calculated as follows: score (out of maximum of 12) = sum of 1 x grade for extent 

of weak, 2 x grade for extent of moderate, and 3 x grade for extent of strong staining. 

Immunostaining was scored as described above in at least five high-power fields of tumor 

specimens. The mean value of the two independent counts by two observers was considered the 

final value. Slight differences in interpretation were resolved by simultaneous analysis. 

 

2.8. Microvessel density (MVD) assessment 
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According to the principle of the Weidner method, the sections were scanned at a low 

magnification (40x, 100x), and the most active areas of neovascularisation for the invasive 

tumor, represent the highest microvessel density (neovascular “hot spot”), were located prior to 

counting. These steps were performed after endothelial cells lining the microvessels had been 

highlighted with an anti-CD34 antibody. The number of microvessels in five 400x microscopic 

high-power fields (hpf) containing the area of greatest neovascularisation within or immediately 

adjacent to each tumor, was determined. Finally, the mean vessel count of the five hot spots was 

calculated. Any cells stained brown and morphologically recognized as endothelial cells were 

considered a microvessel and were counted. In addition, any cluster of endothelial cells with or 

without (rudimentary or well-formed) lumen were counted as microvessels. 

 

2.9. Chemotaxis assay 

 

For in vitro chemotaxis assay, RAW 264.7 cells, having properties similar to those of mouse 

resident macrophages and exhibiting responsiveness to chemotactic stimuli [27] were used. 

Twenty-four hours after plating, supernatants of HNO136-neo or HNO136-IFI16 cells were 

added to a 24-well tissue culture plate in a volume of 600ul. Wells with medium only were used 

as a control. A cell culture insert  (BD Biosciences) of 5 µm pore size was put into each well and 

approximately 1x10
6 

macrophages resuspended in 200µl of RPMI1640 medium containing 0.5% 

BSA were loaded on each insert. The plates were incubated for 4h at 37°C under air containing 

5% CO2. After incubation, the inserts were removed and the cell number in each bottom well 

was determined with a hemocytometer. The chemotactic index (CI) was calculated from the 

formula: CI = (number of migrating cells affected by supernatant / number of migrating cells 

affected by the negative control).  

 

2.10. Statistical analysis 
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All statistical analyses and graphs were performed using GraphPad Prism version 4.03 for 

Windows (GraphPad Software, San Diego California USA, www.graphpad.com). The data were 

presented as the mean value with standard error of the mean (SEM). An unpaired student t-test 

was used to compare means. Pearson’s correlation was applied to evaluate the relationship 

between two variables with a normal distribution, and Spearman’s test was utilized for non-

parametric tests. Two-tailed p-values less than 0.05 were considered statistically significant. 

 

3. Results 

  

3.1. IFI16  exerts its growth-inhibitory effect on HNO136 cells in vivo.  

 

We previously reported that restoring IFI16 expression in HNO136 cells, a HNSCC-derived 

cell line, reduces their growth rate and their ability to be transformed in vitro [21, and 

Supplementary figure 1], thus representing a suitable model to analyze the mechanisms exploited 

by IFI16 to inhibit tumour growth in vivo. We then asked whether cells expressing IFI16 

(HNO136-IFI16) would display reduced tumorigenicity in nude mice xenografts. As shown in 

Fig. 1a, inoculation of in vitro transduced cells into nude mice revealed a strong anti-tumorigenic 

effect of IFI16 expression. Tumor size was examined twice a week, and palpable tumors were 

measured on two perpendicular axes. Tumor volume was calculated by assuming that the shape 

was spherical. While cells transduced with control retroviruses (HNO136-neo) and untransduced 

cells readily formed localized palpable tumors of comparable size (not shown), HNO136-IFI16 

cells lost their tumorigenic potential, producing tumors of a significantly smaller size (p=0.023 at 

day 27). At day 27, due to the dramatically increasing tumor size in the control group, the 

animals were sacrificed. As reported in the scatter dot plot in Fig. 1b, the weight analysis 
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conducted on excised tumors confirmed that those from IFI16 transduced cells were significantly 

smaller than controls (p=0.0464). 

 

Fig. 1. Decreased tumorigenicity of IFI16 overexpressing HNO136 cells. (a) Tumor growth 

curves for control (white circles) compared to IFI16 expressing cells (black circles). Differences 

between groups, starting 15 days after implantation, were highly significant at the time of 

sacrifice (p = 0.023, day 27). (b) Scatter plot representing tumor weights at day 27. Tumors 

derived from HNO136 cells expressing IFI16 (black circles) showed a significant reduction in 

weight compared to control cells (white circles) (p = 0.0464). 

 

3.2. HNO136-IFI16 tumors were smaller and more necrotic than control HNO136 tumors.  

 

To further analyze the characteristics of excised tumors, we performed morphometric 

analysis, using Image Pro Plus Software, as described in the Material and Methods. As illustrated 

in Table 1 and reported in Fig. 2, this analysis revealed that the volume of HNO136-IFI16 

tumors were significantly reduced when compared to the volume of tumors derived from control 

cells (p=0.0287). An average tumor volume of 992.1 mm
3
 was reported in the group of 
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HNO136-neo derived neoplasms and 459.9 mm
3
 in the neoplasms derived from HNO136-IFI16 

cells.  

 

Table 1. Morphometric and immunohistochemical properties of HNO136-arising tumors. 

 

� Unpaired t-test. 

a Results for tumor volume are expresses as mm3. 

b Results are expressed as a percentage of positively stained cells. 

c Results for CD34 are expressed as a number of positive blood vessels. 

d Results for CD45, CD68 and CD14 are expressed as a immunostaining score. 



 14

 

Fig. 2. Morphometric analysis and TUNEL assay. Tumors arising from the HNO136-IFI16 

cell lines have markedly reduced volume (p = 0.0287), are more necrotic (p = 0.0090), and 

contain a high percent of malignant cells undergoing apoptotic changes (p < 0.0001). Means 

tumor volume expressed in mm3 (cuboid pattern columns, left y-axis), while the percentage of 

necrotic and apoptotic cells is presented on the right y-axis (black and white columns, 

respectively). 

 

Examination of hematoxylin-eosin stained sections in both groups of HNO136 tumors 

revealed the histomorphological features of squamous cell carcinomas without keratinisation, 

with medium to low differentiation. Gross and microscopic examination of H&E-stained lung 

and liver tissues from all tumor-bearing mice revealed no signs of micrometastases (data not 

shown), suggesting that both parental or transduced HNO136 cells are incapable of promoting 

spontaneous self-dissemination. Necrotic zones were observed, predominantly in the central 

parts of the tumor sections, but they were also present as independent patchy areas anywhere in 

the tumor mass, often confluent between them and circumscribed with the inflammatory 

infiltrate. The volume of necrosis, estimated from the cross sections and obtained as a sum of the 



 15

circumscribed necrotic zones, was markedly larger in HNO136-IFI16 tumours (p=0.0090) when 

compared to the tumours derived from the control cell group. The mean values in HNO136-neo 

and HNO136-IFI16 were 15.3% (181.2 mm3) and 33.53% (115.4mm3), respectively (Fig. 2). 

The percentage of cells undergoing apoptotic changes, evaluated by the TUNEL assay, was 

significantly higher in the HNO136-IFI16 cell line (p<0.0001), which supports the previously 

observed pro-apoptotic activity of IFI16. This function of IFI16 is also confirmed by the strong 

positive correlation between the percentage of apoptotic cells and immunohistochemical 

expression of IFI16 in our specimens (p=0.0010, r
2
= 0.4815; Fig. 5b).  

 

Fig. 5. (a) Correlation of microvessel density as determined by immunohistochemistry with 

anti-CD34 antibodies in HNO136-neo and HNO136-IFI16 tumors. CD34-MVD showed inverse 

correlation with IFI16 expression (p = 0.0008, r2 = 0.4913, Pearson’s test). The line represents 

the calculated regression line. (b) Correlation of the percentage of apoptotic cells and cells 

expressing IFI16. A strong positive correlation was observed (p = 0.0010, r2 = 0.4815, Pearson’s 

test). The line represents the calculated regression line. 

 

3.3. The expression of IFI16 in HNO136-neo and HNO136-IFI16 tumors as determined by 

immunohistochemistry. 

 

 To further clarify the morphological differences observed, we performed a detailed 

immunohistochemical analysis on paraffin-embedded sections derived from excised tumors. 
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First, by immunostaining with polyclonal monospecific antibodies, we confirmed the 

overexpression of IFI16 in tumors from HNO136-IFI16 cells. As seen in Fig. 3a, these tumors 

expressed high levels of the IFI16 protein, compared to cells derived from HNO136 negative 

cells.  

 

Fig. 3. Immunohistochemical analysis in HNO136-neo and HNO136-IFI16 arising tumors 

using the following antibodies: anti-IFI16, pan-endothelial marker anti-CD34, and pan-leukocyte 

marker CD45. (a) IFI16 expression was significantly increased in HNO-IFI16 tumors (p = 

0.0002), (b) CD34-MVD was significantly reduced in the same tumor group (p = 0.0003), (c) 

with a marked increase in the density of the inflammatory infiltrate (p = 0.0006) 

(immunohistochemical stains with hematoxylin counterstain, original magnification 200×). 
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After demonstrating that IFI16 overexpression has a significantly negative correlation with 

tumor masses and a positive one with apoptosis, we looked for markers associated with cell 

proliferation. Interestingly, immunohistochemical analysis performed with anti-Ki-67 and 

p16
INK4A

 antibodies revealed that, despite the significantly different volumes of necrotic areas, 

proliferation markers were expressed at a similar level in the necrotic-free area of the different 

tumors (Table 1). Although these data seem to be in contrast with the in vitro finding showing 

inhibition of growth upon IFI16 expression, the possibility exists that in vivo HNO136 cells 

gradually become resistant to the IFI16 antiproliferative activity. Thus, tumor rejection is 

afforded by different mechanisms based on the anti-angiogenic and immunomodulatory activity 

of IFI16.   

We previously demonstrated that IFI16 inhibits endothelial cell proliferation and tube 

morphogenesis in vitro [16, 17]. Following this observation and the morphometric analysis 

described in the previous section, we assessed the capability of IFI16 to impair the angiogenic 

activity of HNO136 cells by investigating the expression of the neovascularisation marker, 

CD34. Microvessel density (MVD) was compared in the two tumor groups using the method of 

Weidner, an international consensus report for angiogenesis counting in solid tumor specimens. 

The tumors derived from HNO136-IFI16 lines were significantly less vascularised (p=0.0003, 

Fig. 3b), in comparison to those derived from the control group. Consistent with the previously 

observed anti-angiogenic role of IFI16 during in vitro and in vivo studies, a negative correlation 

between CD34-MVD and IFI16 expression was documented in our samples (p=0.0008, 

r
2
=0.4913, Fig. 5a). In addition, angiogenesis, characterised by immunostaining for CD34, 

seemed to directly influence the necrotic changes in tissues, as shown by statistical tests 

(p=0.0055, r
2
= 0.3732).  

Previous works from our group and others have pointed towards an important role for IFI16 

in immunomodulation and proinflammatory activity [28]. With this scenario in mind, 

monoclonal antibodies against the pan-leukocyte marker CD45 were used for 
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immunohistochemistry to look at differences in the expression of this protein between sections 

from IFI16 positive or negative tumors. A stronger and more diffuse staining was observed for 

CD45 in HNO136-IFI16 tumors (p=0.0006, Fig. 3c), with a continuous distribution of CD45-

positive cells found at the stromal/epithelial junction. Overall, the expression of IFI16 in 

HNO136 tumors significantly correlated with positive CD45 staining (p=0.0041, r
2
=0.3928), 

with the extension of tissue necrosis (p=0.0444, r Spearman=0.4659), and with the percentage of 

apoptotic cells (p=0.0444, r Spearman=0.4659), thus proving an in vivo role of IFI16 in the 

proinflammatory response during carcinogenesis. 

The observation that IFI16 expression correlates with infiltration of cells positive for the pan-

leukocyte CD45 marker, prompted us to assess the chemoattractant activity of supernatants 

derived from IFI16-overexpressing HNO136 cells and to better characterize the infiltrating 

leukocyte population responsible for tumor rejection. To this purpose we performed in vitro 

chemotaxis experiments to assess the capability of HNO136-IFI16 cells to release chemoactrant 

factors. As shown in Fig. 4a, the supernatants from HNO136-IFI16 cells showed effective 

chemoattractive activity on mouse macrophages, and the chemotactic index was significantly 

higher than the values from HNO136-neo cells (6.06 ± 0.42 vs 2.12 ± 0.62). Consistent with this 

finding we have previously demonstrated that IFI16-overexpressing endothelial cells produce in 

the supernatant a proinflammatory molecule array polarized to attract cells of the 

monocyte/macrophage lineage [28, and unpublished data]. Therefore, to better characterize the 

nature of the infiltrating cells, staining with antibodies against two commonly expressed antigens 

on macrophages -CD68 and CD14- was performed. Although CD68 and CD14 can both be 

expressed in macrophages and the precursor monocytes, not all monocytes express both markers 

concomitantly [29]. Representative images of tumors derived from HNO null cells or HNO 

overexpressing IFI16 with CD68 or CD14-positive infiltrating macrophages are shown in Fig.4b. 

The staining signal was located in the membrane and cytoplasm but not in the nucleus. The 

results of the immunostaining are summarized in Table 1. As shown in Fig. 4b and Fig. 4c, 
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IFI16-expressing tumors showed dense infiltration by both CD68 and CD14-positive 

macrophage infiltrate located nearby the necrotic areas of the tumor burden (p=0.0017 and 

p=0.0010 respectively). By contrast, IFI16 null tumors were found to have sparse or moderate 

CD68- and CD14-positive macrophage infiltrate. Taken together, these results demonstrate that 

IFI16 expression leads to tumor rejection by triggering leukocyte infiltration through the release 

of chemoattractant factors.  

 

Fig. 4. Characterization of chemoattraction capability of HNO136-IFI16 cells. (a) In vitro 

chemoattraction was significantly increased by HNO-IFI16 supernatants (*p < 0.05, compared to 

medium control). (b) CD68- and (c) CD14-positive macrophages significantly infiltrate IFI16-

expressing tumors (p = 0.0017 and p = 0.0010, respectively) (immunohistochemical stains with 

hematoxylin counterstain, original magnification 200×). 
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4. Discussion 

 

To investigate the role of IFI16 in tumorigenesis of head and neck cancers in vivo, we took 

advantage of a series of HNSCC-derived cell lines with known defects in the pathways 

regulating cell growth [21]. The HNO136 cell line used in this study displays barely detectable 

levels of IFI16 even under IFN-stimulation. However, the cell line contains functional p53, 

which is one of the main regulators of IFI16 activity. This cell line was therefore chosen for 

reconstitution experiments to assess the antiproliferative activity of IFI16 in vivo. Of note, the 

patient from whom the cell line was derived had a very short period of disease-free survival and 

died two months after surgery [30], suggesting that the IFI16/p53 pathway may contribute to 

control tumor growth and differentiation in vivo. This hypothesis is now sustained by the finding 

that restoring IFI16 expression though retroviral transduction, in the presence of wild-type p53, 

down-regulates HNO136 cell proliferation, decreases HNO136 clonogenic activity in vitro, and 

inhibits tumorigenicity in vivo. Altogether, these observations demonstrate that loss or reduction 

of IFI16 expression correlates with more aggressive HNSCC tumors. In support of this 

statement, immunohistochemical analysis of IFI16 expression in a series of primary HNSCCs 

revealed a strong correlation between expression levels and tumor histopathologic grade. 

Sustained IFI16 immunoreactivity was present in low-grade, less aggressive tumors, while IFI16 

was barely detectable or non-existent in high grade, more aggressive tumors [25]. Moreover, 

restoring IFI16 expression in negative cell lines increased doxorubicin-induced cell death by 

accumulating cells around the G2/M phase [21]. Consistent with our findings, 

immunocytochemical and immunohistological analyses of breast cancer cell lines and tumor 

specimens revealed that levels of IFI16 are frequently decreased, supporting the notion that loss 

of IFI16 is closely associated with tumor development [31]. Moreover, a role for IFI16 in 

commitment to growth arrest or apoptosis under conditions of DNA damage induced by ionizing 

radiation or neocarcinostatin treatment has also been demonstrated [22]. Significantly, forced 
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expression of IFI16 in prostate cancer lines (LNCaP, PC-3, and DU-145) in vitro inhibited cell 

proliferation, which was associated with upregulation of p21CIP1 expression and a senescence-

like phenotype in the PC-3 cell line [32]. In line with these observations, the level of IFI16 was 

markedly lower in human osteosarcomas when compared with its level in normal bone [23]. 

Overexpression of functional IFI16 in human osteosarcoma and chondrosarcoma cell lines 

markedly inhibited colony formation and significantly inhibited cell growth. The decrease in cell 

growth could be reversed by introducing gene specific siRNA into the tumor cells. Altogether, 

these results demonstrate that IFI16 is involved in the control of tumorigenesis and in increasing 

tumor cell sensitivity to cytotoxic drugs. However, since these studies have been conducted 

predominantly in vitro, they do not provide any information about the potential role of IFI16 in 

suppressing in vivo tumor growth and the molecular pathways activated to prevent tumor cell 

growth.  

To address this question, we assessed the ability of IFI16 to inhibit tumor growth in vivo by 

injecting HNO136 cells that have been transduced with an IFI16-expressing retroviral vector into 

nude mice. The results obtained in this study show for the first time that IFI16 is capable of 

retarding in vivo tumor growth. TUNEL analysis performed on paraffin-embedded tumor 

samples showed that tumor cells underwent apoptosis in vivo upon IFI16 overexpression. Of 

note, immunohistochemical analysis demonstrates that along with induction of apoptosis, 

suppression of angiogenesis may be an additional mechanism exploited by IFI16 to impair tumor 

growth. Immunostaining with an anti-CD34 antibody, a marker of neoangiogenesis, confirms 

indeed the decrease of vessel density in the tumors produced by IFI16-transduced HNO136 cells. 

Consistent with these observations, transduction of IFI16 into human endothelial cells efficiently 

suppressed endothelial migration, invasion, and formation of capillary-like structures in vitro 

[17]. In parallel, sustained IFI16 expression inhibited cell-cycle progression, accompanied by 

significant induction of p53, p21, and hypophosphorylated pRb [33]. These findings, along with 

the observation that endothelial cells immortalized by human papillomavirus type 16 E6/E7 
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oncogenes became resistant to antiangiogenic and anti-proliferative effects of IFI16 

overexpression, suggest a relevant role of IFI16 in the p53 transduction pathway [17]. 

Inflammatory cell infiltration of tumors contributes either positively or negatively to tumor 

invasion, growth, metastasis, and patient outcomes. These effects are due to tumor heterogeneity 

and the diversity of the inflammatory cells that infiltrate the tumor mass [34-37]. A stronger and 

more diffuse staining for anti-CD45 in HNO136-IFI16 tumors was observed when compared to 

HNO136-null tumors, where CD45-positive cells were primarily found at the stromal/epithelial 

junction. The increase of infiltrating CD45-positive cells appears to be correlated with the 

capability of IFI16-expressing HNO cells to release chemoattractant factors in the supernatants. 

Subsequent immunohistochemical staining revealed that IFI16-positive tumors undergoing 

rejection contain dense CD68- or CD14-positive monocyte/macrophage infiltrates, likely 

responsible for inhibition of tumor proliferation in vivo. These results are consistent with our 

recent findings that IFI16 overexpression in endothelial cells in vitro activates the expression of 

molecules such as ICAM-1, E-selectin, and VCAM and leads to the production of chemokines 

such as IL-8 and MCP1 [28]. These proinflammatory molecules, in turn, may recruit 

inflammatory cells that lead to apoptosis and necrosis of the tumor mass, along with growth 

retardation. 

In conclusion, our study demonstrates that IFI16 exhibits strong anti-tumor effects in vivo 

animal models of human HNSCC xenografts by exploiting three main mechanisms, including 

induction of apoptosis and necrosis in tumor cells, inhibition of angiogenesis, and recruitment of 

inflammatory cells. These data indicate that IFI16 may serve as a suitable target for therapeutic 

intervention in tumors of epithelial origin. 
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