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Abstract 

The Slit protein acts through the Roundabout receptor as a paracrine chemorepellent in axon guidance and as an 
inhibitor in leukocyte chemotaxis, but its role in epithelial cell motility and morphogenesis remains largely unexplored. We 
report that nontransformed epithelial cells and cancerous cells empower the Slit-2/Robo1 signaling system to limit 
outward migration in response to motogenic attractants and to remain positionally confined within their primitive location. 
Short hairpin RNA-mediated depletion of SLIT-2 or ectopic expression of a soluble decoy Robo enhance hepatocyte 
growth factor (HGF)-induced migration, matrix invasion, and tubulogenesis, concomitantly with the up-regulation of Cdc-
42 and the down-modulation of Rac-1 activities. Accordingly, autocrine overexpression or exogenous administration of 
Slit-2 prevent HGF-triggered motile responses, reduce Cdc-42 activation, and stimulate Rac-1. This antimigratory activity 
of Slit-2 derives from the inhibition of actin-based protrusive forces and from an increased adhesive strength of cadherin-
mediated intercellular contacts. These results disclose a novel function for Slit and Robo in the inhibition of growth factor-
mediated epithelial cell motility and morphogenesis, invoking a critical role for both molecules as natural antagonists of 
neoplastic invasive growth. 

1. Introduction 

Morphogenetic events, such as formation of branched tubular structures, angiogenesis, and neuronal networking, are 
modulated by a number of soluble and immobilized molecules that act as either attractants or repellents, including 
growth factors, extracellular matrix components, proteases, and morphogens (Lecuit and Lenne, 2007). There is now 
increasing evidence that cancer cells hijack the strategies by which the embryo grows and develops and that invading 
tumors coopt the genetic and signaling mechanisms underlying tissue morphogenesis for the proper execution of 
neoplastic dissemination (Huber et al., 2005). Therefore, insight into developmental programs is likely to illuminate 
essential aspects of cancer progression. 

Slit, acting through the transmembrane receptor Roundabout (Robo), belongs to a recently identified family of secreted 
repellents (Wong et al., 2002). Despite the considerable body of knowledge gathered so far on the function of Slit and 
Robo in axon guidance (Dickson and Gilestro, 2006), neuronal migration (Wu et al., 1999), leukocyte chemotaxis (Wu et 
al., 2001) and angiogenesis (Wang et al., 2003), the information on the effects of the Slit/Robo system in normal and 
neoplastic epithelial cells is still fragmentary. If there is a general conservation of guidance mechanisms underlying cell 
migration and morphogenesis in different cell types, then Slit should limit the locomotion of Robo-expressing epithelial 
cells toward attractive stimuli. More importantly, it should sidetrack invading carcinomas away from attractants produced 
in the microenvironment. 



In this article, we sought to explore this issue using hepatocyte growth factor (HGF) as an attractive cue. HGF and its 
tyrosine kinase receptor Met play a crucial role both in development and cancer (Comoglio and Trusolino, 2002). During 
organogenesis HGF acts as a motogen and morphogen and stimulates, among other things, the directional migration of 
myoblasts from the somites to the limbs as well as the guidance of motoneurons toward striated muscles (Birchmeier 
and Gherardi, 1998; Maina and Klein, 1999). In neoplastic contexts, activation of Met correlates with a metastatic 
phenotype and a poor prognosis in several carcinomas, and HGF stromal gradients favor tumor dissemination 
(Birchmeier et al., 2003). 

We show here that immortalized, nontransformed epithelial cells as well as carcinoma and melanoma cells frequently 
display a Slit/Robo signaling that endogenously counteracts HGF-driven migration, invasion, and morphogenesis. 
Mechanistically, this Slit-dependent inhibitory activity resides in the reinforcement of the intercellular junctional apparatus 
(which impairs cell–cell dissociation) and in the weakening of protrusive forces (which decreases cell motility), possibly 
as a consequence of concomitant up-regulation of Rac-1 and down-regulation of Cdc-42 activities. Together, these 
results point to a fundamental role for Slit and Robo as anti-invasive cues during epithelial morphogenesis and 
neoplastic progression. 

2. MATERIALS AND METHODS 

Endpoint Polymerase Chain Reaction (PCR) and Primers 

ROBO-N and SLIT-2-Myc cDNAs were obtained by direct amplification of MDA-MB-435–retrotranscribed mRNAs. The 
primers used were the following: 5′-ACT ATA TAT AGT ATT AAA CTA TTA ACT CTA GAA TGA AAT GGA AAC ATG 
TTC CTT TTT TGG-3′ (sense Robo-N) and 5′-AAC TAA ATG TAA TAC TAA TTT ATT AAA CGC GTT TAA GCG TAA 
TCT GGA ACA TCA TAT GGG TAG TTG GCT CCA GAT GGC CGA TAG AGA ATT TTA TAT CCT TGT ATA TAC-3′ 
(antisense ROBO-N, HA-tagged); 5′-ACC TTA GAC ATG CGC GGC GTT GGC TGG CAG ATG CTG TCC CTG-3′ 
(sense Slit-2); 5′-TAT TAA TCT AGA TTA ATT CAG ATC CTC TTC TGA GAT GAG TTT TTG TTC GGA CAC ACA CCT 
CGT ACA GCC GC-3′ (antisense Slit-2, Myc-tagged). Both ROBO-N-HA and SLIT-2-Myc were cloned by blunt-end 
ligation in the retroviral vector pLHCX (Clontech, Mountain View, CA). The sequences of the two SLIT-2-shRNAs, 
derived from a screening performed using the SUPER RNA interference (RNAi) library (Brummelkamp et al., 2002) were 
the following: 5′-GAA CGT GTC CCG ATT AGA G-3′ (sequence A) and 5′-CTG CCT TCG GGT AGA TGC T-3′ 
(sequence b); the scrambled, control short hairpin RNA (shRNA) used in MDA-MB-435 cells was GAA GGT GGG GTA 
GAT GCT A; sequence B was used for silencing SLIT-2 expression in Madin-Darby canine kidney (MDCK) cells as well, 
whereas in this cell line sequence A, which does not target canine SLIT-2, was used as a control. The sequences of the 
three Robo-1 shRNA, derived from the specific MISSION shRNA Gene Family Sets (Sigma-Aldrich, St. Louis, MO) were 
5′-AGA AAT ACA GTC ACA TTA TCT C-3′ (sequence A); 5′-CCA CCA TTT CAT GGA AGA ACT C-3′ (sequence B); 5′-
CAC CAG CAA GGA TGT ATT TCT C-3′ (sequence C). Sequence C was used for silencing Robo-1 in MDCK cells. 
Scramble MISSION shRNAs were provided by Sigma-Aldrich. The primers used for endpoint PCRs in human-derived 
cell lines were 5′-TGC CGC AAG CTC TAC TGC CTG-3′ (sense Slit-1); 5′-GCA CTG GCA GCT GTA GGA AAG A-3′ 
(antisense Slit-1); 5′-GCA TTT TGC CTG GCT GTG AG-3′ (sense Slit-2); 5′-CAT TGA TGG GCA AGC AGG TG-3′ 
(antisense Slit-2); 5′-TGG AGA AGG ACA GCG TGG TG3′ (sense Slit-3); 5′-GAG CAG GCA TTG GCA GAG TC-3′ 
(antisense Slit-3); 5′-CCT CGC ATT GTT GAA CAC C-3′ (sense Robo-1); 5′-AAC ATT CGG TGT GAG CGA GG-3′ 
(antisense Robo-1); 5′-AAG CTC TCT AGA GAG ACA AC-3′ (sense Robo-2); 5′-TGG GCT TGC TAT AGG GCA CC-3′ 
(antisense Robo-2); 5′-GGT CAC CCC ATC CCG AAG GG-3′ (sense Robo-3); 5′-CAC CCA AGC CAG CAG GCC T-3′ 
(antisense Robo-3); 5′-GCT GGC CCA GCT CTC CAG CC-3′ (sense Robo-4); and 5′-ACT CAC AGG CCC GGA GCT 
CC-3′ (antisense Robo-4). The primers used for MDCK cell amplifications were 5′-TGC CGA AAG CTC TAC TGC CTG-
3′ (sense Slit-1); 5′-GCA CTG GCA GCT GTA GGA AAG-3′ (antisense Slit-1); 5′-GCA TTT TGC CTG GCT GTG AG-3′ 
(sense Slit-2); 5′-CGT TGA TGG GCA AGC AGG TG-3′ (antisense Slit-2); 5′-CCA GCA GTA GGC ATC AAC AGC-3′ 
(sense Slit-3); 5′-CAC CAC GCT GTC CTT CTC CA-3′ (antisense Slit-3); 5′-ATG AGC AAT TTA GAG AAA TGT GG-3′ 
(sense Robo-1); 5′-ggc gtg ggg cgg cct tca gct t-3′ (antisense Robo-1); 5′-CCA GAC CCC TGA GAG CAC TA-3′ (sense 
Robo-2); 5′-TGG GCT TGC TGT ATG GCA CC-3′ (antisense Robo-2); 5′-CTT GGG ATG GAG GGA CCA AGC-3′ 



(sense Robo-3); 5′-CAC CCA CGC CAG CAG GCC T-3′ (antisense Robo-3); 5′-GCT GGC CCG GCT CTC CAG CC-3′ 
(sense Robo-4); and 5′-GGG AAA GGT TCT TGG AGC CTC T-3′ (antisense Robo-4). Primers for semiquantitative real-
time PCR were the following: for Slit-2, designed in two contiguous exons, 5′-GCA TTT TGC CTG GCT GTG AG-3′ 
(sense Slit-2, MDA-MB-435); 5′-CAT TGA TGG GCA AGC AGG TG-3′ (antisense Slit-2, MDA-MB-435); 5′-GCA TTT 
TGC CTG GCT GTG AG-3′ (sense Slit-2, MDCK); and 5′-CGT TGA TGG GCA AGC AGG TG-3′ (antisense Slit-2, 
MDCK). The housekeeping gene phospho-glycerate-kinase (PGK) was chosen as a standard reference. The primers 
were 5′-CTT ATG AGC CAC CTA GGC CG-3′ (sense PGK, MDA-MB-435); 5′-CAT CCT TGC CCA GCA GAG AT-3′ 
(antisense PGK, MDA-MB-435); 5′-ATC ACA GGT GGT GGA GAC AC-3′ (sense PGK, MDCK); and 5′-CTA ATG CCA 
ACC AGA GAT AG-3′ (antisense PGK, MDCK). Total RNAs were obtained using the RNeasy Mini kit (QIAGEN, 
Valencia, CA) and quantified using RNA Nano Chips (Agilent Technologies, Santa Clara, CA) together with a 2100 
Bioanalyzer (Agilent Technologies). cDNAs were retro-transcribed with High Capacity cDNA Reverse Transcription kit 
(Applied Biosystems, Foster City, CA). PCR amplifications were monitored using a 7009 HT Analyzer (Applied 
Biosystems) under the following thermocycler conditions: stage 1, 95°C for 10 min for one cycle; and stage 2, 95°C for 
15 s and 64°C for 1 min for 60 cycles. 

Antibodies 

We used the following antibodies: anti-actin, anti-hemagglutinin (HA), biotin-conjugated anti-Myc (Santa Cruz 
Biotechnology, Santa Cruz, CA); anti-Rac 1, anti-Cdc42, anti-E-cadherin, and anti-β-catenin (BD Biosciences, San Jose, 
CA); anti-Myc (clone 9E10; Millipore, Billerica, MA); anti-vinculin and anti-FLAG (Sigma-Aldrich); and anti-Cdc-42 (Santa 
Cruz Biotechnology). The anti-zona occludens (ZO)-1 monoclonal antibody (mAb), developed by D. Goodenough, was 
obtained from the Developmental Studies Hybridoma Bank (University of Iowa, Iowa City, IA). 

Cell Culture and Viral Infection 

MDA-MB-435, MDCK, U-87, RKO, HT-29, 769-P, and COS-7 were cultured in DMEM; Skov-3, DLD-1, HCT-116, and N-
87 were cultured in RPMI 1640 medium; LoVo was cultured in Ham's F-12; Hec-1A and RT-112 were cultured in 
McCoy's 5A; and HeLa was cultured in Iscove. All media were supplemented with 10% FCS (Sigma). Expression of 
exogenous proteins was obtained with LipofectAMINE 2000 (Invitrogen)-mediated transfection or with viral infection. 
MISSION shRNA lentiviral particles were prepared according to the instruction of the manufacturer. Human cells were 
infected with a multiplicity of infection (MOI) of 30, whereas canine MDCK cells were infected with an MOI of 90. 
Retroviral hybrid vectors were produced by transient transfection of 293T cells. Viral supernatants were filtered through a 
0.22-μm filter, and infections were performed in the presence of 4 μg/ml Polybrene (Sigma-Aldrich), followed by selection 
with puromycin (Sigma-Aldrich) or hygromycin-B (Invitrogen). 

Biochemistry 

The expression of Rac-1-gof-Myc, Rac-1-DN-Myc, Cdc42-DN-HA, Cdc-42-gof-FLAG, and Slit-2-Myc was analyzed by 
immunoprecipitation. For immunoprecipitations, 5 × 106 cells were lysed for 20 min at 4°C with 1 ml of a buffer 
containing 50 mM HEPES, pH 7.4, 5 mM EDTA, 2 mM EGTA, 150 mM NaCl, 10% glycerol, and 1% Triton X-100, in the 
presence of protease and phosphatase inhibitors. Extracts were clarified at 12,000 rpm for 15 min, normalized with the 
BCA Protein Assay Reagent kit (Pierce Chemical, Rockford, IL), and incubated with different mAbs for 2 h at 4°C. 
Immune complexes were collected with either protein G- or protein A-Sepharose, washed in lysis buffer, and eluted. 
Total cellular proteins were extracted by solubilizing the cells in boiling SDS buffer (50 mM Tris-HCl, pH 7.5, 150 mM 
NaCl, and 1% SDS). Extracts were electrophoresed on SDS-polyacrylamide gels and transferred onto nitrocellulose 
membranes (Hybond; GE Healthcare, Little Chalfont, Buckinghamshire, United Kingdom). Nitrocellulose-bound 
antibodies were detected by the enhanced chemiluminescence system (GE Healthcare). Western blot analyses to detect 
E-cadherin were performed using protein extracts derived from 6 × 104 MDCK cells suspended as hanging drops (see 
below). Pool-down experiments were done using PAK-GST protein beads (Cytoskeleton, Denver, CO), and 80% 
confluent cells starved for 24 h (Sander et al., 1998). For Cdc-42 pool-down experiments, 50 μg of PAK-GST proteins 



were incubated with 10 mg of whole cell lysates; for Rac-1, 20 μg of PAK-GST proteins were incubated with 2 mg of 
whole cell lysates. 

Biological Assays 

In all the biological assays, we used baculovirus-derived recombinant HGF (Naldini et al., 1995). If not otherwise 
indicated, HGF was used at a concentration of 25 ng/ml for the migration assays and at a concentration of 100 ng/ml for 
tubulogenesis. Slit-2-Myc–tagged protein was obtained from the supernatant of Chinese hamster ovary (CHO) cells 
retrovirally infected with Slit-2-Myc, grown in serum-free medium. Because Slit-2 is frequently associated to heparan 
sulfate glycosaminoglycans (Liang et al., 1999; Ronca et al., 2001), the production and release of Slit-2 were optimized 
using CHO cells defective in proteoglycan synthesis (Esko et al., 1987). Conditioned medium was concentrated using 
Centricon Plus-20 (Millipore) centrifugal filter devices, with a cut-off of 100 kDa. The amount of Slit-2-Myc in each 
preparation was quantified by silver staining. Eighty nanograms of concentrated Slit2-Myc polypeptide were used in 
combination with 20 ng of HGF. Always, soluble Slit 2-Myc polypeptide was administrated together with heparin, as 
described previously (Hussain et al., 2006). Transwell migration and tubulogenesis assays were performed and 
quantified as described previously (Stella et al., 2005). Images were captured every with ImageReady software (Adobe 
Systems, Mountain View, CA) and arranged using Photoshop software (Adobe Systems). Scratch assays were 
performed as described previously (Michieli et al., 2004) and quantified by time-lapse microscopy (1 image every 10 
min), plotting the distance between the scratch margins measured as mean of 10 different measurements expressed as 
percentage of the initial distance. Aggregation assays were performed as described previously (Thoreson et al., 2000). 
After 12 h, aggregates were counted and stained with trypan blue to monitor cell viability. Images were recorded as 
specified above. For motility assays in the presence of an HGF isotropic gradient, cells were plated onto 24 multiwell 
culture plates (MatTek, Ashland, MA), maintained in DMEM lacking phenol red (Sigma-Aldrich). Video images were 
recorded at 10-min intervals for 36 h; images were analyzed and arranged using Sony Vegas software (Sony Media 
Software, Tokyo, Japan) in combination with Microsoft Office Excel (Microsoft, Redmond, WA). 

Immunofluorescence 

Cells were seeded onto gelatin-coated glass coverslips. At the indicated times, cells were fixed, permeabilized, and 
blocked in 10% fetal calf serum (FCS). Primary antibodies were incubated for 12 h at 4°C followed by staining with 
fluorochrome-conjugated secondary antibodies (Invitrogen, Carlsbad, CA). F-actin was evidenced with 
tetramethylrhodamine B isothiocyanate (TRITC)-conjugated phalloidin. The stained cells were mounted in Mowiol and 
observed and photographed using a confocal laser scanning system. 

Statistical and Densitometric Analysis 

Results are means ± SD or SEM. Comparisons were made using the two-tailed Student's t test. p values <0.05 were 
considered to be statistically significant. In each experimental point were scored 10 cells for isotropic migration assays 
and 100 cysts together with 100 tubules for tubulogenesis analysis. Blot images were captured using a ChemiDoc XRS 
molecular imager (Bio-Rad, Hercules, CA). Densitometric analysis was performed with a Quantity One one-dimensional 
analysis software installed on the imager. 

3. RESULTS 

Inhibition of Slit-2 or Robo-1 in Melanoma Cells Enhances HGF-mediated Motility and Invasion 

There are three Slits and four Robos in mammals (Wong et al., 2002). Evidences from the literature indicate that Slit-2, 
among all the Slit ligands, is the isoform most frequently expressed in melanomas and carcinomas (Wang et al., 2003). 
We decided to integrate this analysis by exploring, in parallel with Slit-2, Robo-1 expression in human cell lines. Reverse 
transcription (RT)-PCR analysis in 14 tumor cell lines derived from various tissues revealed that five lines (Skov-3, HeLa, 
MDA-MB-435, 769-P, and Hec-1A) displayed basal expression of both ROBO-1 and SLIT-2 genes (Table 1). Detailed 
investigation of the full panel of SLIT and ROBO transcripts in these five cell lines indicated that, in addition to Slit-2 and 
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We started our experiments by abrogating Slit-2 function in MDA-MB-435, a melanoma cell line that has been 
extensively characterized in terms of motile and invasive responses upon stimulation with motogenic cytokines, such as 
HGF (Trusolino et al., 2001; Michieli et al., 2004; Stella et al., 2005). Moreover, these cells have the unique property of 
expressing Slit-2 as the sole member of this ligand family, which alleviates concerns of redundancy and therefore 
facilitates initial biological investigation. To inhibit Slit-2 expression, we used two short hairpin RNAs (shRNA-A and 
shRNA-B; see Supplemental Material) that abated the expression of the SLIT-2 gene by 80–90%, as assessed by 
quantitative real time RT-PCR (Figure 1B). A scrambled shRNA was used as a control in all the experiments (Figure 1B). 
Analysis of HGF-dependent cell motility in cells with normal or diminished levels of Slit-2 was performed using several in 
vitro assays meant to assess different parameters, including directional migration across transwell-permeable filters 
toward a polarized source of ligand (anisotropic conditions), random migration on plastic dishes (isotropic conditions), 
and matrix invasion in three-dimensional cultures. Time course analyses of anisotropic cell migration revealed that Slit-
2–deficient cells displayed an enhanced chemotactic response to HGF in a time-dependent manner (Figure 1C). The 
rescue of Slit-2 expression through retroviral transduction of a Myc-tagged variant of Slit-2 restored HGF-dependent cell 
migration at levels comparable with those observed in control cells (Figure 1, B and C). In isotropic conditions, cells 
lacking Slit-2 as well as control cells exhibited a highly variable motogenic behavior, moving around with frequent 
changes of direction, in a somewhat erratic manner. However, Slit-2–deficient cells were characterized by a statistically 
significant increase in the total traveled distance (Figure 1D). Finally, in a three-dimensional collagen invasion assay 
(tubulogenesis assay), cells with impaired expression of Slit-2 were able to invade collagen much more efficiently than 
control cells upon treatment with HGF (Figure 1E). Slit-2 silencing resulted in a modest, but clearly detectable, 
tubulogenic activity also under basal conditions, in the absence of exogenous HGF (Figure 1E). This suggests that the 
Slit/Robo circuit chronically operative in these cells conveys constitutive repelling signals that prevent cells from moving 
toward attractive stimuli present in the adjacent matrix. As a complementary approach to inhibit Slit-2 function, we 
transduced MDA-MB-435 cells with an HA-tagged variant of Robo-N, a fragment of Robo-1 that contains only the 
extracellular part of the Robo protein and acts as a dominant-interfering decoy receptor (Wu et al., 1999) (Figure 2A). 
When subjected to a transwell migration assay (Figure 2B) or to a collagen invasion assay (Figure 2C) in the presence of 
HGF, cells expressing Robo-N were more efficient than control cells. 

Figure 2. A dominant-negative form of Robo receptor (Robo-N) as well as Robo-1 down-regulation stimulate HGF-
dependent cell migration and tubulogenesis in MDA-MB-435 cells. (A) Anti-HA Western blot expression of Robo-N-HA in 
MDA-MB-435 cells. Actin is shown as a control for protein loading. (B) Anisotropic migration of MDA-MB-435 cells 
expressing Robo-N after 12 h of HGF treatment. Data are the means ± SD (error bars) of three independent 
experiments performed in duplicate. **p < 0.01. (C) Tubulogenesis assay in control (−) and Robo-N (+) cells. Cells were 
treated with vehicle (−) or with HGF (+) for 4 d. Bar, 20 μm. Morphometric analysis is presented in the bottom panel. (D) 
Variations of ROBO-1 mRNA in MDA-MB-435 cells in the following experimental conditions: wild-type cells (−); cells 
transduced with a scrambled shRNA sequence (ctr); cells transduced with three different ROBO-1–specific shRNAs (A–
C). Transcript quantitations are shown as -fold variations of ROBO-1 mRNA content with respect to wild-type cells. Data 
are the means ± SD (error bars) of two independent experiments, performed in triplicate. (E) Anisotropic migration 
(transwell assay) in cells expressing a scrambled shRNA (−) or the ROBO-1 shRNA B (+) after 12 h of HGF treatment. 
Data are the means ± SD (error bars) of three independent experiments, performed in duplicate. **p < 0.01. (F) 
Tubulogenesis assay in MDA-MB-435 cells expressing the scrambled (−) or the ROBO-1 (+) shRNA B. Cells were 
treated with vehicle (−) or with HGF (+). The micrographs show representative four-day old colonies. Bar, 20 μm. The 
lower panel corresponds to the morphometric analysis of the collagen invasion assay presented in the top panel. The 
average number of sprouting cells in each cyst and the average length of single tubules together ± SEM are shown. 

Finally, we validated these findings by inhibiting Robo-1 instead of Slit-2. Indeed, reduction of Robo-1 by shRNA 
technology (Figure 2D) sensitized cells to HGF in both anisotropic cell migration (Figure 2E) and collagen invasion 
(Figure 2F). Together, these results indicate that genetic attenuation of the Slit/Robo pathway—through either silencing 
of the ligand, silencing of the receptor, or overexpression of a dominant negative isoform of the receptor—exacerbates 
the HGF-dependent motile and invasive properties of neoplastic cells. 
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For exogenous administration of the Slit-2 ligand, we first transduced CHO cells with the retroviral Slit-2-Myc construct 
and then recovered and concentrated the supernatant of these cells. In control experiments, we used medium 
conditioned by CHO cells secreting Slit-2-Myc after depletion of the soluble Slit protein by anti-Myc immunoprecipitation 
(Figure 3D). The analysis of anisotropic cell migration showed that, in the presence of soluble Slit-2, wild-type MDA-MB-
435 cells did not migrate toward the HGF source. On the contrary, HGF stimulation in the presence of mock medium or 
the Slit-2–depleted medium resulted in a significant rate of migration, similar to that observable after administration of 
HGF alone (Figure 3E). In line with that detected with Slit-2–overexpressing MDA-MB-435 cells, HGF was unable to 
induce a consistent tubulogenic activity in the presence of Slit-2–conditioned medium, whereas it did stimulate robust 
collagen invasion in the presence of the Slit-2–depleted medium (Figure 3F). Next, we evaluated the ability of 
exogenous Slit-2 to hamper HGF-dependent cell migration in coculture experiments by using HEK cells expressing Slit-
2. In this condition, HEK cells were transduced with the recombinant Slit-2-Myc retroviral construct (Figure 3G). Control 
or Slit-2–expressing HEK cells were then seeded in the lower compartment of a transwell chamber, whereas wild-type 
MDA-MB-435 cells were positioned in the upper compartment. Also in this setting, the migration of wild-type MDA-MB-
435 cells in response to HGF was strongly inhibited in the presence of Slit-2–secreting HEK cells but not in the presence 
of control HEK cells (Figure 3H). Finally, we assessed whether the inhibitory effects caused by Slit-2 overactivation were 
in fact mediated by Robo receptors. Accordingly, we treated cells transduced with a scrambled shRNA or with Robo-1–
specific shRNAs with supernatants derived from Slit-2–expressing CHO cells. In control experiments, we used the same 
medium after Slit-2 depletion by anti-Myc immunoprecipitation. In anisotropic conditions, lack of Robo-1 function potently 
rescued the impairment of HGF-dependent cell migration produced by exogenous Slit-2 (Figure 3I). Similar results were 
obtained in three-dimensional collagen assays (Figure 3L). In summary, these findings indicate that either the autocrine 
or paracrine potentiation of Slit signaling dramatically impairs HGF-induced cell migration, invasion, and branching 
morphogenesis. This inhibitory activity is predominantly transduced by the Robo-1 receptor. 

Effects of the Modulation of the Slit/Robo Pathway on HGF-dependent Responses in Carcinoma Cells 

We decided to extend our observations to other neoplastic cell lines that, different from MDA-MB-435, are of epithelial 
origin, express the junctional adhesion molecule E-cadherin and grow as compact aggregates with well-defined 
intercellular contacts (Nishimura et al., 2003; DiFeo et al., 2006). Specifically, we examined Skov-3 (ovarian carcinoma) 
and Hec-1A (endometrial carcinoma). Given the major role of Slit-2 in dictating selective and dominant developmental 
fates in mammalian tissues where other Slit and Robo members are coexpressed (Wong et al., 2002), we reasoned that 
decreasing or augmenting the specific activity of Slit-2 would be sufficient to obtain a consistent biological readout in 
these two cell lines, despite the presence of other Slit and Robo variants (Figure 1A). Similar to that reported for MDA-
MB-435, Slit-2 down-regulation enhanced the anisotropic migration of both Skov-3 and Hec-1A toward HGF, whereas 
Slit-2 overexpression reduced it (Figure 4, A and B, and Supplemental Figure 1). Analogous results were obtained when 
monitoring random migration under isotropic conditions of HGF concentration (Figure 4, C and D) and when analyzing 
the HGF-dependent cells' tubulogenic activity in three-dimensional collagen invasion assays (Figure 5, A and B). In this 
latter case, Slit-2 down-regulation also induced the basal sprouting of tubules in the absence of HGF, a phenotype that 
was particularly evident in Hec-1A cells and paralleled that observed in Slit-2–deficient MDA-MB-435 cells (Figure 1E). 

Table 1. Expression of Slit-2 and Robo-1 in human cancer cells 

Expression of Slit-2 and Robo-1 in human cancer cells 

Cell line Tumor derivation Slit-2 Robo-1 

U-87 Glioblastoma − + 

RT-112 Bladder carcinoma − ± 

RKO Colon carcinoma − + 

DLD-1 Colon carcinoma − − 

HCT-116 Colon carcinoma + − 
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During axon guidance the repulsive action of Slit-2 is mediated, among other factors, by changes in the activity of Cdc-
42 and Rac-1, two members of the Rho-like family of small GTPases (Wong et al., 2001; Fan et al., 2003; Yang and 
Bashaw, 2006). Because Rac-1 is required for production and stabilization of cell–cell contacts (Sahai and Marshall, 
2002) and Cdc-42 is a well-known inducer of filopodia formation (Nobes and Hall, 1995), we speculated that the reduced 
strength of intercellular junctions and the increased production of filopodia observed in Slit-2–deficient cells could be due 
to a Slit-2–dependent modulation of Rac-1 and Cdc-42 activities, which interferes with HGF-triggered motility. To test this 
hypothesis, we monitored HGF-dependent activation of Cdc-42 and Rac-1 in control and Slit-2–deficient MDA-MB-435 
cells. We chose this cell line because these cells express higher amounts of both Cdc-42 and Rac-1 compared with 
Skov-3, Hec-1A, and MDCK cells,. In their active, GTP-bound form, both Rac-1 and Cdc-42 bind directly to p21-activated 
kinase-1 (PAK-1) (Burbelo et al., 1995). We thus analyzed Cdc-42 and Rac-1 activation by pool-down experiments using 
the Cdc42/Rac interactive binding domain of PAK-1. In the absence of HGF, the basal activity of Cdc-42 was higher in 
Slit-2–deficient cells (Figure 9B), whereas the activity of Rac-1 was higher in control cells (Figure 9C). The HGF-
dependent activation of Cdc-42 was only modestly augmented in control cells, whereas it was potently increased in Slit-
2–deficient cells (Figure 9B). Conversely, HGF treatment further increased Rac-1 activation in control cells, but it was 
unable to induce any substantial stimulation of Rac-1 in cells with reduced levels of Slit-2 (Figure 9C). Opposite (and 
complementary) results were obtained when examining MDA-MB-435 cells overexpressing Slit-2-Myc. In this setting, 
autocrine overproduction of Slit-2 almost totally suppressed Cdc-42 activation (Figure 9D), whereas it hyperinduced the 
basal and (to a much lower extent) HGF-triggered activity of Rac-1 (Figure 9E). In an attempt to provide a causal link 
between the Slit-2-dependent regulation of Rho-like GTPases and HGF-dependent cell motility, we decided to perturb 
the activity of Cdc-42 in MDA-MB-435 cells with normal or reduced levels of Slit-2. We reasoned that, if the increased 
motogenic and invasive response observed in cells with reduced levels of Slit-2 is due to the up-regulation of Cdc-42, 
then inhibition of Cdc-42 should reduce HGF-dependent cell motility in Slit-2–deficient cells. Conversely, constitutive 
activation of Cdc-42 in cells overexpressing Slit-2 should restore cell migration. Accordingly, we transiently transfected 
Slit-2–deficient and Slit-2–overexpressing MDA-MB-435 cells with an HA-tagged dominant-negative variant of Cdc-42 
(Cdc-42-DN-HA) or with a FLAG-tagged, constitutively active form of Cdc-42 (Cdc-42-gof-Flag), respectively 
(Supplemental Figure 5). In a transwell assay, alteration of Cdc-42 activity affected HGF-dependent migration in both 
Slit-2–deficient and Slit-2–overexpressing cells, in accordance with the well-established role of Cdc-42 as a master 
regulator of cytoskeletal dynamics and cell motility. However, although Cdc-42 inhibition strongly impaired migration in 
Slit-2–deficient cells, the constitutively active Cdc-42 mutant was only partially effective in increasing the migratory ability 
of cells overexpressing Slit-2 (Figure 10, A and B). This suggests that the activity of Cdc-42 in stimulating cellular 
locomotion is critical whenever Slit-2 is silenced but is not sufficient to overcome the migratory impairment induced by 
Slit-2 overexpression. 

Figure 10. Deregulated activation of Cdc-42 and Rac-1 strongly impairs HGF-dependent migration in MDA-MB-435 cells 
and junction integrity in MDCK cells harboring altered expression of Slit-2. Anisotropic migration in response to a 12-h 
treatment of HGF in MDA-MB-435-Slit-2–deficient cells in the presence or absence of Cdc-42-DN-HA (A) and Rac-1-gof-
Myc (G) or MDA-MB-435-Slit 2-Myc cells expressing either Cdc-42-gof-FLAG (B) or Rac-1-DN-Myc (H). Data are the 
means ± SD (error bars) of three independent experiments, performed in duplicate. Hanging-drop adhesion assay in Slit-
2-deficient (E and C) or Slit-2–overexpressing (F and D) MDCK cells transfected with Rac-1-gof-Myc (C), Rac-1-DN-Myc 
(D), Cdc-42-DN-HA (E), and Cdc-42-gof-Flag (F). Bar, 20 μm. 
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DISCUSSION 

During organ development and tissue remodeling, positional information is often tuned by the concerted activity of 
paracrine stimulatory cues, released distally, and autocrine inhibitory morphogens, which act locally to restrain migration 
toward the external attractant source. In this article, we show that immortalized, nontransformed epithelial cells and 
cancerous cell lines empower the Slit-2/Robo-1 signaling system to mitigate HGF-dependent migration, matrix invasion, 
and branching morphogenesis. Our results are in concordance with previous studies demonstrating that the Slit/Robo 
system is required for the spatial constraint and the proper obliteration of supernumerary structures during development, 
including the bronchial tree and the ureteric buds (Xian et al., 2001; Grieshammer et al., 2004). 

The positional restriction exerted by the Slit/Robo system loop might have important implications as a safeguard 
mechanism during cancer invasion and metastasis. Indeed, our results suggest that the xenophilic propensity of 
malignant cells could be negatively regulated, or at least spatially modulated, by the endogenous activity of the Slit/Robo 
system. This line of thinking fits with the observations that Slit-2 inhibits CXCL12-induced chemotaxis in breast 
carcinoma cells (Prasad et al., 2004) and that endogenous levels of CXCL12 antagonize the repellent effects of 
Slit/Robo signaling during retinal axon pathfinding in zebrafish (Chalasani et al., 2007). Moreover, the Slit genes 
frequently undergo epigenetic inactivation in a vast number of human cancers (Dallol et al., 2002, 2003a,b; Astuti et al., 
2004; Dickinson et al., 2004). It is tempting to speculate that, during the evolutionary trajectory of an incipient cancer cell, 
Slit silencing provides a selective advantage for neoplastic progression through disengagement of anti-invasive cues. 
This activity is likely to be corroborated by concomitant stimulation of cell accretion, because Slit 2 has been 
demonstrated to exert antimitotic and proapoptotic effects (Dallol et al., 2002, 2003b); indeed, we also found that Slit 2 
down-regulation partially enhances, whereas Slit 2 overexpression decreases, the viability of the cell lines tested in this 
study, although to different extents (Supplemental Figure 3). 

The notion that the Slit genes might hinder full implementation of the malignant phenotype is in contrast with the finding 
that tumors expressing Slit-2 can attract endothelial cells expressing Robo-1, thus inducing angiogenesis and favoring 
cancer growth (Wang et al., 2003). In the absence of animal models in which to investigate the heterotypic 
communications between tumor, endothelial, and stromal cells on conditional backgrounds of Slit and Robo expression, 
it is difficult to assess the relative contribution of Slit as a repellent for the tumor and an attractant for endothelial cells. 
However, one could argue that the net effect of Slit activity within the tumor likely results from the reciprocal 
stoichiometry of autocrine versus paracrine stimulation, the expression levels of the Robo receptors in the different cell 
types, and the synergistic or antagonistic interactions with other morphogens such as ephrins, semaphorins, and 
angiogenic factors (Bissell and Radisky, 2001). 

The anti-migratory activity of Slit-2 derives, at least partially, from the inhibition of actin-based protrusive forces. Indeed, 
when Slit-2 is down-regulated, HGF stimulation results in the production of a copious amount of filopodia at the leading 
edge of cells as a prelude for efficient locomotion (Figure 9A). In response to HGF, this enhanced filopodia formation in 
the absence of Slit/Robo signaling is accompanied by an increased activity of Cdc-42, whereas Slit-2 overexpression 
greatly reduces HGF-dependent activation of Cdc-42 (Figure 9, B and D). Consistent with these data, it has been 
demonstrated that the repelling activity of Slit during neuronal migration requires the interaction between the intracellular 
domain of Robo-1 and a novel family of Rho GTPase-activating proteins (srGAPs) and that this interaction specifically 
inhibits Cdc-42 (Wong et al., 2001). Similarly, it has been reported that Slit-2–dependent inhibition of medulloblastoma 
cell invasion goes along with Cdc-42 down-regulation (Werbowetski-Ogilvie et al., 2006). 

Besides impairing actin-rich motility structures, Slit-2 also potentiates the adhesive strength of cadherin-mediated 
intercellular contacts, making multicellular colonies less prone to cell–cell dissociation and scattering. This activity is 
possibly mediated by Slit-induced upregulation of Rac-1, as we observed by genetic manipulation of Slit-2 expression 
levels (Figure 9, C and E, and Fig. 10, C and D). Accordingly, it has been shown that in both mammalian cells and 
Drosophila embryos Slit activates Rac-1 by recruiting the guanine-nucleotide exchange factor (GEF) Sos to Robo (Fan 
et al., 2003; Yang and Bashaw, 2006). 

 

Although the general role of Rac-1 in the maturation and stabilization of intercellular contacts is well established, its 
function in HGF-dependent cell motility is, at first sight, contradictory: on the one hand, overexpression of the Rac-
specific GEF Tiam-1 inhibits HGF-induced scattering by increasing E-cadherin–mediated cell–cell adhesion and 
promoting actin polymerization at cell–cell contacts (Hordijk et al., 1997); on the other hand, HGF induces lamellipodia 



formation at the cell's leading edges and cell locomotion by means of Rac-1 activation (Potempa and Ridley, 1998). One 
hypothesis for this apparent discrepancy, also favored by others (Price and Collard, 2001), is that the pre-existing 
threshold and the subcellular compartmentalization of Rac-1 activity, as well as the balance between cell–cell and cell–
matrix adhesion, could dictate the biological outcome in response to HGF. If Rac-1 is basally very active at cell–cell 
contacts (a condition that occurs in the presence of elevated levels of Tiam-1 and in the inner part of compact epithelial 
colonies, where cell–cell interactions prevail over cell–matrix adhesions), then intercellular junctions display a robust 
mechanical strength that HGF is unable to weaken; conversely, in the presence of a low and diffuse Rac-1 activity (for 
example, at the periphery of quiescent epithelial colonies, where cell–substrate adhesion dynamics dominate over cell–
cell interactions), HGF triggers a Rac-1–dependent focalization of actin polymerization at the free margins of the cells, 
which start developing lamellipodia protrusions as a prerequisite for cell migration. We postulate that the ability of Slit-2 
to augment the basal activity of Rac-1, which cannot be substantially superinduced by HGF stimulation (Figure 9E), 
shifts the equilibrium toward stabilization of intercellular contacts. This is in line with the observation that overexpression 
of activated Rac-1 alone (Ridley et al., 1995) is not sufficient to recapitulate HGF-induced cell scattering, possibly 
because of a more efficient activity on the stabilization of intercellular contacts. 

In conclusion, our findings reinforce the idea of fundamental conservation of directional mechanisms for all somatic cells 
(Wu et al., 2001; Rao et al., 2002) and support the notion that the Slits and the Robos act as general guidance cues, 
tipping the balance between stimulatory and inhibitory morphogen gradients toward cellular repulsion. This condition, in 
an autocrine context, leads to the induction of a stationary phenotype which precludes cells from migrating toward 
motogenic stimuli. It will be interesting to analyze whether such positional constraint will impact tumor metastatization by 
using in vivo models of cancer progression, and whether the frequently observed epigenetic silencing of Slit-2 will be 
predictive of bad prognosis and tumor dissemination in human malignancies. 
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