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On the boundedness of solutions to a nonlinear singular

oscillator ∗

Anna Capietto, Walter Dambrosio and Bin Liu

1 Introduction

In this paper we are concerned with a second order scalar equation of the form

x′′ + V ′(x) = p(t), (1.1)

where p is a π-periodic function and, for x > −1,

V (x) =
1

2
x2

+ +
1

(1 − x2
−)γ

− 1, (1.2)

being γ is a positive integer.

Our main result consists of proving that all solutions to (1.1) are bounded; moreover, we deal,
in the more general case when γ > 2 is any real number, with the existence of Aubry-Mather
sets for (1.1).

These two problems have been considered by various authors in the last years.

The question of the boundedness of all solutions is the famous Littlewood problem. It has
been studied, among others, by D. Bonheure-C. Fabry [2], M. Levi [6], R. Ortega [12] and the
third author [7] in the case when, instead of (1.2), a regular potential is treated. In particular,

attention has been devoted to the asymmetric resonant potential W (x) =
a

2
x2

+ +
b

2
x2
−, being

1/
√

a + 1/
√

b = 2/n for some n ∈ N. In this framework, we refer to the papers by R. Ortega
[11] and the third author [8],[9].

∗Under the auspices of GNAMPA-I.N.d.A.M., Italy and NNSF of China. The work has been performed in

the frame of the M.I.U.R. Project ’Metodi Variazionali e Topologici nello Studio di Fenomeni Non Lineari’ and

by the GNAMPA-I.N.d.A.M. Project ’Equazioni Differenziali Ordinarie Non Lineari: Teoria ed Applicazioni’

and NNSF of China 10325103
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In the above quoted results, the main tool for the proofs is Moser twist theorem, or its variant
given by R. Ortega in [12].

The question whether an equation of the form (1.1) has solutions of Mather type is interesting
as well, since Mather sets (and the knowledge of their rotation number) provide a rather
complete qualitative description of the dynamics of (1.1). In this framework, together with the
pioneering work of J. Moser [10], we refer in particular to the paper [13] by M.L. Pei, who gave
a sufficient condition for the existence of Aubry-Mather sets for some planar maps.

Our results may be considered of some interest since, to our knowledge, it is the first time
that the question of the boundedness of all solutions (as well as the existence of Aubry-Mather
sets) is treated in case of a singular potential. As far as the existence of periodic solutions (of
fixed period) is concerned, for the case of singular potentials we refer to the the work by P.J.
Torres [14]. It has to be pointed out that the singularites considered in [14] (and references
therein) are different from those we consider in this paper. Finally, it is worth mentioning that
in the framework of Moser twist theorem it is announced in the Introduction of the paper [6]
the possibility of treating singular potentials, which are different from (1.2).
Concerning the choice of the potential V , we point out that the crucial estimates in Lemma
2.1 and Lemma 2.2 are valid for a class of functions satisfying some regularity and growth
conditions that we state at the end of Section 4. In particular, we deal with the case when
limx→+∞ V (x)/x2 = n2/2, for some n ∈ N; this means we consider potentials which are
”asymptotically resonant” at +∞. We decided to treat a potential of the form (1.2) since it
represents a typical example where these conditions are easily obtained.

We point out that our main results (Theorem 4.1 and Theorem 4.2) are proved under the
assumption that

1 +
1

2

∫ π

0
p (t0 + θ) sin θ dθ > 0, ∀ t0 ∈ R. (1.3)

This condition obviously holds in case p ≡ 0, p “small” and also in case the function
(1/2)

∫ π
0 p (t0 + θ) sin θ dθ vanishes at some point. For comments on (1.3) in relation with the

Lazer-Leach condition, we refer to Remark 4.3.

In case hypothesis (1.3) fails, then the existence of unbounded solutions can be proved on the
lines of the work [1] by J.M. Alonso and R. Ortega. We refer to Remark 4.4 for more details
on this subject.

The proofs of our results consist of two main steps. First, equation (1.1) is written as an
equivalent planar hamiltonian system, using

H(x, y, t) =
1

2
y2 +

1

2
x2

+ +
1

(1 − x2
−)γ

− 1 − xp(t).

Then, new variables of ”area-angle” type are introduced. The main task consists of developing
careful estimates on the Poincaré map in order to apply Ortega’s variant of Moser twist theorem
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and Pei’s theorem on the existence of Aubry-Mather sets. It is clear that the singularity of the
potential V represents a very serious difficulty.

More precisely, we need to estimate (among others) the n-th derivative (n = 0, . . . , 5) of the
time-map

T−(h) = 2

∫ αh

0

1
√

2(h − V (s))
ds,

where, for a fixed h, the number αh ∈ (−1, 0) is such that V (−αh) = h (cf. Lemma 2.1).
Moreover, the map

I−(h) = 2

∫ αh

0

√

2(h − V (s)) ds,

together with its derivatives, has to be estimated as well. For these estimates, we have borrowed
some techniques from the Appendix of the paper by M. Levi [6].

2 Preliminary lemmata

Let us consider the second order equation

x′′ + V ′(x) = p(t), (2.1)

where p is a π-periodic function, γ is a positive integer and

V (x) =
1

2
x2

+ +
1

(1 − x2
−)γ

− 1, ∀ x > −1.

2.1. Definition of the time and area maps.

For every h > 0 we denote by I0(h) the area enclosed by the (closed) curve

1

2
y2 + V (x) = h.

Let −1 < −αh < 0 < βh be such that

V (−αh) = V (βh) = h.

It is easy to see that

I0(h) = 2

∫ βh

−αh

√

2(h − V (s)) ds, ∀ h > 0. (2.2)

By means of a simple computation we get

I0(h) = 2

∫ βh

0

√

2(h − V (s)) ds + 2

∫ 0

−αh

√

2(h − V (s)) ds = πh + 2

∫ αh

0

√

2(h − V (−s)) ds.
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For every h > 0 let

I−(h) = 2

∫ αh

0

√

2(h − V (−s)) ds. (2.3)

We then have
I0(h) = πh + I−(h), ∀ h > 0. (2.4)

Moreover, let

T0(h) = I ′0(h) = π + 2

∫ αh

0

1
√

2(h − V (−s))
ds, (2.5)

and

T−(h) = 2

∫ αh

0

1
√

2(h − V (−s))
ds.

Note also that T (n)(h) = I(n+1)(h), for all n ≥ 0.

2.2. Estimates on the maps I− and T− and their derivatives.

The following lemma (whose proof is given in the Appendix) is crucial for the sequel.

Lemma 2.1 For every n = 0, 1, 2, . . . , 5 we have

dnT−

dhn
(h) = (−1)n 1

2n
(2n − 1)!!

√
2

h(2n+1)/2
+ o

(

1

h(2n+1)/2

)

, h → +∞. (2.6)

As a consequence of Lemma 2.1, we can obtain that

∣

∣

∣

∣

hk dkI−(h)

dhk

∣

∣

∣

∣

≤ C0I−(h), for k ≥ 1. (2.7)

Moreover, for h = h0(I0) (the inverse function of I0), it follows that

∣

∣

∣

∣

Ik dkh(I)

dIk

∣

∣

∣

∣

≤ C0h(I), for k ≥ 1, (2.8)

∣

∣

∣

∣

hk dkT0(h)

dhk

∣

∣

∣

∣

≤ C0T0(h),

∣

∣

∣

∣

hk dkT−(h)

dhk

∣

∣

∣

∣

≤ C0T−(h), for k ≥ 1. (2.9)

∣

∣

∣

∣

Ik dkT0(h(I))

dIk

∣

∣

∣

∣

≤ C0T0(h(I)),

∣

∣

∣

∣

Ik dkT−(h(I))

dIk

∣

∣

∣

∣

≤ C0T−(h(I)), for k ≥ 1. (2.10)

We observe that, in particular, there exist positive constants c0, C0, c
′
0, C

′
0, c

′′
0, C

′′
0 such that

c0

√
h ≤ I−(h) ≤ C0

√
h, (2.11)
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c′0√
h
≤ T−(h) ≤ C ′

0√
h

, (2.12)

c′′0
h
√

h
≤ T ′

−(h) ≤ C ′′
0

h
√

h
, (2.13)

for h sufficiently large.

2.3. Some useful changes of variables.

Let us observe that (2.1) can be written as a Hamiltonian system of the form



















x′ =
∂H

∂y

y′ = −∂H

∂x
,

(2.14)

where

H(x, y, t) =
1

2
y2 +

1

2
x2

+ +
1

(1 − x2
−)γ

− 1 − xp(t).

For every (x, y) ∈ (−1, +∞) × R, let us define (θ, I) by

I = I0(h(x, y)) (2.15)

and

θ(x, y) =























































































π

T0(h(x, y))

(

T−(h)
2 + arcsin

x
√

2h(x, y)

)

if x > 0, y > 0

π

T0(h(x, y))

(

T−(h)
2 + π − arcsin

x
√

2h(x, y)

)

if x > 0, y < 0

π

T0(h(x, y))

(

∫ x

−αh

1
√

2(h(x, y) + 1 − (1 − s2)−γ)
ds

)

if x < 0, y > 0

π

T0(h(x, y))

(

T0(h(x, y)) −
∫ x

−αh

1
√

2(h(x, y) + 1 − (1 − s2)−γ)
ds

)

if x < 0, y < 0,

(2.16)
where

h(x, y) =
1

2
y2 + V (x).
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In the new variables (θ, I) system (2.14) becomes



















θ′ =
∂H

∂I

I ′ = −∂H

∂θ
,

(2.17)

where
H(θ, I, t) = πh0(I) − πx(I, θ)p(t). (2.18)

Before stating the next lemma, we observe (and refer to the Appendix for details) that we can
write

( V (x)

V ′(x)

)′
= 1 − φ(x), φ(x) :=

1

2γ

(1 − (1 − x2)γ)(1 + (2γ + 1)x2)

x2
.

Lemma 2.2 For I sufficient large, the following estimates hold:

∣

∣

∣

∣

Ik ∂kx(I, θ)

∂Ik

∣

∣

∣

∣

≤ c
√

I for 0 ≤ k ≤ 6.

Proof. For x > 0, by the definition of θ, we have

x =
√

2h sin

(

T0(h)

π
θ − T0(h)

2

)

.

It is a direct computation to prove that, for x > 0, the Lemma holds true. Hence, it is sufficient
to prove that, for x < 0,

∣

∣

∣

∣

Ik ∂kx

∂Ik

∣

∣

∣

∣

≤ C(1 + x), for 1 ≤ k ≤ 6. (2.19)

• k = 1.
From the definition of θ, we have

T0(h)
θ

2π
=

∫ x

−αh

1
√

2(h − V (s))
ds, for x < 0, y > 0.

Take the derivative with respect to the action variable I in both sides of the above equality
(the angle variable θ is independent on I)

T ′
0(h)hI

θ

2π
=

∂

∂I

∫ x

−αh

1
√

2(h − V (s))
ds.
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As what was done in the paper of Levi [6], we may get

∂

∂I

∫ x

−αh

ds
√

2(h − V )
=

1
√

2(h − V (x))

(

xI −
hI

h

V (x)

V ′(x)

)

+
hI

h

∫ x

−αh

(

1

2
− φ(s)

)

ds
√

2(h − V )
,

which yields that

xI =
√

2(h − V (x))

[

T ′
0(h)hI

θ

2π
− hI

h

∫ x

−αh

(

1

2
− φ(s)

)

1
√

2(h − V (s))
ds

]

+
hI

h

V (x)

V ′(x)
. (2.20)

By the definition of θ, we have

T ′
0(h)hI

θ

2π
−hI

h

∫ x

−αh

(

1

2
− φ(s)

)

1
√

2(h − V (s))
ds =

hI

h

[

∫ x

−αh

(

hT ′
0(h)

T0(h)
− 1

2
+ φ(s)

)

1
√

2(h − V (s))
ds

)

.

Let

F (x, I) =

∫ x

−αh

(

hT ′
0(h)

T0(h)
− 1

2
+ φ(s)

)

1
√

2(h − V (s))
ds. (2.21)

Then

xI =
√

2(h − V (x))
hI

h
F (x, I) +

hI

h

V (x)

V ′(x)
. (2.22)

Now, it is useful to observe that since

V (x)

V ′(x)
=

1 − (1 − x2)γ)

2γx
· (1 − x)(1 + x),

there is a constant c0 such that

∣

∣

∣

V (x)

V ′(x)

∣

∣

∣
≤ c0(1 + x), for x ∈ (−1, 0).

Because |hI/h| ≤ c′I−1 and αh ≤ 1, it is enough to prove that there is a constant c2 such that

√

2(h − V (x))|F (x, I)| ≤ c2(αh + x). (2.23)

Let

G(x, I) =
αh + x

√

2(h − V (x))
.

Then there is a large constant c2 such that

−c2G(x, I) ≤ F (x, I) ≤ c2G(x, I).

Indeed, note that since
F (−αh, I) = G(−αh, I) = 0,
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it is enough to prove that

−c2
∂G

∂x
(x, I) ≤ ∂F

∂x
(x, I) ≤ c2

∂G

∂x
(x, I).

However, from (2.9) it follows that there is a constant c′2 such that

∣

∣

∣

∣

∂F

∂x
(x, I)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

hT ′
0(h)

T0(h)
− 1

2
+ φ(x)

)

1
√

2(h − V (x))

∣

∣

∣

∣

∣

≤ c′2
1

√

2(h − V (x))
.

By a direct computation, we obtain

∂G

∂x
(x, I) =

(

1 +
V ′(x)(αh + x)

2(h − V (x))

)

· 1
√

2(h − V (x))
.

¿From V ′′(x) > 0 and h = V (−αh), it follows that

∣

∣

∣

∣

V ′(x)(αh + x)

2(h − V (x))

∣

∣

∣

∣

≤ 1

2
,

so for c2 > 2c′2, we may get

−c2
∂G

∂x
(x, I) ≤ ∂F

∂x
(x, I) ≤ c2

∂G

∂x
(x, I).

Note that αh < 1 and if we choose
c1 = (c2 + c0)c

′

then we get the estimate (2.19) for k = 1.

• k = 2.

First we introduce an operator L as follows. For a function f(x, I), define

L(f) =
hI

h

[(

f
V

V ′

)

x

− 1

2
f

]

+ fI . (2.24)

Then

xI =
√

2(h − V (x))

∫ x

−αh

(

T ′
0(h)hI

T0(h)
− L(1)

)

1
√

2(h − V (s))
ds +

hI

h
· V (x)

V ′(x)
.

The following equality (whose proof can be found in [6]) is crucial for the sequel:

d

dI

∫ x

−αh

g(s, I)
1

√

2(h(I) − V (s))
ds =

∫ x

−αh

L(g)
1

√

2(h(I) − V (s))
ds + g(x, I)

hI

h
F (x, I).

(2.25)
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We now state the important

CLAIM 1. Suppose that the function g(x, I) is continuous and there is a constant c0 such that
|g(x, I)| ≤ c0I

−k, for some k ∈ N. Then we can find a constant c1 such that, for −αh ≤ x ≤ 0,

√

2(h − V (x))

∣

∣

∣

∣

∣

∫ x

−αh

g(s, I)
1

√

2(h − V (s))
ds

∣

∣

∣

∣

∣

≤ c1I
−k(αh + x). (2.26)

In particular,
|
√

2(h − V (x)) · F (x, I)| ≤ c(αh + x). (2.27)

The proof of this claim is just like what we do in the proof of the estimate on xI .

We prove now (2.19) for k = 2. Let g1(x, I) = Ikg(x, I). Then the above inequality (2.26) is
equivalent to the following

√

2(h − V (x))

∣

∣

∣

∣

∣

∫ x

−αh

g1(s, I)
1

√

2(h − V (s))
ds

∣

∣

∣

∣

∣

≤ c1(αh + x).

From (2.22) it follows that

d

dI

√

2(h − V (x)) =
hI

h

(

1

2

√

2(h − V (x)) − V ′(x)F

)

. (2.28)

Hence, differentiation in both sides of (2.22) with respect to I gives

xII =
h2

I

h2

(

1

2

√

2(h − V (x)) − V ′(x)F (x, I)

)

F (x, I) +
hhII − h2

I

h2

(

√

2(h − V (x))F (x, I) +
V (x)

V ′(x)

)

+
hI

h

[

√

2(h − V (x)) · d

dI
F (x, I) +

(

1 − V (x)V ′′(x)

(V ′(x))2

)

xI

]

.

¿From (2.21), (2.25) and (2.26), it suffices to prove the following estimates for obtaining (2.19)
for k = 2:

|V ′(x)F (x, I)| ≤ c ·
√

2(h − V (x)), (2.29)
∣

∣

∣

∣

√

2(h − V (x)) · d

dI
F (x, I)

∣

∣

∣

∣

≤ c · I−1(αh + x). (2.30)

Indeed, if the above inequalities hold, then we have

|xII | ≤ cI−2|
√

2(h − V (x))F (x, I)| + cI−2
(

|
√

2(h − V (x))F (x, I)| + (1 + x)
)

+cI−1

[

|
√

2(h − V (x)) · d

dI
F (x, I)| + I−1(1 + x)

]

≤ cI−2(1 + x).
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Note that here the constant c in the different lines has different quantities. However, these
constants are independent of I and x.

The proof of (2.29).

Let

f(x, I) =
T ′

0(h)h

T0(h)
− 1

2
+ φ(x). (2.31)

It is enough to prove that there is a constant c > 0 such that

c ·
√

2(h − V (x))

V ′(x)
≤ F (x, I) ≤ −c ·

√

2(h − V (x))

V ′(x)
.

Arguing as in the proof of the estimate of xI , it suffices to prove that

−c·
(V ′(x))2√
2(h−V (x))

+
√

2(h − V (x)) · V ′′(x)

(V ′(x))2
≤ f(x, I)
√

2(h − V (x))
≤ c·

(V ′(x))2√
2(h−V (x))

+
√

2(h − V (x)) · V ′′(x)

(V ′(x))2
.

(2.32)
Since T ′

0(h)h/T0(h) is bounded, φ is continuous in the interval [−1, 0] (cf. Appendix), there is
a constant c′ > 0 such that |f(x, I)| ≤ c′. Choose c = 2c′. Then (2.32) holds, which yields
(2.29).

Indeed, we can prove the following fact (which contains (2.29) as a particular case) that will
be used later.

CLAIM 2. Suppose that there is a constant c0 such that |g(x, I)| ≤ c0I
−k, then one may find

a constant c > 0 such that, for −αh ≤ x ≤ 0,

∣

∣

∣

∣

∣

V ′(x)

∫ x

−αh

g(s, I)
1

√

2(h − V (s))
ds

∣

∣

∣

∣

∣

≤ cI−k
√

2(h − V (x)). (2.33)

The proof of (2.30).
By (2.25) and the definition of f(x, I), we have

d

dI
F (x, I) =

d

dI

∫ x

−αh

f(s, I)
1

√

2(h − V )
ds =

∫ x

−αh

L(f)
1

√

2(h − V )
ds + f(x, I)

hI

h
F (x, I).

(2.34)
Note that

∂f(x, I)

∂x
= φx

and
∂f(x, I)

∂I
=

hI

h
· T0T

′′
0 h2 + T0T

′
0h − (T ′

0h)2

T 2
0

;

10



by (2.8), (2.9), the definitions of L and f(t, x), there is a constant c′ > 0 such that

|L(f)| ≤ c′I−1.

An application of Claim 1 shows that

∣

∣

∣

√

2(h − V (x))

∫ x

−αh

L(f)
1

√

2(h − V )
ds
∣

∣

∣
≤ c I−1(αh + x).

Moreover, using the fact that f is bounded, inequality |hI/h| ≤ c I−1, and (2.27), we get

∣

∣

∣

√

2(h − V (x))

∫ x

−αh

f(x, I)
hI

h
F (x, I)ds

∣

∣

∣
≤ c I−1(αh + x).

This proves (2.30).

• k = 3.

Let

h1(I) =
h2

I

h2
, h2(I) =

hhII − h2
I

h2
, h3(I) =

hI

h

and

f1(x, I) =

(

1

2

√

2(h − V (x)) − V ′(x)F (x, I)

)

F (x, I)

f2(x, I) =

(

√

2(h − V (x))F (x, I) +
V (x)

V ′(x)

)

f3(x, I) =
√

2(h − V (x)) · d

dI
F (x, I) +

(

1 − V (x)V ′′(x)

(V ′(x))2

)

xI .

Then
xII = h1(I)f1(x, I) + h2(I)f2(x, I) + h3(I)f3(x, I).

Moreover, from the discussions in the proof for the case k = 2, we have

|f1(x, I)| ≤ c(1 + x), |f2(x, I)| ≤ c(1 + x), |f3(x, I)| ≤ cI−1(1 + x). (2.35)

By the estimates (2.8) and (2.9), it is easy to verify that

|h1|, |h2| ≤ cI−2, |h3| ≤ cI−1,

∣

∣

∣

∣

dh1(I)

dI

∣

∣

∣

∣

,

∣

∣

∣

∣

dh2(I)

dI

∣

∣

∣

∣

≤ cI−3,

∣

∣

∣

∣

dh3(I)

dI

∣

∣

∣

∣

≤ cI−2. (2.36)

Because of (2.35) and (2.36) and

∂3x

∂I3
=

3
∑

j=1

(

dhj(I)

dI
fj(x, I) + hj(I) · d

dI
fj(x, I)

)

,

11



it suffices to prove the following results for obtaining the estimate on xIII :
∣

∣

∣

∣

d

dI
f1(x, I)

∣

∣

∣

∣

≤ cI−1(1 + x), (2.37)

∣

∣

∣

∣

d

dI
f2(x, I)

∣

∣

∣

∣

≤ cI−1(1 + x), (2.38)

∣

∣

∣

∣

d

dI
f3(x, I)

∣

∣

∣

∣

≤ cI−2(1 + x). (2.39)

The proof of (2.37).

From the definition of f1 and (2.28), it follows that

d

dI
f1(x, I) =

(

hI

2h

(

1

2

√

2(h − V ) − V ′F

)

− V ′′xIF − V ′ d

dI
F

)

F+

(

1

2

√

2(h − V ) − V ′F

)

d

dI
F.

¿From (2.8), (2.23), (2.29), (2.30), and the estimate on xI , it follows that

| d

dI
f1(x, I)| ≤ c

(

I−1
√

2(h − V (x))|F | + I−1|V ′′(x)(1 + x)F (x, I)|F (x, I) +
√

2(h − V (x))| d

dI
F (x, I)|

)

≤ cI−1(1 + x) + I−1|V ′′(x)(1 + x)F (x, I)|F (x, I).

Now we estimate the last term in the above inequality.

From the definition of V , there is a constant c > 0 such that

|V ′′(x)(1 + x)| ≤ c
(

|V ′(x)| + (1 + x)
)

.

Indeed, if x ∈ [−1/2, 0], we know that |V ′′(x)| ≤ c, while for x ∈ [−1,−1/2], |V ′′(x)(1 + x)| ≤
c|V ′(x)|.
From this inequality, it follows that

I−1|V ′′(x)(1 + x)F (x, I)|F (x, I) ≤ cI−1|V ′(x)F (x, I)|F (x, I) + cI−1(1 + x)(F (x, I))2

≤ cI−1
√

h − V (x)F (x, I) + cI−1(1 + x)

≤ cI−1(1 + x),

where we have used (2.29), (2.26) and |F (x, I)| ≤ c. The proof of (2.37) is completed.

The proof of (2.38) follows from (2.26), (2.28), (2.29), (2.30) and a direct computation.

The proof of (2.39).

First note that

d

dI
f3(x, I) =

hI

2h

(

1

2

√

2(h − V ) − V ′F

)

· d

dI
F (x, I)

+
√

2(h − V (x)) · d2

dI2
F (x, I) + (1 − φ(x))xII − φ′(x)(xI)

2.

12



In order to get (2.39), it suffices to show the following estimate:

∣

∣

∣

∣

√

2(h − V (x)) · d2

dI2
F (x, I)

∣

∣

∣

∣

≤ cI−2(1 + x).

¿From (2.34) and (2.25), we have

d2

dI2
F (x, I) =

∫ x

αh

L(L(f))
1

√

2(h − V (s))
ds+L(f)

hI

h
F (x, I)+

d

dI

(

f(x, I)
hI

h
F (x, I)

)

. (2.40)

By the definitions of L and f(x, I), it is easy to verify that

|L(L(f(x, I)))| ≤ cI−2, |L(f(x, I))| ≤ cI−1.

Inequality (2.26) implies the following estimates
∣

∣

∣

∣

∣

√

2(h − V (x))

(

∫ x

αh

L(L(f))
1

√

2(h − V (s))
ds + L(f)

hI

h
F (x, I)

)∣

∣

∣

∣

∣

≤ cI−2(1 + x),

for −1 ≤ x ≤ 0. Now we estimate the last term in (2.40). ¿From the definition of f(x, I), we
have

d

dI

(

f(x, I)
hI

h
F (x, I)

)

=

(

φ′(x)xI +

[

h2T ′′
0

T0
+

hT ′
0

T0
−
(

hT ′
0

T0

)2
]

hI

h

)

hI

h
F (x, I)

+f(x, I)
hIIh − h2

I

h2
F (x, I) + f(x, I)

hI

h
· d

dI
F (x, I).

¿From (2.23) and (2.30), it follows that, for −1 ≤ x ≤ 0,
∣

∣

∣

∣

√

2(h − V (x)) · d

dI

(

f(x, I)
hI

h
F (x, I)

)
∣

∣

∣

∣

≤ cI−2(1 + x).

Then, (2.39) follows from the above discussions.

• 4 ≤ k ≤ 6.

For obtaining the estimates in the general case, we must prove the following:
∣

∣

∣

∣

dn

dIn
f1(x, I)

∣

∣

∣

∣

≤ cI−n(1 + x),

∣

∣

∣

∣

dn

dIn
f2(x, I)

∣

∣

∣

∣

≤ cI−n(1 + x),

∣

∣

∣

∣

dn

dIn
f3(x, I)

∣

∣

∣

∣

≤ cI−n−1(1 + x),

(2.41)
for −1 ≤ x ≤ 0.

In the proof of the above estimates, one may meet the terms V ′(x) dk

dIk F (x, I), V ′′(x)xI
d
dI F ,

VxxxIF and so on. In order to estimate these terms, we have to use (2.33) and the fact:

(1 + x)k−1

∣

∣

∣

∣

dk

dxk
V (x)

∣

∣

∣

∣

≤ c
(

|V ′(x)| + (1 + x)k−1
)

, for − 1 < x < 0.
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Moreover, we also need the following property of the operator L:

CLAIM 3. Suppose the function g : [−1, 0] × R
+ → R, (x, I) 7→ g(x, I) is smooth in x and

∣

∣

∣

∣

∂k+j

∂xk∂Ij
g(x, I)

∣

∣

∣

∣

≤ cI−j |g(x, I)|,

then
∣

∣

∣

∣

∂k+j

∂xk∂Ij
L(g(x, I))

∣

∣

∣

∣

≤ cI−j−1|g(x, I)|.

For the proof of Claim 3, it is sufficient to observe that from the definition of the operator L,
it follows that

∂k+j

∂xk∂Ij
L(g(x, I)) =

∂k+j+1

∂xk∂Ij+1
g(x, I) +

∂j

∂Ij

[

hI

h
·
(

∂k+1

∂xk+1
(g

V

V ′
) − 1

2

∂k

∂xk
g

)]

.

Because the proof of (2.41) is quite cumbersome, and contains no new difficulties, we omit it
here. The proof of Lemma 2.2 is complete.

From Lemma 2.2 and (2.8), we know that H is invertible with respect to I for I large. Moreover,
H/I → 1 as I → +∞. So we assume that I can be written, as a function of θ, H and t, as

I = I0

(

H

π
+ R(H, t, θ)

)

, (2.42)

where R satisfies |R| < H/π. Recalling that h0 is the inverse function of I0, from (2.18) we
deduce that

H

π
+ R(H, t, θ) = h0(I) ⇒ H + πR(H, t, θ) = πh0(I) ⇒ R(H, t, θ) = x(I, θ)p(t).

As a consequence, R is implicitly defined by

R(H, t, θ) = x

(

I0

(

H

π
+ R(H, t, θ)

)

, θ

)

p(t). (2.43)

Lemma 2.3 The function R(H, t, θ) satisfies the following estimates:

∣

∣

∣

∣

Hk ∂kR(H, t, θ)

∂Hk

∣

∣

∣

∣

≤ c
√

H, for 0 ≤ k ≤ 6. (2.44)
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Proof.

• k = 0. This follows from the expression of R in (2.43) and Lemma 2.2. Moreover, from now
on, we assume that

1

2π
H ≤ H

π
+ R ≤ 2

π
H. (2.45)

• k = 1. Taking the derivative with respect to H in both sides of (2.43), we obtain

∂R

∂H
=

1

π
·

∂x
∂I · I ′0(H

π + R)p(t)

1 − ∂x
∂I · I ′0(H

π + R)p(t)
.

Hence, the result follows from Lemma 2.2, (2.7) and (2.45).

In the case of k ≥ 2, one may get
(

1 − ∂x

∂I
· I ′0(

H

π
+ R)p(t)

)

∂kR

∂Hk
=
∑

cn,j1···jn

∂nx

∂In
· ∂j1

∂Hj1
I0(

H

π
+ R) · · · · · ∂jn

∂Hjn

I0(
H

π
+ R),

where 1 ≤ n ≤ k, j1 + · · ·+ jn = k, 1 ≤ j1, · · · , jn < k. It is easy to verify (2.44) for k ≥ 2.

Analogously, one can prove the following more general

Lemma 2.4 The function R(H, t, θ) satisfies the following estimates:
∣

∣

∣

∣

Hk ∂k+lR(H, t, θ)

∂Hk∂tl

∣

∣

∣

∣

≤ c
√

H, for 0 ≤ k + l ≤ 6. (2.46)

We are now ready to rewrite (2.17) with new variables. To this end, observe that from (2.43)
and Lemma 2.3, it follows that

R(H, t, θ) = x(H, θ)p(t) + R1(H, t, θ), (2.47)

where the function R1 satisfies
∣

∣

∣

∣

Hk ∂kR1(H, t, θ)

∂Hk

∣

∣

∣

∣

≤ c, for 0 ≤ k ≤ 6. (2.48)

From the above discussions, we obtain

I = H + πR(H, t, θ) + I−

(

H

π
+ R(H, t, θ)

)

=

= H + πx(H, θ)p(t) + I−

(

H

π

)

+

∫ 1

0
I ′−

(

H

π
+ sR(H, t, θ)

)

R(H, t, θ) ds + πR1(H, t, θ)

= H + πx(H, θ)p(t) + I−

(

H

π

)

+

∫ 1

0
T−

(

H

π
+ sR(H, t, θ)

)

R(H, t, θ) ds + πR1(H, t, θ).

(2.49)
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¿From this relation we infer that

∂I

∂H
= 1+

1

π
T−

(

H

π

)

+π∂Hx(H, θ)p(t)+∂H

(
∫ 1

0
T−

(

H

π
+ sR(H, t, θ)

)

R(H, t, θ) ds + πR1(H, t, θ)

)

.

Assuming now θ as a time variable, (2.17) is transformed in the system























dt

dθ
= 1 +

1

π
T−

(

H

π

)

+ πxH(H, θ)p(t) + ∂H

(
∫ 1

0
T−

(

H

π
+ sR(H, t, θ)

)

R(H, t, θ) ds + πR1(H, t, θ)

)

dH

dθ
= −πx(H, θ)p′(t) − ∂t

(
∫ 1

0
T−

(

H

π
+ sR(H, t, θ)

)

R(H, t, θ) ds + πR1(H, t, θ)

)

.

(2.50)

Suppose (t(θ, H0, t0), H(θ, H0, t0)) is the solution of (2.50) with the initial data (t0, H0). Then
Lemma 2.2 implies that there is a constant c such that

|
√

H(θ) −
√

H0| ≤ c, for 0 ≤ θ ≤ π. (2.51)

A final change of variables is needed. Indeed, for every H > 0 let us define

H =
ρ

ǫ2
, (2.52)

with ρ ∈ [1/η, η] and ǫ > 0. The constant η > 1 will be conveniently chosen in Section 4.
System (2.50) is then transformed into

dt

dθ
= 1 + ǫF (ρ, t, θ; ǫ),

dρ

dθ
= ǫG(ρ, t, θ; ǫ), (2.53)

where

F =
1

ǫ

[

1

π
T−

(

H

π

)

+ πxH(H, θ)p(t) + ∂H

(
∫ 1

0
T−

(

H

π
+ sR(H, t, θ)

)

R(H, t, θ) ds + πR1(H, t, θ)

)]

,

G = ǫ

{

−πx(H, θ)p′(t) − ∂t

(
∫ 1

0
T−

(

H

π
+ sR(H, t, θ)

)

R(H, t, θ) ds + πR1(H, t, θ)

)}

with H = ρ/ǫ2. This system is a π-periodic Hamiltonian system in the new time variable θ.

3 Estimates on the Poincaré map

In this section we deduce the asymptotic development of the Poincaré map of (2.53), as ǫ → 0.
This will be the crucial step in applying Moser twist theorem and Aubry-Mather theory to
prove our main results for (2.1).
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Definition 3.1 We say a function g(ρ, t, θ; ǫ) ∈ Ok(1) if g is smooth in (ρ, t) and
∣

∣

∣

∣

∂k1+k2

∂tk1∂ρk2
g(ρ, t, θ; ǫ)

∣

∣

∣

∣

≤ C,

for some constant C > 0 which is independent of the arguments ρ, t, θ, ǫ, where k1 + k2 ≤ k.
Similarly, we say a function g(ρ, t, θ; ǫ) ∈ ok(1) if g is smooth in (ρ, t) and

lim
ǫ→0

∣

∣

∣

∣

∂k1+k2

∂tk1∂ρk2
g(ρ, t, θ; ǫ)

∣

∣

∣

∣

= 0, uniformly in (ρ, t, θ),

where k1 + k2 ≤ k.

¿From the previous lemmas and the definitions of the functions F and G, we have

F, G ∈ O6(1).

Now, let us denote by P the Poincaré map associated to (2.53), i.e. for every (t0, ρ0) let

(t1, ρ1) = P (t0, ρ0) = (t(π; t0, ρ0), ρ(π; t0, ρ0)),

where (t(·; t0, ρ0), ρ(·; t0, ρ0)) denotes the solution of (2.53) satisfying (t(0; t0, ρ0), ρ(0; t0, ρ0)) =
(t0, ρ0).

We will prove the following result:

Proposition 3.2 The map P satisfies






















t1 = t0 + π + ǫ

√

2πρ−1
0

(

1 +
1

2

∫ π

0
p (t0 + θ) sin θ dθ

)

+ ǫo5(1)

ρ1 = ρ0 − ǫ
√

2πρ0

∫ π

0
p′ (t0 + θ) sin θ dθ + ǫo5(1),

(3.1)

for ǫ → 0.

We will prove Proposition 3.2 by means of the estimates that we are going to deduce below.

First of all, from (2.53) we may assume that the solution of (2.53) with the initial data (t0, ρ0)
is of the form

t(θ) = t0 + θ + ǫΓ1(θ, t0, ρ0; ǫ), ρ(θ) = ρ0 + ǫΓ2(θ, t0, ρ0; ǫ).

Substitution into (2.53) yields that

Γ1 =

∫ θ

0
F (ρ0 + ǫΓ2, t0 + θ + ǫΓ1, θ; ǫ)dθ, Γ2 =

∫ θ

0
G(ρ0 + ǫΓ2, t0 + θ + ǫΓ1, θ; ǫ)dθ.
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¿From standard differential inequalities, it follows that
∣

∣

∣

∣

∂k+lΓ1(θ, ρ0, t0; ǫ)

∂ρk
0∂tl0

∣

∣

∣

∣

+

∣

∣

∣

∣

∂k+lΓ2(θ, ρ0, t0; ǫ)

∂ρk
0∂tl0

∣

∣

∣

∣

≤ C0, for k + l ≤ 6,

that is, Γ1, Γ2 ∈ O6(1). It is easy to show that

Γ1 =

∫ θ

0
F (ρ0, t0 + θ, θ; ǫ)dθ + ǫO6(1), Γ2 =

∫ θ

0
G(ρ0, t0 + θ, θ; ǫ)dθ + ǫO6(1).

By Lemmas 2.3 and 2.1, the definitions of F and G, we have

F (ρ0, t0 + θ, θ; ǫ) =
1

ǫ

[

1

π
T−

( ρ0

πǫ2

)

+ πxH(
ρ0

ǫ2
, θ)p(t0 + θ)

]

+ ǫO6(1),

G(ρ0, t0 + θ, θ; ǫ) = −πǫx(
ρ0

ǫ2
, θ)p′(t0 + θ) + ǫO6(1).

Now we obtain that the Poincaré map of (2.53) is of the form

t1 = t0 + π + ǫL1(ρ0, t0, ǫ) + ǫo5(1), ρ1 = ρ0 + ǫL2(ρ0, t0, ǫ) + ǫo5(1), (3.2)

where

L1(ρ0, t0, ǫ) =
1

ǫ
T−

( ρ0

πǫ2

)

+
π

ǫ

∫ π

0
xH(

ρ0

ǫ2
, θ)p(t0+θ)dθ, L2(ρ0, t0, ǫ) = −πǫ

∫ π

0
x(

ρ0

ǫ2
, θ)p′(t0+θ)dθ.

(3.3)
In the following lemma, we give estimates of L1 and L2.

Lemma 3.3 The following estimates hold true:

L1(ρ0, t0, ǫ) =

√

2π

ρ0
+

√

π

2ρ0

∫ π

0
p(t0 + θ) sin θdθ + ǫO5(1)

L2(ρ0, t0, ǫ) = −
√

2πρ0

∫ π

0
p′(t0 + θ) sin θdθ + ǫO5(1),

(3.4)

for ǫ → 0.

Proof. The proof is based on the following estimates

meas {θ ∈ [0, π], x(H0, θ) > 0} = π + ǫO6(1), meas {θ ∈ [0, π], x(H0, θ) < 0} = ǫO6(1), (3.5)

where H0 = ǫ−2ρ0. To prove them, let us first observe that from (2.16) it follows that

meas {θ ∈ [0, π], x(H0, θ) > 0} =
π2

T0(h(x, y))
, (3.6)
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where

h(x, y) =
1

2
y2(H0, θ) + V (x(H0, θ)).

Here H0 plays the role as the action variable I, that is (cf. (2.4)),

H0 = πh + I−(h).

Inequalities (2.11) and (2.7) imply that there is a unique function H such that

h =
H0

π
+ H(H0).

Moreover, similar to the proof of Lemma 2.3, one may get, for k ≥ 0,

∣

∣

∣

∣

Hk
0

dk

dHk
0

H(H0)

∣

∣

∣

∣

≤ C0

√

H0.

In particular, we have
1

2π
H0 ≤ h ≤ 3

2π
H0.

From these estimates, (2.12), (2.13) and (2.9), it follows that

∣

∣

∣

∣

Hk
0

dk

dHk
0

(

T−(h) − T−(
H0

π
)

)
∣

∣

∣

∣

≤ C0 · H−1
0 .

Hence,

T−(h) = T−(
H0

π
) + ǫ2O6(1) =

√
2π√
ρ0

· ǫ + ǫ2O6(1). (3.7)

The first conclusion in (3.5) follows from (3.6), (2.5) and the above estimate. The second
conclusion in (3.5) is obtained by

meas {θ ∈ [0, π], x(H0, θ) < 0} = T0(h) − meas {θ ∈ [0, π], x(H0, θ) > 0}.

Now, let us complete the proof of the Lemma. We recall that, when x < 0, we have

|x(H0, θ)| = O6(1), |xH(H0, θ)| = ǫ2 O5(1).

When x > 0, from the definition of θ, it follows that

arcsin
x(H0, θ)√

2h
=

T0(h)

π
θ − T−(h)

2
= θ + ǫO5(1),

which yields that

x(H0, θ) =
√

2h sin(θ + ǫO5(1)) =

√

2H0

π
sin θ + O5(1), xH(H0, θ) =

√

1

2πH0
sin θ + ǫ2O5(1).
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Hence, we have

L1(ρ0, t0, ǫ) =
1

ǫ
T−

( ρ0

πǫ2

)

+
π

ǫ

∫ π

0
xH(

ρ0

ǫ2
, θ)p(t0 + θ)dθ

=

√

2π

ρ0
+

π

ǫ

∫

{θ∈[0,π]:x(H0,θ)>0}
xH(H0, θ)p(t0 + θ)dθ + ǫO5(1)

+
π

ǫ

∫

{θ∈[0,π]:x(H0,θ)<0}
xH(H0, θ)p(t0 + θ)dθ

=

√

2π

ρ0
+

π

ǫ

∫

{θ∈[0,π]:x(H0,θ)>0}

√

1

2πH0
p(t0 + θ) sin θdθ + ǫO5(1)

=

√

2π

ρ0
+

√

π

2ǫ2H0

∫ π

0
p(t0 + θ) sin θdθ + ǫO5(1).

Recalling (2.52), we deduce that the first estimate in (3.4) holds true.

In an analogous way, we infer that

L2(ρ0, t0, ǫ) = −πǫ

∫

{θ∈[0,π]:x(H0,θ)>0}
x(H0, θ)p

′(t0 + θ)dθ

−πǫ

∫

{θ∈[0,π]:x(H0,θ)<0}
x(H0, θ)p

′(t0 + θ)dθ

= −πǫ

∫

{θ∈[0,π]:x(H0,θ)>0}
x(H0, θ)p

′(t0 + θ)dθ + ǫO5(1)

= −πǫ ·
√

2H0

π

∫ π

0
p′(t0 + θ) sin θdθ + ǫO5(1).

Recalling (2.52) again, this concludes the proof.

From Lemma 3.3 and the relations (3.2)-(3.3) we immediately deduce the validity of Proposition
3.2.

4 The main results

In the previous section we have proved that the Poincaré map associated to the initial equation
has the asymptotic development

t1 = t0 + π + ǫ

√

2πρ−1
0

(

1 +
1

2

∫ π

0
p (t0 + θ) sin θ dθ

)

+ ǫo5(1)

ρ1 = ρ0 − ǫ
√

2πρ0

∫ π

0
p′ (t0 + θ) sin θ dθ + ǫo5(1),

(4.1)
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for ǫ → 0.

This expression can be written in the form

t1 = t0 + π + ǫ l1(ρ0, t0) + ǫφ1(ρ0, t0)

ρ1 = ρ0 + ǫ l2(ρ0, t0) + ǫφ2(ρ0, t0),
(4.2)

with

l1(ρ0, t0) =

√

2πρ−1
0

(

1 +
1

2

∫ π

0
p (t0 + θ) sin θ dθ

)

l2(ρ0, t0) = −
√

2πρ0

∫ π

0
p′ (t0 + θ) sin θ dθ

and
φi = o5(1), ǫ → 0, i = 1, 2.

Moreover, it is easy to show that l1 ∈ C6 and l2, φ1, φ2 ∈ C5 when p ∈ C6(R).

We are now in position to state and prove our result on boundedness of solutions of the initial
equation.

Theorem 4.1 Assume that γ is a positive integer and that p ∈ C6(R) satisfies

1 +
1

2

∫ π

0
p (t0 + θ) sin θ dθ > 0, ∀ t0 ∈ R. (4.3)

Then, all the solutions of (2.1) are bounded.

Proof. We apply Ortega’s variant of Moser theorem as it is stated in Theorem 3.1 in [12].
Assumption (3.2) follows from (4.3); the regularity hypothesis (3.3) holds as well. In order to
check the validity of (3.5), it is sufficient to slightly modify the corresponding step in the proof
of Theorem 1 in [7]; indeed, one can prove the existence of I(ρ0, t0) of the form ρ0α(t0), being
α a suitable function satisfying (3.4)− (3.5)− (3.6). This is the point where we suitably choose
the constant η introduced at the end of Section 2.

Using the estimates developed in the previous sections, we can also obtain a result of Aubry-
Mather type.

Theorem 4.2 Assume that γ is a positive integer and that p ∈ C(R) satisfies (4.3); then, there
is an ǫ0 > 0 such that, for any ω ∈ (1/π, 1/π + ǫ0), equation (2.1) has a solution (xω(t), x′

ω(t))
of Mather type with rotation number ω. More precisely,

• if ω = p/q is rational, the solutions (xω(t + 2iπ), x′
ω(t + 2iπ)), 1 ≤ i ≤ q − 1 are mutually

unlinked periodic solutions of period qπ; moreover, in this case,

lim
q→∞

min
t∈R

(|xω(t)| + |x′
ω(t)|) = +∞;
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• if ω is irrational, the solution (xω(t), x′
ω(t)) is either a usual quasi-periodic solution or a

generalized one.

We recall that a solution is called generalized quasi-periodic if the closed set

{(xω(2iπ), x′
ω(2iπ)), i ∈ Z}

is a Denjoy’s minimal set.

Proof. We apply Aubry-Mather theory. More precisely, according to [13], we first recall that
limh→+∞ T0(h) = π. For the applicability of Theorem B in [13], it is sufficient to check that
the Poincaré map P has the monotone twist property. To this aim, we need to show (cf. (4.2))
that

∂t1
∂ρ0

> 0,

for ǫ > 0 sufficiently small. It is straightforward to check that this is a consequence of assump-
tion (4.3).

The above results are valid for any continuous potential V : (a,+∞) → R+, a ∈ R, which
satisfies the following assumptions:
(V1) there exists b > a s.t. V (b) = 0 = V ′(b);
(V2) V ∈ C7((a,+∞) \ {b}), limx→a− V (x) = +∞;
(V3) the function W (x) = V (x)/V ′(x) is of class C6((a,+∞) \ {b}) and

lim
x→a−,x→b±

∣

∣

∣
W (j)(x)

∣

∣

∣
< +∞, j = 0, . . . , 6; (4.4)

(V4) there exists c > 0 s.t.

(x − a)k−1

∣

∣

∣

∣

dk

dxk
V (x)

∣

∣

∣

∣

≤ c
(

|V ′(x)| + (x − a)k−1
)

, for x > a and k = 0, . . . 6;

(V5) V (x) =
1

2
n2x2 + r(x), where r is e.g. of the form

r(x) = O(x), r′(x) = c + O
( 1

x2

)

, r(k)(x) = O
( 1

x1+k

)

, k ≥ 2, x → +∞.

It is easy to observe that the function V (x) =
1

2
x2

+ +
1

(1 − x2
−)γ

− 1 that we have treated is

an example of a singular ”asymptotically resonant” potential satisfying (V1)− (V5). Moreover,
we remark that, as far as Theorem 4.1 is concerned, the restriction γ ∈ N can be weakened;
indeed, it is sufficient to require γ ∈ R with γ > 5.
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As for Theorem 4.2, we observe that in the proof it is sufficient to perform a C1-development
of the Poincaré map. This means we just have to estimate I−, T−, T ′

−, T ′′
−; these estimates can

be obtained once, besides (V1) and (V5), it is assumed
(V2)

′ V ∈ C3((a,+∞) \ {b});
(V3)

′ the function W (x) = V (x)/V ′(x) is of class C2((a,+∞) \ {b}) and

lim
x→a−,x→b±

∣

∣

∣
W (j)(x)

∣

∣

∣
< +∞, j = 0, 1, 2; (4.5)

(V4)
′ there exists c > 0 s.t.

(x − a)k−1

∣

∣

∣

∣

dk

dxk
V (x)

∣

∣

∣

∣

≤ c
(

|V ′(x)| + (x − a)k−1
)

, for x > a and k = 0, . . . 2.

In particular, if we take V as in (1.2), then Theorem 4.2 is valid in case γ > 2 is any real
number.

Remark 4.3 Assumption (4.3) can be compared with the well-known Lazer-Leach condition
∣

∣

∣

∣

∫ 2π

0
p(t)eint dt

∣

∣

∣

∣

< 2(h(+∞) − h̄(−∞)) (4.6)

being h(+∞) = lim infx→+∞ h(x) and h̄(−∞) = lim supx→−∞ h(x). According to [5], condition
(4.6) guarantees (and in some cases characterizes) the existence of 2π-periodic solutions for
x′′ + n2x + h(x) = p(t). For improvements and comments on Lazer-Leach type conditions
in a more general context, and in relation with the question of coexistence of periodic and
unbounded solutions, we refer to the paper by C. Fabry-J. Mawhin [3]. In case of resonant
asymmetric (or isochronous) oscillators and h ≡ 0, it is now known (cf. [8]) that Lazer-Leach
type conditions play a central role also when the question of boundedness is treated. On the other
hand, boundedness of all solutions is guaranteed by [11] assuming that p is ”sufficiently small”
for an equation of the form x′′+ax+−bx− = 1+p(t). Theorem 4.1 provides a condition for the
boundedness of all solutions in case p is not necessarily small. Moreover, our condition (1.3)
obviously holds in case p ≡ 0, p ”small” and also in case the function (1/2)

∫ π
0 p (t0 + θ) sin θ dθ

vanishes at some point. In other words, we are able to treat cases when a Lazer-Leach type
condition might fail.
In the framework of Lazer-Leach type conditions, an interesting contribution has been recently
given by A. Fonda-J. Mawhin [4]. More precisely, in the case of planar first order systems in
[4] it is examined the question of the coexistence of 2π-periodic and unbounded solutions.

Remark 4.4 An asymptotic development of the Poincaré map of the form (4.1) is treated by
J.M. Alonso and R. Ortega in [1]. From Proposition 2.1 in [1], it follows that if the function

θ 7→
(

1 +
1

2

∫ π
0 p (t0 + θ) sin θ dθ

)

has simple zeros then there are unbounded solutions. In par-

ticular, we observe that we can study the existence of unbounded solutions in case our hypothesis
(4.3) fails.
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5 Appendix

Proof of Lemma 2.1.

We first develop some preliminaries; the proof of Lemma 2.1 can be found at the end of this
section.

Let

W (x) =
V (x)

V ′(x)
, ∀ x ∈ (−1, 0).

For every x ∈ (−1, 0), we have

W (x) =
(1 − x2)(1 − (1 − x2)γ)

2γx
,

W ′(x) = 1 − φ(x), φ(x) =
1

2γ

(1 − (1 − x2)γ)(1 + (2γ + 1)x2)

x2
.

The function W is even; from now on, we will denote by V the function V (−|x|). In this way,
we can consider the interval (0, 1) instead of (−1, 0). It is easy to see that

limx→0+ W (x) = 0, limx→1− W (x) = 0;

limx→0+

∣

∣W (j)(x)
∣

∣ < +∞, limx→1−
∣

∣W (j)(x)
∣

∣ < +∞.

(5.1)

For every u = u(h, x), let K(u) be defined by

K(u)(h, x) = uh(h, x) +
1

2h
u(h, x) +

1

h

(

u
V

V ′

)′

(h, x), (5.2)

where ′ means the derivative with respect to the x-variable.

For every positive integer n let Kn = K ◦ . . . ◦ K (n times). We will be interested in a formula
for Kn(1):

Proposition 5.1 For every n ≥ 1 we have

Kn(1)(h, x) =
1

hn
Pn(x), (5.3)

where Pn is recursively defined by


















Pn+1(x) =

(

1

2
− n

)

Pn(x) + (W Pn)′(x), n ≥ 1

P1(x) =
1

2
+ W ′(x).

(5.4)
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Proof. 1. From (5.2) we immediately deduce

K(1)(h, x) =
1

2h
+

1

h
W ′(x) =

1

h
P1(x),

which proves (5.3) for n = 1.

2. Assume now that (5.3) holds true for every integer from 1 to n; we show that it is fulfilled
also for n + 1. Indeed, we have

Kn+1(1)(h, x) = K(Kn(1))(h, x) = K
(

1

hn
Pn(x)

)

(h, x) =

= − n

hn+1
Pn(x) +

1

2h

1

hn
Pn(x) +

1

hn+1
(WPn)′(x)=

1

hn+1
Pn+1(x),

where Pn+1 is defined in (5.4).

Proposition 5.2 For every positive integer n = 0, 1, . . . , 5 we have

(W Pn)(0) = 0, (W Pn)(1) = 0;

∫ 1

0
Pn(x) dx = (−1)n−1 (2n − 3)!!

2n
,

(5.5)

where

(2k − 1)!! =







1 · 3 · 5 · . . . · (2k − 1) k ≥ 1

1 k = 0.

Proof. The first formulas in (5.5) easily follow from (5.1). We prove the formula for the
integral of Pn; let

ǫn =

∫ 1

0
Pn(x) dx.

¿From (5.4) we deduce that

ǫn =

∫ 1

0

{(

3

2
− n

)

Pn−1(x) + (W Pn−1)
′(x)

}

dx =

=

(

3

2
− n

)

ǫn−1 + (W Pn−1)(1) − (W Pn−1)(0) =

(

3

2
− n

)

ǫn−1.

As a consequence, we get

ǫn =

(

3

2
− n

)

·
(

3

2
− (n − 1)

)

· . . .
(

3

2
− 3

)

·
(

3

2
− 2

)

ǫ1. (5.6)
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Now, let us observe that

ǫ1 =

∫ 1

0
P1(x) dx =

∫ 1

0

(

W ′(x) +
1

2

)

dx = W (1) − W (0) +
1

2
=

1

2
;

from this relation and (5.6) we deduce that

ǫn = (−1)n−1 (2n − 3) · (2n − 1) · . . . · 5 · 3
2n

,

which completes the proof.

We recall now formula (A3.2) from [6]; for every function u = u(h, x), let

I(h) =

∫ 0

−αh

u(h, s)
√

h − V (s) ds =

∫ αh

0
u(h,−s)

√

h − V (s) ds,

where αh is defined by V (−αh) = h, for every h > 0. Moreover, let ũ(h, x) = u(h,−x). Then
we have

d

dh
I(h) =

∫ α
h

0
K(ũ)(h, s)

√

h − V (s) ds. (5.7)

By iterating this formula, we get

dn

dhn
I(h) =

∫ α
h

0
Kn(ũ)(h, s)

√

h − V (s) ds, (5.8)

for every integer n ≥ 1.

We recall that

I−(h) = 2

∫ αh

0

√

2(h − V (s)) ds = 2
√

2

∫ αh

0

√

h − V (s) ds, (5.9)

for every h > 0; moreover, we have

T−(h) = I ′−(h), ∀ h > 0. (5.10)

Proposition 5.3 For every integer n = 0, 1, . . . , 5 we have

dn

dhn
T−(h) = 2

√
2

1

hn+1

∫ α
h

0
Pn+1(s)

√

h − V (s) ds. (5.11)

Proof. From (5.10) we infer that

dn

dhn
T−(h) =

dn+1

dhn+1
I−(h);
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we then apply (5.8) with u = ũ ≡ 1 and (5.3):

dn

dhn
T−(h) = 2

√
2

∫ α
h

0
Kn+1(1)(h, s)

√

h − V (s) ds = 2
√

2
1

hn+1

∫ α
h

0
Pn+1(s)

√

h − V (s) ds.

This completes the proof.

We are now in position to prove Lemma 2.1; for the reader’s convenience, we recall its statement
below.

Lemma 2.1. For every n = 0, 1, 2, . . . , 5 we have

dnT−

dhn
(h) = (−1)n 1

2n
(2n − 1)!!

√
2

h(2n+1)/2
+ o

(

1

h(2n+1)/2

)

, h → +∞. (5.12)

Proof. From (5.11) we deduce that

h(2n+1)/2 dn

dhn
T−(h) = 2

√
2

1√
h

∫ α
h

0
Pn+1(s)

√

h − V (s) ds

and then

h(2n+1)/2 dn

dhn
T−(h) = 2

√
2

∫ α
h

0
Pn+1(s)

√

1 − V (s)

h
ds.

Recalling that αh → 1, for h → +∞, an application of Lebesgue dominated convergence
Theorem gives

lim
h→+∞

h(2n+1)/2 dn

dhn
T−(h) = 2

√
2

∫ 1

0
Pn+1(s) ds.

Using (5.5) from this relation we get (5.12).
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