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GLOBAL Lp CONTINUITY OF FOURIER INTEGRAL
OPERATORS

SANDRO CORIASCO AND MICHAEL RUZHANSKY

Abstract. In this paper we establish global Lp(Rn)-regularity properties of Fourier
integral operators. The orders of decay of the amplitude are determined for oper-
ators to be bounded on Lp(Rn), 1 < p < 1, as well as to be bounded from Hardy
space H1(Rn) to L1(Rn). This extends local Lp regularity properties of Fourier
integral operators, as well as results of global L2(Rn) boundedness, to the global
setting of Lp(Rn). Global boundedness in weighted Sobolev spaces W �,p

s (Rn) is also
established, and applications to hyperbolic partial di↵erential equations are given.

1. Introduction

In this paper we investigate global Lp(Rn) continuity properties of non-degenerate
Fourier integral operators. In particular, we are interested in the question of what de-
cay properties of the amplitude guarantee the global boundedness of Fourier integral
operators from Lp(Rn) to Lp(Rn).

The analysis of the local L2 boundedness of Fourier integral operators goes back
to Eskin [15] and Hörmander [16], who showed that non-degenerate Fourier integral
operators with amplitudes in the symbol class S0

1,0 are locally bounded on L2(Rn). A
Fourier integral operator of class Iµ(X, Y ; C) is called non-degenerate if its canonical
relation C is locally a graph of a symplectic mapping from T ⇤X\0 to T ⇤Y \0. If
the canonical relation of the operator degenerates, the local L2 boundedness of zero
order operators is known to fail, see e.g. Hörmander [18]. In this paper we will be
concerned with non-degenerate operators only.

Since ’70s this local L2 boundedness result has been extended in di↵erent directions.
On one hand, global L2(Rn) boundedness has been studied, motivated by applications
in microlocal analysis and hyperbolic partial di↵erential equations. On the other
hand, its extension to Lp spaces with p 6= 2 has been also under study motivated by
applications in harmonic analysis.

The question of the global L2(Rn) boundedness has been first widely investigated
in the case of pseudo-di↵erential operators. The phase is trivial in this case, so the
main question is to determine minimal assumptions on the amplitude which guaran-
tees the global L2(Rn) boundedness. For example, one wants to relax an assumption
that the symbol of a pseudo-di↵erential operator is in the symbol class S0

0,0 for op-
erators to be still bounded on L2(Rn). There are di↵erent sets of assumptions, see
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2 SANDRO CORIASCO AND MICHAEL RUZHANSKY

e.g. Calderón and Vaillancourt [5], Childs [6], Coifman and Meyer [7], Cordes [10],
Sugimoto [35], etc. The question of the global L2(Rn) boundedness of Fourier in-
tegral operators is more subtle, and involves di↵erent sets of assumptions on both
phase and amplitude. Operators arising in applications to hyperbolic equations and
Feynman path integrals have been considered e.g. in Asada [1], Asada and Fujiwara
[2], Kumano-go [19], Boulkhemair [4]. On the other hand, applications to smoothing
estimates for evolution partial di↵erential equations require less restrictive assump-
tions on the phase, and the required estimates have been established by Ruzhansky
and Sugimoto [28, 29].

Local Lp boundedness of Fourier integral operators has been under intensive study
as well. In the case of p 6= 2 there is a loss of derivatives in Lp-spaces. For example, a
loss of (n� 1)|1/p� 1/2| derivatives has been established for operators appearing as
solutions to the wave equations, see e.g. Beals [3], Peral [24], Miyachi [23]. Finally,
Seeger, Sogge and Stein [32] showed that general non-degenerate Fourier integral
operators in the class Iµ(Rn,Rn; C) are locally bounded in Lp(Rn) provided that
their amplitudes are in the class Sµ

1,0 with µ  �(n� 1)|1/p� 1/2|, 1 < p < 1 (see
also Sogge [33] and Stein [34]). In the case of p = 1, they showed that operators of
order µ = �(n � 1)/2 are locally bounded from the Hardy space H1 to L1, while
Tao [37] showed that operators of the same order are also locally of weak type (1,1).
Extensions of these results with smaller loss of regularity under additional geometric
assumptions on the canonical relations have been studied by Ruzhansky [26, 27].
There is also a result by Sugimoto [36] establishing global Lp estimates for translation
invariant operators with phases with strictly convex level sets.

The aim of this paper is to establish global Lp(Rn) boundedness of Fourier integral
operators, which depends on the growth/decay order of the amplitude in x and y
variables. The results of this paper will extend the local Lp results of Seeger, Sogge
and Stein [32] as well as global L2 results of Asada and Fujiwara [2], Coriasco [12],
and Ruzhansky and Sugimoto [28], to the global setting of Lp(Rn). In fact, for p 6= 2,
we will observe that there is a loss not only of derivatives but also of growth/decay
dependent on the value of p. Both of these losses disappear in the case p = 2.
Consequently, using the global calculi of Fourier integral operators developed by
Coriasco [12] and, more generally, by Ruzhansky and Sugimoto [30, 31], we can also
obtain global weighted estimates in Sobolev spaces W s,p

� (Rn).
The Lp-continuity in Theorem 2.2 will be proved by interpolation. The end-points

will be the L2-boundedness from Asada and Fujiwara [2] under assumption (2a) and
from Ruzhansky and Sugimoto [28] under assumptions (2b) and (2c), and the H1�L1

boundedness which is the main task of this paper.
We will be initially concerned with operators T of the form

(1.1) (T u)(x) =

Z

Rn

Z

Rn

ei[hx,⇠i�'(y,⇠)] b(x, y, ⇠) u(y) dy d⇠,

where ' is a real-valued phase function, positively homogeneous of order one in ⇠, and
b is an amplitude. Local Lp properties of such operators were considered by Seeger,
Sogge and Stein [32] and their global L2 properties were analysed by Ruzhansky and
Sugimoto [28]. We note that a general Hörmander’s Fourier integral operator can be
always written in the form (1.1) microlocally while there are in general topological
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obstructions globally. The microlocal qualitative properties of such operators are
well-known, see e.g. Hörmander [16, 18] or Duistermaat [14]. Since the aim of
this paper is to investigate Lp properties rather than trivialisations of the Maslov
index, we will treat operators that can be written in the form (1.1) globally. We
note that operators (1.1) and their adjoints appear as propagators to hyperbolic
partial di↵erential equations as well as canonical transforms in smoothing problems.
Applications to hyperbolic Cauchy problems are given in Section 5.

Subsequently, we will deal with Fourier integral operators of the form

(1.2) Au(x) =

Z

Rn

ei'(x,⇠) a(x, ⇠) bu(⇠) d⇠,

where ' is as above and the amplitude a does not depend on y.
Finally, we mention that results on the local Lp boundedness of Fourier integral

operators with complex-valued phase functions have been established by Ruzhansky
[27], extending previous local L2 results by Melin and Sjöstrand [22] and Hörmander
[17], and that there are also results in (FLp)comp spaces and in modulation spaces by
Cordero, Nicola and Rodino [8].

Constants in this paper will be denoted by letters C and their values may vary
even in the same formula. If the value of a constant is important and unchanged in
a calculation, we will use sub-indices, denoting it e.g. by C1, C2, etc. We will denote
hxi = (1 + |x|2)1/2. Occasionally, for functions f(x, y, ⇠, w), g(x, y, ⇠, w), x, y, ⇠ 2 Rn,
and w varying in a suitable parameter space, we will write f � g, f � g, if there
exist constants A,B > 0 independent of w such that, for arbitrary x, y, ⇠, w, we have
|f(x, y, ⇠, w)|  A|g(x, y, ⇠, w)|, |f(x, y, ⇠, w)| � B|g(x, y, ⇠, w)|, respectively. If both
f � g and f � g hold, we will write f ⇠ g. By BR(y) we will denote an open ball
with radius R centred at y.

2. Main results

Let operator T be given by

(2.1) (T u)(x) =

Z

Rn

Z

Rn

ei[hx,⇠i�'(y,⇠)] b(x, y, ⇠) u(y) dy d⇠,

with a real-valued phase ' and an amplitude b which are admissible, in the sense
of Definition 2.1 below. In particular, the phase ' must satisfy suitable smoothness
conditions and

(2.2)
| det @y@⇠'(y, ⇠)| � C > 0, @↵y '(y, ⇠) � hyi1�|↵||⇠| for all ↵,

hr⇠'(y, ⇠)i ⇠ hyi, hdy'(y, ⇠)i ⇠ h⇠i,
either for all x 2 Rn and ⇠ 2 Rn\0, or on supp b, depending on the other properties
which are assumed in Definition 2.1.

Definition 2.1. We say that the phase function ' and the amplitude function b
are admissible if |⇠| � " on supp b, for some " > 0, and, moreover, the following
conditions hold:

(1) ' 2 C1(Rn ⇥ (Rn\0)) is real-valued and positively homogeneous of order 1 in
⇠ on supp b, i.e. that '(y, ⌧⇠) = ⌧'(y, ⇠) for all ⌧ > 0 and ⇠ 6= 0, on supp b.

(2) one of the following properties holds true:
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(2a) let ' satisfy (2.2) for all y 2 Rn and ⇠ 2 Rn\0 and be such that

(2.3) @↵y @
�
⇠ '(y, ⇠) � 1

for all x, y, ⇠ on supp b and all multi-indices ↵, � such that |↵+�| � 2; in
this part we also assume ' 2 C1(Rn⇥Rn) and let b 2 C1(Rn⇥Rn⇥Rn)
satisfy

(2.4) @↵x@
�
y @

�
⇠ b(x, y, ⇠) � hxim1hyim2h⇠iµ�|�|

for all x, y, ⇠ 2 Rn and all multi-indices ↵, �, �, with some m1,m2 2 R
such that m1 +m2 = m;

(2b) let ' satisfy (2.2) on supp b, and

(2.5) @↵y @
�
⇠ '(y, ⇠) � 1

for all x, y, ⇠ on supp b and all ↵, � such that |↵| � 1 and |�| � 1;
moreover, let b 2 C1(Rn ⇥ Rn ⇥ Rn) satisfy

(2.6) @↵x@
�
y @

�
⇠ b(x, y, ⇠) � hxim1�|↵|hyim2h⇠iµ�|�|

for all x, y, ⇠ 2 Rn and all multi-indices ↵, �, �, with some m1,m2 2 R
such that m1 +m2 = m;

(2c) let ' satisfy (2.2) on supp b, and

(2.7) @↵y @
�
⇠ '(y, ⇠) � hyi1�|↵|

for all x, y, ⇠ on supp b and all ↵, � such that |�| � 1; moreover, let
b 2 C1(Rn ⇥ Rn ⇥ Rn) satisfy

(2.8) @↵x@
�
y @

�
⇠ b(x, y, ⇠) � hxim1hyim2�|�|h⇠iµ�|�|

for all x, y, ⇠ 2 Rn and all multi-indices ↵, �, �, with some m1,m2 2 R
such that m1 +m2 = m.

The main result of this paper is the following:

Theorem 2.2. Let 1 < p < 1 and m,µ 2 R. Let T be operator (2.1) and assume
that the phase function ' and the amplitude b are admissible, in the sense of Definition
2.1. Then T extends to a bounded operator from Lp(Rn) to itself, provided that

(2.9) m  �n

�

�

�

�

1

p
� 1

2

�

�

�

�

and µ  �(n� 1)

�

�

�

�

1

p
� 1

2

�

�

�

�

.

Let us now discuss the assumptions of Theorem 2.2. First of all, we note that
assumptions (2.2) are very natural in the sense that they ask that ' is essentially of
order one in both y and ⇠. Condition

(2.10) | det @y@⇠'(y, ⇠)| � C > 0,

for all y 2 Rn and ⇠ 2 Rn\0 is simply a global version of the local graph condition of
the non-degeneracy of Fourier integral operator (2.1). Assumption (2.4) says that b
has a symbolic behaviour in ⇠ and is of order m1 +m2 = m jointly in x and y.

We assume that ⇠ 6= 0 on the support of b to avoid the singularity of the (homoge-
neous) phase at the origin. We note that this issue does not arise in local boundedness
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problems (as in [32]) since the corresponding part of the operator is locally smooth-
ing. In our situation it is still smoothing but may, in principle, destroy the global
behaviour with respect to x and y. Some global results in L2(Rn) for small frequencies
have been established by Ruzhansky and Sugimoto in [28] using weighted estimates
for multipliers of Kurtz and Wheeden [21], and we refer to [28] for a discussion of
complications that arise in this situation.

Assumption (2b) is di↵erent from (2a) in that we do not assume the boundedness
(2.3), but assume the boundedness only of mixed derivatives (i.e. with |↵| � 1 and
|�| � 1), and in addition assume that derivatives of b have some decay properties in
(2.6) or in (2.8). In assumption (2c) we also allow non-mixed derivatives (i.e. @�⇠ -
derivatives when ↵ = 0) to grow in y. Moreover, in both (2b) and (2c) we assume
(2.2) to hold only on the support of b.

We note that propagators for hyperbolic partial di↵erential equations lead to oper-
ators (2.1) with b(x, y, ⇠) = b(y, ⇠) independent of x, in which case assumption (2.6)
becomes trivial if ↵ 6= 0. For these propagators also the boundedness (2.3) is satis-
fied under natural assumptions on the symbol of the hyperbolic equation. However,
we do not always want to assume the boundedness (2.3) since it fails for non-mixed
derivatives (i.e. when ↵ = 0 or � = 0), e.g. in applications to smoothing estimates
for dispersive equations. For example, it is shown in [28, 29] that for canonical trans-
forms appearing there condition (2.3) fails, but it is also shown that additional decay
of derivatives as in (2.6) or (2.8) holds.

If the amplitude b in Theorem 2.2 is compactly supported in (x, y), Theorem 2.2
implies the local Lp boundedness under the assumptions in Seeger, Sogge and Stein
[32], implying, in particular, that the order µ in Theorem 2.2 cannot be improved
in general. Let us now give some explanation about the order m. In [8], Cordero,
Nicola and Rodino investigated the question of the boundedness of Fourier integral
operators on (FLp(Rn))comp, the space of compactly supported distributions for which
the Fourier transform is in Lp(Rn). They proved that if the amplitude of an operator is

of order�n
�

�

�

1
p
� 1

2

�

�

�

in ⇠ (plus additional assumptions), then the operator is continuous

on (FLp(Rn))comp. They also showed that this order of decay is sharp by constructing
a counterexample for higher orders. Roughly speaking, the conjugation with the
Fourier transform interchanges the roles of x and ⇠, so the orders in [8] correspond

to orders m = �n
�

�

�

1
p
� 1

2

�

�

�

and µ = �1 for operators in the setting of Theorem

2.2 since the assumption of the compact support in (FLp(Rn))comp corresponds to
locally smoothing operators in Lp(Rn). From this point of view, our Theorem 2.2

also improves the result of [8] with respect to µ to the order µ = �(n � 1)
�

�

�

1
p
� 1

2

�

�

�

,

which cannot be improved further in general. However, the order m in Theorem 2.2
can still be improved if we restrict the size of the support while still allowing it to

move to infinity. In this case a uniform estimate is possible for m  �(n� 1)
�

�

�

1
p
� 1

2

�

�

�

and it is given in Theorem 2.5. The same improved threshold for the order m can be
achieved for the Fourier integral operators (1.2), as stated in Theorem 2.6.

To prove Theorem 2.2 we use interpolation between the L2(Rn)-boundedness and
boundedness from the Hardy space H1(Rn) to L1(Rn). The global L2(Rn)-bounded-
ness under assumptions (2a) and (2b)–(2c) would follow from the results of Asada
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and Fujiwara [2] and Ruzhansky and Sugimoto [28], respectively. Thus, the main
point is to prove the boundedness from the Hardy space H1(Rn) to L1(Rn). This can
be achieved by using the atomic decomposition of H1(Rn) and splitting the argument
for atoms with large and small supports. However, there is a number of di�culties
in this argument compared with that of [32]. For example, supports are no longer
bounded and can become very large, and hence, while this case is simple for the
local boundedness, it requires to be analysed further in the global setting. Another
global feature is that even if the supports of atoms may be small, they may still
move to infinity (while remaining small). We deal with this situation by introducing
a dyadic decomposition in frequency which depends on y. The dyadic pieces that

we work with are of the size 2�k in the radial direction and of the size 2�
k
2 hyi

1
2 in

other directions (tangential to the sphere in the frequency space). Thus, we obtain
the following theorem in the setting of the Hardy space H1(Rn):

Theorem 2.3. Let T be the Fourier integral operator (2.1). Under the hypotheses of
Theorem 2.2, operator T extends to a bounded operator from the Hardy space H1(Rn)
to L1(Rn), provided that m  �n/2 and µ  �(n� 1)/2.

We can establish also a result in weighted Sobolev spaces. Let W �,p
s (Rn) denote the

weighted Sobolev space, i.e. the space of all f 2 S 0(Rn) such that hxis(1��)�/2f(x)
belongs to Lp(Rn).

Theorem 2.4. Let 1 < p < 1 and let �, s 2 R. Let T be the Fourier integral

operator (2.1) as in Theorem 2.2 with orders m,µ 2 R, and let mp = �n
�

�

�

1
p
� 1

2

�

�

�

,

µp = �(n�1)
�

�

�

1
p
� 1

2

�

�

�

. Then operator T extends to a bounded operator from W �,p
s (Rn)

to W
��µ�µp,p
s�m�mp

(Rn).

Theorem 2.4 follows from Theorem 2.2 and composition formulae of Fourier inte-
gral operators with pseudo-di↵erential operators as in [30] or in [31]. In fact, here
we only need a special class of pseudo-di↵erential operators, namely of operators
with symbols ⇡s,�(x, ⇠) = hxish⇠i� for which we have (Op ⇡s,�)(W �,p

s (Rn)) = Lp(Rn).
Global composition formulae of [30, 31] will be also used in the proof of Theorem 2.3.

The assumptions on the order of the amplitude in Theorem 2.2 can be relaxed if
we work with functions with compact support. We will assume that the supports
are uniformly bounded but will still allow them to move to infinity (while remaining
bounded). In this situation the proof of Theorem 2.2 will also imply the following

Theorem 2.5. Let 1 < p < 1 and let m,µ 2 R. Let T be the Fourier integral
operator (2.1) as in Theorem 2.2. Let R > 0. Let V(Rn) ⇢ Lp(Rn) be the set of
all functions f 2 Lp(Rn) for which there exists y 2 Rn such that supp f ⇢ BR(y),
and let V(Rn) have the topology induced by Lp(Rn). Then operator T extends to a
continuous operator from V(Rn) to Lp(Rn), provided that

(2.11) m  �(n� 1)

�

�

�

�

1

p
� 1

2

�

�

�

�

and µ  �(n� 1)

�

�

�

�

1

p
� 1

2

�

�

�

�

.

Theorem 2.5 will follow from Remarks 3.3 and 3.7. We also have natural counter-
parts of Theorem 2.5 for H1 and W �,p

s as in Theorems 2.3 and 2.4.
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We note that for large atoms the cancellation condition is not used in our proof,
so that the results extend to the boundedness from the local Hardy space H1

loc(Rn)
to L1(Rn). The order in x is improved in Theorem 2.5 and in Theorem 2.6.

By an argument similar to the one used in [9], it is also possible to prove the Lp-
continuity of the classes of Fourier integral operators considered in [12], where the
phase function is assumed positively homogeneous of order 1 in ⇠ and satisfies (2.2):

Theorem 2.6. Let A = A',a be a Fourier integral operator of the form

(2.12) Au(x) =

Z

Rn

ei'(x,⇠) a(x, ⇠) bu(⇠) d⇠,

with a real-valued phase function ' 2 C1(Rn⇥ (Rn\0)) such that '(x, ⌧⇠) = ⌧'(x, ⇠)
for all ⌧ > 0 and ⇠ 6= 0, and assume that the condition (2.2) holds true for all x 2 Rn

and ⇠ 2 Rn\0. Moreover, assume that |⇠| � ", for some " > 0, on the support of the
amplitude a, and that a 2 Sm,µ, i.e. that

@↵x@
�
⇠ a(x, ⇠) � hxim�|↵|h⇠iµ�|�|,

for all x, ⇠ 2 Rn and all multi-indices ↵, �, with some m,µ 2 R. Then A extends to
a bounded operator from Lp(Rn) to itself, provided that

(2.13) m  �(n� 1)

�

�

�

�

1

p
� 1

2

�

�

�

�

and µ  �(n� 1)

�

�

�

�

1

p
� 1

2

�

�

�

�

.

The thresholds (2.13) are sharp, by a modification of a counterexample described
in [9]. The improvement in Theorem 2.6 compared to that in Theorem 2.2, (2c),
comes from the independence of the amplitude of A on y-variable, if we write the
adjoint A⇤ in the form of an operator T in Theorem 2.2. The proof of Theorem 2.6 is
given in Section 4. Finally, the composition formulae in [12] together with Theorem
2.6 imply the analog of Theorem 2.4 for the operator A:

Theorem 2.7. Let 1 < p < 1 and let �, s 2 R. Let A be the Fourier integral operator

(1.2) as in Theorem 2.6 with orders m,µ 2 R, and let mp = �(n� 1)
�

�

�

1
p
� 1

2

�

�

�

. Then

operator A extends to a bounded operator from W �,p
s (Rn) to W

��µ�mp,p
s�m�mp

(Rn).

We finish by briefly indicating the example for the sharpness of orderm in Theorem
2.6. Let  : R ! R be a smooth di↵eomorphism whose restriction to (0, 1) is a non-
linear di↵eomorphism on (0, 1), i.e. there exists an interval I ⇢ (0, 1) such that
| 00| > 0 on the closure of I. Moreover, assume that 0 < c  | 0(t)|  C for all t 2 R.
Define

�(⇠) := ( (⇠1/⇠n), · · · , (⇠n�1/⇠n)) ⇠n

microlocally in a narrow cone around (0, 1), i.e. for |⇠n| � C|⇠0|, where ⇠0 =
(⇠1, . . . , ⇠n�1). Let G 2 C1

0 (Rn) be such that G � 0, G(⇠0, ⇠n) = 1 for ✏  |⇠n|  1,
and such that the support of G is contained in the set (⇠0, ⇠n) with ✏/2  |⇠j|  M ,
j = 1, . . . , n � 1, M � |⇠n| � C|⇠0|, for some some su�ciently small ✏ > 0 and some
M > 0. Let us write y = (y0, yn). Define the operator

T f(x) =

Z

Rn

Z

Rn

ei[hx,⇠i�hy0,�(⇠)i�yn⇠n] hyim G(⇠) �[1,2](yn) f(y) dy d⇠,
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where �[1,2] 2 C1
0 (R) is a non-zero function with supp�[1,2] ⇢ [1, 2]. We notice that

T is a locally smoothing operator with phase and amplitude satisfying conditions
of Theorem 2.2. After conjugating T with the Fourier transform and factoring out
⇠n, we observe that y ⇠ y0 on the support of the amplitude of T . Therefore, if T
is bounded on Lp(Rn), the operator F�1 � T � F with ⇠n, yn factored out, would be
bounded on (FLp(Rn�1))comp. Since this is an operator of the form considered in
Section 6.2 in [8], we must have m  �(n� 1)|1/p� 1/2|, 1  p  1.

3. Proof of Theorem 2.3

Since Theorem 2.2 follows by complex interpolation from Theorem 2.3 and L2-
boundedness results in [2] and [28] under assumptions (2a) and (2b)–(2c), respec-
tively, we need to prove Theorem 2.3. This will be achieved through various sub-
sequent steps. We also note that on several occasions we will use the composition
formulae for globally defined Fourier integral operators and pseudo-di↵erential opera-
tors. In order not to list the corresponding lengthy conditions for the calculus for such
operators to work, we refer to Theorems 2.1, 2.5 and 2.8 in [31] for exact formulations.

Given f 2 H1(Rn), we can decompose (see e.g. [34]) function

f =
X

Q

�QaQ,

where
X

Q

|�Q| ' kfkH1(Rn),

and the atoms aQ 2 H1(Rn) have the following properties:

(1) supp aQ ⇢ Q, where Q ⇢ Rn is a cube of sidelength q;
(2) kaQkL1(Rn)  |Q|�1;

(3)

Z

Q

aQ(y) dy = 0.

Theorem 2.3 would then follow if we show that

(3.1) kT aQkL1(Rn)  C,

for a constant C independent of aQ.
Let F = F (x, y) denote the distribution kernel of T , given by the oscillatory

integral

(3.2) F (x, y) =

Z

Rn

ei[hx,⇠i�'(y,⇠)] b(x, y, ⇠) d⇠.

We begin showing that the amplitude function can be assumed supported only in
a suitable neighbourhood of the wave front set of the distributional kernel of T :

Proposition 3.1. Let � = �(x, y, ⇠) be supported in

Ek = {(x, y, ⇠) 2 Rn ⇥ Rn ⇥ Rn : |x�r⇠'(y, ⇠)|  khxi},
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for k 2 (0, 1) suitably small, and such that �|E k
2

⌘ 1. Moreover1, let us assume that

� (is smooth and) satisfies S0,0,0 estimates on supp b, that is

@↵x@
�
y @

�
⇠ �(x, y, ⇠) � hxi�|↵|hyi�|�|h⇠i�|�|.

We set eb = (1� �)b. Then, defining

(3.3) eF (x, y) =

Z

Rn

ei[hx,⇠i�'(y,⇠)]
eb(x, y, ⇠) d⇠,

it follows that eF 2 S(Rn ⇥ Rn), which implies, in particular, that

(3.4)

Z

Rn

�

�

�

�

Z

Rn

eF (x, y) aQ(y) dy

�

�

�

�

dx  C,

with a constant C independent of aQ.

Proof. We will show that kernel eF satisfies

(3.5) @↵x@
�
y
eF (x, y) � (hxihyi)�N ,

for all N 2 N, x, y 2 Rn and all multi-indices ↵, �. By the hypotheses on b and ',
it is clear that it is enough to prove the estimate only for ↵ = � = 0 and arbitrary
order in x, y, ⇠ for eb.
Indeed, we have |x �r⇠'(y, ⇠)| � hxi on suppeb, so that the operator L⇠, acting on
functions v = v(x, y, ⇠) with respect to ⇠ as

(L⇠v)(x, y, ⇠) =
n
X

j=1

i@⇠j

✓

xj � @⇠j'(y, ⇠)

|x�r⇠'(y, ⇠)|2
v(x, y, ⇠)

◆

,

is well-defined on suppeb. Moreover, on suppeb, we have

|x�r⇠'(y, ⇠)| � hxi.
Then

|r⇠'(y, ⇠)|  |x�r⇠'(y, ⇠)|+ |x| � |x�r⇠'(y, ⇠)|,
and it follows that we also have

|x�r⇠'(y, ⇠)| � hr⇠'(y, ⇠)i � hyi.
Now (3.5) follows by integrating by parts in (3.3), observing that

tL⇠e
i[hx,⇠i�'(y,⇠)] = ei[hx,⇠i�'(y,⇠)].

Then (3.4) holds, since, for all N 2 N, we have
Z

Rn

�

�

�

�

Z

Rn

eF (x, y) aQ(y) dy

�

�

�

�

dx 
Z

Rn

Z

Rn

| eF (x, y)| |aQ(y)| dy dx

 eC

Z

Rn

hxi�N dx

Z

Rn

|aQ(y)| dy  C |Q| |Q|�1 = C.

1With h 2 C1(R) such that h|(�1, 12 )
⌘ 1 and h|(1,+1) ⌘ 0, k 2 (0, 1), set

�(x, y, ⇠) = h

✓

|x�r⇠'(y, ⇠)|
khxi

◆

.
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⇤

Therefore, from now on we can then assume that for some k 2 (0, 1) we have

(3.6) supp b ✓ D = {(x, y, ⇠) 2 Rn ⇥ Rn ⇥ Rn : |x�r⇠'(y, ⇠)|  khxi}.

This implies that on supp b we have

hxi ⇠ hr⇠'(y, ⇠)i ⇠ hyi,

which in turn implies that C1hyi  hxi  C2hyi, x, y 2 Rn, for suitable constants
C1, C2 > 0.

Proposition 3.2. Let aQ be an atom in H1(Rn), supported in a cube Q ⇢ Rn centred
at y0 2 Rn and with sidelength q � 1 (hence also |Q| � 1). Then, estimate (3.1)
holds with a constant C independent of aQ.

Proof. Let us denote by Ms the multiplication operator (Msv)(x) = hxisv(x). From
composition formulae with pseudo-di↵erential operators (see [31]) it follows that op-
erator Mn

2
T is then a Fourier integral operator with amplitude bounded in x and

y, and of order �n�1
2 in ⇠. Consequently, operator Mn

2
T is bounded on L2(Rn) by

[2] under assumption (2a) and by [28] under assumptions (2b) and (2c). Applying
Hölder’s inequality and denoting

Dq,y0 = {x 2 Rn | C1hyi  hxi  C2hyi, y 2 Q},

we get

kT aQkL1(Rn) =

Z

hxi⇠hyi
y2Q

|hxi�
n
2 (Mn

2
T aQ)(x)|dx


 

Z

Dq,y0

hxi�n dx

!

1
2

k(Mn
2
T )aQkL2(Rn)

 eCkaQkL2(Rn)

"

Z

Dq,y0

(1 + |x|2)�n
2 dx

#

1
2

= eC|Q|�1|Q| 12
"

Z

Dq,y0

(1 + |x|2)�n
2 dx

#

1
2

= eC

"

|Q|�1

Z

Dq,y0

(1 + |x|2)�n
2 dx

#

1
2

 C,

where C � 0 does not depend on aQ. Indeed, let us prove the boundedness of the

expression in the last line. Let us set A = 1 +
|C2

1 � 1| 12
C1

. The required boundedness

is a consequence of the following steps:
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• choose  2 C1(R) supported in (�1, 2], taking values in [0, 1], and such that

 (t) = 1 for t 2 (�1, 1]. Set �(q, y0) =  

✓

|y0|
Aq

p
n

◆

and let

I1 = �(q, y0) |Q|�1

Z

Dq,y0

(1 + |x|2)�n
2 dx,

I2 = (1� �(q, y0)) |Q|�1

Z

Dq,y0

(1 + |x|2)�n
2 dx;

• on the support of �(q, y0) we have |y0|  2Aq
p
n, so, for x 2 Dq,y0 ,

|x| < hxi  C2hyi  C2

p

(|y � y0|+ |y0|)2 + 1

 C2

s

✓

q
p
n

2
+ 2Aq

p
n

◆2

+ 1  Kq,

where K > 0 is independent of q � 1 and y0 2 Rn. Then, Dq,y0 ⇢ BKq(0),
where BKq(0) is the ball centred at the origin with radius Kq, and we have

I1  |Q|�1 |BKq(0)|  Kn |B1(0)| = B1,

with B1 > 0 independent of q � 1, y0 2 Rn;
• on the support of 1 � �(q, y0) we have |y0| � Aq

p
n > 1 and, for x 2 Dq,y0 ,

we have
q

C2
1 |y|2 + C2

1 � 1  |x| 
q

C2
2 |y|2 + C2

2 � 1, y 2 Q.

Note also that, on the support of 1� �(q, y0), for y 2 Q we have

|y � y0|
|y0|

 q
p
n

2

1

Aq
p
n
=

1

2A
<

1

2

and

|y| � |y0|� |y � y0| = |y0|
✓

1� |y � y0|
|y0|

◆

� |y0|
✓

1� 1

2A

◆

>
|y0|
2

>
1

2
.

Hence we can estimate

C2
1 |y|2 + C2

1 � 1 � |y0|2
"

C2
1

✓

1� |y � y0|
|y0|

◆2

+
C2

1 � 1

|y0|2

#

� |y0|2
"

C2
1

✓

1� 1

2A

◆2

� |C2
1 � 1|
|y0|2

#

� |y0|2


C2
1(2A� 1)2

4A2
� |C2

1 � 1|
A2q2n

�

� |y0|2
C2

1q
2n

 

1 +
2|C2

1 � 1| 12
C1

!2

� 4|C2
1 � 1|

4A2q2n

� |y0|2
q2n(C2

1 + 4C1|C2
1 � 1| 12 )

4A2q2n
> 0,
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from which we get that

r1 := min
y2Q

q

C2
1 |y|2 + C2

1 � 1 � K1|y0| > 0,

with
3C1

2
> K1 > 0 independent of q � 1, y0 2 Rn. Since C2 � C1, on the

support of 1� �(q, y0) we have C2
2 |y|2 + C2

2 � 1 > 0, and
q

C2
2 |y|2 + C2

2 � 1 
q

C2
2(|y0|+ |y � y0|)2 + C2

2

 C2|y0|

s

✓

1 +
|y � y0|
|y0|

◆2

+
1

|y0|2

 2C2|y0|,

so that r1 < r2 := max
y2Q

q

C2
2 |y|2 + C2

2 � 1  K2|y0| with K2 > K1 > 0

independent of q � 1, y0 2 Rn; we have then proved that, on the support of
1� �(q, y0), Dq,y0 ⇢ Br2(0) \Br1(0), hence

I2  (1� �(q, y0)) |Q|�1 |B1(0)|
Z r2

r1

rn�1

(1 + r2)
n
2
dr

 |B1(0)|
Z r2

r1

dr

r
 |B1(0)| log

K2

K1
= B2,

with B2 > 0 independent of q � 1, y0 2 Rn.

The proof is complete. ⇤
Remark 3.3. Let operator T be as in Theorem 2.2 with µ satisfying (2.9) but with
any m  0. Let R > 0. Let aQ be an atom in H1(Rn), supported in a cube Q ⇢ Rn

centred at y0 2 Rn and with sidelength q such that R � q � 1. Then, estimate (3.1)
holds with a constant C independent of such aQ.

This remark follows immediately from the proof of Proposition 3.2 if we observe
that the boundedness of I1 is actually independent of the order of b in x, while the
boundedness of I2 is a consequence of the fact that the volume of Dq,y0 is bounded
by a uniform constant for all cubes Q in Remark 3.3.

Of course, the argument in the proof of Proposition 3.2 still holds if the hypothesis
|Q| � 1 is replaced by |Q| � Q0 > 0, or, equivalently, by q � q0 > 0. In the next steps
of the proof we can then assume that aQ is supported in a cube Q with sidelength

q = 2�j, j � j0, where j0 is chosen so large that
q

2

p
n < 1. In this way,

y 2 Q =) |y � y0| 
q

2

p
n =) hyi ⇠ hy0i,

with y0 centre of Q, so that we also have, on supp b, that hxi ⇠ hy0i.
We now define an “exceptional set” set NQ, which covers

(3.7) ⌃ = {x = r⇠'(y, ⇠) for some y 2 Q, ⇠ 2 Rn},
and use again L2-boundedness results, together with Hölder and Hardy-Littlewood-
Sobolev inequalities, to estimate kT aQkL1 on that set.
Choose unit vectors ⇠⌫k , ⌫ = 1, . . . , N(k, y), k � j0, y 2 Rn, such that:
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- |⇠⌫k � ⇠⌫
0

k | � C02�
k
2 hyi�

1
2 , ⌫ 6= ⌫ 0, for some fixed positive constant C0 < 1;

- the unit sphere Sn�1 is covered by the balls centred at ⇠⌫k with radius 2�
k
2 hyi�

1
2 .

We have then
N(k, y) ⇡ 2k

n�1
2 hyi

n�1
2 .

For y 2 Q and a constant M to be fixed later, define

(3.8) Ry
k⌫ =

n

x : |hx�r⇠'(y, ⇠
⌫
k), ⇠

⌫
ki|  M2�k and |⇧?

k⌫(x�r⇠'(y, ⇠
⌫
k))|  M2�

k
2 hyi

1
2

o

,

where ⇧?
k⌫ is the projection onto the plane orthogonal to ⇠⌫k . Set Ry

k⌫ is then a n-

rectangle with n � 1 sides of length M2�
k
2 hyi

1
2 and one side of length M2�k. If Q

has sidelength q = 2�j, j � j0, we define

(3.9) NQ =
[

y2Q

N(j,y)
[

⌫=1

Ry
j⌫ .

Since |Ry
j⌫ | ⇡ 2�j n+1

2 hy0i
n�1
2 for y 2 Q, it follows that

(3.10) |NQ|  C2j
n�1
2 hy0i

n�1
2 2�j n+1

2 hy0i
n�1
2 = C2�jhy0in�1 = C|Q| 1n hy0in�1,

for some constant C � 0 independent of j � j0, y0 2 Rn.

Lemma 3.4. If in (3.8) we take

M = sup
|↵|=2,3

(y,⇠)2Rn⇥Rn

hyi�1h⇠i�1+|↵||@↵⇠ '(y, ⇠)|,

the singular set ⌃ defined in (3.7) is a subset of NQ.

Proof. Let us denote

vers(⇠) =
⇠

|⇠| .

Since, for all ⇠ 2 Rn, we have

| vers(⇠)� ⇠⌫j |  2�
j
2 hyi�

1
2

for some ⌫ = 1, . . . , N(j, y), then, with M chosen as above, we have r⇠'(y, ⇠) 2 Ry
j⌫ .

Indeed, r⇠'(y, ⇠) is homogeneous of order 0 in ⇠ and ⇧?
j⌫ is a projection, so that

|⇧?
j⌫(r⇠'(y, ⇠)�r⇠'(y, ⇠

⌫
j ))|  |r⇠'(y, vers(⇠))�r⇠'(y, ⇠

⌫
j )|

 Mhyi| vers(⇠)� ⇠⌫j |  M2�
j
2 hyi

1
2 .

Moreover, again in view of the homogeneity of the phase function, if we set

h⌫
j (y, ⇠) = hr⇠'(y, ⇠), ⇠

⌫
j i � hr⇠'(y, ⇠

⌫
j ), ⇠

⌫
j i = hr⇠'(y, ⇠), ⇠

⌫
j i � '(y, ⇠⌫j ),

we have h⌫
j (y, ⇠

⌫
j ) = 0 and r⇠h

⌫
j (y, ⇠) = h'00

⇠⇠(y, ⇠), ⇠
⌫
j i. Therefore, we get

r⇠h
⌫
j (y, ⇠

⌫
j ) = 0
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by Euler’s formula. Writing the Taylor expansion of h⌫
j (y, ⇠) with respect to ⇠ at ⇠⌫j ,

we obtain
|h⌫

j (y, ⇠)|  Mhyi| vers(⇠)� ⇠⌫j |2  M2�j,

as desired. ⇤
Proposition 3.5. kT aQkL1(NQ)  C with C independent of aQ.

Proof. First we observe that operator Mn
2
T (1��)

n�1
4 is a Fourier integral operator

with the same phase and same properties of the amplitude as those of T in view of
the global calculus in [31]. Consequently, operator Mn

2
T (1 � �)

n�1
4 is bounded on

L2(Rn) in view of the L2-boundedness theorems in [2] under assumption (2a) and in

[28] under assumptions (2b) and (2c). Writing pn =
2n

2n� 1
and recalling (3.10), we

have

kT aQkL1(NQ) =
�

�

�

M�n
2

h

Mn
2
T (1��)

n�1
4

i

(1��)�
n�1
4 aQ

�

�

�

L1(NQ)



0

B

B

B

@

Z

NQ

hxi⇠hyi

hxi�n dx

1

C

C

C

A

1
2

�

�

�

h

Mn
2
T (1��)

n�1
4

i h

(1��)�
n�1
4 aQ

i

�

�

�

L2(Rn)

 C1

⇣

hy0i�n |Q| 1n hy0in�1
⌘

1
2
�

�

�

(1��)�
n�1
4 aQ

�

�

�

L2(Rn)

 C2 |Q| 1
2n kaQkLpn (Rn)  C |Q| 1

2n |Q|� 1
2n = C,

with a constant C independent of aQ, in view of the Hardy-Littlewood-Sobolev in-
equality

�

�

�

(1��)�
n�1
4 aQ

�

�

�

L2(Rn)
 eC kaQkLpn (Rn) ,

and since, obviously,

kaQkLpn (Rn)  |Q|
1
pn

�1 = |Q|� 1
2n .

⇤
We will now prove the estimate

(3.11) kT aQkL1(Rn\NQ)  C

o↵ the exceptional set. We first introduce a dyadic decomposition, choosing func-

tion ✓ 2 C1(R) such that supp ✓ ⇢
✓

1

4
, 4

◆

and such that for all s > 0 we have
P

k2Z ✓(2
�ks) = 1. We now set

(3.12) Fk(x, y) =

Z

Rn

ei[hx,⇠i�'(y,⇠)]b(x, y, ⇠) ✓k(⇠) d⇠,

where ✓k(⇠) = ✓(2�k|⇠|). We can assume without loss of generality that b(x, y, ⇠) = 0

for |⇠| < 8. Defining ✓0 = 1�
X

k>0

✓k, we have F =
X

k�1

Fk. Estimate (3.11) is then a
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consequence of the following proposition, where we recall that j was introduced in a
way that 2�j is a sidelength of Q.

Proposition 3.6. For all y, y0 2 Q, j, k 2 N, j � j0, we have
Z

Rn\NQ

|Fk(x, y)| dx � 2j�k if k > j,(3.13)

Z

Rn

|Fk(x, y)� Fk(x, y
0)| dx � 2k�j if k  j.(3.14)

Proof. For each k 2 N, let {�⌫
k}, ⌫ = 1, . . . , N(y, k), be a homogeneous partition of

unity associated with the covering of the unit sphere with the balls B(⇠⌫k , c02
� k

2 hyi�
1
2 ),

as introduced above. Explicitly, we choose C1 functions �⌫
k = �⌫

k(y, ⇠), homogeneous
in ⇠ of degree 0, such that, for all y 2 Rn, we have

- �⌫
k(y, vers(⇠)) ⌘ 1 for vers(⇠) in a neighbourhood of ⇠⌫k in Sn�1;

- �⌫
k(y, ⇠) = 0 if | vers(⇠)� ⇠⌫k | � c02�

k
2 hyi�

1
2 ;

-
P

⌫ �
⌫
k = 1;

- |@��⌫
k(y, ⇠)| � |⇠|�|�|(2khyi)

|�|
2 for all multi-indices � 2 Zn

+.

We now define

F ⌫
k (x, y) =

Z

Rn

ei[hx,⇠i�'(y,⇠)] b⌫k(x, y, ⇠) d⇠,

where
b⌫k(x, y, ⇠) = b(x, y, ⇠) ✓k(⇠)�

⌫
k(y, ⇠).

Set also
r⌫k(y, ⇠) = '(y, ⇠)� hr⇠'(y, ⇠

⌫
k), ⇠i

implying that
r⇠r

⌫
k(y, ⇠) = r⇠'(y, ⇠)�r⇠'(y, ⇠

⌫
k),

and let D⌫
k = hr⇠, ⇠

⌫
ki, ⌫ = 1, . . . , N(k, y). Clearly, by definition of r⌫k and homogene-

ity of ', we have r⌫k(y, ⇠
⌫
k) = 0 and r⇠r

⌫
k(y, ⇠

⌫
k) = 0. Since, again by homogeneity,

(D⌫
kr

⌫
k)(y, ⇠) = D⌫

k'(y, ⇠)� '(y, ⇠⌫k) =) (D⌫
kr

⌫
k)(y, ⇠

⌫
k) = 0,

(r⇠D
⌫
kr

⌫
k)(y, ⇠) = D⌫

kr⇠'(y, ⇠) =) (r⇠D
⌫
kr

⌫
k)(y, ⇠

⌫
k) = 0,

by induction we also see that, for all N 2 N, we have

(3.15) [(D⌫
k)

Nr⌫k ](y, ⇠
⌫
k) = 0, [r⇠(D

⌫
k)

Nr⌫k ](y, ⇠
⌫
k) = 0.

Writing the Taylor expansion in ⇠ of r⌫k centred in ⇠⌫k , (3.15) implies that, for all
N 2 N, on supp(b⌫k) we have

(3.16) [(D⌫
k)

Nr⌫k ](y, ⇠) � |⇠|1�Nhyi| vers(⇠)� ⇠⌫k |2 � 2k(1�N)2�k = 2�kN .

On the other hand, for the “transversal derivatives” with |�| � 1 we have, on supp(b⌫k),

(3.17) D�
⇠ r

⌫
k(y, ⇠) � |⇠|1�|�|hyi � 2�k(|�|�1)hyi � 2�k

|�|
2 hyi.

Indeed, first we recall that on supp(b⌫k), |⇠| is equivalent to 2k. For |�| � 2, we

then have |⇠|1�|�| � 2k(1�|�|)  2�k
|�|
2 and hence also (3.17). For |�| = 1, the first
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derivatives are actually bounded by 2�
k
2 hyi

1
2 , since by r⇠r

⌫
k(y, ⇠

⌫
k) = 0 and Taylor

expansion we have

(@⇠jr
⌫
k)(y, ⇠) � hyi|⇠ � ⇠⌫k | � 2�

k
2 hyi

1
2 .

Consequently, one can readily check that on supp(b⌫k), we have estimate

(3.18) D�
⇠ e

ir⌫k(y,⇠) � 2�k
|�|
2 hyi

|�|
2 .

Performing a rotation2 ⇠ = Ce⇠, we can simplify notation and assume ⇠⌫k = (1, 0, . . . , 0),
⇧⌫

k(⇠) = (0, ⇠0). Rewriting F ⌫
k (x, y) as

(3.19) F ⌫
k (x, y) =

Z

Rn

eihx�r⇠'(y,⇠),⇠⌫k i eb⌫k(x, y, ⇠) d⇠,

where eb⌫k(x, y, ⇠) = eir
⌫
k(y,⇠)b⌫k(x, y, ⇠), we observe that the derivatives in the ⇠1 (“ra-

dial”) direction of �⌫
k vanish identically, so that, defining the selfadjoint operator L⌫

k

as

L⌫
k =

✓

I � 22k
@2

@⇠21

◆

�

I � 2khyi�1hr⇠0 ,r⇠0i
�

,

(3.16), (3.18), the properties of �⌫
k, the definition of ✓k and the hypoteses on ' and b

imply, for all N 2 N, that we have

(3.20) [(L⌫
k)

N
eb⌫k](x, y, ⇠) � 2�k n�1

2 hyi�
n
2 .

Repeated integrations by parts allow to write

F ⌫
k (x, y) = H⌫

k,N(x, y)

Z

Rn

eihx�r⇠'(y,⇠⌫k ),⇠i[(L⌫
k)

N
eb⌫k](x, y, ⇠) d⇠,

with

H⌫
k,N(x, y) =

�

1 + |2k(x�r⇠'(y, ⇠
⌫
k))1|2

��N
⇣

1 + |2 k
2 hyi�

1
2 (x�r⇠'(y, ⇠

⌫
k))

0|2
⌘�N

.

Since
vol⇠(supp(eb

⌫
k)) � 2k (2k · 2� k

2 hyi�
1
2 )n�1 = 2k

n+1
2 hyi�

n�1
2 ,

by (3.20) it follows that

(3.21) |F ⌫
k (x, y)| � H⌫

k,N(x, y) 2
khyi�n+ 1

2 .

In Rn \ NQ, we must have either |2k(x � r⇠'(y, ⇠⌫k))1| � 2k�j or |2 k
2 hyi�

1
2 (x �

r⇠'(y, ⇠⌫k))
0| � 2

k�j
2 . Since, obviously, H⌫

k,N = H⌫
k,N�N 0 · H⌫

k,N 0 for any N,N 0 2 N
such that N > N 0, then, for any k > j, we can estimate

(3.22)

Z

Rn

H⌫
k,N(x, y) dx  CN�N 0 2�k 2�k n�1

2 hyi
n�1
2 2�N 0(k�j),

which implies, together with (3.21), that

(3.23)

Z

Rn

|F ⌫
k (x, y)| dx � 2j�k 2�k n�1

2 hyi�
n
2 .

2Note that all the symbol estimates for ✓k, �⌫
k, r

⌫
k , ', and b hold unchanged for fixed y, since all

the entries of C are bounded, in view of A 2 O(n).



GLOBAL Lp CONTINUITY OF FOURIER INTEGRAL OPERATORS 17

Now (3.13) follows from (3.23), by summing over ⌫ = 1, . . . , N(y, k). Owing to
Z

Rn

|Fk(x, y)� Fk(x, y
0)| dx 

X

⌫

Z

Rn

|F ⌫
k (x, y)� F ⌫

k (x, y
0)| dx

 |y � y0|
X

⌫

Z

Rn

sup
y2Q

|ryF
⌫
k (x, y)| dx � 2�j

X

⌫

Z

Rn

sup
y2Q

|ryF
⌫
k (x, y)| dx,

estimate (3.14) would follow from

(3.24)

Z

Rn

sup
y2Q

|ryF
⌫
k (x, y)| dx � 2k · 2�k n�1

2 hy0i�
n
2 .

Now, (3.24) indeed holds true, since ryF
⌫
k (x, y) can be written in the form (3.19)

with

ea⌫k(x, y, ⇠) = ry
eb⌫k(x, y, ⇠)� ieb⌫k(x, y, ⇠) ·ry'(y, ⇠)

in place of eb⌫k(x, y, ⇠), and ea
⌫
k(x, y, ⇠) has the same properties of eb⌫k(x, y, ⇠) with order

in ⇠ increased by one unit. It is then possible to repeat the same argument used in
the proof of (3.23), and to sum over ⌫ = 1, . . . , N(y, k), recalling that hyi ⇠ hy0i for
y 2 Q. ⇤

Conclusion of the proof of (3.11): by properties (1), (2) and (3) of aQ and Proposition
3.6, denoting by Tk the operator with kernel Fk defined in (3.12), we have

kT aQkL1(Rn\NQ) 
X

k�0

kTkaQkL1(Rn\NQ)


X

0kj

Z

Rn

�

�

�

�

Z

Q

[Fk(x, y)� Fk(x, y
0)] aQ(y) dy

�

�

�

�

dx

+
X

k>j

Z

Rn\NQ

�

�

�

�

Z

Q

Fk(x, y) aQ(y) dy

�

�

�

�

dx


X

0kj

Z

Q



Z

Rn

|Fk(x, y)� Fk(x, y
0)| dx

�

|aQ(y)| dy

+
X

k>j

Z

Q

"

Z

Rn\NQ

|Fk(x, y)| dx
#

|aQ(y)| dy

 C

3

 

X

0kj

2k�j +
X

k>j

2j�k

!

 C,

with C independent of aQ, as claimed.

Remark 3.7. We note that statements of Propositions 3.5 and 3.6 remain true if
operator T satisfies assumptions of Theorem 2.3 only with m  �(n� 1)/2.

4. Proof of Theorem 2.6

A preliminary result to be proven is the following
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Proposition 4.1 (Lp(Rn)-boundedness of localised Fourier integral operators). As-
sume the hypotheses in Theorem 2.6 and let e 2 C1

0 (Rn) be supported in the shell
2�2  |x|  22. Then we have, for k � 1,

k e (2�kx)AfkLp  CkfkLp ,

where the constant C depends only on e , on upper bounds for a finite number of the
constants in the estimates satisfied by a and ', and on the lower bound � for the
determinant of the mixed Hessian of '.

Proof. We can write
e (2�kx)A = U2�kA0

kU2k ,

where U�f(x) = f(�x), � 6= 0, is the dilation operator and

A0
kf(x) =

Z

Rn

ei'(2
kx,2�k⇠)

e (x)a(2kx, 2�k⇠) bf(⇠) d⇠.

Hence it su�ces to prove the desired conclusion with A0
k in place of e (2�kx)A. It

follows from the estimates satisfied by ' and the fact that |x| ⇠ 1 on the support of
e that, there,

|@↵x@
�
⇠ ('(2

kx, 2�k⇠))|  M↵,�|⇠|1�|�|,

(in fact, h2kxi ⇠ 2k on the support of e ). Moreover, we immediately have

(4.1)

�

�

�

�

det

✓

@2('(2kx, 2�k⇠))

@⇠j@xl

◆

�

�

�

�

> � > 0.

Similarly, one sees that3, on the support of e , we have

|@↵x@
�
⇠ (a(2

kx, 2�k⇠))| = 2k(|↵|�|�|)|(@↵x@
�
⇠ a)(2

kx, 2�k⇠)|

 C↵,�2
k(|↵|�|�|)h2kxim�|↵|h2�k⇠iµ�|�|

 C↵,�2
k(|↵|�|�|)h2kximp�|↵|h2�k⇠imp�|�|

 C↵,�2
k(|↵|�|�|+mp�|↵|�mp+|�|)h⇠imp�|�|

= C↵,�h⇠imp�|�|,

where we have set mp = �(n� 1)

�

�

�

�

1

p
� 1

2

�

�

�

�

� m,µ.

We have then showed that the operators A0
k satisfy the assumptions of Seeger-Sogge-

Stein’s theorem, uniformly with respect to k 2 N: an application of that theorem
concludes the proof4. ⇤

3Precisely, to verify this last estimate, distinguish the case |⇠|  2k (which implies h2�k⇠i ⇠ 1,
h⇠i � 2k ) 1 � 2k(�mp+|�|)h⇠imp�|�|) and the case |⇠| � 2k (which implies h2�k⇠i ⇠ |2�k⇠|,
h⇠i ⇠ |⇠|).

4Indeed, it su�ces to observe that the amplitudes of the A0
k, k 2 N, are compactly supported and

all the other requirements of the Seeger-Sogge-Stein’s theorem are fulfilled; moreover, the constant
in the boundedness estimate of the aformentioned Theorem depends only on upper bounds for a
finite number of the constants in the estimates satisfied by the phase and amplitude functions, and
a lower bound for the mixed Hessian of the phase.
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We then make use of a Littlewood–Paley partition of unity { k}, k 2 Z+, such
that  0 2 C1

0 (Rn),  k(x) =  (2�kx), k � 1, supp ⇢ {x 2 Rn : 2�1  |x|  2}, and
write the operator A of (2.12) as

(4.2) A =  0A+
1
X

k=1

 kA.

The operator  0A is Lp-bounded by the Seeger-Sogge-Stein’s theorem [32], so we only
treat the second term in (4.2), namely, the sum over k � 1, writing

1
X

k=1

 kA =
1
X

k=1

1
X

k0=0

 kA k0 .

The functions  k, k � 1, can be interpreted as SG pseudo-di↵erential operators, so
that it is possible to use the composition formulae of a SG Fourier integral operator
with a SG pseudo-di↵erential operator, see [12] or [30, 31]. Splitting the asymptotic
expansion of the amplitude of the composed operator into the sum of the terms from
order (m,µ) to order (m� 3, µ� 3) and of the corresponding remainder, we write

(4.3)  kA k0 = Ak,k0 + 2�k�k0Rk,k0 .

Actually, we can compose the operators in (4.3) on the left with the multiplication by
e k(x) := e (2�kx), and on the right with the multiplication by e k0(x), for a suitable
cut o↵ e , so that e k k =  k. This does not a↵ect the left-hand side and we find

 kA k0 = e kAk,k0
e k0 + 2�k�k0

e kRk,k0
e k0 ,

with Fourier integral operators Ak,k0 and Rk,k0 , with amplitudes in Sm,µ and in Sm,µ�2,
respectively (uniformly with respect to k, k0). Note also that, in view of the proper-
ties of the Littlewood-Paley partition of unity and the formula for the asymptotic
expansion of the amplitude of the composition of a pseudo-di↵erential operator and
a Fourier integral operator, |k � k0| > N implies Ak,k0 ⌘ 0, for some fixed N > 0.

Proposition 4.1 applied with Ak,k0 in place of A and e k0f in place of f , together with
the properties of the dyadic decomposition { k}, k 2 Z+, gives the desired estimate

for the operator
1
X

k=1

1
X

k0=0

e kAk,k0
e k0 :

�

�

�

1
X

k=1

X

k0�0,|k0�k|N

e kAk,k0
e k0f

�

�

�

p

Lp
�

1
X

k=1

�

�

�

X

k0�0,|k0�k|N

e kAk,k0
e k0f

�

�

�

p

Lp

�
1
X

k=1

X

k0�0,|k0�k|N

k e kAk,k0
e k0fkpLp

�
1
X

k=1

X

k0�0,|k0�k|N

k e k0fkpLp  (2N + 1)
1
X

k0=0

k e k0fkpLp � kfkpLp ,
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where we used
1
X

k0=0

k e k0fkpLp � kfkpLp ,
�

�

�

1
X

k=1

e kuk

�

�

�

p

Lp
�

1
X

k=1

k e kukkpLp , which hold for

arbitrary f, uk 2 Lp(Rn), k � 1. A similar argument allows to estimate

k
1
X

k=1

1
X

k0=0

2�k�k0
e kRk,k0

e k0fkLp 
1
X

k=1

1
X

k0=0

2�k�k0k e kRk,k0
e k0fkLp .

Indeed, again by Proposition 4.1 applied with Rk,k0 in place of A, and e k0f in place
of f , we see that the right hand side is

�
1
X

k=1

1
X

k0=0

2�k�k0k e k0fkLp =
1
X

k0=0

2�k0k e k0fkLp ,

and, by an application of Hölder’s inequality, the last expression is dominated by

�
 1
X

k0=0

k e k0fkpLp

!1/p

� kfkLp .

5. Applications to hyperbolic partial differential equations

In this section we briefly give applications of the obtained results to the solutions of
the Cauchy problem for strictly hyperbolic partial di↵erential equations. Theorems
5.1 and 5.2 describe the loss of regularity and weight for solutions. We restrict the
statements to large frequencies, also because it is known that di↵erent phenomena
may occur for small frequencies.

Let us first look at the equation of the first order

(5.1)

⇢

(Dt + a(t, x,Dx)u(t, x) = 0, t 6= 0,
u|t=0 = f(x).

As usual, Dt = �i@t and Dxj = �i@xj . We assume that the symbol a(t, x, ⇠) is a clas-
sical symbol of order one depending smoothly on t, x and ⇠. The strict hyperbolicity
means that the principal symbol a1(t, x, ⇠) is real-valued.

The result of [32] states that if f 2 W p,↵+(n�1)|1/p�1/2|(Rn), for some ↵ 2 R, it
follows that the solution satisfies u(t, ·) 2 W p,↵(Rn) locally, 1 < p < 1. Moreover,
this order is sharp when for every t in the complement of a discrete set in R, a is
elliptic in ⇠.

We now give a global version of this result. It follows from [20, Section 4, Ch. 10]
that modulo a smooth bounded function, for su�ciently small times, the solution
u(t, x) to (5.1) can be constructed as a Fourier integral operator in the form (2.1). If
we assume that a is a classical symbol with real-valued principal part such that

(5.2) |@kt @�x@↵⇠ a(t, x, ⇠)|  Ck↵�h⇠i1�|↵|

holds for all x, ⇠ 2 Rn, all t 2 [0, T ] for some T > 0, and all k,↵, �, with constants
Ck↵� independent of t, x, ⇠, then the phase and the amplitude of the propagator satisfy
assumption (2a) of Theorem 2.2. Thus, cutting o↵ low frequencies, we obtain

Theorem 5.1. Let the symbol a(t, x, ⇠) satisfy conditions (5.2). Let 1 < p < 1, and
let � 2 C1

0 (Rn) be such that �(⇠) = 1 for |⇠|  ", for some su�ciently large " > 0.
If f is such that hxin|1/p�1/2|f(x) 2 W p,(n�1)|1/p�1/2|(Rn), then for each t 2 [0, T ],
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the solution u(t, x) of the Cauchy problem (5.1) satisfies (1� �(D))u(t, ·) 2 Lp(Rn).
Moreover, for every ↵ 2 R and m 2 R, there is CT > 0 such that we have the estimate

khxim(1� �(D))u(t, ·)kW p,↵(Rn)  CTkhxim+n|1/p�1/2|fkW p,↵+(n�1)|1/p�1/2|(Rn),

for all t 2 [0, T ] and all f such that the right hand side norm is finite.

In the case when the symbol a(t, x, ⇠) has an SG-behavior, we have an improvement.
Assume that a is a classical symbol with the real-valued principal part such that

(5.3) |@kt @�x@↵⇠ a(t, x, ⇠)|  Ck↵�hxi�|�|h⇠i1�|↵|

holds for all x, ⇠ 2 Rn, all t 2 [0, T ] for some T > 0, and all k,↵, �, with constants
Ck↵� independent of t, x, ⇠. Then it was shown in [13] that the solution to the Cauchy
problem (5.1) can be written in the form (2.1), with phase and amplitude satisfying
conditions of Theorem 2.6. Thus, we obtain

Theorem 5.2. Let the symbol a(t, x, ⇠) satisfy conditions (5.3). Let 1 < p < 1, and
let � 2 C1

0 (Rn) be such that �(⇠) = 1 for |⇠|  ", for some su�ciently large " > 0..
If f is such that hxi(n�1)|1/p�1/2|f(x) 2 W p,(n�1)|1/p�1/2|(Rn), then for each t 2 [0, T ],
the solution u(t, x) of the Cauchy problem (5.1) satisfies (1� �(D))u(t, ·) 2 Lp(Rn).
Moreover, for every ↵ 2 R and m 2 R, there is CT > 0 such that we have the estimate

khxim(1� �(D))u(t, ·)kW p,↵(Rn)  CTkhxim+(n�1)|1/p�1/2|fkW p,↵+(n�1)|1/p�1/2|(Rn),

for all t 2 [0, T ] and all f such that the right hand side norm is finite.

We note that following [20] and [13], similar conclusions hold for higher order
equations under appropriate conditions on lower order terms.
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