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Abstract    
The objective of the present study was to examine the  extent  of  genetic  diversity among  Sarcoptes  
scabiei individuals belonging to different skin subunits of the body from individual mangy hosts. Ten 
microsatellite primers were applied on 44 individual S. scabiei mites from three mangy Iberian ibexes 
from Sierra Nevada Mountain in Spain. Dendrograms of the mites from the individual Iberian ibexes, 
showing  the  proportion  of  shared  alleles  between  pairs of individual mites representing three skin 
subpopulations (head, back, and abdomen subunits), allowed the clustering of some mite samples up to 
their skin subunits. This genetic diversity of S. scabiei at skin-scale did not have the same pattern in  all 
considered hosts: for  the  first Iberian ibex (Cp1), only mites from the head subunit were grouped 
together; in the second individual (Cp2), the clustering was detected only for mites from the abdomen 
subunit; and for the third one (Cp3), only mites from the back subunit were clustered together. Our 
results suggest that the local colonization dynamics of S. scabiei would have influenced the nonrandom 
distribution of this ectoparasite, after a single infestation. Another presumable explanation to  this  skin- 
scale genetic structure could be the repeated infestations. To our knowledge, this is the first 
documentation of genetic structuring among S. scabiei at individual host skin-scale. Further studies are 
warranted to highlight determining factors of such trend, but the pattern underlined in the present study 
should be taken into account in diagnosis and monitoring protocols for studying the population genetic 
structure and life cycle of this neglected but important ectoparasite. 
 
Introduction 
 
The understanding of the relationship between landscape structure and species biology is the basis of 
landscape ecology (Manel et al. 2003; Storfer et al. 2007). It can provide information about  population 
functioning which may be valuable cues for management and conservation decisions (Moritz 1994; 
Coulon et al. 2006). The classical population genetic view of a species range is of a network of randomly 
mating populations (Wright 1978). However population and behavioral ecologists working at finer scales 
have long realized that populations usually consist of demes or subgroups of varying degrees of 
relatedness or co-ancestry as a result of incomplete or sex-biased dispersal (Sugg et al. 
1996). Detailed analyses of genetic structure within animal populations have mostly been conducted in 
species with well-developed social systems (Hughes 1998; Ross 2001a; Coltman et al. 2003). On another 
scale, ectoparasites are often site specific on the host (e.g., Choe and Kim 1988; Clayton 1991), but such 
phenomena have not been studied satisfactorily (Crompton 1997). 
Historically, genetic studies on  Sarcoptes  scabiei  has been extremely limited, primarily due to the 
difficulty in obtaining sufficient numbers of individual mites because of the low parasite burden (in 
ordinary scabies, less than ten organisms can be identified per host; Mellanby 1944) and the lack of an in 
vitro culture system (e.g., Brimer et al. 
1993; Walton et al. 2004), and secondly because of the difficulty in getting adequate amounts of genetic 
material (due to the high rate of failed reactions; e.g., Walton et al. 1997; Berrilli et al. 2002). Almost all 
genetic studies on S. scabiei have been to answer the question that has been the subject of an ongoing 
debate for many years: whether Sarcoptes mites represent different species or whether they are,  in  fact,  
monospecific. Other  questions  that  remain unclearly answered include: are S. scabiei from different 
geographical locations genetically different? Or could they be considered as a single panmictic 
population? (Burgess 1994; Ochs et al. 1999; Walton et al. 1999; Zahler et al. 
1999; Berrilli et al. 2002; Soglia et al. 2007; Gu and Yang 2008). 
Usually,  infestation  by  S.  scabiei  is  generated  when mites (founder group) are in contact with their 
host animals (Pence and Ueckermann 2002). If the different genotypes expand  with the same efficacy in 



the different host skin subunits, alleles from the founder group should be distributed randomly in  the  
different subunits  of  their  host  animal. Alternatively, if mites disperse unevenly, due to competition or 
avoidance processes, genetic mosaic should be created, resulting in unrandom genetic structure (Ross 
2001b; Kanno and Harris 2002). 
Recent theoretical and empirical studies have demonstrated that disease spread is often more complex 
than predicted by simple diffusion models (see Hastings et al.  2005  for  a review). Nevertheless, to the 
best of our knowledge, no study was done to investigate the extent of genetic structure in S. scabiei 
subpopulations regarding the different subunits of the mangy skin from individual hosts (skin-scale). 
Therefore, the objective of the present study was to examine the genetic structure of S. scabiei 
populations at host skin- scale to test the hypothesis of the random genetic distribution of Sarcoptes mite. 
 
 
Materials  and methods 
 
Iberian ibex-derived S. scabiei 
 
Iberian ibex  (Capra  pyrenaica)  is  a  natural host  for  S. scabiei (Pérez et al. 1997, 2002), with high 
prevalence (up to 50%) of mangy animals (Alasaad et al. 2008a). For this study, we used three mangy 
males of Iberian ibex, culled for management purpose in  Sierra Nevada Mountain in Southern Spain. 
The three animals were coded as  Cp1, Cp2, and Cp3. 
 
Collection of S. scabiei samples 
 
A total of 44 S. scabiei mites were collected from the skin of three culled Iberian ibexes: 14 from Cp1, 
16 from Cp2, and 14 from Cp3 (Table 1 and Fig. 1). Mites from each individual skin were divided into 
three subpopulations, namely head subunit (H), back subunit (B), and abdomen subunit (A). The reason 
behind that was because these three skin subunits: (1) differed according to the timing of the parasitic 
progression in the host (Pence and Ueckermann 
2002); (2) could be the first to contract the ectoparasite (León-Vizcaíno et al. 1999); and (3) because of 
the large distance  between  each  other,  which  could  facilitate the detection of the expected skin-scale 
genetic diversity. Back and abdomen subunits were circular areas of approximately 400  cm2   each,  
while  all  head  surface formed the  head 
subunits. 
Mites were collected by the wet scraping of the mangy skin using distilled water. The scrapings were 
made by a scalpel or similar bladelike tool on Petri plates. This step was followed by mite collection 
using dissecting micro- scope. Mites were identified as S. scabiei according to the morphological criteria 
of Fain (1968). 
 
Preparation of S. scabiei genomic DNA 
 
As described previously (Alasaad et al. 2008b), HotSHOT Plus ThermalSHOCK technique was applied 
to prepare the DNA for all single S. scabiei mites in this study. Aiming to study the possible 
intrapopulation polymorphisms, all of the DNA  samples were prepared from individual S. scabiei mites. 
 
Fluorescent-based polymerase chain reaction analysis of microsatellite DNA 
 
From  the  panel  described by  Walton et  al.  (1997), ten microsatellites (Sarms 33, 34, 35, 36, 37, 38, 
40, 41, 44, and 45) were selected and applied with one multiplex 10× polymerase chain  reaction (PCR) 
as  reported by  Soglia et al. (2007). Each 15 μl PCR reaction mixture consisted of 3 μl of the single mite 
DNA, together with the PCR mixture containing all primer pairs (ranged from 0.04 to 0.1 μM per 
primer), 200 μM of each dATP, dCTP, dGTP, and dTTP, 
1.5 μl of 10× PCR buffer (200 mM KCl and 100 mM Tris- HCl, pH 8.0), 1.5 mM MgCl2, and 0.15 μl 
(0.5 U/reaction) HotStartar Taq  (QIAGEN, Milano, Italy). Samples were subjected to the following 



thermal profile for amplification in a 2720 thermal cycler (Applied Biosystems, Foster City, CA, USA): 
15 min at 95°C (initial denaturing), followed by 
37 cycles of three steps of 30 s at 94°C (denaturation), 45 s at 55°C (annealing) and 1.5 min at 72°C 
(extension), and a final elongation of 7 min at 72°C. 
 
Microsatellite analysis 
 
Using 96-well plates, aliquots of 12 μL of formamide with Size Standard 500 Liz (Applied Biosystems, 
Foster City, CA, USA) and 2 μl PCR product were prepared. Then, the plates were heated for 2 min at 
95°C and chilled to 4°C. Fluorescent PCR  amplification products were  analyzed by ABI PRISM 310 
Genetic Analyzer with pop4 (Applied Biosystems, Foster City, CA, USA). 
 
Molecular analysis 
 
The CONVERT 1.31 software (Glaubitz 2004) was used to  reformat files for the statistical analyses. 
Multilocus proportion of shared alleles (Dps) was computed between all  possible mite  pairs  using  the  
MICROSAT software (Minch 1997) ignoring preliminary clustering information; 
10,000 datasets were generated by resampling the input data (bootstrapping). The Neighbor-Joining 
algorithm was used as implemented by the PHYLIP v. 3.6 Package (Felsenstein 
1989),  and  a  consensus  dendrogram  was  obtained.  The 
dendrogram was visualized using TreeIllustrator v. 0.52 Beta software format (Trooskens et al. 2005). 
The analysis of relationships among the different mite populations was improved by a simulation-based 
Bayesian assignment test. The test was carried out by the GENECLASS2 software (Piry et al. 2004). The 
probability of the multilocus genotype of any Iberian ibex-derived mites to be encountered in each of the 
skin subunits H, B, and A of the same individual animal was computed. The individual mites were 
assigned to  that population for  which the  highest probability was obtained. 
 
 
Results and discussion 
 
Aiming to detect the possible S. scabiei skin-scale genetic diversity among three skin subpopulations 
(head, back, and abdomen subunits), 44 S. scabiei mites were collected from the skin of three culled 
Iberian ibexes. Due to amplification and/or sequencing failure, the final analysis was based on 27 mites, 
nine from each animal. Of the nine ectoparasites, three were from each subunit H, B, and A (Table 1 and 
Fig. 1). 
For all S. scabiei  mites in this study, the number of alleles or locus on average was 3.20 ranging from 1 
(Sarms 44) to 6 (Sarms 36), the mean observed heterozygosity was 
0.102 ranging from 0.038 (Sarms 33 and Sarms 37) to 0.25 (Sarms 36), and the mean expected 
heterozygosity was 0.284 ranging between 0.038 (Sarms 37) and 0.599 (Sarms 34). 
The  dendrogram,  showing  the  proportion  of  shared alleles between pairs of individual mites from 
Iberian ibex Cp1, separated the mites of head subunit from mites of back and abdomen subunits 
(5607/10,000 bootstraps), while no clear separation was detected between mites from back and abdomen 
subpopulations (Fig. 2). Clear separa- tion was detected in Iberian ibex Cp2, where mites from abdomen 
subunit were unambiguously clustered together (7911/10000 bootstraps), while the S. scabiei from head 
and  back  subpopulations were  randomly distributed be- tween  two  clusters (Fig.  3).  Regarding 
Sarcoptes  mites from C.  pyrenaica  Cp3, mites from back subpopulation were grouped in single cluster 
(5061/10,000 bootstraps), while the remaining ones from head and abdomen subunits were clustered 
randomly into two groups (Fig. 4). 
Consequently, the dendrograms, showing the proportion of shared alleles between pairs of individual 
mites represent- ing the three skin subpopulations (head, back, and abdomen subunits) from the 
individual Iberian ibexes, allowed the clustering of some mite samples up to their skin subunits. This 
skin-scale S. scabiei genetic structure did not have the same pattern in all the individual animals since 
mites were grouped together for the head in Cp1, for the abdomen in Cp2, and for the back in Cp3, 



which suggests interindivid- ual differences in the colonization of the host skin by S. scabiei. The skin-
scale genetic structure would be explained by local colonization dynamics of S. scabiei after a single 
infestation due to, e.g., competition or avoidance processes (Kanno and Harris 2002). Another 
presumable explanation could be that this skin-scale genetic structure would be the result of repeated 
infestations, especially taking into account that active infestation, residual skin reaction, and reinfesta- 
tion are yet considered difficult to distinguish (Walton and Currie 2007). Further studies will, hence, be 
needed to test these hypotheses. 
To our knowledge, this is the first record of skin-scale genetic structure among S. scabiei from individual 
mangy animals. Despite the fact that the determining factors of this phenomenon remain to be explored, 
the observed skin-scale genetic structure has implications for studies on the popula- tion genetic 
diversity, life cycle, as well as for diagnosis and monitoring protocols of the ubiquitous Sarcoptes mite. 
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Table 1  Host animal and skin-subunits used in this study, together with the total/useful number of Sarcoptes mite samples 
 

Codes Animal and code  Skin subunit and code  Total no. of parasites No. of useful parasites 

Cp1H Capra pyrenaica Cp1 Head subunit H 4 3 
Cp1B   Back subunit B 5 3 
Cp1A   Abdomen subunit A 5 3 
Cp2H Capra pyrenaica Cp2 Head subunit H 5 3 
Cp2B   Back subunit B 6 3 
Cp2A   Abdomen subunit A 5 3 
Cp3H Capra pyrenaica Cp3 Head subunit H 4 3 
Cp3B   Back subunit B 6 3 
Cp3A   Abdomen subunit A 4 3 

 
  



 
 

 
 

Fig. 1 Drawing showing approximate sites for Sarcoptes mite collection from three skin subunits of Iberian ibex. Codes next to the drawings 
represent the sample codes in Table 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3  Unrooted Dps consensus dendrogram for Sarcoptes mites from three  skin  subpopulations on  the  individual Cp2  of  Iberian  ibex. 
Numbers at  the nodes are percentage values of 10,000 bootstraps supporting the same branching structure. Codes in this figure represent the 
sample codes in Table 1 

 
 
 
 

  



Fig.  2  Unrooted Dps consensus dendrogram for Sarcoptes scabiei from three skin subunits on the individual Cp1 of Iberian ibex. Numbers at  
the nodes are percentage values of 10,000 bootstraps supporting the same branching structure. Codes in this figure represent the sample codes in 
Table 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  4  Unrooted Dps consensus dendrogram for Sarcoptes scabiei from three skin subunits on the individual Cp3 of Iberian ibex. Numbers at  
the nodes are percentage values of 10,000 bootstraps supporting the same branching structure. Codes in this figure represent the sample 
codes in Table1


