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Abstract 

The present study examined the ability of targeted and non-targeted methods to provide further, 

specific and complementary information on groups of samples on the basis of their component 

distribution on the GCxGC chromatographic plane. The volatile fraction of Arabica green and 

roasted coffee samples, differing for geographical origins and roasting treatments, and volatile 

secondary metabolites from juniper needles, sampled by Headspace-Solid Phase Micro Extraction 

(HS-SPME), were analyzed by GCxGC-q-MS and sample profiles interpreted through different 

methods. In the target analysis profiling, samples, submitted to different roasting cycles and/or 

differing for their origin and post-harvest treatment, are characterized on the basis of known 

constituents: botanical, technological and aroma markers. This approach provides highly reliable 

results on quali-quantitative compositional differences, because of the authentic standard 

confirmation, extending and improving the specificity of the comparative procedure to trace and 

minor components. On the other hand, non-targeted data-processing methods: direct image 

comparison and template-based fingerprinting include in the sample comparisons and correlations 

the whole volatiles offering an increased discrimination potential identifying compounds that are 

comparatively significant but are not known targets. Results demonstrates the ability of GCxGC to 

further explore the complexity of samples and emphasizes the advantages of a comprehensive and 

multidisciplinary approach to interpret the increased level of information provided by GCxGC 

separation. 

 

Key-words: GCxGC, target analysis, template-based fingerprinting, direct image comparison, 

green and roasted coffee, juniper volatile fraction 

 



Introduction 

The volatile fractions of samples of vegetable origin (plants derivatives and food samples) have 

highly variable abundance of their components, which mainly consist of secondary metabolites 

deriving from specific biosynthetic pathways (e.g., mono- and sesquiterpenoids) and/or groups of 

chemically-correlated components, such as alcohols, carbonyl derivatives, acids, esters and 

heterocycles, mainly produced by known and unknown reactions induced by technological 

treatments. These compounds often show similar chromatographic retention behavior, due to their 

volatility and polarity, and are characterized by MS fragmentation patterns with several common 

isobaric ions (fragments) making their 1D-GC characterization and quantitation difficult.  

Comprehensive two-dimensional gas chromatography (GCxGC) is a useful and powerful tool for 

in-depth analysis of such complex mixtures because of its high “practical” peak capacity and 

sensitivity, enabling trace and minor component investigations on sample comparisons and 

possibility to obtain specific and rationalized separation patterns for chemically correlated groups of 

substances characteristic of a sample. Under properly optimized conditions, the gain in analyte 

detectability, experimentally approximated to the LODs, of GCxGC when compared to 1D-GC, is 

in general from three to fivefold [1-3]. In addition, the number of separated peaks is larger with gain 

factors up to 10 resulting in a higher confidence level for analyte identification.  

A direct consequence of this gain in separation power is that chromatograms, data files, and peak 

lists are highly complex. A GCxGC separation produces a large and complex dataset for each 

sample, consisting of bi-dimensional retention data, detector response and, for multi channel-

detectors such as MS, the MS spectra, requiring suitable data mining methods to extract useful and 

consistent information from the dataset. These methods are a bridge between chromatographic data 

and knowledge of sample compositional characteristics.  

Two general approaches are available to link raw data (i.e. separation data) with the chemical quali-

quantitative composition of samples (and from there to correlate samples on the basis of their 

characteristics or technological treatment(s) and derive conclusions): targeted and non-targeted 

methods [4]. 

Targeted methods are based on the assumption that the overall chemical composition of the sample 

and/or the distribution of several target analytes (secondary metabolites, known key-aroma markers, 

technological markers, safety regulated components or geographical tracers) to establish sample 

comparisons and characterization are already known. On the other hand, non-targeted methods 

consider the entire multidimensional sample profile to: (a) provide a comprehensive survey of 

qualitative and quantitative differences in the chemical composition between samples as the basis of 

potential knowledge of important compositional characteristics and (b) support classification of 



samples on the basis of degree of similarity of their 2D fingerprints. With non-targeted fingerprint 

analysis, chemometric techniques, such as multivariate-analysis (MVA), offer promising strategies 

to distill essential information from GCxGC datasets [4 and references cited therein].  

Undoubtedly, as was discussed in a previous study [5], there are advantages in applying 

comprehensive and multidisciplinary approaches to interpret the increased level of information 

provided by GCxGC separation, in its full complexity. 

This study evaluates advantages and limits of targeted and non-targeted approaches based on 

the bi-dimensionality of the separation (
1
D and 

2
D retention times, detector response, and MS 

spectrum) and specific to GCxGC in chemical speciation, differentiation, and correlation of 

complex matrices of natural origin. In particular, target-analysis characterization, direct image 

comparison, and template-based fingerprinting are evaluated. Each method is tested and applied to 

study the volatile fraction of green and roasted coffee samples and dried juniper needles, to evaluate 

its ability to differentiate samples on the basis of characteristics geographical origin, harvesting, 

technological and thermal treatments in the case of coffee. Coffee and Juniper samples, as 

representative examples for two different fields of application (i.e. processed food analysis and 

secondary metabolite profiling –metabolomic), were here chosen because of the peculiar 

composition of their volatile fraction and the challenging problem they offer in sample profiling. A 

set of Arabica coffee samples (Coffea arabica) of three different geographical origins: Colombia, 

Guatemala and Brazil, differently processed (i.e. washed and natural) and submitted to different 

roasting profiles and the volatile fraction of juniper needles (Juniperus communis), collected at 

different altitudes (sea level, 600, 900, 1100 and 1400 m) were investigated. The volatile fraction of 

these matrices was sampled by headspace-solid phase microextraction (HS-SPME), a technique that 

have shown to be effective for routinely characterizing the volatile fraction of vegetable matrices 

[6,7 and references cited therein]. 

 

EXPERIMENTAL 

Reference Compounds and Solvents.  

Pure standard samples of n-alkanes (from n-C9 to n-C25) and pure reference compounds adopted 

for the identity confirmation of target compounds were supplied by Sigma-Aldrich (Milan, Italy) 

except 2-Methyl-3-Propylpyrazine supplied by VWR International (Milan, Italy). Standard stock 

solutions at 1000 g/mL were prepared in cyclohexane, stored at – 18°C and used to prepare 

standard working solutions whose concentration ranging from 50 to 5 g/mL, likewise stored at – 

18°C. 

Solvents (cyclohexane, n-hexane, dichloromethane) were all HPLC-grade from Riedel-de Haen 



(Seelze, Germany).  

 

Coffee. 

Green beens of Coffea arabica (2008) from three different geographical origins: Colombia, 

Guatemala and Brazil were supplied by Lavazza SpA (Turin, Italy) and are listed in Table 1 

together with the post-harvest treatment and the roasting time/temperature profiles. Roasting was 

done in a Probat laboratory roasting device (Emmerich, Germany) and after process the roasted 

beans were hermetically sealed under vacuum in non-permeable packages 

(polypropylene/aluminum/polyethylene - PP/Al/PET) and stored at -20 °C, until required for 

chemical analysis. 

 

Juniper. 

Needles of Juniperus communis L from Norway were collected at different altitudes (5 replicates 

indicated with arabic numbering) sample A  at 1400 m, B 1100 m, C 900 m and D at sea level in 

2008 and dried and stored in paper bags until analyzed.  

 

Headspace Solid Phase Microextraction (HS-SPME).  

SPME device and fibers were from Supelco (Bellefonte, PA, USA). A 

Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) df 50/30 μm, 2 cm length 

fiber was chosen and conditioned before use as recommended by the manufacturer. Material was 

left to reach ambient temperature before sampling. Roasted coffee was ground (0.5 g) and 

immediately sealed in a 12.5 mL vial and equilibrated for 10 min at 50°C.  

Dried juniper needles (0.06 g) were ground and hermetically sealed in a 12.5 mL vial and 

equilibrated for 5 min at 50°C.  

The SPME device was manually inserted into the sealed vial containing the sample prepared as 

described above, and the fiber was exposed to the matrix headspace, kept at 50°C, for 40 min for 

coffee samples and for 10 min for juniper needles during HS equilibration . The vial was vibrated 

for 10 s every 5 min with an electric engraver (Vibro-Graver V74, Burgess Vibrocrafters Inc, 

Brayslake, IL) to speed up the analyte equilibration process between headspace and fiber coating. 

Only that part of the vial in which the solid sample was present was heated, in order to keep the 

SPME fiber as cool as possible, to improve the vapor phase/fiber coating distribution coefficient. 

After sampling, the SPME device was immediately introduced into the GC injector for thermal 

desorption for 10 min at 250°C. Each experiment was carried out in triplicate and 2D-peak 

Area/Volume variability was ever below 15% of RSD. 



 

GCxGC Instrumental set-up 

GCxGC analyses were carried out on an Agilent 6890 GC unit coupled with an Agilent 5975 MS 

detector operating in EI mode at 70 eV (Agilent, Little Falls, DE, USA). The transfer line was set at 

270°C. A Standard Tune option was used and the scan range was set at m/z 35-240 with the fast 

scanning option applied (10000 amu/s) to obtain a number of data points for each chromatographic 

peak suitable to make its identification and quantitation reliable.  

The system was provided with a two-stage thermal modulator (KT 2004 loop modulator from Zoex 

Corporation, Houston, TX, USA) cooled with liquid nitrogen and with the hot jet pulse time set at 

250 ms with a modulation time of 4 s adopted for all experiments. Fused silica capillary loop 

dimensions were 1.0 m length, 100 m ID. 

Column set adopted was configured as follows: 
1
D SE52 column (95% polydimethylsiloxane, 5% 

phenyl) (30 m x 0.25 mm ID, 0.25 m df) coupled with a 
2
D OV1701 column (86% 

polydimethylsiloxane, 7% phenyl, 7% cyanopropyl) (1 m x 0.1 mm ID, 0.10 m df); columns were 

from MEGA (Legnano (Milan)-Italy).  

1 L of the n-alkanes sample solution was automatically injected into the GC instrument with an 

Agilent ALS 7683B injection system under the following conditions: injector: split/splitless, mode: 

split, split ratio: 1/100, injector temperature: 280°C. The HS-SPME sampled analytes were 

recovered through thermal desorption of the fiber for 10 min into the GC injector under the 

following conditions: injector: split/splitless in split mode, split ratio: 1/50, injector temperature: 

250°C. Carrier gas: helium at constant flow of 1.0 mL/min (initial head pressure 280 KPa). 

Temperature program for coffee analyses was: from 50°C (1 min) to 260°C (5 min) at 2°C/min. For 

the analysis of juniper needle samples it was: from 45°C (1 min) to 240°C (5 min) at 3°C/min; 

modulation period: 4 s  

Data was acquired by Agilent – MSD Chem Station ver D.02.00.275 (Agilent Technologies, Little 

Falls, DE, USA) and processed using GC Image software, version 1.9b4 and pre-release version 2.0 

(GC Image, LLC Lincoln NE, USA). 



RESULT AND DISCUSSION 

The study examined the ability of GCxGC to provide further and specific information on 

groups of samples on the basis of component distribution on the chromatographic plane. The first 

part of the study involved a target analysis profiling where samples, submitted to different 

technological treatments and/or differing for geographical origin, were characterized on the basis of 

known constituents. The second part examined specific non-targeted data-processing methods for 

GCxGC: direct image comparison and template-based fingerprinting to evaluate differences and 

similarities. 

 

Target analysis: technological and Key-Aroma marker profiling of Arabica coffee samples by 

HS-SPME/GCxGC-qMS. 

Coffee roasting induces several chemical reactions, whose control is fundamental to optimize 

flavor, color and texture. These reactions involve specific precursors following known and 

unknown pathways to originate a complex mixture of more than 20 different groups of substances, 

most of them contributing to the total flavor: furans, pyrazines, ketones, alcohols, aldehydes, esters, 

pyrroles, thiophenes, sulfur compounds, aromatic compounds, phenols, pyridines, thiazoles, 

oxazoles, lactones, alkanes, alkenes, and acids. Sample characterization was first run by selecting a 

suitable number of markers (targets) chosen in function of their significance for the purpose of 

describing botanical, technological and sensory characteristics of the samples under study [5,8-12]. 

Table 2 reports the list of target analytes chosen for Arabica coffee samples, their ID numbers, 

chemical name, group classification, Retention Indices and 
1
D and 

2
D retention times. Each 

component was located in the 2D plot by its 
1
D-

2
D retention times, identified by both spectral 

library matching and authentic standard confirmation. The normalized peak volume of each 

component, i.e. absolute volume normalized versus the ISTD, was used to compare samples 

differing in geographical origin, post-harvesting treatment and roasting profiles. Figures 1 and 2 

report some results: histograms give pyrazines and aroma marker distribution. The separation power 

of GCxGC is here evident in particular for pyrazines, an important group of technological markers, 

comparison was in fact based on an large number of congeners that are difficult to detect, without a 

sample pre-concentration, and to separate with a one-dimensional GC system. For instance, Figure 

1 reports pyrazine 2D pattern of Arabica samples from Colombia, Guatemala and Brazil submitted 

to a standard roasting while Table 3 reports in detail normalized peak volumes of the nineteen 

target analytes over the entire sample set. As expected, samples that have the same botanical origin 

(Coffea arabica), and thought to have a similar pyrazine precursor chemical distribution, showed 

similar quali-quantitative profiles. Some exceptions were evidenced in the Colombia standard 



roasted coffee where, as a general consideration, the total peak volume corresponding to the 

nineteen selected pyrazines was lower, i.e 540 if compared to 740, the average value for Brazil and 

Guatemala, thus indicating a lower pyrazines concentration in this sample. In particular, 2-Ethyl-3-

Methylpyrazine, 5-Ethyl-2,3-Dimethylpyrazine, 2,5-Diethylpyrazine, 2-Ethyl-6-Vinylpyrazine, 2-

Acetyl-6-Methylpyrazine and 2,3-Diethyl-5-Methylpyrazine varied greatly with decrements ranging 

from 41% for 2,3-Diethyl-5-Methylpyrazine to 84% 2-Ethyl-6-Vinylpyrazine when compared to the 

Brazil and Guatemala samples at the corresponding degree of roasting. On the other hand, some 

other alkylpyrazines such as 2-Propylpyrazine, 2-Acetyl-6-Methylpyrazine, and in particular the 

two most odour active, i.e. 2-Ethyl-3,5-Dimethylpyrazine and 2,3-Diethyl-5-Methylpyrazine 

belonging to the earthy group of aroma marker, were well separated from the congeners and detect, 

their distribution is in fact very informative from both a technological and sensory point of view. 

Since the abundance of some markers is related to the extent of thermal treatment [8], and since 

samples submitted to a mild roasting treatment showed lower abundances (in terms of normalized 

peak volumes) than those of standard-roasted samples, the approach based on evaluating 

normalized peak volumes and/or areas of the technological markers in different structural groups 

(acids, aldehydes, ketones, furans, pyridines etc.) is also very illustrative as it was deeply discussed 

in a previous study [5]. The section dealing with a direct fingerprint comparison approach will 

discuss in greater detail advantages and some limits of quali-quantitative profiling performed by 

non-targeted techniques based on sample components distribution over the 2D plane. 

A further interesting target characterization of the coffee sample set was done on a selection of 13, 

over the 28, key-aroma compounds indicated by Czerny et al [9-11]. These volatiles identified by 

aroma extract dilution analysis (AEDA) [10,12] and gas chromatography-olfactometry of headspace 

samples (HS-GC-O), showed a high odour potency and mainly contribute to the aroma of Arabica 

roasted coffee. However, their concentration in roasted samples varies greatly ranging from traces 

(ng/g) to several percent (g/100g), and, for a complete aroma profiling, sample pre-concentration is 

mandatory. Thanks to its high sensitivity, GCxGC enabled us to identify and semi-quantify, 

evaluating their relative abundance in the sample set, thirteen key-aroma compounds whose 

concentration in the original sample, expressed as mg/Kg and referred to the roasted material, 

ranges from: 130 mg/Kg of acetaldehyde, the most abundant, to 55 mg/Kg for 2-Methoxy-4-

vinylphenol, 49.4 and 36.2 mg/Kg for 2,3-butanedione and 2,3-pentanedione respectively, 3.2 and 

1.6 mg/Kg for 2-Methoxyphenol and 2-Methoxy-4-ethylphenol to 0.326 and 0.017 mg/Kg for 2-

Ethyl-3,5-Dimethylpyrazine and 2,3-Diethyl-5-Methylpyrazine respectively [9]. Key-aroma 

compounds quali-quantitative distribution is visualized in the histogram of Figure 2 for the three 

standard roasted Arabica samples under study. This profiling confirmed the relative/overall 



homogeneity of the target distribution over the sample set, coherent with the botanical 

characteristics [8] and, in this case, with the extent of roasting. Higher distributional differences 

were detectable for highly volatile compounds such as 3-Methylbutanal, 2-Methylbutanal and 2,3-

Pentanedione, among the others, while 2-Furanmethanethiol, responsible of the characteristic 

sulphurous/roasty note, was very low in the Guatemala sample as it was for the 2-Ethyl-3,5-

Dimethylpyrazine.  

 

Target analysis: sample profiling of Juniper volatile secondary metabolites by HS-

SPME/GCxGC-qMS. 

The genus Juniperus (Cupressaceae) consists of 68 species and 36 varieties mainly growing in the 

northern hemisphere. Common juniper, Juniperus communis L. is an aromatic and evergreen shrub 

and its berries are well known for their bioactivity [13,14] and as an ingredient in the production of 

juniper-based spirits, such as gin [15]. The juniper essential oils and/or extracts from needles, 

berries or wood have been the object of several studies [16].The results here reported are part of a 

systematic study on the variation of the composition of the volatile fraction of juniper (Juniperus 

communis L.) needles and berries, differing in their origin, age of the plant, and berries ripeness 

[15,17]. 

This application concerns the discrimination of the juniper needles collected in Norway at different 

altitudes as a further example of how informative can be GCxGC-qMS, adopted as target and non-

target profiling method, in describing the distribution of specific secondary metabolites, mainly 

mono- and sesquiterpenoids, of a complex volatile fraction of vegetable origin.  

The investigated Juniper needle samples are reported in the experimental section and the list of 

target analytes and their distribution in each sample in Table 4. Target analytes were semi-

quantified as percent on total volatile areas and these values used to study the secondary metabolites 

distribution within the sample set. GCxGC-qMS data showed different profiles referable to main 

groups characterized by peculiar distribution of some target analytes and already described in 

literature [18,19] the -pinene, the -pinene/sabinene and sabinene/-pinene types with some 

exceptions. Since a detailed discussion on the chemical composition of the volatile fraction of the 

complete set of samples is out of the scope of this paper, Juniper A_1, Juniper B_4, Juniper B_5, 

Juniper C_4, Juniper D_1 selected on the basis of their peculiar composition, as representative 

samples, were submitted to further investigations. Their peculiarities were due to specific and 

unusual distributions of some markers. For instance: Juniper B_4 showed the highest amount of -

pinene (59.3%), and a 0.8% of sabinene and a 0.1% of terpinen-4-ol, another informative marker. 

On the other hand, Juniper C_4 and Juniper D_1 were characterized by an intermediate amount of 



-pinene (36.7% and 33.5% respectively), and relatively low abundances of sabinene (0.5%), 

terpinen-4-ol (0.1%). In Juniper B_5 -pinene accounted for 12.8%, sabinene for 44.6% and 

terpinen-4-ol for 0.3%, and Juniper A_1 contained 21.9%, of -pinene 24.0% of sabinene and 0.4% 

of terpinen-4-ol. In conclusion, by extending the considerations on the distribution of all target 

analytes considered for juniper profiling, and listed in Table 4, results indicated the presence of two 

main groups of samples, distinguished by the % contents of -pinene and sabinene suggesting their 

classification had to be studied more in depth independently of the sites where they were collected. 

On the other hand, the harvesting site seemed to condition the samples variability , although to a 

different extent. The monoterpenoid and sesquiterpenoid composition of the Juniper D_n sample 

series was very different from the others.  

The high variability and complexity of the results obtained from the volatile fraction profiling of 

juniper samples suggested further approaches to simplify data interpretation and/or to correlate 

compositional variables. Besides the conventional approach based on 1D-GC as analysis combined 

with PCA and CA (Principal Component Analysis and Correlation Analysis), specific GCxGC data 

analysis methods can be applied to compare sample component distribution over the 2D-plane, 

abstracting or not from chemical sample speciation. On this basis, a non-targeted approach, 

template-based fingerprinting, was evaluated to differentiate juniper samples leading to useful, 

informative and consistent results. 

 

Non-targeted analysis on Arabica coffee samples. 

This section first describes a new approach for non-targeted comparative analysis of two-

dimensional chromatographic data. The approach uses templates to generate chromatographic 

fingerprints and then builds lists of potentially significant minutiae (i.e., small features) in the 

fingerprints. As detailed below, the fingerprints are created with a comprehensive mesh of 

contiguous, non-overlapping polygonal panels that divide the retention-times plane into regions that 

separate chromatographic features. Within each chromatogram, the panels in the mesh are 

quantified individually and treated as fingerprint minutiae. Various rules can be used to identify 

potentially significant minutiae for a given sample set. 

 

Reliable peak matching 

The fingerprinting process begins with the task of matching corresponding peaks within a set of 

sample chromatograms. For a complex chromatogram, such as in Figure 3, there may be hundreds 

or thousands of peaks. Peaks in two or more chromatograms correspond if they result from the same 



analyte. For comparative analysis, the matching problem is to identify which peaks in a pair (or a 

set) of chromatograms correspond. 

Matching corresponding peaks enables direct comparison of analyte peak responses across samples 

and allows alignment of chromatograms for comprehensive comparisons. In previous research [20], 

template matching has been used to identify target analytes in two-dimensional chromatograms. 

Here, template matching is used for non-targeted analysis by attempting to match as many peaks as 

possible between chromatograms. First, the peaks detected in a source chromatogram are used to 

create a template that describes the pattern of expected peaks with their individual retention times. 

Next, given another chromatogram for comparison, the matching algorithm determines the 

geometric transformation in the retention-times plane that best fits the expected peak pattern in the 

template to detected peaks in the chromatogram. A correspondence is established if there is a 

detected peak within the retention-times window around a transformed template peak. Multi-type 

templates have geometric features, such as polygons that can delineate sets of peaks, and notational 

features, such as text labels and chemical-structure graphics to convey information visually. Such 

features are geometrically transformed with the peak pattern to maintain their relative positions. 

Smart templates [21,22] attach rules that constrain potential matches based on additional peak 

attributes, such as mass spectral match factor or fractional response. 

In this step, template matching is used to generate a consensus template of non-targeted peaks that 

can be matched across all pairs within a set of chromatograms. Non-targeted peak matching is a 

difficult problem that can involve thousands of peaks for complex samples. With complex samples, 

correspondences cannot be reliably established for all peaks across multiple chromatograms. The 

matching problem is particularly difficult for co-eluting , small-intensity, and long-tailed peaks and 

is exacerbated by even small chromatographic variations. However, template matching can be used 

to establish a subset of peaks with reliable correspondences within a sample set. 

The steps for establishing reliable peak correspondences across a set of chromatograms are: 

1. Correct the baseline of each chromatogram [23]. 

2. Detect the peaks in each chromatogram. For explanatory purposes, consider a set of 

chromatograms denoted A, B, and C, in which the detected peaks in chromatogram A are 

denoted A(i) where i is a unique peak ID. 

3. Create a template from each chromatogram. For each detected peak in a chromatogram, a 

peak is added to the chromatogram’s template with expected retention times from the 

detected peak. For example, the template for chromatogram A will have an expected peak 

denoted a(i) at the retention times of the detected peak A(i).  



4. For each template peak, add a rule to constrain matching based on mass spectrometric 

similarity. For readability of this sequence of steps, the details of this step are given below. 

5. Successively match each template to the detected peaks in each other chromatogram. For 

example, when the template from chromatogram A is matched to the detected peaks in 

chromatogram B, template peak a(i) either will match some detected peak B(j) or will not be 

matched to any detected peak in B. 

6. Find the set of matched peaks for each pair of chromatograms that are consistent across all 

pairs of chromatograms. If a(i) matches B(j) and b(j) matches A(i), then peaks A(i) and B(j) 

correspond. In this research, reliable correspondence is defined as consistent 

correspondences across all pairs within the set. So, for consistency within the set in this 

example, there also must be matches for a(i) and C(k), c(k) and A(i), b(j) and C(k), and c(k) 

and B(j). Other less-restrictive consistency rules could be used, e.g., sequential consistency, 

consistency for a majority of pairs, etc. 

The steps to associate a rule for each template peak (Step 4 above) are: 

1. For each peak, consider all other peaks in the source chromatogram for the template to 

determine the largest match factor (using the NIST MS Search method [24]). In other words, 

determine the match factor with the peak that has the most similar mass spectrum. If the 

largest match factor is less than the lower threshold (a parameter set to 500 in this research), 

use the lower threshold for the match factor test. If the largest match factor is greater than 

the upper threshold (a parameter set to 650 or larger in this research), use the upper 

threshold for the match factor test. Otherwise, use the largest match factor with the other 

peaks for the match factor test written in the following step. 

2. For each peak, write a rule to constrain matching of the peak using CLIC
TM

 [22] as: 

 Match(“<ms>”)>match_factor 

where “<ms>” is the mass spectrum of the peak, the Match function computes the match 

factor between the template spectrum and the detected peak spectrum, and match_factor is 

the match factor determined in the previous step. During matching, the template peak can be 

matched to a detected peak in the chromatogram being compared only if the match factor 

between the template peak mass spectrum (from the source chromatogram) and the detected 

peak mass spectrum is greater than the match_factor value in the rule. 

The set of peaks that are reliable are included in a consensus template. For each peak in the 

consensus template, the expected retention times are the averages of the retention times of the 

corresponding peaks in the set of individual templates, the mass spectrum is the average of the mass 

spectra, and the match factor value for the rule is the average of the match factor values. In the 



example, if A(i), B(j), and C(k) are reliable peaks, then the consensus template denoted t is t(i.j.k) = 

Average(a(i), b(j), c(k)). Alternatively, the match_factor value in the consensus template can be 

computed as described in Step 4a, but using all peaks (other than the corresponding peaks in all 

chromatograms in the set. 

Figure 3 illustrates a two-dimensional chromatogram of standard-roast Colombian coffee, with the 

locations of all 1652 detected peaks in the chromatogram shown with black and yellow circles. The 

subset of 891 reliable peaks determined for a set of three chromatograms including this 

chromatogram and chromatograms of standard-roast Brazilian and Guatemalan coffees, with 1658 

and 1700 detected peaks respectively, are indicated with black circles. The peaks indicated with 

yellow circles are not reliable for this set of three chromatograms. This figure makes clear the high 

complexity of the chromatogram. 

The set of reliable peaks can be used to compare some of the peak responses across the 

chromatograms, but for such complex samples it is unavoidable that many peaks are not reliably 

matched. For this reason, the primary purpose of the reliable peak set is to provide a basis for 

aligning (or registering) the chromatograms, as described in the next subsection, rather than for 

comprehensive comparison. Here, the detection algorithm is applied to the entire chromatogram, 

including some regions with chromatographic artifacts. The user could decide either to include such 

regions in this and subsequent steps (e.g., to assess chromatographic changes) or to exclude such 

regions from analysis. 

 

Chromatogram alignment and comparative visualization 

For visual comparisons of two-dimensional chromatograms, the corresponding peaks should be 

aligned as well as possible and normalized in terms of response [25]. To align two-dimensional 

chromatograms for pairwise comparison, one of the chromatograms is transformed in the retention-

times plane to minimize the mean-square misalignment of the reliable peaks. Affine transformations 

(with scaling, translation, and shearing) have been shown to account for large variations in 

chromatographic conditions [26] and so are used here to find the best fit between the peak pattern in 

a template and detected peaks in a chromatogram. In these experiments the chromatograms were 

intensity scaled to have the same total response after baseline correction. 

After chromatograms are aligned and normalized for total response, they can be visually compared. 

Figure 4 shows two pseudocolor comparisons [25] of standard-roast Brazilian and standard-roast 

Colombian coffees. The first image shows the colorized fuzzy difference, which uses the Hue-

Intensity-Saturation (HIS) colorspace to color each pixel in the retention-times plane. The method 

first computes the difference at each datapoint. The pixel hue is set to green if the difference is 



positive and red if the difference is negative. The pixel intensity is set to the larger of the two 

values. The pixel saturation is set to the magnitude of the difference between the datapoints. Peaks 

are visible because large-valued datapoints yield bright pixels and small-valued datapoints yield 

dark pixels. If the difference is large, the color is saturated with red or green (depending on which 

datapoint is larger); if the difference is small, the color saturation is low, producing a graylevel from 

black to white depending on intensity. So, peaks with large differences appear red or green and 

peaks with small differences appear white or gray. The fuzzy difference is computed as the 

difference between a datapoint and a small region of datapoints in the other chromatogram. The 

second image shows the colorized fuzzy ratio for the same two chromatograms. The 

pseudocolorization is the same as for colorized fuzzy difference except that the difference is divided 

by the larger of the two values in computing the saturation. So, the colors are saturated with red or 

green only where the relative difference (rather than the absolute difference) is large. 

Differences are highlighted visually by colorization. For example, as seen in Figure 4, the two 

green peaks at approximately (7.9 min, 1.9 s) indicate larger responses in the chromatogram of the 

standard-roast Brazilian coffee. Similarly, the red peaks at (26 min, 3 s) and (43.3 min, 2.6 s) 

indicate larger responses in the chromatogram of the standard-roast Colombian coffee. However, 

visual comparisons are not quantitative, so it is difficult to “see” if these are the most significant 

differences. Also, with so many apparent differences, it is difficult to comprehensively catalog the 

visual differences. The lack of comprehensiveness with peak matching and the lack of 

quantification with visualization motivates a fingerprinting method that is both comprehensive and 

quantitative, as described in the next section. 

 

Fingerprinting with meshes 

The goal of chromatographic fingerprinting is to catalog features of a chromatogram 

comprehensively, quantitatively, and in a manner that can be compared across samples. The 

approach presented here is to comprehensively divide the chromatographic plane into regions that 

distinguish chromatographic features and then quantify the response in each region. The regions are 

incorporated into the consensus template. The positions of the regions in the retention-times plane 

are defined relative to the pattern of peaks in the consensus template and transformed with the 

template peaks during matching, so their relative positions are maintained when the consensus 

template peaks are matched to detected peaks in a chromatogram. 

The comprehensive subdivision of the chromatographic plane is implemented with a new construct 

called a mesh — a polygon that is subdivided into non-overlapping polygonal panels. Currently, the 

subdivision is performed interactively with a set of convenient tools that make mesh editing simple 



and fairly fast. The analyst outlines a region of the chromatogram and then draws subdividing 

polylines to delineate chromatographic features such as peaks or peak sets. Ongoing work will 

automate mesh subdivision. 

In these experiments, the comprehensive mesh was created based on a cumulative chromatogram 

formed by summing all of the chromatograms in a set. The individual chromatograms can be 

aligned or not aligned before summing. Summing aligned chromatograms facilitates finer 

delineation in the mesh panels, whereas summing non-aligned chromatograms takes into account 

chromatographic variations in delineating the mesh panels. Here, the chromatographic variations 

were small and no alignment was performed in creating the cumulative chromatogram. The 

chromatograms were intensity-normalized before summing. 

Figure 5 shows the cumulative chromatogram for three samples from standard-roast Brazilian, 

Colombian, and Guatemalan coffees and the meshes created for fingerprinting. In this analysis, 34 

meshes covering the chromatographic features were divided into 1109 panels. The number of panels 

is on the order of, but less than, the number of peaks.  Some panels were drawn to encompass more 

than one detected peak, e.g., along streaks of column bleed or for co-eluted peaks.  

The pattern of reliable peaks in the consensus template is matched to the pattern of detected peaks 

in each chromatogram and the matched peaks in each chromatogram are labeled with the name of 

the matched template peak. For untargeted analysis, the chemical name is not known and so an ID 

number is used. The meshes in the consensus template are copied into each chromatogram with the 

least-squares-optimal retention-times transformation (geometric scaling and translation) determined 

from the peak matches. This maintains the positions of the mesh panels in the retention-times plane 

relative to the peaks. 

The response in each panel can be computed in one of two ways: (1) treat the panel as a region (or 

area) of the chromatogram and sum the response at all datapoints in the panel or (2) treat the panel 

as a peak selector and sum the response of all peaks whose apex (the datapoint which has the largest 

value in a peak) is in the panel. In the results here, method (1), computing the response as the sum 

of datapoints in the panel, is used. This provides a quantitative measurement in each panel. The 

quantitative measurement of the response in each panel is one minutiae of the fingerprint. The set of 

all minutiae for a sample is its fingerprint. 

 

Fingerprint analysis 

Complex samples have extensive fingerprints. For example, the standard-roast coffee fingerprints 

from the mesh shown in Figure 5 have 1109 minutiae. It is useful to list the most significant 

minutiae, but significance may depend on the goal of analysis. Sifting of the many minutiae can 



indicate potentially significant chromatographic features. If many samples are available, then 

methods for dimensionality reduction, such as principal component analysis (PCA) or spectral 

clustering could be employed. Here, with three samples, the minutiae are sifted in various ways to 

generate tables of potentially significant features.  

Table 5a lists the 15 minutiae with the largest average percent response, i.e., the response within 

the mesh panel divided by the response within the entire chromatogram. The logic of this sifting is 

that these minutiae indicate the regions of the chromatogram with the largest responses, presumably 

produced by the compounds that are the major constituents of the sample. The first column 

indicates the rank of the region’s average percent response; the second and third columns list the 

average retention times of the region’s apex; the third column lists the region’s average percent 

response; the fourth through sixth columns provide the percent response in each chromatogram; and 

the last column refers to the marker compound list in Table 2. The largest percent response on each 

row is in bold and the smallest percent response is in italics. Eleven of the largest percent response 

minutiae are marker compounds. In Figure 6a the retention times of the minutiae listed in Table 5a 

are highlighted on the cumulative chromatogram of the set of standard-roast coffee samples. 

Table 5b lists the 15 minutiae with the largest standard deviation in percent response for the set of 

chromatograms. The logic of this sifting is that these minutiae indicate the regions of the 

chromatogram in which the differences between the samples were quantitatively largest. Twelve of 

the 15 minutiae in the table are marker compounds. Eleven of the 15 minutiae in this table are 

among those with the largest percent response listed in Table 5a. It is not surprising that many of 

the major compounds exhibit the largest absolute difference in percent response. This table has two 

markers that are not among the major compounds listed in Table 5a: Marker 6 at Rank 5 and 

Marker 39 at Rank 12. In Figure 6b, the retention times of the minutiae listed in Table 5b are 

highlighted on the colorized fuzzy difference of the standard-roast Brazilian and standard-roast 

Colombian coffees. 

Table 5c lists the 15 minutiae with the largest relative standard deviation in percent response, i.e., 

the standard deviation in percent response divided by the average percent response. Only minutiae 

with an average percent response of at least 0.01% (the denominator of the ratio) were ranked. The 

logic of this sifting is that small absolute quantitative differences still might be important if the 

relative difference is large. Three of these compounds are marker compounds, none of which are 

listed in Tables 5a or 5b. In Figure 6c, the retention times of the minutiae listed in Table 5c are 

highlighted on the colorized fuzzy ratio of the standard-roast Brazilian and standard-roast 

Colombian coffees. 

 



Non-targeted analysis: Template matching on Juniper samples. 

Non-targeted fingerprint analysis was performed with a set of five chromatograms of Juniper 

samples (numbered A_1, B_4, B_5, C_4, and D_1). The cumulative chromatogram, created by 

summing the intensity-normalized sample chromatograms, as described in the previous section, is 

shown in Figure 7. The template used for analysis (overlayed on Figure 7) consists of a set of 109 

consensus peaks for the set of five samples (retention times indicated by yellow circles in Figure 7) 

and 727 panels in six meshes (outlined in black in Figure 7). Template matching with the 

consensus peaks was performed on each chromatogram and the meshes were transformed consistent 

with the peak matching. The fingerprint of each chromatogram then was created as the list of all 

panels with the total response in each panel (just as was done for the coffee samples). 

Table 6 lists potentially significant minutiae sifted with the same criteria used in the previous 

section: (6a) largest mean percent response, (6b) largest percent response standard deviation, and 

(6c) largest percent response standard deviation relative to mean percent response. Because the 

chromatograms for the Juniper samples had fewer peaks than the chromatograms for the coffee 

samples, the minimum mean percent response for inclusion by the third criterion was set to 0.1% 

rather than 0.01% for the standard-roast coffee analysis. Many of the minutiae selected by the first 

two criteria contain peaks listed in Table 4. The differences between chromatograms B_4 and B_5 

are especially notable for minutiae selected by both criteria. The third criterion may be useful for 

identifying distinguishing trace constituents. 

 

 

CONCLUSIONS 

Fingerprint analysis can be highly useful for many purposes, including sample comparison and 

classification, but it is not a detailed assay of individual constituents. In particular, the specification 

of comprehensive mesh panels, whether interactive or automatic, at present may still delineate 

features incompletely (e.g., placing two important chromatographic features in the same panel) or 

incorrectly (e.g., splitting a chromatographic feature into two panels). Co-elutions and 

chromatographic variations still may cause problems, so as with targeted analysis selectivity, 

repeatability, and reproducibility are important. The fingerprints described here are defined by the 

total responses in the mesh panels, but spectral information could be extracted into the fingerprint, 

which could be especially useful for co-elutions. 

Fingerprint analysis and targeted analysis can be combined to be more effective than either 

technique alone. Targeted analysis can better quantify individual compounds (especially when 

interactively performed by an expert analyst), but fingerprint analysis may identify compounds that 



are comparatively significant but are not known targets. So, a productive analytical approach is to 

use fingerprinting to identify potentially significant chromatographic features and then use that 

information to inform the development of a list of compounds for targeted analysis. 
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Captions to Tables: 

Table 1: Coffea arabica samples: sample acronyms, geographical origin, post-harvest treatment and 

roasting time/temperature profiles. 

 

Table 2: List of markers adopted for the target characterization approach of Coffea arabica 

samples: ID number, compound name, group name, Retention Indices (RI), 
1
D and 

2
D retention 

times. Markers were identified on the basis of their linear retention indices and MS-EI spectra 

compared with those of authentic standards (indicated with ref) or tentatively identified through 

their MS-EI fragmentation patterns and retention indices. 

 

Table 3: normalized peak volumes (mean of 3 replicates – RSD% below 15) distribution of the 

nineteen pyrazine derivatives identified in the Guatemala, Brazil and Colombia coffee samples 

submitted to standard and mild roasting conditions.  

 

Table 4: Marker compounds for target characterization of Juniper communis L. samples: compound 

name, 
1
D and 

2
D retention times, relative abundance on selected samples. Markers were identified 

on the basis of their MS-EI spectra compared with those of authentic standards or tentatively 

identified through their MS-EI fragmentation patterns. 

 

Table 5: Selected standard-roast coffee minutiae. The first part (5a) lists the 15 minutiae with the 

largest mean percent response, first and second dimension retention times (
1
D and 

2
D) and target 

analytes ID (for target ID refer to Table 2). The second part (5b) lists the 15 minutiae with the 

largest percent response standard deviation. The third part (5c) lists the 15 minutiae with the largest 

relative percent response standard deviation. 

 

Table 6: Selected juniper fingerprint minutiae. The first part (6a)lists the 15 minutiae with the 

largest mean percent response, first and second dimension retention times (
1
D and 

2
D) and target 

analytes ID (for target ID refer to Table 4). The second part (6b) lists the 15 minutiae with the 

largest percent response standard deviation. The third part (6c) lists the 15 minutiae with the largest 

relative percent response standard deviation 



Captions to Figures 

 

Figure 1: pyrazine 2D pattern of Arabica samples from Guatemala, Brazil and Colombia submitted 

to a standard roasting. Results are reported as normalized 2D-Peak Volume over the ISTD, for 

analyte ID (x-axis) see Table 2.  

 

Figure 2: key-aroma marker 2D pattern of Arabica samples from Guatemala, Brazil and Colombia 

submitted to a standard roasting. Results are reported as normalized 2D-Peak Volume over the 

ISTD. For analyte ID (x-axis) see Table 2. 

 

Figure 3: GCxGC-MS chromatogram for standard-roast Colombian coffee. Circles indicate the 

retention times of 1652 peaks. Black circles indicate the subset of 891 reliable peaks that were 

consistently matched for a set of three chromatograms (including this chromatogram and 

chromatograms of standard-roast Brazilian and Guatemalan coffees) and yellow circles indicate 

unreliable peaks that were not matched consistently for the set. 

 

Figure 4: Pseudocolor comparisons of chromatograms from standard-roast Brazilian and 

Colombian coffees. 4a shows the colorized fuzzy difference and 4b shows the colorized fuzzy ratio. 

In both, green indicates a larger response for the Brazilian sample and red indicates a larger 

response for the Colombian sample. 

 

Figure 5: Mesh panels (shown as black polygons) for analysis of the set of three chromatograms 

from standard-roast coffee overlaid on the cumulative chromatogram. There are 34 meshes covering 

the chromatographic features divided into 1109 panels. The consensus template also contains the 

reliable peaks shown in Figure 3. 

 

Figure 6: The first image (6a) indicates the apex retention times of the 15 minutiae with the largest 

mean percent response. The second image (6b) indicates the apex retention times of the 15 minutiae 

with the largest percent response standard deviation. The third image (6c) indicates the apex 

retention times of  the 15 minutiae with the largest relative percent response standard deviation. 

 

Figure 7: Cumulative chromatogram for a set of six Juniper samples with a template of reliable 

peaks indicated by yellow circles and mesh panels indicated by black outlines. 



Table 1: Coffea arabica samples: sample acronyms, geographical origin, post-harvest treatment and roasting 

time/temperature profiles. 

 

Sample acronym 
Geographical 

origin 

Post-harvest 

treatment 

Degree of 

Roasting 
Roasting conditions 

 
 

  Time (min) Temp. (°C) 

Colombia Green Colombia washed No roasting - - 

Colombia Mild Colombia washed Mild 10.29 194 

Colombia Standard Colombia washed Standard 10.21 203 

      

Guatemala Green Guatemala washed No roasting - - 

Guatemala Mild Guatemala washed Mild 9.46 187 

Guatemala Standard Guatemala washed Standard 10.28 194 

      

Brazil Green Brazil natural No roasting - - 

Brazil Mild Brazil natural Mild 9.24 202 

Brazil Standard Brazil natural Standard 10.15 185 

      
      

 



Table 2: List of markers adopted for the target characterization approach of Coffea arabica samples: ID number, 

compound name, group name, Retention Indices (RI), 
1
D and 

2
D retention times. Markers were identified on the basis 

of their linear retention indices and MS-EI spectra compared with those of authentic standards (indicated with ref) or 

tentatively identified through their MS-EI fragmentation patterns and retention indices. 

 

ID Compound name Group Name Identification RI 1D (min) 2D (s) 

         

1 Acetaldehyde  key aroma ref 546 3.42 2.48 

2 2-Propanone  target group ref 550 3.69 1.64 

3 Formic acid  target group tentatively 552 3.82 0.51 

4 2,3-Butanedione key aroma ref 559 4.22 4.21 

5 Acetic acid target group ref 560 4.29 0.51 

6 2-Methylfuran target group ref 761 4.35 2.02 

7 3-Methylbutanal key aroma ref 772 5.02 4.38 

8 2-Methylbutanal key aroma ref 772 5.02 4.38 

9 1-Hydroxy-2-Propanone  target group ref 772 5.02 0.67 

10 Propanoic acid target group ref 778 5.35 1.35 

11 2,3-Pentanedione key aroma ref 779 5.42 4.50 

12 3-Hydroxy-2-Butanone target group ref 786 5.82 0.80 

13 Butanoic acid  target group ref 813 7.42 2.36 

14 2,3-Butanediol target group ref 823 8.02 1.94 

15 Methylpyrazine target group ref 841 9.09 5.09 

16 2-Furancarboxaldehyde  target group ref 846 9.42 1.73 

17 3-Methylbutanoic acid target group ref 856 10.02 2.86 

18 2-Furanmethanol  target group ref 862 10.35 2.69 

19 3-Methyl-4-Heptanone target group ref 887 11.89 1.26 

20 2-Furfuryl formate target group tentatively 902 12.75 1.64 

21 3-(methylthio)-Propanal  key aroma ref 904 12.89 1.94 

22 2-Acetylfurane target group ref 906 13.02 1.94 

23 2-Furanmethanethiol  key aroma ref 908 13.09 1.43 

24 2,5-Dimethylpyrazine target group ref 910 13.22 1.39 

25 Ethylpyrazine target group ref 914 13.49 1.39 

26 Ethenylpyrazine target group tentatively 929 14.35 1.52 

27 5-Methylfurfural target group ref 957 16.02 2.61 

28 Benzaldehyde  target group ref 959 16.15 1.94 

29 Hexanoic acid  target group ref 972 16.95 3.79 

30 2-Furfuryl acetate target group ref 988 17.89 2.02 

31 2-Ethyl-6-Methylpyrazine target group ref 996 18.35 1.68 

32 2-Ethyl-3-Methylpyrazine target group ref 999 18.55 1.64 

33 Propylpyrazine target group ref 1008 19.15 1.64 

34 2-Ethenyl-6-Methylpyrazine target group tentatively 1015 19.62 1.81 

35 2-Acetypyrazine target group ref 1019 19.89 2.19 

36 2-Ethenyl-5-Methylpyrazine target group ref 1019 19.89 1.77 

37 Benzeneacetaldehyde target group ref 1041 21.35 2.44 

38 Furaneol key aroma ref 1054 22.29 4.04 

39 5-Ethyl-2,3-Dimethylpyrazine target group tentatively 1074 23.62 1.73 

40 2-Ethyl-3,5-Dimethylpyrazine key aroma tentatively 1080 24.02 1.73 

41 2-Methoxyphenol key aroma ref 1083 24.22 2.69 

42 3-Ethyl-2,5-Dimethylpyrazine target group tentatively 1083 24.22 1.77 

43 2,5-Diethylpyrazine target group ref 1089 24.62 1.77 

44 2-Ethyl-6-Vinylpyrazine target group ref 1111 26.15 2.40 

45 2-Acetyl-6-Methylpyrazine  target group tentatively 1117 26.55 2.31 

46 2,3-Diethyl-5-Methylpyrazine key aroma ref 1148 28.75 1.81 

47 3,5-Diethyl-2-Methylpyrazine target group ref 1152 29.02 1.81 

48 2-Allyl-5-Methylpyrazine target group tentatively 1159 29.49 2.06 

49 4-Ethyl-2-Methoxyphenol key aroma ref 1272 37.22 2.78 

50 2-Methoxy-4-Vinylphenol key aroma ref 1308 39.69 3.20 

51 -E-Damascenone key aroma ref 1377 44.15 2.53 



Table 3: normalized peak volumes (mean of 3 replicates – RSD% below 15) distribution of the nineteen pyrazine 

derivatives identified in the Guatemala, Brazil and Colombia coffee samples submitted to standard and mild roasting 

conditions.  

ID Compound name 1D (min) 2D (s) Normalized 2D-peak volumes 

    Guatemala Brazil Colombia 

    mild standard mild standard mild standard 

          

15 Methylpyrazine 9.09 1.09 168 194 182 210 137 141 

24 2,5-Dimethylpyrazine 13.22 1.39 177 165 171 205 128 133 

25 Ethylpyrazine 13.49 1.39 52 63 41 50 49 60 

26 Ethenylpyrazine 14.35 1.52 9 13 11 13 7 11 

31 2-Ethyl-6-Methylpyrazine 18.35 1.68 54 66 54 58 40 43 

32 2-Ethyl-3-Methylpyrazine 18.55 1.64 90 81 89 97 67 51 

33 Propylpyrazine 19.15 1.64 5 7 5 7 3 5 

34 2-Ethenyl-6-Methylpyrazine 19.62 1.81 18 13 13 14 9 16 

35 2-Acetypyrazine 19.89 2.19 16 17 18 18 13 13 

36 2-Ethenyl-5-Methylpyrazine 19.89 1.77 8 8 8 10 7 7 

39 5-Ethyl-2,3-Dimethylpyrazine 23.62 1.73 52 39 40 53 33 21 

40 2-Ethyl-3,5-Dimethylpyrazine 24.02 1.73 6 6 8 13 6 7 

42 3-Ethyl-2,5-Dimethylpyrazine 24.22 1.77 13 13 3 4 10 9 

43 2,5-Diethylpyrazine 24.62 1.77 3 3 3 5 2 2 

44 2-Ethyl-6-Vinylpyrazine 26.15 2.40 13 13 14 14 2 2 

45 2-Acetyl-6-Methylpyrazine  26.55 2.31 26 25 28 31 10 10 

46 2,3-Diethyl-5-Methylpyrazine 28.75 1.81 3 3 1 2 2 2 

47 3,5-Diethyl-2-Methylpyrazine 29.02 1.81 5 6 6 9 5 5 

48 2-Allyl-5-Methylpyrazine 29.49 2.06 10 10 8 9 5 8 

          

   SUM 727 747 702 821 536 545 

 



Table 4: Marker compounds for target characterization of Juniper communis L. samples: compound name, 
1
D and 

2
D 

retention times, relative abundance on selected samples. Markers were identified on the basis of their MS-EI spectra 

compared with those of authentic standards or tentatively identified through their MS-EI fragmentation patterns. 

 

 

 Compound name 1D (min) 2D (s) Relative Abundance (%) 

ID    Juniper A_1 Juniper B_4 Juniper B_5 Juniper C_4 Juniper D_1 

         

1 acetic acid 4.27 1.26 n.d. n.d. n.d. n.d. tr 

2 hexanal 8.53 1.39 0.1 tr tr 0.1 0.1 

3 E-2-hexenal 10.67 1.70 0.1 0.1 0.1 0.1 1.2 

4 tricyclene 13.47 1.34 tr 0.2 tr 0.1 0.1 

5 α-thuyene 13.60 1.35 2.2 0.2 4.1 0.1 0.3 

6 α-pinene 14.13 1.39 21.9 59.3 12.8 33.5 36.7 

7 camphene 14.80 1.44 0.2 0.4 0.1 0.2 0.2 

8 benzaldehyde 15.40 2.09 tr 0.1 tr tr 0.2 

9 sabinene 16.00 1.52 24.0 0.8 44.6 0.5 0.5 

10 β-pinene 16.20 1.48 2.3 2.4 1.1 1.9 1.7 

11 myrcene 16.60 1.52 8.8 6.0 7.9 9.3 8.3 

12 -2-carene 17.13 1.48 0.3 0.1 0.2 0.7 0.6 

13 3-carene 17.67 1.52 4.0 6.6 1.9 8.7 7.1 

14 α-terpinene 18.00 1.52 0.4 tr 1.0 0.1 0.1 

15 p-cymene 18.36 1.65 0.7 0.2 0.4 1.4 2.0 

16 limonene 18.63 1.56 16.1 6.3 4.7 19.2 3.4 

17 -phellandrene 18.76 1.61 3.6 0.8 0.7 11.6 7.4 

18 β-ocimene 19.33 1.57 0.1 2.7 0.1 0.7 0.1 

19 -terpinene 20.07 1.61 1.3 0.1 2.4 0.1 0.1 

20 cis sabinene hydrate 20.70 1.96 n.d. 0.2 n.d. 0.1 n.d. 

21 α-terpinolene 21.49 1.65 3.4 1.9 4.5 1.9 2.0 

22 p-cymenene 21.60 1.80 tr tr tr 0.1 0.1 

23 trans-sabinene hydrate 22.23 2.08 0.2 tr 0.1 tr n.d 

24 terpinen-4-ol 26.10 2.09 0.4 0.1 0.3 0.1 0.1 

25 -terpineol 26.77 2.17 tr tr 0.1 0.4 0.3 

26 bornyl acetate 30.94 2.11 0.1 0.1 0.2 0.4 0.4 

27 terpinyl acetate 31.40 2.11 n.d. 0.1 n.d. n.d. tr 

28 -cubebene 33.80 1.83 0.1 0.1 tr 0.1 0.1 

29 α-copaene 35.13 1.87 0.1 tr tr 0.2 n.d 

30 -bourbonene 35.40 1.94 n.d. tr tr n.d. 0.1 

31 myrtanol acetate 35.53 1.90 n.d. n.d. n.d. n.d. tr 

32 β-elemene 35.73 1.96 1 1.5 0.9 1.5 1.3 

33 -elemene 37.43 2.00 0.6 0.1 0.2 0.1 0.3 

34 α-humulene 38.64 2.09 0.6 0.8 2.0 0.5 5.0 

35 -muurolene 39.40 2.01 0.1 0.1 tr 0.1 0.1 

36 germacrene D 39.67 2.13 1.5 4.6 2.2 1.6 4.9 

37 -selinene 40.07 2.07 0.1 0.1 0.1 0.1 0.4 

38 bicyclogermacrene 40.27 2.09 0.2 0.8 0.3 0.2 0.7 

39 -cadinene 40.93 2.09 0.1 0.1 0.1 0.2 0.2 

40 -cadinene 41.07 2.04 1.3 0.9 0.5 1.5 0.8 

41 -cadinene 41.87 2.01 0.1 0.1 0.1 0.1 0.1 

42 germacrene B 42.87 2.13 1.6 0.1 0.5 0.2 0.9 

43 caryophyllene oxide 43.70 2.48 n.d. n.d. n.d. n.d. 0.1 

         

 



Table 5: Selected standard-roast coffee minutiae. The first part (5a) lists the 15 minutiae with the largest mean percent 

response, first and second dimension retention times (
1
D and 

2
D) and target analytes ID (for target ID refer to Table 2). 

The second part (5b) lists the 15 minutiae with the largest percent response standard deviation. The third part (5c) lists 

the 15 minutiae with the largest relative percent response standard deviation. 

 

Table 5a 

Rank 1D (min) 2D (s) Std Dev Brazil Colombia Guatemala Target ID 

1 10.35 2.64 13.6919 14.0311 13.0304 14.0142 18 

2 16.04 2.64 6.6054 6.0931 7.1828 6.5402 27 
3 9.42 1.74 4.8270 3.8194 5.9078 4.7537 16 

4 17.93 1.99 3.5881 3.6550 3.5565 3.5528 30 

5 9.13 1.04 3.4910 3.9582 2.9041 3.6107 15 
6 4.29 0.51 3.4191 3.2690 3.1775 3.8108 5 

7 10.80 2.23 3.1921 3.1846 3.2474 3.1444  
8 6.64 0.72 2.9283 3.0356 2.8312 2.9182  

9 13.22 1.44 2.6059 2.8419 2.3215 2.6543 24 

10 18.62 1.66 1.4742 1.6840 1.1619 1.5769 32 

11 13.15 3.80 1.3769 1.4239 1.3435 1.3634  

12 13.49 1.40 1.2316 1.5180 1.1284 1.0485 25 

13 26.00 3.31 1.2006 1.2356 1.1996 1.1666  
14 18.38 1.67 1.0378 1.1287 0.7820 1.2025 31 

15 39.73 3.14 1.0140 0.8873 1.2593 0.8954 50 

 

Table 5b 

Rank 1D (min) 2D (s) Std Dev Brazil Colombia Guatemala Target ID 

1 9.42 1.74 1.0462 3.8194 5.9078 4.7537 16 

2 10.35 2.64 0.5729 14.0311 13.0304 14.0142 18 
3 16.04 2.64 0.5478 6.0931 7.1828 6.5402 27 

4 9.13 1.04 0.5371 3.9582 2.9041 3.6107 15 

5 4.33 1.91 0.3644 0.9195 1.3296 0.6028 6 
6 4.29 0.51 0.3423 3.2690 3.1775 3.8108 5 

7 18.62 1.66 0.2758 1.6840 1.1619 1.5769 32 

8 13.22 1.44 0.2635 2.8419 2.3215 2.6543 24 
9 13.49 1.40 0.2512 1.5180 1.1284 1.0485 25 

10 18.38 1.67 0.2245 1.1287 0.7820 1.2025 31 

11 39.73 3.14 0.2125 0.8873 1.2593 0.8954 50 
12 23.64 1.74 0.1822 0.7643 0.4589 0.7837 39 

13 5.00 2.93 0.1371 0.0383 0.2854 0.0589  

14 5.09 0.32 0.1191 0.4693 0.2730 0.4880  
15 6.64 0.72 0.1026 3.0356 2.8312 2.9182  

 

Table 5c 

Rank 1D (min) 2D (s) Rel Std Dev Brazil Colombia Guatemala Target ID 

1 19.42 3.96 1.4512 0.0029 0.0411 0.0021  

2 8.02 0.52 1.3599 0.0924 0.0077 0.0077  

3 28.75 1.87 1.2854 0.0037 0.0029 0.0318 46 
4 30.11 2.40 1.2368 0.0045 0.0323 0.0031  

5 24.02 1.74 1.1218 0.0211 0.0031 0.0733 40 

6 5.00 2.93 1.0753 0.0383 0.2854 0.0589  
7 7.66 1.84 1.0120 0.1444 0.0297 0.0257  

8 23.98 2.09 0.9775 0.0290 0.0172 0.1114  

9 8.00 1.94 0.9370 0.1668 0.0346 0.0390 14 
10 20.53 3.96 0.8679 0.0047 0.0330 0.0127  

11 29.35 1.81 0.8400 0.0234 0.0074 0.0050  

12 20.62 3.21 0.8362 0.0068 0.0298 0.0090  
13 14.35 2.48 0.7784 0.0254 0.0084 0.0065  

14 30.93 3.91 0.7432 0.0094 0.0214 0.0044  

15 25.04 3.91 0.7387 0.0165 0.0415 0.0098  

 



Table 6: Selected juniper fingerprint minutiae. The first part (6a)lists the 15 minutiae with the largest mean percent 

response, first and second dimension retention times (
1
D and 

2
D) and target analytes ID (for target ID refer to Table 4). 

The second part (6b) lists the 15 minutiae with the largest percent response standard deviation. The third part (6c) lists 

the 15 minutiae with the largest relative percent response standard deviation 

Table 6a 

Rank 1D (min) 2D (s) Average Juniper A_1 Juniper B_4 Juniper B_5 Juniper C_4 Juniper D_1 Target ID 

1 14.26 1.44 12.9336 7.7678 20.0186 7.7527 14.9357 14.1935 10 
2 18.67 1.65 9.1767 10.9812 6.8474 5.5728 15.8854 6.5965 16 

3 16.62 1.59 6.5296 4.5154 4.7077 16.0891 3.9084 3.4273 11 

4 39.71 2.15 5.5815 4.1242 9.1019 3.6288 4.2073 6.8452 36 
5 17.57 1.62 4.8975 4.3377 4.6155 3.0374 7.0728 5.4240 12 

6 37.11 2.08 4.4388 2.3308 3.7380 4.6715 2.0895 9.3642 33 

7 35.71 2.04 4.1955 4.4434 5.3720 2.6057 4.7771 3.7793 32 
8 16.18 1.58 3.7113 2.6565 2.3350 10.3134 1.9002 1.3515 10 

9 38.63 2.12 3.2559 2.1526 2.8471 3.1141 2.1487 6.0171 34 

10 15.93 1.59 3.2469 8.7470 0.0287 5.9328 0.9833 0.5423 9 
11 40.27 2.17 2.7069 2.6394 3.4917 1.4583 2.6000 3.3450 38 

12 37.41 2.04 2.5815 4.0114 1.9980 1.9147 1.6661 3.3174 33 

13 21.45 1.73 2.4276 2.9508 2.0259 3.4667 1.9892 1.7054 21 
14 41.07 2.11 1.3339 1.6744 1.4762 0.6602 1.8962 0.9627 40 

15 42.83 2.19 1.3327 2.6352 0.6225 0.9893 0.8942 1.5221 42 

 

Table 6b 

Rank 1D (min) 2D (s) Std Dev Juniper A_1 Juniper B_4 Juniper B_5 Juniper C_4 Juniper D_1 Target ID 

1 16.62 1.59 5.3679 4.5154 4.7077 16.0891 3.9084 3.4273 11 

2 14.26 1.44 5.2278 7.7678 20.0186 7.7527 14.9357 14.1935 6 
3 18.67 1.65 4.2818 10.9812 6.8474 5.5728 15.8854 6.5965 16 

4 15.93 1.59 3.8814 8.7470 0.0287 5.9328 0.9833 0.5423 9 

5 16.18 1.58 3.7230 2.6565 2.3350 10.3134 1.9002 1.3515 10 
6 37.11 2.08 2.9482 2.3308 3.7380 4.6715 2.0895 9.3642 33 

7 39.71 2.15 2.3353 4.1242 9.1019 3.6288 4.2073 6.8452 36 

8 38.63 2.12 1.6011 2.1526 2.8471 3.1141 2.1487 6.0171 34 
9 17.57 1.62 1.4885 4.3377 4.6155 3.0374 7.0728 5.4240 13 

10 13.58 1.42 1.3793 2.0003 0.0072 3.1584 0.3038 0.2380 5 

11 19.35 1.69 1.1003 0.1525 2.7059 0.2527 1.1356 0.1585 18 

12 20.05 1.66 1.0910 1.6347 0.1966 2.4762 0.1424 0.0822 19 

13 35.71 2.04 1.0588 4.4434 5.3720 2.6057 4.7771 3.7793 32 

14 37.41 2.04 1.0258 4.0114 1.9980 1.9147 1.6661 3.3174 33 
15 43.49 2.46 0.8982 2.0657 0.1725 0.5593 2.1147 0.7560 43 

 

Table 6c 

Rank 1D (min) 2D (s) Rel Std Dev Juniper A_1 Juniper B_4 Juniper B_5 Juniper C_4 Juniper D_1 Target ID 

1 16.29 3.80 2.1837 0.0028 0.0034 1.6915 0.0027 0.0236  

2 29.33 2.11 2.1270 0.0057 0.0129 1.8950 0.0205 0.0380  
3 21.55 1.47 2.1168 0.0079 0.5973 0.0057 0.0091 0.0039  

4 16.45 1.26 2.0740 0.0071 0.6760 0.0282 0.0033 0.0034  

5 40.55 2.27 2.0401 0.0135 0.0031 0.0136 0.5399 0.0105  
6 10.46 1.84 1.9510 0.0087 0.0093 0.0406 0.0215 0.6999  

7 43.43 2.36 1.8927 0.0131 1.3346 0.1291 0.0409 0.0080  

8 14.82 1.33 1.8229 0.0242 0.5288 0.0705 0.0005 0.0003 7 

9 41.79 2.01 1.7324 0.0169 0.5875 0.0231 0.0880 0.0056  

10 33.70 2.14 1.5932 0.0053 0.0164 0.5542 1.7239 0.0265  

11 43.74 2.50 1.4931 0.0696 0.0433 0.0810 0.1113 0.8371  
12 40.55 2.06 1.4207 0.5168 0.0231 0.0357 0.0769 0.0811  

13 31.43 2.16 1.4201 0.0027 0.0381 0.8293 0.3011 0.0525  

14 16.02 3.35 1.3672 0.0165 0.0250 0.1255 0.0077 0.3394  
15 40.01 2.14 1.3602 0.4553 0.0082 0.0042 0.0072 0.6373  

 

 

 



Figure 1: pyrazine 2D pattern of Arabica samples from Guatemala, Brazil and Colombia submitted to a standard 

roasting. Results are reported as normalized 2D-Peak Volume over the ISTD, for analyte ID (x-axis) see Table 2.  
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Figure 2: key-aroma marker 2D pattern of Arabica samples from Guatemala, Brazil and Colombia submitted to a 

standard roasting. Results are reported as normalized 2D-Peak Volume over the ISTD. For analyte ID (x-axis) see Table 

2. 
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Figure 3: GCxGC-MS chromatogram for standard-roast Colombian coffee. Circles indicate the retention times of 1652 

peaks. Black circles indicate the subset of 891 reliable peaks that were consistently matched for a set of three 

chromatograms (including this chromatogram and chromatograms of standard-roast Brazilian and Guatemalan coffees) 

and yellow circles indicate unreliable peaks that were not matched consistently for the set. 

 

 

 



Figure 4: Pseudocolor comparisons of chromatograms from standard-roast Brazilian and Colombian coffees. 4a shows 

the colorized fuzzy difference and 4b shows the colorized fuzzy ratio. In both, green indicates a larger response for the 

Brazilian sample and red indicates a larger response for the Colombian sample. 
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Figure 5: Mesh panels (shown as black polygons) for analysis of the set of three chromatograms from standard-roast 

coffee overlaid on the cumulative chromatogram. There are 34 meshes covering the chromatographic features divided 

into 1109 panels. The consensus template also contains the reliable peaks shown in Figure 3. 

 

 

 



Figure 6: The first image (6a) indicates the apex retention times of the 15 minutiae with the largest mean percent 

response. The second image (6b) indicates the apex retention times of the 15 minutiae with the largest percent response 

standard deviation. The third image (6c) indicates the apex retention times of  the 15 minutiae with the largest relative 

percent response standard deviation. 
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Figure 7: Cumulative chromatogram for a set of six Juniper samples with a template of reliable peaks indicated by 

yellow circles and mesh panels indicated by black outlines. 
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