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Appendix A. 95% CL limits and 5� discoveries

A.1. Estimators of significance

Several methods exist to quantify the statistical “significance” of an expected signal at future
experiments. Following the conventions in high energy physics, the term significance usually
means the “number of standard deviations” an observed signal is above expected background
fluctuations. It is understood implicitly that S should follow a Gaussian distribution with a
standard deviation of one. In statistics, the determination of the sensitivity is a typical problem
of hypothesis testing, aiming at the discrimination between a null-hypothesis H0 stating that
only background and no signal is present, and a alternative hypothesis H1, which states the
presence of a signal on top of the background. The “significance level” is the probability to
find a value of a suitably constructed test statistic beyond a certain pre-specified critical value,
beyond which the validity of H1 is assumed. The significance level has to be converted into an
equivalent number of Gaussian sigmas to arrive at the common terminology of a high-energy
physicist.

Since a signal is usually searched for in many bins of a distribution, and in many channels,
a very high value of the significance of a local excess of events must be demanded before an
observed “peak” found somewhere in some distribution can be claimed to be an observation
of a signal. If the position of the signal peak is not known a-priori and treated as a free
parameter in searches for new physics, the probability of background fluctuations is much
higher. This is quantified in a case study in Section A.2 below, and this aspect will need careful
consideration in the near future before first data taking at the LHC. The general, somewhat
arbitrary convention is that the value of S of a local signal excess should exceed five, meaning
that the significance level, or the corresponding one-sided Gaussian probability that a local
fluctuation of the background mimics a signal, is 2.9⇥ 10�7.

Here, the recommendations for the procedures to be used for the studies presented in
this document are summarised. The aim of many of these studies is the prediction of the
average expected sensitivity to the observation of a new signal in a future experiment. The real
experiment might be lucky, i.e. observe a higher significance than the average expectation, or a
downward fluctuation of the expected signal could lead to a lower observed significance. The
proposed methods have been checked in a large number of pseudo-experiments using Monte
Carlo simulation in order to investigate whether the probability of a background fluctuation
having produced the claimed significance of the discovery is properly described.

Counting methods use the number of signal events, s, and the number of background
events, b, observed in some signal region to define the significance S. These event numbers
can be turned into a significance, ScP , by using either the Poisson distribution for small
numbers of events, or, in the high-statistics limit, the Gaussian distribution, leading to

Sc1 = sp
b
. (A.1)

The significance may also be obtained from the ratio of the likelihoods, L1 and L0, belonging
to the hypothesis H0 and H1,

SL =
p
2 ln Q, with Q = L0

L1
. (A.2)



1486 CMS Collaboration

This approach is theoretically well founded and is applicable also to the simple approach
of the counting method, leading to

ScL =
r
2

⇣
(s + b) ln

⇣
1 +

s
b

⌘
� s

⌘
, (A.3)

which follows directly from the Poisson distribution. In the Gaussian limit of large numbers
s and b, ScL becomes equivalent to Sc1. The likelihood approach can be extended to include
the full shapes of the signal and background distributions for the hypothesis H0 and H1, and
the likelihood may be obtained from binned or unbinned likelihood fits of the background-
only and the background-plus-signal hypotheses to the observed distributions of events.

Another estimator,

Sc12 = 2
⇣p

s + b�
p
b
⌘

, (A.4)

has been suggested in the literature [79, 763]. The formula for Sc12 is strictly only valid in the
Gaussian limit, but tabulated values exist for small statistics.

The presence of systematic errors deserves some special care. Two cases must be
separated clearly:

(a) If the background and signal contributions can be determined from the data, e.g. by
extrapolating the background level into the signal region from sidebands, systematic errors
may be irrelevant, and the systematic errors only influence our ability to predict the average
expected sensitivity. In this case, simple propagation of the theoretical errors on s and b
applied to the above formulae for the various significances is all that is needed.

(b) If systematic errors on the background will affect the determination of the signal
in the real experiment, e.g. because an absolute prediction of the background level or a
prediction of the background shape are needed, the theoretical uncertainty must be taken
into account when estimating the sensitivity. This can be done by numerical convolution
of the Poisson distribution, or the Gaussian distribution in the high-statistics limit, with the
probability density function of the theoretical uncertainty. Numerical convolutions of the
Poisson distribution with a theoretical error of a Gaussian shape, leading to a variant of ScP
including systematic errors, were used for this document [679]. Numerical convolutions of the
Poisson distribution with a systematic error of a Gaussian shape, leading to a variant of ScP
including systematic errors, were used for this document. The program ScPf [679] computes
the significance by Monte Carlo integration with the assumption of an additional Gaussian
uncertainty 1b on b. The significance can be approximated by an extension of Sc12:

Sc12s = 2
⇣p

s + b�
p
b
⌘ b
b +1b2

. (A.5)

In the Gaussian limit it leads to
Sc1 = s/

p
b +1b2. (A.6)

The most crucial point in this context is a realistic description of the probability density
function of the systematic theoretical uncertainty, which can be anything ranging from a flat
distribution between b±1b to a pathological distribution with a significant non-Gaussian
tail, but, in practice, is hardly ever known precisely.

The distribution of a significance estimator S in a series of experiments, its probability
density function (p.d.f.), is of prime importance for the calculation of discovery probabilities
in the presence of a real signal, or of fake probabilities due to fluctuations of the background.
In the large-statistics limit, the likelihood-based significance estimators are expected to follow
a �2-distribution with a number of degrees of freedom given by the difference in the number
of free parameters between the alternative hypothesis and the null hypothesis [103]. When
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Figure A.1. Probability density functions of the estimator of significance SL for small
statistics (11 signal events over a background of 1.5 events). Filled histogram: pure background
sample from 200 000 toy experiments, open histogram: background plus signal from 10 000
toy experiments. Gaussian fits are overlayed; the distribution of SL for the background-only
sample has a mean of �0.004 and a width of � = 1.0, the background-plus-signal sample has a
width of 1.1.

testing for the presence of a signal on top of background at a fixed peak position, 2 ln Q = S2L
is expected to follow a �2 distribution with one degree of freedom, i.e. a standard Gaussian
distribution. All of the above estimators have been tested in a large number of toy experiments,
see e.g. [60, 100, 102]. In particular the likelihood based estimators were found to be well-
behaved, i.e. the distribution of the values of significance followed the expected behaviour
already at moderate statistics, as is shown for one example in Fig. A.1. Good scaling
with the square root of the integrated luminosity was also observed in these studies. On
the other hand, the estimator Sc1 cannot be considered a useful measure of significance at
low statistics.

A quantitative comparison as a function of the number of background events for fixed
values of s/

p
b of the various estimators discussed above is shown in Fig. A.2. ScL and ScP

are found to agree very well, while Sc12 tends to slightly underestimate the significance, a
result which was also verified in the above Monte Carlo studies with large samples of toy
experiments. While ScL and ScP remain valid independent of the value of b, the simpler
estimator Sc1 can only be used for background levels larger than 50 events.

A.2. On the true significance of a local excess of events

In searching for new phenomena in a wide range of possible signal hypotheses (e.g. a narrow
resonance of unknown mass over a broad range background), a special care must be exercised
in evaluating the true significance of observing a local excess of events. In the past, this fact
was given substantial scrutiny by statisticians (e.g. [764, 765]) and physicists (e.g., [766–770])
alike. The purpose of this Appendix is to quantify a possible scope of this effect on an example
of a search for the Standard Model Higgs boson in the H ! Z Z (⇤) ! 4µ decay channel. As
the case study, we chose a counting experiment approach widely used in this volume.
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Figure A.2. Comparison of the various significance estimators as a function of the number of
background events, b. The number of signal events was taken as s = Sc1

p
b, hence the constant

black lines represent the value of Sc1. As can be seen, ScP and ScL agree perfectly, while S12 leads
to slightly smaller values of significance. S1 significantly overestimates the significance at small
event numbers.
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Figure A.3. The background pdf and an example
of one pseudo-experiment with a statistical fluctuation
appearing just like a signal.

Figure A.4. Profile of the ScL scan corresponding to
the pseudo-experiment example shown on the left. Green
(inner) and yellow (outer) bands denote ±1� and ±2�
intervals. Spikes that can be seen are due to events
coming in or dropping off the trial-window, a feature of
low-statistics searches.

The dashed line in Fig. A.3 shows the expected 4µ invariant mass distribution for
background at L= 30 fb�1 after applying all the m4µ-dependent analysis cuts described in
Sec. . Using this distribution, we played out ⇠108 pseudo-experiments; an example is shown
in Fig. A.3. For each pseudo-experiment, we slid a signal region window across the spectrum
looking for a local event excess over the expectation. The size of the window 1m = w(m4µ)
was optimised and fixed a priori (about ±2� ) to give close to the best significance for a
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Figure A.5. ScL cumulative probability density
function.

Figure A.6. Local significance “renormalisation” from
an observed value to the true significance with a proper
probabilistic interpretation.

resonance with a width corresponding to the experimental SM Higgs boson width � (m4µ).
The step of probing different values of m4µ was “infinitesimally” small (0.05GeV/c2) in
comparison to the Higgs boson width of more than 1GeV/c2. The scanning was performed
in a priori defined range of 115–600GeV/c2.

We used a significance estimator ScL = sign(s)
p
2 no ln(1 + s/b) � 2 s, where b is the

expected number of background events, no is the number of observed events, and the signal is
defined as s = no � b. This estimator, based on the Log-Likelihood Ratio, is known to follow
very closely the true Poisson significance, only slightly over-estimating it in the limit of small
statistics [51]. Figure A.4 presents the results of such a scan for the pseudo-experiment shown
in Fig. A.3. The maximum value of ScL , Smax , and the corresponding mass of a “Higgs boson
candidate” obtained in each pseudo-experiment were retained for further statistical studies.

After performing 108 pseudo-experiments, the differential probability density function
for Smax and its corresponding cumulative probability function P(Smax > S) (Fig. A.5) were
calculated. From Fig. A.5, one can see that the frequency of observing some large values
of ScL (solid line) is much higher than its naive interpretation might imply (dashed line). If
desired, the actual probability can be converted to the true significance. The result of such
“renormalisation” is presented in Fig. A.6. One can clearly see that the required de-rating of
significance is not negligible; in fact, it is larger than the effect of including all theoretical and
instrumental systematic errors for this channel (see Section 3.1). More details on the various
aspects of these studies can be found in [51].

There are ways of reducing the effect. A more detailed analysis of the shape of the m4µ
distribution will help somewhat. Using the predicted number of signal events s = stheory in
the significance estimator to begin with and, then, for validating the statistical consistency of
an excess no � b with the expectation stheory will reduce the effect further. One can also use a
non-flat prior on the Higgs mass as it comes out from the precision electroweak measurements.
Whether one will be able to bring the effect to a negligible level by using all these additional
constraints on the signal hypotheses is yet to be seen. The purpose of this Appendix is not
to give the final quantitative answer, but rather to assert that these studies must become an
integral part of all future search analyses when multiple signal hypotheses are tried.
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Appendix B. Systematic Errors

B.1. Theoretical uncertainties

The simulation of events at the LHC is complex and can be conventionally divided into
different parts which either involve the description of the interesting physics process or the
description of the initial scattering conditions and the physics environment.

The simulation of the hardest part of the physics process is done via matrix element
(ME) calculations at a certain order in the coupling constants and continues with the parton
showering (PS) of the resulting partons until a cut-off scale, over which the perturbative
evolution stops and the fragmentation of the final partons takes on. This cut-off is often
referred to as factorisation scale, because it is the scale at which the two processes (showering
and fragmentation) are supposed to factorise.

The interesting event is accompanied by the so-called underlying event (UE), term which
identifies all the remnant activity from the same proton-proton (p–p) interaction and whose
definition often includes ISR as well, and the pile-up, composed by other minimum bias
(MB) p–p interactions in the same bunch crossing (up to 25 at high luminosity at the LHC).
Moreover, since the initial state is not defined in p–p collisions, a proper description of the
proton parton density functions (PDFs) should be included in the calculations.

Each of these effects needs to be modelled to the best of our knowledge, and the
associated uncertainties need to be determined and propagated to the physics measurements.
Moreover, many of the sources are correlated: for instance, fragmentation and showering
are obviously dependent on each other, and in turn they assume a certain description of the
underlying event. The task of assessing systematics due to theory and modelling can therefore
be a difficult one and can sometime contain a certain degree of arbitrariness.

In what follows we propose some guidelines for the estimation of errors coming from the
above, trying to divide the systematics sources into wider categories as much uncorrelated as
possible: QCD radiation, fragmentation description, PDFs, UE and MB.

In attributing systematic errors we believe that one should use motivated recipes, avoiding
unrealistic scenarios which will lead to unnecessarily conservative errors or, much worse,
totally arbitrary assumptions.

B.1.1. Hard process description and parametric uncertainties

The description of the hard process should be done with Monte Carlo tools which are best
suited to the specific analysis. For instance, when precise description of hard gluon emission
becomes an issue, then next-to-leading order (NLO) generator tools like [771], or
higher leading order (LO) ↵s generators like [43], [81], [161],
and [194] should be considered. This is in general true for both the signal and the
background description.

When adopting a ME tool, one should always keep in mind that its output is often (if
not always) supposed to be interfaced to PS Monte Carlo such as [196], [24]
or [672], that treat the soft radiation and the subsequent transition of the partons into
observable hadrons. One of the most difficult problems is to eliminate double counting where
jets can arise from both higher order ME calculations and from hard emission during the
shower evolution. Much theoretical progress has been made recently in this field [772–775].
For what concerns the ME/PS matched description of multi-jet final states, a rich spectrum
of processes is currently available in . However, adopting general purpose generators
like can still be the best option for topologies that are better described in the Leading
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Logarithm Approximation (LLA), for instance in the case of two leading jets and much softer
secondary jets. The two different descriptions should be regarded as complementary.

In general, a sensible choice for the selection of the best generation tools can be driven
by the HEPCODE data base [776]. However, comparison between different generators is
recommended whenever applicable.

Each analysis needs then to make sure that other important effects (e.g. spin correlations
in the final state, NLO ME corrections to top decays) are included in the generation
mechanism. For example, [44], as long with some of the Monte Carlo generators
already introduced in this section, provides a correct treatment of top quark spin correlations
in the final state. Neglecting some of these effects corresponds to introducing an error in the
analysis that cannot be considered as coming from a theoretical uncertainty.

For both signal and backgrounds, missing higher orders are a delicate source of
uncertainty. Formally, the associated error cannot be evaluated unless the higher order
calculation is available. This is often not possible, unless extrapolating by using comparisons
with analytical calculations of total or differential cross-sections at the next order, if available.
One should keep in mind that simple K-factors are not always enough and that the inclusion
of higher orders typically also involves distortions in differential distributions.

Moreover, one should not forget that any Standard Model calculation is performed in
certain schemes and that the input parameters are subject to their experimental uncertainties;
if the error on most of those and the choice of the renormalisation scheme are expected to give
negligible effects in comparison with other uncertainties, this might not be so for the choice
of the hard process scale, which we will discuss in the next section, and some of the input
parameters.

Among the input parameters, by far the one known with less accuracy will be the top
mass. The current uncertainty of about 2% [777] enters in the LO calculations for processes
which involve top or Higgs production. For instance, the total tt̄ cross-section is known to have
a corresponding 10% uncertainty due to this [45 ]. As far as Higgs production (in association
or not with tops) is concerned, gluon–gluon fusion proceeds via a top loop and therefore
the total cross-section can have a strong dependence on the top mass when mH ⇡ 2mt.
Analyses which include Higgs bosons or top are encouraged to estimate the dependence of
the significant observables on the top mass itself. Effects of mt variation on acceptances of
these analyses should instead be negligible.

B.1.2. Hard process scale

The hard process under study drives the definition of the Q2 scale, which directly enters in the
parametrisation of PDFs and ↵s, hence in the expression of the cross sections.

The dependence of the observables on the choice for the Q2 hard process scale is
unphysical and should be regarded as one important contribution to the total uncertainty in the
theoretical predictions. The sensitivity of the predicted observables to such choice is expected
to decrease with the increasing order in which the calculation is performed, and can be tested
by changing the hard process scale parameters in the generation (where applicable) using a
set of sound values according to the characteristics of the hard process.

A sensible choice for the hard process scale in 2! 1 processes is often ŝ, which is the
default in general purpose generators like . Alternative choices to quote theoretical
uncertainties can be 0.25ŝ and 4.0ŝ. In this can be obtained acting on PARP(34).

For 2! n processes, many reasonable alternatives for the Q2 scale definition exist. The
default (MSTP(32) = 8), corresponds to the average squared transverse mass of the

outgoing objects. It is possible to test the sensitivity on the Q2 scale switching to different
options, for example trying Q2 = ŝ (MSTP(32) = 4 in ).
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B.1.3. PDF description

The parton distribution functions of interacting particles describe the probability density for
partons undergoing hard scattering at the hard process scale Q2 and taking a certain fraction
x of the total particle momentum. Since the Q2 evolution can be calculated perturbatively in
the framework of QCD, PDFs measurements can be cross checked using heterogeneous DIS,
Drell–Yan and jet data, and achieve predictivity for points where no direct measurements are
available yet, for example in a large region of the (x ,Q2) space for p–p interactions at the
LHC energy.

Various approaches are currently available to quote the PDFs of the proton, which propose
different solutions for what concerns the functional form, the theoretical scheme, the order
of the QCD global analysis (including possible QED corrections), and the samples of data
retained in the fits: CTEQ [778], MRST [779], Botje [780], Alekhin [781], etc. The CTEQ
and MRST PDFs, including Tevatron jet data in the fits, seem to be well suited for use in
Monte Carlo simulations for the LHC.

The best way to evaluate theoretical uncertainties due to a certain proton PDFs is to
vary the errors on the parameters of the PDF fit itself. With the Les Houches accord [95]
PDF (LHAPDF) errors should be easily propagated via re-weighting to the final observables.
However, errors are available only for NLO PDF, whereas in most of the cases only LO
tools are available for the process calculation. Correctly performing evaluation of theoretical
uncertainties in these cases requires some care. The proposed solution is to adopt CTEQxL
(LO) for the reference predictions using CTEQxM (NLO) only to determine the errors.

For analyses which are known to be particularly sensitive to PDFs, like cross-section
measurements, it would be also desirable to compare two different sets of PDFs (typically
CTEQ vs MRST) taking then the maximum variation as an extra error. This is important
since, even considering the error boundaries, different set of PDFs may not overlap in some
region of the phase space.

The LHAGLUE interface [95] included from the most recent LHAPDF versions
simplifies the use of the Les Houches accord PDF in by the switches MSTP(52) = 2,
MSTP(51) = LHAPDFid .

B.1.4. QCD radiation: the parton shower Monte Carlo

The showering algorithm is basically a numeric Markov-like implementation of the QCD
dynamic in the LLA. After the generation of a given configuration at partonic level, the
initial state radiation (ISR) and the final state radiation (FSR) are produced following unitary
evolutions with probabilities defined by the showering algorithm.

The probability for a parton to radiate, generating a 1! 2 branching, are given by the
Altarelli–Parisi equations [782], however various implementations of the showering algorithm
exist in parton shower Monte Carlo, which mostly differ for the definition of the Q2 evolution
variable (virtuality scale) in the 1!2 radiation branching and for the possible prescriptions
limiting the phase space accessible to the radiation: , , [783],

etc.
The virtuality scales for both ISR and FSR need to be matched to the hard process scale,

the latter setting an upper limit on the former ones; such limit has to be considered in a flexible
way, given the level of arbitrariness in the scale definitions. While this matching is somewhat
guaranteed if one adopts the same simulation tool for both hard scattering and parton shower,
a careful cross check is recommended in all other cases. In general, a critical judgement taking
into account the hard process type is needed. Allowing a virtuality scale higher than the hard
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process scale may give rise to double counting. This is the case of gg!gg processes with
additional hard gluons added in the showering. However other processes are safer from this
point of view, for instance the case of the qq̄! Z process at LO.

Quantum interference effects in hadronic collisions have been observed by CDF [784]
and DØ [785] studying the kinematical correlations between the third jet (regarded as the
result of a soft branching in the LLA) and the second one. The implementation of the so called
colour coherence in PS Monte Carlo is made in the limit of large number of colours and for
soft and collinear emissions, restricting the phase space available to the radiation depending
on the developed colour configuration. Different implementations of the colour coherence are
available in and , while doesn’t take into account such effects.

The theoretical uncertainty associated to the parton showering descriptions, includes what
is normally referred to as ISR or FSR and their interference. In order to achieve practical
examples for the recommended parton shower settings, we will consider as the default
tool for showering from now on.

Turning OFF ISR and FSR (MSTP(61) = 0, MSTP(71) = 0 respectively) or even the
interference part (MSTP(62) = 0, MSTP(67) = 0) is certainly a too crude approach and, to a
large extent, a totally arbitrary procedure to assess a systematic error. We believe it is much
more realistic to vary, according to sound boundaries, the switches regulating the amount
and the strength of the radiation of the showering. These can correspond to 3QCD and the
maximum virtuality scales up to which ISR stops and from which FSR starts. It would be
important to switch the parameters consistently going from low to high values in both ISR
and FSR.

Notice that the radiation parameters were typically fitted at LEP1 together with the
fragmentation parameters, benefiting from a much simplified scenario where no ambiguity
on the maximum virtuality scale applies, the only relevant energy scale of the problem being
ŝ = s. One has to take into account that while for instance FSR accompanying heavy boson
decays at the LHC can be directly related to the LEP experience, FSR in processes like
gg! bb̄ entails additional uncertainties arising from the maximum allowed virtuality scale
and ISR/FSR interference. On top of that, additional complications arise from the fact that
ISR at hadron machines contributes to the description of the underlying event. Matching
two different tunings of the same parameter (in particular PARP(67)) can be very subtle at
the LHC.

These are the suggested settings in , which have been cross-checked with the ones
adopted by the CDF experiment and also follow the prescription by the main author:

• 3QCD: PARP(61), PARP(72), PARJ(81) from 0.15 to 0.35GeV consistently, symmetric with
respect to 0.25. Notice that these settings have been optimised for the CTEQ6L PDFs. In
general different ranges apply when changing PDFs. In order to give the user full control
on these parameters the option MSTP(3) = 1 has to be set, otherwise 3QCD is assumed to
be derived from the PDFs parametrisation.

• Q2max: PARP(67) from 0.25 to 4 and PARP(71) from 1 to 16 going from low to high
emission in a correlated way. In doing so one should also make sure that the tuning of the
underlying event is not changing at the same time. Possible re-tuning of the underlying event
in different radiation scenarios may be needed, in particular for what concerns PARP(82).

B.1.5. Fragmentation

Perturbative QCD cannot provide the full description of the transition from primary quarks to
observable hadrons, but only the part which involves large momentum transfer. The formation
of final hadrons involves a range of interactions which goes above the Fermi scale and where
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the strong coupling constant ↵s increases above unity, making it necessary to describe this
part in a non-perturbative way, normally referred to as fragmentation or hadronisation.

The non-perturbative description of fragmentation is realised via models, which need
to be tuned to experimental data. The data correspond, typically, to event shapes and
multiplicities at leptonic machines or to the inclusive jet shapes at hadronic machines. A
comprehensive overview of the models can be found in [786].

Fragmentation is said to depend only on the factorisation scale if jet universality is
assumed, i.e. assuming that jets fragment in the same way at hadron and lepton machines. Jet
universality will be ultimately verified at the LHC; one should clarify whether instrumental
effects and the LHC environment will have an impact on the final observables. For instance,
the much larger fraction of gluon jets or the different description of the underlying event can
change the values of the parameters that regulate the fragmentation. Moreover, for events with
high multiplicity of jets it will also be crucial to properly describe fragmentation in conditions
where large jet overlapping is to be expected and where inclusive tunings might not be ideal.

The consequence of jet universality is that, once the PS cut-off scale is fixed, the
fragmentation description for light quarks should be universal, and the LEP/SLD tunings
(or the Tevatron ones) could be used as they are for the LHC.

It is important to underline that the description of the non-perturbative part of the radiation
also depends on the way the perturbative one is described. This means that one should not use
a tuning of fragmentation done with LO(+LL) tools (typically at LEP) attached to
perturbative calculation which are done at higher (or different) order.

B.1.5.1. Light quarks fragmentation. In the absence of LHC data, the best choice is therefore
to use a model tuned to the LEP and SLD data [787–789]. It is important to choose the
tuning in a consistent way from the same experiment, given that a combined LEP/SLD tuning
has never been attempted. As a possibility, suggested by the major success in describing the
data and by its extensive use in the experimental collaborations, is the use of , which
uses the string (or Lund) fragmentation model [790]. The parameters that we consider more
relevant in for the description of fragmentation are the following, where the central
value is taken by the fit performed by the OPAL Collaboration, as an example:

PARJ(81) = 0.250
PARJ(82) = 1.90
PARJ(41) = 0.11
PARJ(42) = 0.52
PARJ(21) = 0.40

where PARJ(81) (3QCD) and PARJ(82) (Q2min) refer to the radiation part. To properly evaluate
a systematic error due to pure fragmentation one should vary only PARJ(42) and PARJ(21) by
their respective errors (0.04 and 0.03 for OPAL). The variation should account for the proper
parameter correlation if the effect is critical for the analysis. PARJ(41) is totally correlated
to PARJ(42).

Alternatively, or additionally, it would also be important to compare with
with consistent tunings from LEP [787–789]; in doing so it is important to factorise the UE
description (see next section) that can induce important differences in the results.

B.1.5.2. Heavy quarks fragmentation. The description of the heavy quarks fragmentation is
important for top physics and for those processes with large b production in the final states.
Exclusive channels are particularly influenced by the description of the fragmentation of
the b quark.
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The description of the fragmentation of the heavy quarks has been tuned to Z data
at LEP and SLD[778, 791–793] (via a measurement of xB and xD) and bb̄ data at the
Tevatron, using different fragmentation functions like Lund, Bowler [794], Peterson [795],
Kartvelishvili [796].

In the spirit of fragmentation universality the LEP/SLD tunings can be adopted for
the LHC, but with much care. Significant differences among the fitted values in different
experiment can point out that the factorisation scale used for the PS is not the same
everywhere. One should make sure that the scale used is set consistently with the chosen
fragmentation function parameters. This can be done by using the tuning from only one
experiment, making sure to also use the main switches of the parton showering, (PARJ(81)
and PARJ(82) in ).

The fragmentation function that best describes heavy flavour data at LEP is Bowler. With
the same OPAL tuning reported above the best fit of the Bowler parameters, a and bm2?, to
data gives:

bm2? = 65+17�14
a = 15.0± 2.3.
The Bowler model would extend the string model to heavy flavours, describing the

corrections in terms of the charm and bottom masses. Unfortunately, no tuning exists in the
literature which is capable to describe at the same time light and heavy quark fragmentation,
i.e. adopting universal parameters a = PARJ(41) and b = PARJ(42) for both light and heavy
quarks.

Alternatively, the widely used Peterson function can be used, and its parameters are
directly switchable in for just b and c fragmentation:

PARJ(54) = �0.031± 0.011
PARJ(55) = �0.0041± 0.0004

where the two parameters correspond, respectively, to "c and "b fitted in the OPAL tuning.
The systematic can then be evaluated by varying the errors on the fitted parameters or by
comparing with a different fragmentation function like Kartvelishvili, or Lund.

An important feature of the b fragmentation that should be considered by those analyses
in the top sector sensitive to the details of the fragmentation, is the way the b fragments in top
decays. At the LHC the b from a t is hadronising with a beam remnant, introducing potentially
worrying differences with respect to the fragmentation at LEP. The main effects are presented
in [797] and are known as cluster collapse, happening when a very low mass strings quark-
remnant directly produces hadrons without fragmenting, hence enhancing the original flavour
content, and beam drag, which is an angular distortion of hadron distribution toward the end
of the string in the remnant. If, under reasonable assumptions on the transverse momentum in
top events at the LHC, one can exclude to a large extent the importance of the first effect, beam
drag could potentially introduce B meson production asymmetries, even though estimations
are keeping the effect at the level of 1% at the LHC [797].

B.1.6. Minimum bias and underlying event

Multiple parton interaction models, extending the QCD perturbative picture to the soft regime,
turn out to be particularly adequate to describe the physics of minimum bias and underlying
event. Examples of these models are implemented in the general purpose simulation programs

, / [193] and . Other successful descriptions of underlying
event and minimum bias at hadron colliders are achieved by alternative approaches like

[798], which rely on both perturbative QCD and Double Pomeron Models (DPM).
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Huge progress in the phenomenological study of the underlying event in jet events have
been achieved by the CDF experiment at Tevatron [799], using the multiplicity and transverse
momentum spectra of charged tracks in different regions in the azimuth-pseudorapidity space
defined with respect to the direction of the leading jet. Regions that receive contributions
only by the underlying event have been identified. The average charged multiplicity per
unit of pseudorapidity in these regions turns out to be significantly higher with respect to
the one measured in minimum bias events. This effect, referred to as “pedestal effect”, is
well reproduced only by varying impact parameters models with correlated parton-parton
interactions (MSTP(82) > 1 in ). Simpler models are definitely ruled out.

The main problem of extrapolating the predictions of the multiple interactions models
to the LHC is that some of the parameters are explicitly energy dependent, in particular
the colour screening pT cut-off (PARP(82) at the tuning energy PARP(89) in ). The
CDF tuning, often referred to as Tune-A, is not concentrating on this particular aspect. Other
works [197, 800] have put more emphasis on this issue. However, one of their results is that
currently only can be tuned to provide at the same time description of CDF and lower
energy minimum bias data from UA5. One of these tunings can be summarised as follows:

• PARP(82) = 2.9
• PARP(83) = 0.5
• PAPR(84) = 0.4
• PARP(85) = 0.33
• PARP(86) = 0.66
• PARP(89) = 14000
• PARP(90) = 0.16
• PARP(91) = 1.0
• MSTP(81) = 1
• MSTP(82) = 4.

Sensible estimation of theoretical uncertainties arising from underlying event and
minimum bias modelling can be performed assigning ±3� variations to the colour screening
pT cut-off parameter tuned on minimum bias CDF and UA5 data and extrapolated to the
LHC energy [ 800], i.e. varying PARP(82) in the range [2.4–3.4], while keeping the other
parameters listed above to their tuned values.

As a new tool for the description of UE and MB we would like to mention
6.3 [801], that allows for new interesting features, including the new pT-ordered initial- and
final-state showers and a new very sophisticated multiple interactions model that achieves
description of colliding partons in the proton in terms of correlated multi-parton distribution
functions of flavours, colours and longitudinal momenta. However, as stressed by the
authors, the new model (PYEVNW) is still not so well explored. Therefore the old model
(PYEVNT) is retained as the default choice, with full backward compatibility. Moreover,
in the use of 6.3, one should be careful when switching to the new pT-ordered
showers and multiple interaction models, as their parameters are not tuned yet, in particular
for what concerns the energy dependence, necessary to get meaningful extrapolations at
the LHC energy.

B.1.7. Pile-up and LHC cross sections

The design parameters of the LHC at both low and high luminosity are such that, on top of
possible signal events, additional minimum bias interactions are produced in the same beam
crossing, the so-called pile-up effect.
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Pile-up is a purely statistical effect. The number of minimum bias interactions generated
in a single beam crossing is a Poissonian distribution that depends on the instantaneous
luminosity, which varies of about a factor 2 during a LHC fill. Although luminosity variation
is not arising from theoretical uncertainties, it is recommended to cross check the stability of
the results against variation of the nominal luminosity.

An issue which can affect the pile-up is the definition of the minimum bias itself.
The latter, indeed, may or may not include the diffractive and elastic contributions, with
figures for the total cross section which can vary from 100mb to 50mb respectively. If the

generator is adopted, these two different options correspond to MSEL 2 and MSEL 1,
however, in order to get full control on the different contributions to the cross sections, one
can use MSEL 2, setting MSTP(31) = 0, and providing explicit input through SIGT(0, 0, J),
where the meaning of the index J is described below:

J = 0 Total cross section (reference value = 101.3 mb)
J = 1 Elastic cross section (reference value = 22.2 mb)
J = 2 Single diffractive cross section XB (reference value = 7.2 mb)
J = 3 Single diffractive cross section AX (reference value = 7.2 mb)
J = 4 Double diffractive cross section (reference value = 9.5 mb)
J = 5 Inelastic, non-diffractive cross section (reference value = 55.2 mb).

Where J= 0 has to correspond to the sum of the contributions for J= 1, . . . , 5. With respect
to alternative cross section predictions [802], reference values for diffractive cross
sections might be slightly shifted on the high side. A possible sound alternative could be to
reduce the diffractive cross sections of around 30%, keeping constant the total cross section.

In order to assess the sensitivity of one analysis to the diffractive variations in the pile-up,
at least the two options MSEL 1 and MSEL 2 should be tried. Diffractive contribution will in
general result in few additional soft charged particles spiralling in the high magnetic fields of
the LHC experiments. This effect is most likely to be relevant in the tracker detectors, where
multiple hits in the same layer can be generated by the same track.

B.1.8. Decays

In contrast to the simple decay models available in the common PS Monte Carlo, alternative
hadron decay models exist, for example [803], which have huge collections of
exclusive hadron decays up to branching ratios as low as 10�4.

follows the spin density matrix formalism and has an easily tuneable and
upgradeable hadron decay data base which currently constitutes the largest and most refined
collection of hadron decay models.

Comparison between the simple default decay models implemented in PS Monte Carlo
and those available in should be recommended at least for analyses dealing with
B hadrons or relying on b-tagging. However, since switching to a new hadron decay model
could have a deep spin-offs on the exclusive description of the final states (multiplicity of
kaons, pions, photons and muons, multiplicity of tracks reconstructed in secondary vertices)
it might be worth to study also effects on trigger performances.

The LHC version of was initially provided by the LHCb experiment and is
currently maintained by LCG Generator [804]. It comprises an interface to simulation
that solves the technical problems of switching between the two different scenarios (i.e.
hadron decays performed by , hadron decays performed by ).
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B.1.9. LHAPDF and PDF uncertainties

The detailed investigations of processes at LHC required a well understanding of the
systematic theoretical uncertainties [201]. One of the important source of such errors is the
parton distribution functions (PDFs).

The Les Houches Accord Parton Density Functions (LHAPDF) package [95] is designed
to work with the different PDF sets53. In this approach a “fit” to the data is no longer described
by a single PDF, but by a PDF set consisting of many individual PDF members. Indeed, PDFs
are specified in a parameterised form at a fixed energy scale Q0, such as

f (x, Q0) = a0xa1(1� x)a2(1 + a3xa4 . . .). (B.1)

The PDFs at all higher Q are determined by NLO perturbative QCD evolution equations. The
total number of PDF parameters (d) could be large (for example, for CTEQ parametrisation
one has d = 20 [12]). Fitting procedure is used for evaluation an effective �2 function, which
can be used to extract the “best fit” (the global minimum of �2) and also to explore the
neighbourhood of the global minimum in order to quantify the uncertainties. As a result one
has the “best-fit” PDF and 2d subsets of PDF [12, 95]:

f0(x, Q), f ±
i (x, Q) = f

�
x, Q; {a±

i }� , i = 1, . . . , d. (B.2)

B.1.9.1. Master equations for calculating uncertainties. Let X ({a}) be any variable that
depends on the PDFs. It can be a physical quantity such as the W production cross section, or
a differential distribution.

Let X0 = X ({a0}) be the estimate for X calculated with the best-fit PDF and X±
i be the

observable X calculated with i-th subset f ±
i (x, Q).

Following to CTEQ6 collaboration one can estimate the variation of X by using a master
formula [12]:

1X =
vuut

dX

i=1

�
X+i � X�

i
�2

. (B.3)

However, very often many X+i and X
�
i have different magnitudes and even signs! This failure

of the master formula is a result of the simple observation that the PDF set that minimises the
uncertainty in a given observable X is not necessarily the same as the one that minimises the
fit to the global data set.

The better estimator for the uncertainty of a generic observable X was proposed in [805].
It is defined as the maximum positive and negative errors on an observable X by

1X+ =
qPd

i=1
�
max[(X+i � X0), (X�

i � X0) , 0]
�2

,

1X� =
qPd

i=1
�
max[(X0 � X+i ), (X0 � X�

i ), 0]
�2

.

(B.4)

In Eqs. (B.4) one sums the maximum deviations on the observable in each of the parameter
directions, and hence retain both maximal sensitivity to the parameters that vary most and
estimate the range of allowed values of the cross section. Note, that the errors in Table C.2
were evaluated with this Eq. (B.4).

53 Note, at CMS it was recommended to use the CTEQ 5L set for PTDR simulation. Since there is only one CTEQ
5L PDF set (without corresponding subsets), it was recommended to use CTEQ 6M for evaluation of uncertainties
due to PDFs for PTDR estimates and only in a special case can one use another sets (e.g. MRST).
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Figure B.1. d�/dPT distribution for t t̄-pair production at LHC. The central histogram
corresponds to the ‘best-fit’ of CTEQ6M PDF, while the shaded area represents the deviation
due to PDF uncertainties.

Eq. (B.4 could also be used for calculations of differential distribution. Fig. B.1 presents
the differential distribution d�/dPT for t t̄-pair production at LHC.

B.1.9.2. How to calculate X ({ai }). The most simple and straightforward method is to
simulate a sample with the “best-fit” PDFs and then to repeat a such simulation 2d times with
different 2d PDF subsets. As a results one gets (1 + 2d) samples of unweighted events with
different kinematics for each samples. Then use these samples to calculate (1 + 2d) values for
observable:

X0 =
X

events
Xn({a0})), X±

i =
X

events
Xn({a±

i }), i = 1, . . . , d. (B.5)

In practice, such method requires a large CPU-time and can be recommended only to be used
for very few special cases, when a high accuracy is required.

In the second approach (“re-weighting” method ) one needs to simulate only one sample
with the ‘best-fit’ PDF. In doing so the additional weights, corresponding to all other PDF
subsets are evaluated. This weight is the ratio of the parton luminosity [PDF({ai }) – the
product of PDFs] evaluated with PDF subset to the parton luminosity, calculated with the
‘best-fit’ PDF. As a result, for any n-event one has 2d additional weights:

w(0) = 1(best fit PDF), w±
(i) = PDF({a±

i })n
PDF({a0})n ; w±

(i) =O(1). (B.6)

The corresponding (1 + 2d) values for observable X are evaluated as follows:

X0 =
X

events
Xn({a0})), X±

i =
X

events
w±

(i) Xn({a0}). (B.7)

Contrary to the first method (see (B.5)) these (1 + 2d) samples have the events with different
weights, but with identical kinematics for each samples. Note, that all additional samples have
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different “total number of events”:

N0 =
X

events
w(0)(= 1), N±

i =
X

events
w±

(i) 6= N0, and N±
i =O(N0). (B.8)

Starting from 6 0 0 version it is possible for each event the evaluation of the
additional weights, corresponding to different PDF subsets (i.e. w±

(i), see (B.6)). This option
is available for run with -like generators ( , , ,

, , , etc) and . This information is written in /mc param/
user block after all variables filled by CMKIN and a user (by using of kis xxx routines).

B.2. Experimental uncertainties

The systematic uncertainties associated with the detector measurements contributing to an
analysis are mostly covered in the corresponding chapters of Volume 1 of this Report [7] and
are summarised here.

B.2.1. Luminosity uncertainty

As discussed in Chapter 8 of [7], the design goal for the precision of the luminosity
measurement at CMS is 5%, which is assumed to be achieved after 1 fb�1 of data has been
collected. For integrated luminosities of less than 1 fb�1, it is assumed that the precision is
limited to 10%. For studies based on 30 fb�1 or more in this Report, it is assumed that further
improvement on the uncertainty can be achieved and a 3% uncertainty is assumed, via e.g. W,
Z based luminosity measurements.

B.2.2. Track and vertex reconstruction uncertainties

The uncertainty in the silicon track reconstruction efficiency is taken to be 1% for all tracks.
The primary vertex precision along the z coordinate is expected to be about 10µm once 1 fb�1

has been collected. The transverse vertex precision is expected to be about 1µm.
The effects of uncertainties on the alignment of silicon sensors on track and vertex

reconstruction are studied using a dedicated software tool (Section 6.6.4 of [7]) that is able to
displace tracker elements according to two scenarios: a “First Data Taking Scenario” with
placement uncertainties as expected at LHC start-up from measurements using the laser
alignment system for the strip tracker and from in-situ track-based alignment of the pixel
detector, and a “Long Term Scenario” appropriate after the first few fb�1 have been collected
and a complete track-based alignment has been carried out for all tracker elements.

The effect of the magnetic field uncertainty in the central region of CMS is expected to
contribute a momentum scale uncertainty of 0.0003GeV/c to 1/pT. When combined with
the aggregate effect from alignment uncertainties, the overall momentum scale uncertainty is
0.0005GeV/c at start-up.

B.2.3. Muon reconstruction uncertainties

As with the silicon tracker studies, a dedicated software tool has been developed (Section 3.2.2
of [7]) to study the effects of muon detector placement uncertainties on muon reconstruction.
Two scenarios, a “First Data Taking Scenario” with placement uncertainties as expected at
LHC start-up and a “Long Term Scenario” appropriate after the first few fb�1, are available
and used in analyses sensitive to the alignment precision of the muon detectors. The latter
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Figure B.2. Jet energy scale uncertainty is applied as a rescaling of the four-momentum of the
reconstructed jet pµ, jet

scaled± = (1±↵) · pµ, jet
meas where ↵ is the percentage uncertainty plotted above.

scenario describes a detector alignment precision of 200µm in the plane transverse to the
beam axis using the laser alignment system and track-based alignment strategies.

The effect of magnetic field uncertainties on the muon momentum will be dominated by
the uncertainty in the central region and its impact on the momentum scale determined by fits
to the silicon tracker hits for muon momenta well below the TeV/c scale.

B.2.4. Electromagnetic calibration and energy scale uncertainties

The precision to which the ECAL crystals can be intercalibrated from a variety of techniques
is discussed in Section 4.4 of [7], and ranges from 0.4–2.0% using about 5 fb�1 of in situ
single isolated electron data. A software tool is used to apply calibration constants to the
accuracy expected to be obtained with either 1 fb�1 or 10 fb�1 of integrated luminosity.
The absolute energy scale can be determined using the Z mass constraint in Z! ee decays,
and is expected to be measured to a precision of about 0.05%.

B.2.5. Jet and missing transverse energy uncertainties

The estimated systematic uncertainty on the jet energy scale is shown in Fig. B.2. At
startup the accuracy of the jet energy scale relies on the understanding of single-particle test
beam calibration and the level of agreement achieved in the data-to-Monte Carlo simulation
comparisons of the detector response. The response of an individual tile or crystals is known
to limited accuracy from source calibration in the HCAL and test stand measurements for
crystals in the ECAL. Hence, given the limitations of the precalibration of the calorimeters,
an overall uncertainty of 15% is expected for the “day-one” absolute energy scale. This applies
equally for jet response and the energy scale uncertainty of the missing transverse energy.

In the first 1–10 fb�1 of data, the �+ jet calibration [283] and the hadronic W boson
mass calibration in top quark pair production events [287] are currently the best estimates
for the accuracy on the absolute jet energy scale. The hadronic W jets in the selected
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sample have a mean pT that is approximately 50GeV/c. A lowering of the jet selection
threshold increases the effects of the offset correction from pile-up. The systematic on offset
corrections and backgrounds puts the absolute jet energy scale at 3%. The jet reconstruction
efficiencies are flat above 50GeV/c, but drop in the low pT region. The current estimate
of the high pT jet energy scale based on the hadronic W calibration is 3%. The calorimeter
response curves that are required to extrapolate to high pT are not expected to significantly
increase the energy scale uncertainty beyond the 3% from the W calibration. In the low pT
region excluded from the hadronic W analysis, the absolute jet energy scale will be set by
the �+jet calibration which will extend down to 20GeV. Below 20GeV, only the single-
particle calibration methods apply and these will have an accuracy of 10%. The recommended
treatment for the jet energy systematic in this report is to apply an uncertainty according to
this functional form:

�
jet
E /E =

8
<

:

10% pT < 20GeV/c
10%� 7% ⇤ (pT � 20GeV/c)/(30GeV/c) 20GeV/c< pT < 50GeV/c
3% pT > 50GeV/c

.

It is expected that the Z+jet sample and further analysis of the hadronic W systematics will
reduce the overall jet energy scale uncertainty, but these analyses remain under active study.

The low pT region is particularly important for the missing transverse energy (MET)
response. As the MET will have significant contributions from low pT jets and unclustered
energy, it is expected that the low pT component of the MET will not be understood to
better than 10% following the first 1–10 fb�1 of data. The recommended treatment of the
MET energy scale uncertainty has two approaches (one simple and one more detailed). For a
MET which is known to be dominated by low pT jets and unclustered energy, an uncertainty
of 10% should be applied to the components of the MET uncorrelated to the jet energy scale
uncertainty of the jets. This is the simple approach and gives a conservative error on the
MET. For events with reconstructed high pT jets, the contributions to the MET uncertainty
are correlated to the jet energy scale uncertainty of the high pT jets. The recommended
treatment of the MET uncertainty is to apply separate uncertainties on the low pT and high
pT components of the MET. The MET is reconstructed as described in [147] and [148]. This
gives a type-1 correction of the following form:

EmissTx(y) = �
h
E rawTx(y) +

X

jets

⇣
pcorr. jetTx(y) � praw jetTx(y)

⌘ i

where E rawTx(y) is the sum over the raw calorimeter tower energies and the jet sum in the equation
is over jets with a reconstructed pT above a given jet pcutT selection cut, typically 20–25GeV/c.
The jet pT is used in these formula to account for the angular separation of the towers included
in the jet sum, contributing to the jet mass. Rewriting the above equation in this form

EmissTx(y) = �
2

4
⇣
E rawTx(y) �

X

jets

praw jetTx(y)

⌘

low pT
+

⇣ X

jet

pcorr. jetTx(y)

⌘

high pT

3

5

shows explicitly the low pT (in the first set of brackets) and the high pT components (second
set of brackets) of the MET. The proposed systematics treatment is to vary the components of
the low pT MET by 10% scale uncertainty uncorrelated with the high pT component and to
vary the high pT component according the jet energy scale uncertainty for the measured jets.
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If a subset of the high pT jets are identified as electromagnetic objects, isolated electrons or
photons, then these EM-jets should be given EM-scale energy corrections which are closer to
unity than hadronic jet corrections. The energy scale uncertainty on an EM-object will also be
much lower than the jet energy scale systematic. Therefore, if the EM-objects are not removed
from the jet list, the quoted energy scale uncertainty will be conservative relative to the lower
errors associated with separate treatment of identified EM-objects.

In addition to the jet energy scale uncertainty, there are uncertainties on the jet resolution.
At startup the jet resolution is estimated to be accurate to 20% of the quoted resolution based
on the test-beam data and simulation studies. The dijet balancing resolution will be determined
from data and will further constrain this uncertainty. It is expected that the systematics on the
third jet veto and other selection criteria will limit the uncertainty on the jet resolution to
10% in the 1–10 fb�1 dataset. The recommended treatment for this systematic is to add an
additional smearing to the jet energy which broadens the overall jet resolution by 10%. This
can be done by throwing a Gaussian random number and adding an energy term which is
46% of the jet resolution. Therefore, the jet-by-jet event-by-event smearing should be done
as follows:

E 0jet
T = E jetT +Gaus[0, 0.46 ⇤ � (ET, ⌘)] (B.9)

where � (ET, ⌘) is the reference jet resolution which for the central barrel is given by (using
Monte Carlo simulation derived jet calibrations where EMCT is equal to E recT on average)

� (E jetT , |⌘| < 1.4) = (5.8GeV) �
✓
1.25 ⇤

q
E jetT

◆
� 0.033 ⇤ E jetT (B.10)

(terms added in quadrature) and Gaus[0, 0.46 ⇤ � (ET, ⌘)] is a randomly thrown sampling of
a normal distribution per jet with a mean of zero and a width of 46% of the jet resolution and
therefore E

0jet
T is the smeared jet energy to be used in the estimation of the jet resolution

systematic uncertainty of the measurement. The 46% is chosen so that when added in
quadrature to the nominal resolution gives an overall widening of the energy resolution of
10%. The resolutions of the endcap and forward jet regions are found in [165, Table 5].
These are

� (E jetT , 1.4< |⌘| < 3.0) = (4.8GeV) �
✓
0.89 ⇤

q
E jetT

◆
� 0.043 ⇤ E jetT

� (E jetT , 3.0< |⌘| < 5.0) = (3.8GeV) � 0.085 ⇤ E jetT

where for these jet resolution fits the stochastic term in the forward region is small compared
to the noise and constant terms (hence the missing

q
E jetT term for 3.0< |⌘| < 5.0). The shift

in the +10% direction can be symmetrised to account for the �10% shift. Otherwise, the
difference between the reconstructed and generated jet energies must be reduced by 10% in
order to estimate the �10% uncertainty from the nominal Monte Carlo jet resolution. The
jet resolution uncertainty is particularly important when searching for signals that are on a
rapidly falling QCD multi-jet pT spectrum.

B.2.6. Heavy-flavour tagging uncertainties

A strategy for measuring the b-tag efficiency using an enriched sample of b-jets from tt̄ events,
and its estimated precision, is described in Section 12.2.8 of [7]. The relative uncertainty on
the b-efficiency measurement is expected to be about 6% (4%) in the barrel and 10% (5%) in



1504 CMS Collaboration

the endcaps for 1 fb�1 (10 fb�1) of integrated luminosity. These uncertainties correspond to a
b-tag working point efficiency of 50%.

The light-quark (and gluon) mis-tag uncertainty is expected to be larger than the b
efficiency uncertainty; however, for this Report a global uncertainty of 5% is assumed for the
mis-tag uncertainty. As with the efficiency determination, it is important to identify strategies
to measure the mis-tagging probabilities in data as well.

Likewise, a strategy to measure the uncertainty on the efficiency for identifying ⌧ leptons
is described in Section 12.1.4 of [ 7], and involves comparing the ratio of Z! ⌧⌧ ! µ+ jet to
Z! µµ events. With a 30 fb�1 data sample, the relative uncertainty on ⌧ -tagging is estimated
to be about 4%. A measurement of the ⌧ misidentification probability can be determined from
a sample of �+ jet events, and with a 10 fb�1 data sample is expected to have an uncertainty
at the level of 4–10%.
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Appendix C. Monte Carlo Models and Generators

C.1. Introduction

This section presents a short description of the basic event generators used in CMS during
preparation of the PTDR (see CMS “Generator Tools group” for details). A comprehensive
review of the present Monte Carlo models and generators is given elsewhere [806]. Note that
only MC generators used in CMS are described here, and a full description of several popular
packages (like or , see [806]) is omitted.

There are several available Monte Carlo event generators for pp, pA and AA collisions,
namely [196], [807], [672], [69] and [808]. Each of
these simulates a hadronic final state corresponding to some particular model of the underlying
physics. The details of the implementation of the physics are different in each of these
generators, however the underlying philosophy of the generators is the same.

The cross section values and the differential distribution for almost all processes are
evalueated as follows:

� (pp ! CX) =
X

i j

Z
f pi (x1, Q2) f pj (x2, Q2)�̂ (i j ! C)dx1dx2, (C.1)

where f pi (x, Q2) are the Parton Distribution Functions (PDF) of i th parton, that carried a
fraction x of the initial proton momentum at a scale (Q2); � (i j ! C) is the cross section for
the hard process (i.e. describing two partons, i and j , interaction).

A general scheme of event generation assumes the evaluation of the hard process (the
cross section value, the incoming and outgoing particle’s momenta and colours), then evolves
the event through a parton showering and hadronisation step, and the decay of the unstable
particles. The event information (stored in /HEPEVT/ common block [69]) contains the
momenta of the final hadrons, leptons and photons and positions of their decay vertexes.
Typically such information contains also the characteristics (momenta, colours, KF-codes,
mother’s and daughter’s relations) of all intermediate partons (quarks, gluons, gauge bosons,
unstable physical particles, etc) that provide a trace-back the history of particle production
inside of an event. By using an acceptance-rejection methods weighted events can be returned.

Parton showering is based on the expansion around the soft and collinear evolution limits
and is often ascribed to either the initial or final state. The algorithm used by and

also include some effects due to quantum interference. The events that have more
energy in the parton process have more showering, and consequently more jet activity.

The collection of quarks and gluons must then be hadronised into mesons and baryons.
This is done differently in each of the event generators, but is described by a set of
(fragmentation) parameters that must be adjusted to agree with experimental results.
looks for colour singlet collections of quarks and gluons with low invariant mass and groups
them together; this set then turns into hadrons. splits gluons into quark-anti-quark
pairs and turns the resulting set of colour singlet quark-anti-quark pairs into hadrons via a
string model. simply fragments each quark independently paying no attention to the
colour flow.

The dominant cross-section at the LHC consists of events with no hard scattering. There is
little detailed theoretical understanding of these minimum-bias events and the event generators
must rely on present data. These minimum-bias events are important at LHC, particularly at
design luminosity, as they overlap with interesting hard-scattering events. The generators use a
different approach in this case. uses a parametrisation of data mainly from the CERN
p p̄ Collider. uses a mini-jet model where the jet cross-section is used at very low
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Figure C.1. Purely schematic data flow in and .

transverse momenta, i.e the hard scattering process is extrapolated until it saturates the total
cross-section. CMS has used the approach with dedicated modifications that agree
with present data from Tevatron [69]. The model of the hadronic interactions implemented in
the physics generator has a direct impact on physical observables such as jet multiplicity, their
average transverse momentum, internal structure of the jets and their heavy flavour content.
This led to the choice to use for most processes, allowing for a consistent set of signal
and background events to be generated.

Table C.2 presents the predicted cross-section values for the basic SM processes, as used
in the simulations for PTDR. The cross-section values (at leading order) were calculated by
using 6.327 with CTEQ5L (default PDF for PTDR) and with CTEQ6M PDFs. ↵s at 1st
(2nd) order is used with CTEQ5L (CTEQ6M) PDFs. For CTEQ6M the quoted errors are related
to the uncertainties due to PDFs (see Subsection B.1.9).

C.2. General scheme of generator usage in CMS

All event generators, included in CMS simulation software, can be separated into two groups.
The first group ( , , , ) provides the full simulation of events.

The basic package explored in CMS is and only few specific processes were simulated
with or .

A purely schematic data flow in and is presented in Fig. C.1.
After initialisation the package ( or ) calls “hard process” routines

(see “1” arrow lines in Fig. C.1). Then information (the momenta of initial and final
partons, the colours and KF-codes) is passed to package for parton showering, hadronisation,
fragmentation and decays of the unstable particles.

However, all these “full event simulation” generators have very limited number of the
hard process matrix elements (typically for 2! 2 reaction at LO). Therefore, several special
generators are used for simulation of many other LO processes. In fact, such packages
generate the hard processes kinematic quantities, such as masses and momenta, the spin, the
colour connection, and the flavour of initial- and final-state partons. The information is stored
in the “Les Houches” format [809] (/HEPEUP/ common block) and is passed to full event
simulation package like or (see thick “output” line on Fig. C.1).

Three generators, namely [161], [355], and [81, 493],
are widely used for simulation of many processes, especially for the generation of the hard
processes with multi-jet final states. For example, allows to generate QQ̄ pair
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Figure C.2. Illustration of the interface.

production with up to 6 jets. Due to the complexity of the matrix elements, describing the
multi-jet processes, and a re-weighting procedure the generation of events is very CPU-time
consuming. As a result, the information with kinematics is stored in the output files. (see
“2” lines on Fig. C.1). Then, like in a generic process, such information is passed to

(see thick “output” line on Fig. C.1).
There are several “dedicated generators”, [44], , , ,
, , [810, 811], [812], . These generators are used for

simulation of several specific process (see below for a short description of these codes).
The information with hard processes kinematic quantities is stored in /HEPEUP/ common
block [809] and is passed to the “full event simulation” package (see “3” lines on Fig. C.1).

After full simulation of event with or the output information is stored
in the /HEPEVT/ common block. In addition two special functionality codes provide a better
description of photon radiation from a charge final particles ( [39]) and ⌧±-lepton
decays ( [155]). Typically, these codes read information from /HEPEVT/ common,
perform simulation and then add generated information (new particles) into the /HEPEVT/
common block (see Fig. C.1).

C.3.

Almost all generators available in CMS could be used with the package. Now
the is used for and detector simulation input. This software package
provides a common interface between physics event generators and CMS detector simu-
lation (see Fig. C.2). It also provides an environment to make physics plots of generated
events. provides an interface to a number of physics generators like ,

and . It also offers the possibility to use different ‘external generators’ like
[161], [355], [81, 493] and [44]. Cosmic muon simu-

lation is available as well. Simple particle generation is also included, i.e. single and double
particles as well as simple multi particle events. The interface is based on a common block
HEPEVT - a HEP standard to store particle kinematics information for one event [69]. The
/HEPEVT/ common block is converted to HBOOK n-tuples. The event output format follows
the HEPEVT standard and additional information can be included by the user in the block
/MC PARAM/.
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There is a unified compilation script which is used as follows:
kine_make_ntpl.com <generator> [lhapdf]

where the first parameter can have one of the following values: pythia, herwig, isajet, simple,
single, double, simplemulti, cosmic, comphep, alpgen, madgraph, phase, toprex or stagen. The
optional second parameter lhapdf is given when the user wants to use LHAPDF library [95].

C.4. Full event simulation generators

C.4.1.

The package [69] is a general-purpose generator for hadronic events in pp, e +e�
and ep colliders. It contains a subprocess library and generation machinery, initial- and final-
state parton showers, underlying event, hadronisation and decays, and analysis tools.
contains around 240 different 2! 2 (and some 2! 1 or 2! 3) subprocesses, all at leading
order. The subsequent decays of unstable resonances (W , Z , top, Higgs, SUSY, . . . ) brings
up the partonic multiplicity, for many processes with full spin correlations in the decays.
The external processes can be evolved through the showering and hadronisation (like internal
ones).

The final-state shower is based on forward evolution in terms of a decreasing timelike
virtuality m2, with angular ordering imposed by veto. The framework is leading-log, but
includes many NLL aspects such as energy–momentum conservation, ↵s(p2?) and coherence.
Further features include gluon polarisation effects and photon emission.

The initial-state shower is based on backward evolution, i.e. starting at the hard scattering
and moving backwards in time to the shower initiators, in terms of a decreasing spacelike
virtuality Q2. Initial and final showers are matched to each other by maximum emission cones.

The composite nature of hadrons (and resolved photons) allows for several partons from
each of the incoming hadrons to undergo scatterings. Such multiple parton–parton interactions
are instrumental in building up the activity in the underlying event, in everything from
charged multiplicity distributions and long-range correlations to minijets and jet pedestals.
The interactions are described by perturbation theory, approximated by a set of more or less
separate 2! 2 scatterings; energy conservation and other effects introduce (anti)correlations.
The scatterings are colour-connected with each other and with the beam remnants.

The Lund string model, used for hadronisation, is based on a picture with linear
confinement, where (anti)quarks or other colour (anti)triplets are located at the ends of the
string, and gluons are energy and momentum carrying kinks on the string. The string breaks
by the production of new qq pairs, and a quark from one break can combine with an anti-quark
from an adjacent one to form a colour singlet meson.

Unstable particles are allowed to decay. In cases where better decay models are available
elsewhere, e.g. for ⌧± with spin information or for B hadrons, such decays can be delegated
to specialised packages.

At present the parameters from almost all common blocks (see BLOCK DATA
PYDATA) could be set via data cards. With the these parameters could be set in data
card file with the following format (note, that only capital letters should be used):

parameter
MSEL= 6 MSEL6 t t̄ production

one- and two-dimensional arrays
CKIN(1) = 100 CKIN1= 100 min.

p
ŝ

i.e. PMAS(6, 1) = 178 PMAS6, 1= 178 top-quark mass
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•Common cards for
Below we present a list of parameters used for full event simulation for PTDR. Some
of these parameters correspond to the old multiple interactions scenario, namely Tune A [813].
MSTP(2)= 1 : 1(first)/2(second) order running ↵s
MSTP(33)= 0 : do not include of K -factors in hard cross sections
MSTP(51)= 7 : PDF set (here is CTEQ5L)
MSTP(81)= 1 : multiple parton interactions is switched ON
MSTP(82)= 4 : defines the multiple parton interactions model
PARP(67)= 1 : amount of initial-state radiation
PARP(82)= 1.9 : PT cut-off for multi-parton interactions
PARP(83)= 0.5 : fraction of total hadronic matter in core
PARP(84)= 0.4 : radius of core
PARP(85)= 0.33 : gluon production mechanism in multiple interactions
PARP(86)= 0.66 : gluon prod. mechanism in multiple interactions
PARP(88)= 0.5
PARP(89)= 1000 : reference energy scale for which PARP(82) is set
PARP(90)= 0.160 : effective PT cut� off= [PARP(82)/PARP(89)]⇤⇤PARP(90)
PARP(91)= 1.0 : width of Gaussian primordial k? distribution inside hadron
PARJ(71)= 10 : maximum average c⌧ for particles allowed to decay
MSTJ(11)= 3 : choice of the fragmentation function
MSTJ(22)= 2 : allow to decay those unstable particles
PMAS(5,1)= 4.8 : the mass of the b-quark
PMAS(6,1)= 175.0 : the mass of the t-quark

C.4.2.

contains a wide range of StandardModel, Higgs and supersymmetric processes [196].
uses the parton-shower approach for initial- and final-state QCD radiation, including

colour coherence effects and azimuthal correlations both within and between the jets.
In the treatment of supersymmetric processes, itself doesn’t calculate the SUSY

mass spectrum or decay rates, but reads in an input file containing the low-energy parameters
(masses, couplings, decays, . . . ). This file can be written by hand or more conveniently
be generated with the program. This program provides an interface to (and
therefore to all models in and ), to (for NLO Higgs decays), and
can also add R-parity violating decays.

Colour coherence effects of (initial and final) partons are taken into account in all
hard subprocesses, including the production and decay of heavy quarks and supersymmetric
particles. uses the angular ordered parton shower algorithm which resumes both soft
and collinear singularities. includes spin correlation effects in the production and
decay of top quarks, tau leptons and supersymmetric particles. For the SUSY decays, there is
an option for using either the matrix elements (fast) or the full spin correlations. uses
a cluster hadronisation model based on non-perturbative gluon splitting, and a similar cluster
model for soft and underlying hadronic events. This model gives a good agreement with the
LEP data on event shapes, but does not fit the identified particle spectrum well.

C.4.3.

is a Monte Carlo program which simulates pp, p p̄, e+e� interactions at high
energies [672]. is based on perturbative QCD plus phenomenological models for parton
and beam jet fragmentation. At CMS is used for calculations of SUSY parameters.
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C.4.4.

Hard or semi-hard parton scatterings with transverse momentum of a few GeV/c are expected
to dominate high energy heavy ion collisions. The (Heavy Ion Jet INteraction
Generator) Monte Carlo model [807] was developed by M Gyulassy and X-N Wang with
special emphasis on the role of minijets in pp, pA and AA reactions at collider energies.

Detailed systematic comparison of results with a very wide range of data
demonstrates that a quantitative understanding of the interplay between soft string dynamics
and hard QCD interaction has been achieved. In particular, reproduces many inclusive
spectra two particle correlations, and can explain the observed flavour and multiplicity
dependence of the average transverse momentum.

C.5. Tree level matrix element generators

C.5.1.

is designed for the generation of Standard Model processes in hadronic collisions,
with emphasis on final states with large jet multiplicities [161]. It is based on the exact leading
order evaluation of partonic matrix elements and t and gauge boson decays with helicity
correlations. The code generates events in both a weighted and unweighted mode. Weighted
generation allows for high-statistics parton-level studies. Unweighted events can be processed
in an independent run through shower evolution and hadronisation programs.

The current available processes are:

• W/Z/H QQ̄ + N jets (Q = c, b, t) with N 6 4
• QQ̄ + N jets, with N 6 6
• QQ̄Q0 Q̄0 + N jets, with N 6 4
• W + charm+ N jets, with N 6 5
• N jets, W/Z + N jets, with N 6 6
• nW +mZ + lH + N jets, with n +m + l + N 6 8, N 6 3
• N� +M jets, with N > 1, N +M 6 8 and M 6 6
• H + N jets (N 6 4), with the Higgs produced via ggH vertex
• single top production.

C.5.2.

[814] is a package for evaluating Feynman diagrams, integrating over multi-
particle phase space and generating events with a high level of automation. includes
the Feynman rules for SM and several versions of MSSM (SUGRA, GMSB, MSSM with
R-parity violation).

computes squared Feynman diagrams symbolically and then numerically
calculates cross sections and distributions. After numerical computation one can generate the
unweighted events with implemented colour flow information. The events are in the form of
the Les Houches Accord event record [809] to be used in the program for showering
and hadronisation.

allows for the computation of scattering processes with up to 6 particles and
decay processes with up to 7 particles in the final state.
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C.5.3. and

[81] is a multi-purpose, tree-level event generator which is powered by the
matrix element generator [493]. Given a user process, automatically
generates the amplitudes for all the relevant subprocesses and produces the mappings for
the integration over the phase space. This process-dependent information is packaged into

, and a stand-alone code is produced. It allows the user to calculate cross sections
and to obtain unweighted events automatically. Once the events have been generated – event
information, (e.g. particle id’s, momenta, spin, colour connections) is stored in the “Les
Houches” format [809]. Events may be passed directly to a shower Monte Carlo program
(interfaces are available for and ).

The limitation of the code are related to the maximum number of final state QCD
particles. Currently, the package is limited to ten thousand diagrams per subprocess. So,
for example, W + 5 jets is close to its practical limit. At present, only the Standard Model
Feynman rules are implemented and the user has to provide his/her own rules for beyond
Standard Model physics, such as MSSM.

C.5.4.

The event generator [44] provides the simulation of several important processes in
pp and p p̄ collisions, not implemented in . In the matrix elements used in
the decays of the final t-quarks, W±, Z and charged Higgs bosons are also included. The final
top quark could decay into SM channel (t ! qW +, q = d, s, b), b-quark and charged Higgs
(t ! bH+) and the channels with flavour changing neutral current (FCNC): t ! u(c)V ,
V = g, � , Z . The implemented matrix elements take into account spin polarisations of the
top quark, that provides a correct description of the differential distributions and correlations
of the top quarks decay products.

C.6. Supplementary packages

C.6.1.

is a universal package to simulate QED photon radiative corrections [39]. The
precision of the generation may in some cases be limited, in general it is not worse
than the complete double bremsstrahlung in LL approximation. The infrared limit of the
distributions is also correctly reproduced. The action of the algorithm consists of generating,
with internally calculated probability, bremsstrahlung photon(s), which are later added to the
/HEPEVT/ record. Kinematic configurations are appropriately modified. Energy-momentum
conservation is assured. When using , the QED bremsstrahlung of the principal
generator must be switched off. For example in case of one has to use MSTJ 41=1.

C.6.2.

is a package for simulation of the ⌧±-lepton decays [155]. It uses the package
to simulate radiative corrections in the decay. The interface is made with the
generator. This interface evaluates also the position of ⌧ -lepton decay (i.e. the information on
the production vertex of the decay products of ⌧ -lepton).
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C.6.3.

The event generator (PYthia QUENched) [810, 811] provides the simulation of
rescattering and energy loss of hard partons in dense QCD-matter (quark-gluon plasma)
created in ultrarelativistic heavy ion collisions. The approach relies on an accumulative energy
losses, when gluon radiation is associated with each scattering in expanding medium together
including the interference effect by the modified radiation spectrum dE/d` as a function of
decreasing temperature T . The model is implemented as fast Monte Carlo tool, to modify
standard jet event.

C.6.4.

The event generator [812] (HYDrodynamics + JETs) provides the fast simulation of
heavy ion events at LHC energy including longitudinal, transverse and elliptic flow effects
together with jet production and jet quenching (rescattering and energy loss of hard partons in
dense QCD-matter, quark-gluon plasma). The model merges a fast generator of flow effects

[815] with (for jet production) and [810, 811] (for jet quenching) by
simulating full heavy ion event as a superposition of soft, hydro-type state and hard multi-jets.

First of all, calculates the number N hard of hard nucleon-nucleon sub-collisions
and number N part nucleons-participants (at given impact parameter b of AA collision and
minimum PT of hard parton scattering) and generates the initial parton spectra by calling

N hard times (fragmentation off). After each jet parton affected by medium-induced
rescattering and energy loss according with model. In the end of each sub-
event adding new (in-medium emitted) gluons into parton list and rearrangements
of partons to update string formation are performed. Then forms final hadrons with
PYEXEC subroutine (fragmentation on). Finally, calculates the multiplicity of soft,
hydro-induced part of the event and add new particles in the end of the event record.

C.7. K-factors for dilepton production

Some event generators such as do not employ the most advanced matrix-element
calculations. They must be reasonably fast since in most applications, many millions of events
must be generated. Experimenters apply an ad-hoc correction or “kludge” called the K -factor
so that the cross-section value used for, say, the production of muon pairs, is correct. This
K -factor amounts to the ratio of a highly accurate cross-section calculation to a less accurate
one, typically a leading-order calculation:

KNLO = �NLO

�LO
and KNNLO = �NNLO

�LO
.

Clearly the K -factor reflects the accuracy of the better theoretical calculation, and there can
be significant differences between KNNLO and KNLO. The most significant contributions to the
K -factor come from QCD radiative corrections are expected to be on the order of 10% or
more. Usually one does not include electroweak radiative corrections in the K -factor.

We have examined the K -factor for the Drell–Yan production of charged lepton pairs, as
well as the signal for new Z 0 neutral gauge bosons. The program is used to compute
mass-dependent cross-sections [348], and a generalised version called is used to study
Z 0 cross-sections [816]. We checked carefully the differential cross-section, d�/dM obtained
from with the program [817, 818] and found very good agreement. We use
the MRST parton distribution functions [819] for these calculations. Very similar results are
obtained using CTEQ6M [12].
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Figure C.3. K -factors as a function of mass for the LHC.
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Figure C.4. K -factors as a function of mass for the Tevatron.

Usually experimenters use a constant value for the K -factor, but in fact this is not
accurate. The variation of the K -factor with mass is substantial, as shown in Fig. C.3. (There is
a similar, though different, variation in the K -factor for Drell–Yan production at the Tevatron
– see Fig. C.4.) Notice that KNLO 6= KNNLO, in general, and the difference can be as large
as 7%. A number of values for the K -factor are listed in Table C.1.

It is customary to take the difference KNNLO � KNLO as a measure of the theoretical
uncertainty due to missing higher orders. According to the results obtained with ,
this uncertainty is on the order of 5%. It is interesting to compare this to the uncertainty
coming from the parton distribution functions (PDFs). We used the CTEQ6M set which
contains “error” PDFs with which one can estimate this uncertainty [12]. The relative
uncertainty of the Drell–Yan cross-section as a function of mass is shown in Fig. C.5. The
positive and negative variations of the cross-section were summed separately. The error bands
show the full uncertainty obtained from the twenty error-PDFs – no rescaling was done to take
into account the fact that these error-PDF’s correspond to 2� variations of the PDF parameters.
One sees that the PDF uncertainty varies from about 3% at low masses to 20% toward the
upper reach of the LHC. Of course, these uncertainties will be reduces as data from HERA,
the Tevatron and fixed-target experiments are used to improve the PDFs.
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Table C.1. Values for KNNLO, KNLO and KNNLO/KNLO as a function of mass.

mass (GeV/c2) KNNLO KNLO KNNLO/KNLO

100 1.212 1.225 0.989
200 1.256 1.252 1.003
300 1.286 1.268 1.014
400 1.303 1.275 1.022
600 1.323 1.280 1.033
800 1.330 1.278 1.040
1000 1.333 1.274 1.046
2000 1.339 1.257 1.065
3000 1.362 1.270 1.073
4000 1.385 1.304 1.061
5000 1.378 1.338 1.031

Table C.2. Leading order cross sections for some typical process at the LHC calculated by using
6.327 with CTEQ5L (default PDF for PTDR) and with CTEQ6M PDFs. P0 denotes p̂T-min.

for the hard process.

process cross section comment

�tot(pp ! X) 110± 10 mb different models
�tot(pp ! X) 111.5± 1.2+4.1�2.1 mb COMPETE Coll.

process CTEQ5L CTEQ6M comment

Z -boson 48.69 nb 50.1+4.19%�4.76% nb
Z + jet(g + q) 13.94 nb 12.73+3.16%�3.94% nb P0 = 20 GeV
qq̄ ! Z � 44.21 pb 46.7+3.93%�4.22% nb P0 = 20 GeV
W±-boson 158.5 pb 161.3+4.32%�4.93% nb
W± + jet(g + q) 41.42 nb 37.24+3.34%�4.10% nb P0 = 20 GeV
W±� 56.21 pb 56.42+4.11%�4.38% nb P0 = 20 GeV
W +W� 69.69 pb 75.0+3.87%�4.03% pb
W±Z 26.69 pb 28.76+3.93%�4.08% pb
qq̄ ! Z Z 11.10 pb 10.78+4.02%�4.21% pb

WQQ̄ mb = 4.8 GeV, mc = 1.5 GeV, TopReX
W±cc̄ 1215 pb 1086+4.12%�4.53% pb Mcc̄ > 3.0 GeV
W±cc̄ 33.5 pb 31.3+4.00%�4.18% pb Mcc̄ > 50 GeV
W±bb̄ 328 pb 297+4.04%�4.37% pb Mbb̄ > 9.6 GeV
W±bb̄ 34.0 pb 31.3+4.00%�4.18% pb Mbb̄ > 50 GeV
Zbb̄, mb = 4.62 GeV 789.6± 3.66 pb Mbb̄ > 9.24 GeV
dijet processes 819µb 583+4.78%�6.02% µb P0 = 20 GeV
� + jet 182 nb 135+4.92%�6.14% nb P0 = 20 GeV
� � 164 pb 137+4.62%�5.65% pb P0 = 20 GeV
bb̄, mb = 4.8 GeV 479 µb 187+9.7%�13.2% µb
t t̄ , mt = 175 GeV 488 pb 493+3.24%�3.31% pb
t t̄ , mt = 175 GeV 830± 90 pb NLO+NNLO
t t̄ bb̄ 10 pb AcerMC 1.2
inclusive Higgs mH = 150 GeV 23.8 pb
inclusive Higgs mH = 500 GeV 3.8 pb

The variation of the K -factors with mass comes in part because of the Z -resonance. The
size of the Z -peak relative to the continuum production of lepton pairs is therefore relevant.
This relative size depends on the coupling of the Z -boson to the up and down quarks in
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Figure C.5. Uncertainty from the parton distribution functions, evaluated using the CTEQ6M set.
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Figure C.6. K -factors as a function of mass of a new Z 0 resonance, for two cases: ⌘ and I
(see text). The curve ‘SSM’ refers to a sequential Standard Model Z 0.

the proton. There is practically no uncertainty on those couplings, and they are completely
determined in the Standard Model. However, if a new Z 0 resonances is present, its couplings
will not be known a priori. Thus it is interesting to consider to what extent the K -factor will
depend on those couplings.

We have considered two examples of possible Z 0 resonances, and computed KNLO as a
function of the resonance mass, as shown in Fig. C.6. The first model, labelled “⌘,” illustrates
the case of a Z 0 which couples primarily to up-quarks, and the second one, labelled “I ,”
couples mainly to down-quarks [816]. As is clear from the figure, the radiative corrections
as a function of mass are quite different in these two extreme cases. Thus, there will be an
ambiguity in the cross-section measurement of a new Z 0 resonance at the level of about 5%
until the relative couplings of that Z 0 to up and down quarks can be established.
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Appendix D. GARCON: Genetic Algorithm for Rectangular Cuts OptimizatioN

Typically HEP analysis has quite a few selection criteria (cuts) to optimise for example
a significance of the “signal” over “background” events: transverse energy/momenta cuts,
missing transverse energy, angular correlations, isolation and impact parameters, etc. In such
cases simple scan over multi-dimensional cuts space (especially when done on top of a scan
over theoretical predictions parameters space like for SUSY e.g.) leads to CPU time demand
varying from days to many years... One of the alternative methods, which solves the issue is
to employ a Genetic Algorithm (GA), see e.g. [820–822].

We wrote a code, GARCON [63], which automatically performs an optimisation and
results stability verification effectively trying ⇠1050 cut set parameters/values permutations
for millions of input events in hours time. Examples of analyses are presented in this
Physics TDR; see, for example, Sections 3.1, 8.4.1, 13.6, 13.7, 13.14 and recent papers
[51, 317, 675, 676].

The program among many other features allows user:

• to select an optimisation function among known significance estimators, as well as to
define user’s own formula, which may be as simple as signal to background ratio, or a
complicated one including different systematic uncertainties separately on different signal
and background processes, different weights per event and so on;

• to define a precision of the optimisation;
• to restrict the optimisation using different kind of requirements, such us minimum number
of signal/background events to survive after final cuts, variables/processes to be used
for a particular optimisation run, number of optimisations inside one run to ensure that
optimisation converges/finds not just a local maximum(s), but a global one as well (in case
of a complicated phase space);

• to automatically verify results stability.
, like GA-based programs in general, exploits evolution-kind algorithms and uses

evolution-like terms:

• Individual is a set of qualities, which are to be optimised in a particular environment or set
of requirements. In HEP analysis case Individual is a set of lower and upper rectangular cut
values for each of variables under study/optimization.

• Environment or set of requirements of evolutionary process in HEP analysis case is a
Quality Function (QF) used for optimisation of individuals. The better QF value the better
is an Individual. Quality Function may be as simple as S/

p
B, where S is a number of signal

events and B is a total number of background events after cuts, or almost of any degree of
complexity, including systematic uncertainties on different backgrounds, etc.

• A given number of individuals constitute a Community, which is involved in evolution
process.

• Each individual involved in the evolution: breeding with possibility of mutation of new
individuals, death, etc. The higher is the QF of a particular individual, the more chances
this individual has to participate in breeding of new individuals and the longer it lives
(participates in more breeding cycles, etc.), thus improving community as a whole.

• Breeding in HEP analysis example is a producing of a new individual with qualities (set of
min/max cut values) taken in a defined way from two “parent” individuals.

• Death of an individual happens, when it passes over an age limit for it’s quality: the bigger
it’s quality, the more it lives.
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• Cataclysmic Updates may happen in evolution after a long period of stagnation in evolution,
at this time the whole community gets renewed and gets another chance to evolve to even
better quality level. In HEP analysis case it corresponds to a chance to find another local and
ultimately a global maximum in terms of quality function. Obviously, the more complicated
phase space of cut variables is used the more chances exist that there are several local
maximums in quality function optimisation.

• There are some other algorithms involved into GAs. For example mutation of a new
individual. In this case newly “born” individual has not just qualities of its “parents”, but
also some variations, which in terms of HEP analysis example helps evolution to find a
global maximum, with less chances to fall into a local one. There are also random creation
mechanisms serving the same purpose.

There is nothing special involved in input preparation. One would need to
prepare a set of arrays for each background and a signal process of cut variable values
for optimisation. Similar to what is needed to have to perform a classical eye-balling cut
optimisation.

In comparison to other automatised optimisation methods output is transparent
to user: it just says what rectangular cut values are optimal and recommended in an analysis.
Interpretation of these cut values is absolutely the same as with eye-balling cuts when one
selects a set of rectangular cut values for each variable in a “classical” way by eye.

All-in-all it is a simple yet powerful ready-to-use tool with flexible and transparent
optimisation and verification parameters setup. It is publicly available along with a paper
on it [63] consisting of an example case study and user’s manual.
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Appendix E. Online Selection

E.1. Introduction

The CMS trigger menu depends upon the luminosity delivered by the LHC and the available
bandwidth between and out of the systems. The LHC luminosity is expected to start at
L= 1032 cm�2 s�1 in 2007 and gradually rise to L= 1034 cm�2 s�1 by 2010. The CMS data
acquisition can be operated with one to eight slices of Event Filter Farms that execute High-
Level Trigger (HLT) algorithms. It is expected that we start with one slice in 2007, allowing
a bandwidth of 12.5 kHz between Level-1 and HLT, and build up to the full eight slices by
2010, when the Level-1 to HLT bandwidth can be raised to 100 kHz. It is assumed that the
data logging capability after the HLT selection will remain constant at a rate between 100 Hz
to 150 Hz54. The Level-1 and HLT algorithms will be configured to operate with the lowest
possible thresholds making the best use of the available bandwidth.

Here we focus solely on trigger studies for L= 2⇥ 1033 cm�2 s�1. The scenario of
operation assumes that CMS uses four DAQ slices capable of 50 kHz. While the actual choice
of trigger thresholds, especially at HLT, depends strongly upon the physics of interest at the
time of operation, we propose here an example set of trigger menus within the constraints
of the data acquisition system. An effort has been made to optimise the Level-1 and HLT
thresholds coherently, taking into account possible bandwidth limitations.

The structure of this note is as follows: first we overview the object-identification
algorithms used for these studies. The emphasis is given to the changes that have been
introduced since a similar study was performed in the DAQ TDR [76]. We then introduce
a series of new trigger paths, aiming at increasing the event yield for various physics
analyses. The central idea is to exploit various multi-object (or cross-channel) triggers in an
attempt to improve the rejection and, at the same time, lower the kinematic thresholds of the
corresponding objects. We finally present the performance of the triggers, and we calculate
the overlap among them and the total HLT output rate.

E.2. Description of trigger tools

E.2.1. Level-1 reconstruction

There have been no significant changes in the Level-1 algorithms since the DAQ TDR. We
have introduced an HT algorithm which sums the corrected jet ET of all the jets found above
a programmable threshold, within |⌘| < 5. It does not account for ET carried by muons and
neutrinos.

The Level-1 strategy is the following: We have made an effort to keep the thresholds at the
same levels, or even reduce them in order to be able to study cross-channel triggers (typically
appearing with lower kinematic cuts). The notable exception is the tau triggers, where an
increase in the HCAL noise and the usage of a new pile-up model in the simulation do affect
the Level-1 ⌧ identification tools, and therefore the related trigger rates. We have introduced
additional Level-1 conditions for all HLT paths. The determination of thresholds and prescales
is a compromise between the desire to distribute reasonably the available L1 bandwidth
to the various triggers, and the need to optimise the L1 and HLT thresholds coherently in
well-defined trigger paths.

54 At the time of the writing of this document, several scenarios for the HLT output rate, the disk requirements for
the storage manager and the associated cost are under discussion.



CMS Physics Technical Design Report, Volume II: Physics Performance 1519

E.2.2. HLT reconstruction

Well defined Level-1 terms are used in order to obtain triggers whose behaviour and efficiency
can be studied with real data. We have replaced some of the Level-1 conditions with respect
to the DAQ TDR with new Level-1 terms when this leads to more reasonable trigger paths or
triggers that are more stable and carry less of a bias. The optimisation of the thresholds for the
various triggers has been a compromise between the physics needs of the CMS experiment
and the total HLT rate available. This study serves only as an intermediate step in a long-term
trigger study project. Further improvements in the reconstruction tools, better optimisation
of the thresholds, implementation of additional triggers and a CMS-wide discussion of the
allocation of the HLT bandwidth to the physics groups according to the priorities of the
experiment, are foreseen.

A general and detailed description of the HLT system can be found in Ref. [76]. Here we
summarise the recent modifications of the HLT tools, and the expected changes in the rates of
the various triggers with respect to the earlier studies.

• Muons: The muon algorithm has not changed, with the exception of the drift-tube local
reconstruction and segment building. Therefore, no significant changes in the rates of
single- and dimuon trigger paths are expected. The option of constructing muon triggers
without isolation has been added.

• Electrons–Photons. Here the most important change is that all saturated trigger towers
at Level-1 are now considered isolated. This increases both the signal efficiency and the
background. At HLT, the photon rate can be reduced by increasing the thresholds or by
applying some isolation cuts. For the electrons the options include a matching with pixel
lines and tracks, as well as isolation requirements in the hadron calorimeter and the tracker.
A study of the algorithm optimisation can be found in Ref. [7]. An improvement of the
rejection power of the electron–photon algorithms is achieved with a simultaneous decrease
of the HLT thresholds. Similar enhancements are expected for cross-channel triggers where
one of the objects under consideration is an electron or a photon.

• Jets and EmissT . The main jet-finder algorithm (Iterative Cone with R = 0.5) has not
been modified. Some optimisations of the tower thresholds have been added, and the jet
corrections have been updated (“Scheme C”). Similarly, there are no major algorithm
changes for EmissT , however it has been ensured that all triggers including a EmissT object
do not have any off-line corrections applied. Another improvement that has been recently
introduced is the ability to construct acoplanar triggers by combining two jets, or a jet and
a EmissT object that do not lie “back-to-back” Details of the physics algorithms can be found
in Refs. [165] and [148].

• b-jets. The algorithm now uses muon information for fast rejection. Further improvements
have been made for faster decisions and for an increased efficiency in fully hadronic final
states. The documentation for the b-jet HLT algorithm can be found in Ref. [290].

• Taus: The HLT ⌧ algorithm has not changed. However, the increase in the Level-1 rate does
propagate into the HLT. The isolation parameters for the electromagnetic calorimeter and
the tracker have been tuned after recent studies performed by the Higgs group, described in
Ref. [280]. The overall rate for ⌧ -related triggers is expected to be slightly increased.

A new addition to the HLT reconstruction tools is the HT algorithm. It sums the
corrected jet ET of all the ET > 5GeV jets found within |⌘| < 5, along with the energy of the
pT > 5GeV/c HLT muons found in the event, and the EmissT computed using the calorimeter
deposits. It is meant to be driven off the corresponding L1 HT term.
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E.3. Triggering with forward detectors

E.3.1. Objective

We discuss55 the feasibility of a special forward detectors trigger stream, with target output
rate ofO(1) kHz at L1 andO(1) Hz on the HLT, as well as the potential of the already foreseen
CMS L1 trigger streams for retaining events with diffractive processes.

The proposed forward detectors trigger stream combines the information of the central
CMS detector with that from detectors further downstream of the CMS IP. The forward
detectors considered are the TOTEM T1 and T2 tracker telescopes as well as the TOTEM
Roman Pot (RP) detectors up to 220m downstream of CMS [823, 824]. Information from
TOTEM will be available to the CMS L1 trigger. We also consider detectors at a distance
of 420m, in the cryogenic region of the LHC ring, currently being studied by the FP420
project [254].

Topologically, diffractive events are characterised by a gap in the rapidity distribution
of final-state hadrons. In addition, the fractional momentum loss, ⇠ , of diffractively scattered
protons peaks at ⇠ = 0 (“diffractive peak”). The TOTEM RP detectors will permit to measure
protons in the region 0.2> ⇠ > 0.02. Detectors at a distance of 420m from the IP would
provide a coverage of 0.02> ⇠ > 0.002, complementary to that of the TOTEM detectors, but
cannot be included in the Level-1 trigger without an increase in the Level-1 latency of 3.2 µs
(though a special, long latency running mode might be feasible at lower luminosities).

The studies discussed in the following assume that the RP detectors are 100% efficient
in detecting all particles that emerge at a distance of at least 10 �beam + 0.5mm from the beam
axis (1.3mm at 220m, 4mm at 420m). Their acceptance was calculated for the nominal LHC
optics (�⇤ = 0.55 m), version V6.5 [825, 826], and by way of a simulation program that tracks
particles through the accelerator lattice [827]. LHC bunches with 25 ns spacing were assumed.

The results presented below do not depend on the specific hardware implementation of
the TOTEM T1, T2 and RP detectors; they hold for any tracker system with the T1, T2 ⌘
coverage in conjunction with RPs at 220m from the IP.

E.3.2. Level-1 trigger rates for forward detectors trigger stream

E.3.2.1. 2-Jet conditions. A particularly interesting and challenging diffractive channel is
the central exclusive production of a Higgs Boson, pp ! pHp, with Higgs mass close to the
current exclusion limit. The dominant decay of a SM Higgs Boson of mass ⇠120GeV/c2 is
into two b-quarks and generates 2 jets with at most 60GeV/c transverse momentum each. In
order to retain as large a signal fraction as possible, as low an ET threshold as possible of
the Level-1 2-jet trigger is desirable. In practice, the threshold value cannot be chosen much
lower than 40GeV per jet. The Level-1 trigger applies cuts on the calibrated ET value of the
jet. Thus, a threshold of 40GeV corresponds to 20–25GeV in reconstructed ET, i.e. to values
where noise starts becoming sizable.

For luminosities of 1032 cm�2s�1 and above, the Level-1 rate from standard QCD
processes for events with at least 2 central jets (|⌘| < 2.5) with ET > 40GeV exceeds by far
the target output rate of O(1) kHz. Thus additional conditions need to be employed to reduce
the rate from QCD processes. The efficacy of several conditions was investigated [247, 248,
828–830]. In the following, the corresponding rate reduction factors are always quoted with
respect to the rate of QCD events that contain at least 2 central jets with ET > 40GeV per jet.

55 These studies were carried out in collaboration with TOTEM.
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Table E.1. Reduction of the rate from standard QCD processes for events with at least 2 central
Level-1 jets with ET > 40GeV, achievable with requirements on the tracks seen in the RP
detectors. Additional rate reductions can be achieved with the HT condition and with a topological
condition. Each of them yields, for all luminosities listed, an additional reduction by about a
factor 2.

Reduction when requiring track in RPs at

220 & 420m 420 &

Pile-up Level-1 2-jet Total
220m 420m (asymmetric) 420m

Luminosity events rate [kHz] for reduction
[cm�2 s�1] per BX ET > 40GeV needed ⇠ < 0.1 ⇠ < 0.1

1⇥ 1032 0 2.6 2 370
1⇥ 1033 3.5 26 20 7 15 27 160 380 500
2⇥ 1033 7 52 40 4 10 14 80 190 150
5⇥ 1033 17.5 130 100 3 5 6 32 75 30
1⇥ 1034 35 260 200 2 3 4 17 39 10

The QCD background events were generated with the Pythia Monte Carlo generator. In
order to assess the effect when the signal is overlaid with pile-up, a sample of 500,000 pile-up
events was generated with Pythia. This sample includes inelastic as well as elastic and single
diffractive events. Pythia underestimates the number of final state protons in this sample.
The correction to the Pythia leading proton spectrum described in [831] was used to obtain
the results discussed in the following.

Given a Level-1 target rate for events with 2 central Level-1 jets of O(1) kHz, a total rate
reduction between a factor 20 at 1⇥ 1033 cm�2 s�1 and 200 at 1⇥ 1034 cm�2 s�1 is necessary.
Table E.1 summarises the situation for luminosities between 1032 cm�2 s�1 and 1034 cm�2 s�1,
and for different RP detector conditions: a track at 220m on one side of the IP (single-arm
220m), without and with a cut on ⇠ ; a track at 420m on one side of the IP (single-arm 420m);
a track at 220m and 420m (asymmetric); a track at 420m on both sides of the IP (double-
arm 420m). Because the detectors at 220m and 420m have complementary coverage in ⇠ ,
the asymmetric condition in effect selects events with two tracks of very different ⇠ value, in
which one track is seen at 220m on one side of the IP and a second track is seen on the other
side at 420m. If not by the L1 trigger, these asymmetric events can be selected by the HLT
and are thus of highest interest. At luminosities where pile-up is present, the rate reduction
achievable with the RP detector conditions decreases because of the diffractive component in
the pile-up.

A collimator located in front of the LHC magnet Q5, planned to be operative at higher
luminosities, will have an effect on the acceptance of the RP detectors resembling that of a ⇠
cut. This effect has not been taken into account in Table E.1.

Using T1 and T2 as vetoes in events with 2 central Level-1 jets was found to be effective
only in the absence of pile-up [832].

In addition to the ET values of individual Level-1 jets, the CMS Calorimeter Trigger has
at its disposal the scalar sum, HT, of the ET values of all jets. Requiring that essentially all the
ET be concentrated in the two central Level-1 jets with highest ET, i.e. [E1T + E2T]/HT > 0.9
(HT condition), corresponds to imposing a rapidity gap of at least 2.5 units with respect to the
beam direction. This condition reduces the rate of QCD events by approximately a factor 2,
independent of the presence of pile-up and with only a small effect on the signal efficiency.

A further reduction of the QCD rate could be achieved with the help of a topological
condition. The 2-jet system has to balance the total momentum component of the two protons
along the beam axis. In signal events with asymmetric ⇠ values, the proton seen on one side
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Table E.2. Estimated threshold values that result in a L1 output rate of ⇠ 1 kHz, for various
conditions on central CMS detector quantities and on tracks seen in the RP detectors at 220m
and 420m.

L1 ET or pT threshold [GeV] at O(1)KHz
L1 output rate for luminosity [cm�2 s�1]

L1 condition 1⇥ 1033 2⇥ 1033 5⇥ 1033 1⇥ 1034

1 Jet 115 135 160 190
2 Jet 90 105 130 150
1 Jet+220s 90 115 155 190
2 Jet+220s 65 90 125 150
1 Jet+220d 55 85 130 175
2 Jet+220d 30 60 100 140
1 Jet+220s(c) 70 90 150 185
2 Jet+220s(c) 60 70 115 145
1 Jet+220d(c) 30 65 110 155
2 Jet+220d(c) 20 45 85 125
1 Jet+420s 65 90 125 165
2 Jet+420s 45 70 100 130
1 Jet+420d 20 40 80 115
2 Jet+420d < 10 30 60 90
1 µ+220s 12 16 23 >100
1µ+ 220d 4 9 17 80
1 µ+220s(c) � 11 22 100
1 µ+220d(c) � 6 13 30
1 µ+420s 7 11 14 37
1 µ+420d < 2 4 7 14

in the RP detectors at 220m distance is the one with the larger ⇠ and thus has lost more
of its initial momentum component along the beam axis. Hence the jets tend to be located
in the same ⌘-hemisphere as the RP detectors that detect this proton. A trigger condition
requiring that [⌘ jet1 + ⌘ jet2]⇥ sign(⌘220mRP) > 0 reduces the QCD background by a factor 2,
independent of pile-up, and with no loss in signal efficiency.

A reduction of the QCD rate to levels compatible with a Level-1 output target rate of
O(1) kHz by including RP detectors at a distance of 220m from the CMS IP thus appears
feasible for luminosities up to 2⇥ 1033 cm�2 s�1, as long as a ⇠ cut can be administered in the
L1 trigger.

E.3.2.2. Other conditions. The effect of combining already foreseen Level-1 trigger
conditions with conditions on the RP detectors is illustrated in Table E.2 [829]. Single- and
double-arm RP detector conditions are indicated with ‘s’ and ‘d’ endings, respectively. Entries
marked with a ‘(c)’ indicate thresholds applicable if a cut on ⇠ < 0.1 is implemented for the
RP detectors at 220 m. The jet conditions consider all Level-1 jets with |⌘| < 5.

A further rate reduction by approximately a factor two can be obtained at luminosities
with negligible pile-up by imposing a rough large rapidity gap cut at L1. This was
implemented by requiring that there be no forward jets, i.e. jets in the HF, in either hemisphere
in the event.

E.3.3. Level-1 signal efficiencies

Of the Level-1 conditions discussed so far, only those based on the RP detectors have a
significant impact on the signal efficiency. Of further interest is the question how many signal
events are being retained by the already foreseen trigger streams, notably the muon trigger.
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Figure E.1. L1 selection efficiency for pp ! pHp and H(120,GeV/c2) ! bb̄ as function of
the ET threshold value when at least 2 central Level-1 jets with ET above threshold are required.
All plots are for the non-pile-up case and the HT condition has been applied. Left: Comparison
between the EDDE and Exhume Monte Carlo generators, without applying any additional RP
conditions. Right: Comparison of the effect of different RP conditions on the efficiency in the
Exhume Monte Carlo sample.

E.3.3.1. Central exclusive Higgs production (H(120GeV/c2) ! bb̄). In order to study the
effect of the Level-1 trigger selection on the Higgs signal, signal samples of 100,000 events
with central exclusive production of a Higgs Boson were generated with the Monte Carlo
programs EDDE [261] (version 1.1) and Exhume [259] (version 1.0).

Figure E.1 shows the Level-1 selection efficiency as a function of the ET threshold values
when at least 2 central Level-1 jets with ET above threshold are required [829]. For a threshold
of 40GeV per jet, Exhume and EDDE both yield an efficiency of about 20%. The plot on the
right-hand side overlays the efficiency curves obtained with Exhume when the 2-jet condition
is combines with RP detector conditions. With an ET threshold of 40GeV per jet, the single-
arm 220m (420m) condition results in an efficiency of the order 12% (15%), the double-arm
420m condition in one of 8% and the asymmetric condition in one of 6%. This also means
that, even without the possibility of including the RP detectors at 420m from the CMS IP in
the Level-1 trigger, 6% of the signal events can be triggered on with the single-arm 220m
condition, but will have a track also in the 420m detectors that can be used in the HLT.

An alternative trigger strategy is to exploit the relatively muon-rich final state from B-
decays: about 20% of the events have at least a muon in the final state. Requiring at least
one (two) L1 muon(s) with pT above 14GeV/c (3GeV/c) yields an efficiency of 6% (2%).
Demanding at least 1 muon and 1 jet, the latter with ET >40GeV, is a condition not yet
foreseen in the CMS trigger tables. For a muon pT threshold of 3GeV/c, the rate at a
luminosity of 1033 cm�2 is slightly less than 3 kHz, and about half of the decays with muons
in the final state (i.e. 9%) are retained [830].

E.3.3.2. Central exclusive Higgs production (H(140GeV/c2) ! WW). For SM Higgs
Boson masses above 120GeV/c2, the H ! WW branching ratio becomes sizable; in this
case the final state contains high-pT leptons that can be used for triggering. Efficiencies are
in general high [830]. About 23% of the events have at least one muon in the final state.
Approximately 70% of these (i.e. 16%) are retained by requiring at least one muon with a
pT threshold of 14GeV/c. An extra ⇡ 10% (i.e. 2%) would be retained by implementing the
muon/jet slot discussed above with thresholds of 3GeV/c on the muon pT and 40GeV on the
jet ET.
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Figure E.2. L1 selection efficiency as function of the ET threshold value for pp ! pW X
(left) and pp ! pj j X (right), when at least one (left) or two (right) Level-1 jets (|⌘| < 5) above
threshold are required. All plots are for the non-pile-up case.

E.3.3.3. Single diffractive hard processes. Double-Pomeron exchange processes constitute
only a small part of the diffractive cross section. Hard single-diffraction, pp ! pX , where
only one proton remains intact and the other is diffractively excited, have much higher
cross sections than hard double-Pomeron exchange events. Efficiencies have been studied
for pp ! pX , with X containing a W or a Z boson that decay to jets and to muons, as well
as with X containing a dijet system. Samples of 100,000 signal events each were generated
with the Monte Carlo generator [833] (version 1.3).

For two example processes, Figure E.2 shows the efficiency as a function of the Level-
1 threshold value, normalised to the number of events where for the diffractively scattered
proton 0.001< ⇠ < 0.2 holds [829]. Three different trigger conditions are considered: trigger
on central detector quantities alone (i), trigger on central detector quantities in conjunction
(ii) with the single-arm 220m condition, and (iii) with the single-arm 420m condition. Also
shown is the number of events expected to pass the L1 selection per pb�1 of LHC running. A
significant part of events is retained when a proton is required in the 220m RPs.

E.3.4. Effect of pile-up, beam-halo and beam-gas backgrounds

Pile-up effects are included in all rate and efficiency studies presented. In the 220m stations,
0.055 protons/pile-up event are expected on average, in the 420m stations, 0.012 protons/pile-
up event. At a luminosity of 1034 cm�2 s�1, there are 35 pile-up events on average; this entails,
on average, 2 extra tracks in the 220 m stations and less than one in the 420m stations.

The effect from beam-halo and beam-gas events on the Level-1 rate is not yet included
in the studies discussed here. Preliminary estimates suggest that they are chiefly a concern
for any trigger condition based solely on the forward detectors. For any trigger condition that
includes a requirement on central CMS detector quantities the size of their contribution is
such that they do not lead to a significant increase of the Level-1 output rate.

E.3.5. HLT strategies

Jets are reconstructed at the HLT with an iterative cone (R < 0.5) algorithm. The Level-1
selection cuts are repeated with HLT quantities. The following conditions are imposed [829]:

(A) The event pass the single-arm 220 m Level-1 condition with ⇠ < 0.1 cut. As demonstrated
in Table E.1, this condition reduces the Level-1 output rate to below O(1) kHz. Additional
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Table E.3. Results of HLT selection.

HLT selection condition A+B+C A+B+D A+B+C+E

HLT rate at 1⇥ 1033 cm�2 s�1 15 Hz 20 Hz < 1Hz
line HLT rate at 2⇥ 1033 cm�2 s�1 60 Hz 80 Hz 1 Hz
e Signal eff. H(120)GeV/c2 ! bb̄ 11% 7% 6%

rate reduction factors of ⇠ 300 (⇠ 1000) at 1(2) ⇥ 1033 cm �2 s �1 are needed to reach the
HLT target output rate of O(1)Hz.

(B) The two jets are back-to-back in the azimuthal angle � (2.8<1� < 3.48 rad), and have
(E1T � E2T)/(E1T + E2T) < 0.4, and ET > 40GeV for each jet.

(C) The proton fractional momentum loss ⇠ is evaluated with the help of calorimeter
quantities [834–836]:

⇠+� = (1/
p
s)6i ET i exp (⌥⌘i ), (E.1)

where the sum runs over the two jets and the +, � signs denote the two hemispheres.
The result is compared with the ⇠ value measured by the RP detectors. At present, no
simulation of the RP reconstruction is available. As estimate of the ⇠ resolution, 15%
(10%) is assumed at 220m (420m). Events are rejected if the difference between the two
values of ⇠ is larger than 2 � .

(D) At least one of the two jets is b-tagged.
(E) A proton is seen at 420m.

The case without pile-up presents no difficulty: essentially no QCD background events
survive the selection. If conditions A+B+C are applied, the signal efficiency for pp ! pHp
with H(120 GeV/c2) ! bb̄ is at 11% essentially unchanged with respect to the Level-1
selection, but the HLT output rate exceeds the target output rate, see Table E.3. If b-tagging
is required but no ⇠ matching (conditions A +B+D), the efficiency drops to 7%, without any
improvement in the rate reduction. The combination of conditions A+B+C+E finally leads
to the targeted HLT output rate of O(1)Hz, without any loss in signal efficiency compared
to L1.

E.4. High-Level Trigger paths

We are starting with the DAQ-TDR trigger table as the baseline. This includes single- and
double-triggers for the basic objects (e, � , µ, ⌧ ) along with jets and b-jets. Some cross-
channel triggers are also present. We are expanding the cross-channel “menu” by introducing
additional triggers. We introduce an HT algorithm, which we combine with other objects. We
are also adding a series of central single-jets, non-isolated muons, and a diffractive trigger
discussed earlier.

E.4.1. Level-1 conditions

Table E.4 summarises the Level-1 conditions used to drive all the trigger paths. A pseudo “L1
bit number” has been assigned for easy reference in the following sections.

E.4.2. Evolution of DAQ-TDR triggers

The trigger paths that have been studied in Ref. [76] have been inherited and constitute
the “bulk” of this next iteration of the CMS Trigger Menu for L= 2⇥ 1033 cm�2 s�1.
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Table E.4. Level-1 conditions used in High Level Trigger paths.

Level-1 bit # Trigger ( GeV) Prescale

0 Single µ 14 1
1 Double µ 3 1
2 Single isolated e� 23 1
3 Double isolated e� 11 1
4 Double e� (isolated/non-isolated) 19 1
8 Single central jet 177 1
9 Single forward jet 177 1
10 Single ⌧ -jet 100 1
11 2 central jets 130 1
12 2 forward jets 130 1
13 2 ⌧ -jets 66 1
14 3 central jets 86 1
15 3 forward jets 86 1
16 3 ⌧ -jets 40 1
17 4 central jets 70 1
18 4 forward jets 70 1
19 4 ⌧ -jets 30 1
26 (isolated) e� + ⌧ 14, 52 1
31 HT 300 1
32 EmissT 60 1
33 Single jet (central, forward or ⌧ ) 140 10
34 Single jet (central, forward or ⌧ ) 60 1 000
35 Single jet (central, forward or ⌧ ) 20 100 000
36 Single jet (central, forward or ⌧ ) 150 1
37 2 jets (central, forward or ⌧ ) 100 1
38 3 jets (central, forward or ⌧ ) 70 1
39 4 jets (central, forward or ⌧ ) 50 1

Modifications (optimisation of isolation cuts and thresholds) have been made for certain of
the triggers, to reflect changes in the physics algorithms, or the improved understanding of
the background from Monte Carlo (MC) simulations. The proposed Trigger Tables includes:

• Muons. The standard muon triggers include calorimeter-based isolation at L2, and both
calorimeter and tracker isolation at L3. The pT thresholds remain at 19GeV/c for the
single-muon and (7, 7) GeV/c for the dimuon trigger. A second set of relaxed single- and
double-muons has been added with pT > 37GeV and pT > 10GeV, respectively. The main
motivation here is Drell–Yan studies. In general, physics analyses that do not need a low
pT muon but do suffer from the isolation requirement on the muon. The reduced rejection
caused by the removal of the isolation cuts is compensated by the higher-pT thresholds on
the muons, without affecting the event yield for the physics signal. The relaxed triggers
have the advantage that the muons here are immune to radiative losses for the higher energy
spectrum (pT > 500GeV/c). Both isolated and relaxed triggers run off the corresponding
non-isolated single- and double-muon bits at L1.

• Electrons. The pT threshold remains at 26GeV/c for the single electron trigger and has
a new value of (12, 12)GeV/c for the dielectron trigger. An additional relaxed dielectron
trigger appears with pT > 19GeV/c. The single-electron and double-electron triggers run
off the corresponding Level-1 bits.

• Photons. The new pT thresholds are 80GeV/c for the single-photon trigger and (30,
20)GeV/c for the diphoton trigger (both relaxed and non-relaxed flavours). A few prescaled



CMS Physics Technical Design Report, Volume II: Physics Performance 1527

single- and double-photon triggers have also been introduced, for the purpose of studying
trigger efficiencies. The photon HLT algorithms run off the corresponding Level-1 e� bits
(single- and double-triggers).

• Taus. The single-⌧ trigger runs off the corresponding Level-1 bit. The double-⌧ trigger is
driven by the .OR.-ing of the single- and double-⌧ trigger bits at L1. There is no explicit
kinematic cut on the tau at HLT. There is, however, a match-to-track requirement in addition
to the pT > 100(66)GeV/c L1 precondition for the inclusive (double) tau trigger. The
single-⌧ has also a EmissT > 65GeV requirement at HLT.

• Tau and electron. The Level-1 condition is the corresponding ⌧+e� trigger. The pT
threshold remains at 16GeV/c for the electron. There is no explicit pT cut for the ⌧ at
HLT, but there is the match-to-track requirement for the ⌧ candidate.

• Jets. The Level-1 conditions for the single-, double-, triple- and quadruple-jet triggers have
been simplified considerably. Single jet triggers run off an OR. of a central-, forward- or
tau-jet trigger at L1. Double-, triple- and quadruple-jet triggers use an .OR. of the all the
Level-1 terms requiring the same number of jets or less. For example, the triple-jet trigger
is driven by an OR. of the single-, double- and triple-jet Level-1 bits. In all cases, jets can
be found in either the central or the forward region of the detector, and they include the ⌧
candidates. The additional pT cuts at HLT are: 400 (single), 350 (double), 195 (triple) and
80 (quadruple) GeV. The new double-jet trigger is expected to have a large overlap with the
single-jet trigger path. However, it is useful for testing the additional bias introduced by
the requirement for a second jet in the event. A series of prescaled triggers have also been
introduced, which are discussed later (Sec. E.4.3.2).

• b-jet. This trigger is also based on the logical .OR. of the single-, double-, triple- and
quadruple-jet Level-1 terms. At HLT, we have the additional requirement that the event is
consistent with b-content. The ET cut for the HLT jets is one of the following: 350GeV
if the event has one jet, 150GeV if the event has three jets, or 55GeV if the event has
four jets.

• Jet and E miss
T . The ET thresholds are 180 and 80GeV, respectively. The Level-1 condition

is a single EmissT object above 60GeV.

E.4.3. New triggers

E.4.3.1. Cross-channel triggers. The trigger studies presented in the DAQ TDR [76] have
been the most comprehensive CMS effort to date to calculate rates for various trigger paths
across many physics channels. For those studies the focus has been the optimisation of the
rejection of the individual object-id algorithms (muon, electron, tau, etc.) rather than the
combination of them into more powerful trigger tools. However, single (or even double)
trigger objects are limited by the rate and, therefore, have their thresholds often higher than
desired for many physics analyses. If the signal contains more than one trigger objects,
using trigger paths combining different objects may yield a considerable gain by allowing
lower trigger thresholds and higher efficiency. Cross-channel triggers can be much more
stable and less prone to rate fluctuations from operating conditions. The correlations among
trigger objects can help reduce difficult backgrounds and instrumental fakes. The additional
advantage is that such cross-channel triggers have noticeably lower rates than the single
trigger channels and therefore contribute fairly little to the overall bandwidth.

Some cross-channel triggers have already been considered and their rates estimated [76],
such as ⌧ + e and ⌧ + EmissT , motivated by the Higgs searches with hadronic decays of ⌧ and
leptons, and jet + EmissT , important for searches of super-symmetric particles. The new addition
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to the Trigger Menu, expanding the scope of Higgs searches, is a combined ⌧ + µ trigger with
pT thresholds at 40 and 15GeV/c, respectively. It is driven by the single-µ Level-1 bit.

We are presenting here a few additional cross-channel triggers, along with the physics
motivation.

• A new category of triggers introduced here is the acoplanar dijet and jet+EmissT for SUSY
signals. The gain is the lower thresholds that become possible because of the topology
constraint. Possible biases should be studied, so these triggers are meant to run in parallel
with the standard jet and jet + EmissT triggers without the acoplanarity requirements. We
introduce a double-jet trigger with ET thresholds at (200, 200)GeV and |1�| < 2.1, and a
new jet + EmissT trigger with ET thresholds at (100, 80) GeV and |1�| < 2.1. The former is
driven by an .OR. of the single- and double-jet requirements at Level-1 (bits 36, 37). The
latter is driven by a simple EmissT > 60GeV Level-1 requirement.

• “EmissT + X” triggers. A combination of an EmissT object with an HT cut, one (or more) jet
or lepton may be the only way to access EmissT -enhanced triggers if there are problems (e.g.
instrumental fakes) that prevent CMS from running an inclusive EmissT trigger. At this point
we have implemented:

⇤ Multi-jets and EmissT . These will be useful for SUSY studies, just like the series of jet
triggers. However, the additional EmissT requirement allows us to lower the thresholds
on the jets, and therefore increase the sensitivity of the analyses. We introduce
here a dijet + EmissT trigger with E jetT > 155GeV, EmissT > 80GeV, a triple� jet + EmissT
trigger with E jetT > 85GeV, EmissT > 80GeV and a quadruple� jet + EmissT trigger with
E jetT > 35GeV, EmissT > 80GeV. These all run off the single Level-1 requirement for
EmissT > 60GeV.

⇤ HT + EmissT and HT + e. It is difficult to contain the rate for an inclusive HT trigger
without any additional cuts. The requirement for a EmissT cut or an additional electron
in the event allows us to access events with lower EmissT or softer electrons. This
can give an increased efficiency for W+jets, top physics, SUSY cascades, and other
similar physics channels. Here we propose an HT + EmissT trigger with HT > 350GeV,
EmissT > 80GeV and an HT + e trigger with HT > 350GeV and pT > 20GeV/c for the
electron. They are both driven by the EmissT > 60GeV condition at L1.

Some additional cross-channel triggers that have not been included in this Trigger Table
iteration but should be considered in future trigger studies are:

• An e +µ trigger is of interest in many studies, for example:
⇤ qqH , H ! ⌧⌧ ! 2`, with an expected gain thanks to the lower lepton thresholds
compared to the single-electron and single-muon trigger paths,

⇤ many SUSY decays including leptons in the final state,
⇤ top measurements in the double leptonic channel (t t̄ ! bb̄`⌫`⌫), gaining sensitivity at
the lower pT spectrum, and

⇤ Bs ! ``, to allow for the lepton-number-violating channel to be studied.
• EmissT + `. The idea here is to exploit the presence of a W boson or a top decay in many
channels. This could be used in many SM channels where lowering the lepton threshold
extends the range of the measurement. For example:

⇤ top measurement in the double leptonic and semi-leptonic channels,
⇤ single top production, and
⇤ W measurements.

Furthermore, this is a typical signature of an event containing super-symmetric particles.
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Figure E.3. The integrated trigger rates at Level-1 (left) and HLT (right) above the ET thresholds
for the highest ET jet is plotted versus the ET threshold for three luminosity scenarios: L=
1032 cm�2 s�1 (solid), and L= 1033 cm�2 s�1 (dashed), and L= 1034 cm�2 s�1 (dot-dashed).
HLT thresholds that give 2.5 Hz are shown by vertical dotted lines.

• Triggers combining a lepton and a jet, or a lepton and a b-jet could be of interest for top
measurements. The ` + jet signature is also very common in super-symmetric events.

• Finally, a combination of a lepton and a photon (e + � and µ+ � ) is ideal for Flavour
Changing Neutral Current analyses, exploiting the extraordinary capabilities of CMS in
detecting photons. These triggers allow to lower the thresholds on the lepton and the photon,
increasing the event yield compared to the single-e, µ or � trigger paths.

E.4.3.2. Single jet triggers. In this section we propose the single jet trigger paths. These
have been driven by the needs of the inclusive jet and dijet analysis. The full study can be
found in Ref. [118]. Here we summarise conclusions, along with a short description of the
strategy for adjusting thresholds and prescales as the luminosity changes. This study looks at
the evolution of the single-jet triggers for various luminosities. It serves as an example of how
to preserve the long-term continuity of the triggers used for physics analyses. It is, therefore,
interesting and instructive beyond the strict scope of the single-jet trigger suite.

To measure jet spectra down to low jet ET and dijet mass requires multiple triggers,
of roughly equal total rate, and with appropriately chosen ET thresholds and prescales. In
Fig. E.3 we show estimates of the Level-1 and HLT single jet trigger rates vs. corrected
jet ET. In Table E.5 we show the single jet trigger paths from Level-1 to HLT including
thresholds, prescales and estimates of the rates. We find that the maximum allowed HLT
rate is the constraining factor for triggering on jets. For luminosity L= 1032 cm�2 s�1,
L= 1033 cm�2 s�1 and L= 1034 cm�2 s�1 the highest ET threshold at HLT was chosen to
give a rate of roughly 2.5 Hz, as illustrated in Fig. E.3, so that four triggers would saturate an
allowed jet rate of roughly 10 Hz at HLT.

The highest ET threshold in each scenario is not prescaled. Lower thresholds are
prescaled and are chosen at roughly half the ET of the next highest threshold. This allows
reasonable statistics in the overlap between the two samples, necessary for measuring trigger
efficiencies and producing a continuous jet spectrum. Note that the total L1 jet rate required
is only around 0.3 KHz, a small fraction of the Level-1 total bandwidth. Since we are limited
by HLT, not L1, for each trigger path the Level-1 thresholds are chosen low enough to have a
Level-1 trigger efficiency of more than 95% at the corresponding HLT threshold in the path,
as shown in Figure E.4. This strategy utilizes ten times more bandwidth at L1 than at HLT
to insure that all of the resulting HLT sample has high enough trigger efficiency to be useful
for analysis.
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Table E.5. Single jet trigger table showing path names, trigger thresholds in corrected ET,
prescales, and estimated rates at Level-1 and HLT for four different luminosity scenarios.

L1 HLT

Path ET Unpres. Prescale Presc. ET Rate
Cut Rate Rate Cut
(GeV) (KHz) (N) (KHz) GeV) (Hz)

Single Jet Triggers in Scenario 1: L= 1032 cm�2 s�1
High 140 0.044 1 0.044 250 2.8
Med 60 3.9 40 0.097 120 2.4
Low 25 2.9 ⇥102 2,000 0.146 60 2.8

Single Jet Triggers in Scenario 2: L= 1033 cm�2 s�1
Ultra 270 0.019 1 0.019 400 2.6
High 140 0.44 10 0.044 250 2.8
Med 60 39 400 0.097 120 2.4
Low 25 2.9 ⇥103 20,000 0.146 60 2.8

Single Jet Triggers in Scenario 3: L= 2⇥ 1033 cm�2 s�1
Ultra 270 0.038 1 0.038 400 5.2
High 140 0.88 20 0.044 250 2.8
Med 60 78 800 0.097 120 2.4
Low 25 5.8⇥103 40,000 0.146 60 2.8

Single Jet Triggers in Scenario 4: L= 1034 cm�2 s�1
Super 450 0.014 1 0.014 600 2.8
Ultra 270 0.19 10 0.019 400 2.6
High 140 4.4 100 0.044 250 2.8
Med 60 3.9 ⇥102 4,000 0.097 120 2.4
Low 25 2.9 ⇥104 200,000 0.146 60 2.8
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Figure E.4. The efficiency for passing the Level-1 jet trigger is shown as a function of HLT
corrected jet ET for each of the trigger paths shown in table E.5. The Level-1 thresholds were
chosen to give an efficiency of greater than 95% at the corresponding HLT threshold.

Table E.5 illustrates a trigger strategy to maintain the continuity of jet analysis as the
luminosity increases over a time span of years. The most important feature is that each
luminosity scenario maintains the thresholds introduced in the previous scenario, allowing
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combination of trigger samples over time. For the prescaled thresholds, we may increase
the prescales, either in discrete steps or dynamically, to maintain the allowed HLT rate
with increasing luminosity. However, to maintain maximum sensitivity to new physics, the
highest ET threshold must never be prescaled. For example, in table E.5 when the luminosity
increases by only a factor of 2 from L= 1033 cm�2 s�1 to L= 2⇥ 1033 cm�2 s�1, we double
the prescales on the prescaled triggers but don’t change either the threshold or the prescale
of the highest ET trigger labelled Ultra. This allows us to maintain stability of the single jet
trigger thresholds, and analyses that depend on them, with only modest increases in the total
rate for single jets. When the HLT rate in the unprescaled trigger becomes intolerably high,
a higher ET threshold unprescaled trigger is introduced, and the old unprescaled trigger can
then be prescaled as necessary.

For the particular case of single-jet triggers: To commission the calorimeters, or perform
a one-time jet study, it may be desirable to have more jets. If we want to write more than
roughly 10 Hz of single jets at HLT, we can still use the same suite of single-jets, but lower
the prescales to obtain more jets at low ET. This is preferable to moving the threshold for the
unprescaled trigger, or any of the triggers, and ending up with a special trigger that is only
applicable for a given running period and difficult to combine with other samples.

For L= 2⇥ 1033 cm�2 s�1, the suggested jet thresholds have been studied again in the
scope of the global High-Level trigger analysis (Sec. E.5) and new Level-1 prescales and
rates have been determined. For the trigger table proposed in this study, we have chosen four
triggers, with ET thresholds of 400, 250, 120 and 60 GeV, amd prescales of 1, 10, 1000 and
100 000, respectively.

E.4.3.3. Other triggers. The remaining triggers that have been introduced since the DAQ
TDR are:

• Inclusive EmissT trigger. As discussed earlier, this is a difficult trigger that is subject to the
good understanding and control of the detector noise. We suggest here a single EmissT trigger
with ET > 91GeV, driven by the EmissT > 60GeV L1 condition. This is just an indicative
value, rather on the low side, as EmissT rates appear lower compared to Ref. [76]. It is foreseen
that additional EmissT triggers with different thresholds and prescales will be introduced in
the future.

• Diffractive trigger. This trigger is different than all others described earlier in that it uses
the TOTEM detector [823, 824]. At Level-1 we ask for two central jets with ET > 40GeV,
along with a proton tagged with the 220m Roman Pot. At HLT, a similar dijet cut and a
“back-to-back” azimuthal condition are applied. We also require that we have a consistent
measurement of the proton energy loss ⇠ in the two hemispheres (within 2 � , measured at
the Roman Pots). A final condition for a tagged proton seen by the 420m Roman Pot brings
the HLT rate down to O(1) Hz. This trigger is discussed in detail in Sec. E.3.

E.5. Performance

The performance of the trigger system is studied by using simulated data that has been
digitised with appropriate pileup56, taking into account both the inelastic (55.2mb) and the
diffractive (24.1mb) cross sections. To reduce the amount of simulation time, about 50 million

56 We have estimated the average number of in-time interactions per bunch crossing to be 5 for L= 2⇥
1033 cm�2 s�1. Additional, out-of-time interactions have been ignored.
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Table E.6. Description and sizes of MC Samples used for the trigger studies. The contribution to
the HLT rate does not include pre-scaled triggers.

Sample description Cuts Cross section HLT rate
(Momenta in GeV/c) (mb) # of events (Hz)

Minimum bias with
in-time pile-up; — 79.3 50 000 000 —
h# of interactions i = 5

QCD p̂T 2 [15, 20] 1.46 ⇥ 10 0 49 491
QCD p̂T 2 [20, 30] 6.32 ⇥ 10�1 49 244
QCD p̂T 2 [30, 50] 1.63 ⇥ 10�1 49 742
QCD p̂T 2 [50, 80] 2.16 ⇥ 10�2 99 486
QCD p̂T 2 [80, 120] 3.08 ⇥ 10�3 96 238
QCD p̂T 2 [120, 170] 4.94 ⇥ 10�4 99 736
QCD p̂T 2 [170, 230] 1.01 ⇥ 10�4 99 226
QCD p̂T 2 [230, 300] 2.45 ⇥ 10�5 99 481
QCD p̂T 2 [300, 380] 6.24 ⇥ 10�6 98 739
QCD p̂T 2 [380, 470] 1.78 ⇥ 10�6 46 491
QCD p̂T 2 [470, 600] 6.83 ⇥ 10�7 47 496
QCD p̂T 2 [600, 800] 2.04 ⇥ 10�7 48 986
QCD p̂T 2 [800, 1000] 3.51 ⇥ 10�8 45 741

Partial total 930 099 55.3± 6.9
W ! e⌫ 1 electron with|⌘| < 2.7, pT > 25 7.9⇥ 10�6 3 944 9.7± 0.2
Z ! ee 2 electrons with |⌘| < 2.7, pT > 5 8.2⇥ 10�7 4 000 1.4± 0.0
pp ! jet(s)+ � , jet: pT > 20,� : pT > 30 2.5⇥ 10�6 4 000 1.0± 0.0
p̂T > 30GeV/c

W ! µ⌫ 1 muon with |⌘| < 2.5, pT > 14 9.8⇥ 10�6 4 000 14.0± 0.3
Z ! µµ 2 muons with |⌘| < 2.5, pT > 20, 10 7.9⇥ 10�7 2 941 1.5± 0.0
pp ! µ+ X 1 muon with pT > 3 2.4⇥ 10�2 839 999 25.5± 1.2

minimum bias events were simulated and reused in random combinations. It was ensured that
these events do not cause triggers by themselves to avoid over estimating the rates due to this
reuse of events.

In the following sections we list trigger rates along with their statistical uncertainties.
These take into account the luminosity-dependent weight of the events from the different
samples, the corresponding cross sections and the p̂T of the main interaction and the pile-up
contribution. They do not take into account the uncertainties of these individual factors, i.e.
no systematic effects are studied here.

The Level-1 calorimeter trigger object rate studies are performed using QCD data that has
been generated in several bins of p̂T. A special event-weighting procedure has been applied to
properly take into account the cross sections of the sub-samples. The Level-1 muon and EmissT
rate studies are performed using a purely minimum bias sample.

The HLT rates are estimated using specially enriched samples. For the triggers invoking
muons, electrons and photons we have used a minimum bias sample enriched in muons, as
well asW ! e/µ⌫, Z ! ee/µµ and jet(s) + � MC datasets. For the triggers including jets we
have used QCD samples. These samples also contribute to the electron and photon triggers.
Events triggered exclusively with muons have been excluded from the QCD samples, to avoid
double-counting with the muon-enriched sample. Table E.6 summarises the MC samples
used for the trigger studies, and their corresponding contribution to the HLT rate. A more
detailed breakdown of the contributions to the electron, photon and muon trigger rates from
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Table E.7. Trigger table showing Level-1 rates for DAQ TDR chosen thresholds for
L= 2⇥ 1033 cm�2 s�1. Whenever the “95% efficiency point” is reported in DAQ TDR, we also
give the actual kinematic threshold that has been applied.

Trigger 95% Eff. point Threshold (GeV) Rate (kHz) Cumulative Rate (kHz)

Single e� 29 23.4 3.38± 0.23 3.4± 0.2
Double e� 17 11.5 0.85± 0.12 4.0± 0.3
Single µ — 14 2.53± 0.20 6.5± 0.3
Double µ — 3 4.05± 0.26 10.3± 0.4
Single ⌧ 86 93 3.56± 0.24 9.7± 0.4
Double ⌧ 59 66 1.97± 0.18 10.6± 0.4
1-, 3-, 4-jets 177, 86, 70 135, 58, 45 2.43± 0.20 11.9± 0.4
Jet + EmissT — 88, 46 1.07± 0.13 12.2± 0.4
e� + ⌧ — 21, 45 3.64± 0.24 12.9± 0.5

Level-1 Trigger Total 12.9± 0.5

the different samples is discussed later (Sec. E.5.3-rates). For our calculations, we have used
the standard HLT physics algorithms (ORCA/ 8/ 13/ 3 [10]) for the implementation of all
trigger paths. At the time of this writing, this includes the latest algorithms and jet calibrations.
For the global evaluation of the trigger rates we have used the “HLT steering code”

E.5.1. Level-1 rates

The background at Level-1 is entirely dominated by strong interactions. The muon rates at
Level-1 are dominated by low pT muons which are reconstructed as high pT muons due to
limited resolution at the trigger level. For the electron/photon trigger the rate is dominated by
jets that fragment to high ET ⇡0 s. The jet rates are dominated by true jets in the QCD events.
The EmissT background is due to the limited energy resolution, and pile-up of minimum bias
interactions.

We first produce a trigger table with Level-1 rates for DAQ TDR chosen thresholds for
comparison. For the calculations we use a sample of 2 million minimum bias crossings with an
average of 5 events per crossing, constructed from the minbias events, without reuse of events.
The out-of-time pile-up is neglected. Even though there are small differences for the individual
triggers, the integral rate is consistent with the rates reported in Ref. [76]. This comparison
serves as a cross-check and is a necessary intermediate step before the introduction of new
trigger terms. Table E.7 summarises the Level-1 rate calculations for the DAQ TDR triggers
with the new MC samples. Besides the “95% efficiency points” (used throughout the DAQ
TDR), the applied L1 thresholds are also given.

For the new trigger table: We select several thresholds for each trigger object type and
quote corresponding rates and prescales for L= 2⇥ 1033 cm�2 s�1. For the single objects
we have added a series of prescaled triggers to determine the efficiency turn-on. For the
multi-object triggers we have picked the lowest common threshold that is allowed for the
allocated bandwidth. For the cross-channel triggers we have attempted to keep the lepton
thresholds as low as possible, within the allocated bandwidth based on the physics needs of
the experiment. The prescales are chosen such that the simulated rate at all times falls below
the DAQ bandwidth taking into account a safety factor of 3. The total Level-1 rate for all
triggers (including prescaled ones) is 22.6± 0.3 kHz.
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Table E.8. Comparison of HLT bandwidth given to various trigger paths calculated in this study
with the DAQ TDR. See text for details on different kinematic cuts and changes in the HLT
algorithms.

Trigger DAQ TDR Rate (Hz) New Rate (Hz)

Inclusive e 33.0 23.5± 6.7
e-e 1.0 1.0± 0.1
Relaxed e-e 1.0 1.3± 0.1
Inclusive � 4.0 3.1± 0.2
� -� 5.0 1.6± 0.7
Relaxed � -� 5.0 1.2± 0.6
Inclusive µ 25.0 25.8± 0.8
µ-µ 4.0 4.8± 0.4
⌧ + EmissT 1.0 0.5± 0.1
⌧ + e 2.0 < 1.0
Double Pixel ⌧ 1.0 4.1± 1.1
Double Tracker ⌧ 1.0 6.0± 1.1
Single jet 1.0 4.8± 0.0
Triple jet 1.0 1.1± 0.0
Quadruple jet 7.0 8.9± 0.2
jet + EmissT 5.0 3.2± 0.1
b-jet (leading jet) 5.0 10.3± 0.3
b-jet (2nd leading jet) 5.0 8.7± 0.3

E.5.2. Level-1 trigger object corrections

The trigger decisions are based on ET of the objects reconstructed by various algorithms.
Unfortunately, the energy deposition in the calorimeter and the size of the trigger towers, are
not entirely uniform. We have used fits to the reconstructed-to-generated ET ratios to correct
for non-uniformity of the response for jets and electron/photon candidates found at all levels
of trigger [830]. This correction procedure adjusts the mean response to the generated level.

The energy response of the calorimeters and the limited number of bits used in trigger
calculations result in a finite resolution for the reconstructed trigger objects. Similarly,
misalignments of the tracking systems and the limited number of patterns in the muon trigger
look-up-tables also result in a finite resolution. To avoid systematic problems in understanding
the trigger efficiency turn-on with the ET of the trigger objects, it is envisioned that only data
where high trigger efficiency is assured is used for analysis.

E.5.3. HLT rates

A rough comparison of the HLT bandwidth given to various triggers, calculated with the latest
algorithms and the ones reported in Ref. [76] is shown in Table E.8. It must be noted that
not only thresholds but also other cuts are different in the two trigger studies. Furthermore,
additional changes in the HLT algorithms (summarised in Sec. E.2.2) must be taken into
account. This comparison serves only as a consistency check. It reaffirms that despite the
evolution of the CMS reconstruction algorithms over the years, trigger rates remain under
control and that no major bandwidth changes are expected.

Table E.10 shows in a similar way the contributions to the single and double standard and
relaxed muon rates from the various MC samples.

The contributions to the single and double electron and photon trigger rates at HLT from
the various MC samples is given at Table E.9-egamma. The main contributions to the single
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Table E.9. Contributions to the HLT rates for the electron and photon triggers from the various
MC datasets.

Trigger Threshold (GeV) Rates (Hz)

QCD W ! e⌫ Z ! ee jet(s) + �

Inclusive e 26 12.6± 6.7 9.7± 0.2 1.2± 0.0 —
e-e 12, 12 0.1± 0.1 — 1.0± 0.0 —
Relaxed e-e 19, 19 0.3± 0.1 — 1.0± 0.0 —
Inclusive � 80 1.1± 0.2 — — 2.0± 0.1
� -� 30, 20 1.3± 0.8 — — 0.3 ±0.0
Relaxed � -� 30, 20 0.9± 0.6 — — 0.3± 0.0

Table E.10. Contributions to the HLT rates for the muon triggers from the various MC datasets.

Trigger Threshold Rates (Hz)
(GeV) Enriched-µ sample W ! µ⌫ Z ! µµ

Inclusive µ 19 10.9± 0.8 13.4± 0.3 1.5± 0.0
Relaxed µ 37 5.1± 0.5 5.7± 0.1 1.1± 0.0
µ-µ 7, 7 3.4± 0.4 — 1.3± 0.0
Relaxed µ-µ 10, 10 7.1± 0.5 — 1.4± 0.0

Table E.11. The Level-1 Trigger Menu at L= 2⇥ 1033 cm�2 s�1. Individual and cumulative rates
are given for the different trigger paths and selected kinematic thresholds.

Level-1 Threshold Level-1 Rate Cumulative Level-1 Rate
Trigger (GeV) (kHz) (kHz)

Inclusive e� 22 4.2± 0.1 4.2± 0.1
Double e� 11 1.1± 0.1 5.1± 0.1
Inclusive µ 14 2.7± 0.1 7.8± 0.2
Double µ 3 3.8± 0.1 11.4± 0.2
Inclusive ⌧ 100 1.9± 0.1 13.0± 0.2
Double ⌧ 66 1.8± 0.1 14.1± 0.2
1-,2-,3-,4-jets 150, 100, 70, 50 1.8± 0.1 14.8± 0.3
HT 300 1.2± 0.1 15.0± 0.3
EmissT 60 0.3± 0.1 15.1± 0.3
HT + EmissT 200, 40 0.7± 0.1 15.3± 0.3
jet + EmissT 100, 40 0.8± 0.1 15.4± 0.3
⌧ + EmissT 60, 40 2.7± 0.1 17.4± 0.3
µ + EmissT 5, 30 0.3± 0.1 17.6± 0.3
e� + EmissT 15, 30 0.7± 0.1 17.7± 0.3
µ + jet 7, 100 0.1± 0.1 17.8± 0.3
e� + jet 15, 100 0.6± 0.1 17.8± 0.3
µ + ⌧ 7, 40 1.2± 0.1 18.4± 0.3
e� + ⌧ 14, 52 5.4± 0.2 20.7± 0.3
e� + µ 15, 7 0.2± 0.1 20.7± 0.3
Prescaled 22.6± 0.3

Total Level-1 Rate 22.6± 0.3
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Table E.12. The High-Level Trigger Menu at L= 2⇥ 1033 cm�2 s�1 for an output of
approximately 120 Hz. The ET values are the kinematic thresholds for the different trigger paths.

Level-1 Level-1 HLT Threshold HLT Rate
Trigger bits used Prescale (GeV) (Hz)

Inclusive e 2 1 26 23.5± 6.7
e-e 3 1 12, 12 1.0± 0.1
Relaxed e-e 4 1 19, 19 1.3± 0.1
Inclusive � 2 1 80 3.1± 0.2
� -� 3 1 30, 20 1.6± 0.7
Relaxed � -� 4 1 30, 20 1.2± 0.6
Inclusive µ 0 1 19 25.8± 0.8
Relaxed µ 0 1 37 11.9± 0.5
µ-µ 1 1 7, 7 4.8± 0.4
Relaxed µ-µ 1 1 10, 10 8.6± 0.6
⌧ + EmissT 10 1 65 (EmissT ) 0.5± 0.1
Pixel ⌧ -⌧ 10, 13 1 — 4.1± 1.1
Tracker ⌧ -⌧ 10, 13 1 — 6.0± 1.1
⌧ + e 26 1 52, 16 < 1.0
⌧ + µ 0 1 40, 15 < 1.0
b-jet (leading jet) 36, 37, 38, 39 1 350, 150, 55 (see text) 10.3± 0.3
b-jet (2 nd leading jet) 36, 37, 38, 39 1 350, 150, 55 (see text) 8.7± 0.3
Single-jet 36 1 400 4.8± 0.0
Double-jet 36, 37 1 350 3.9± 0.0
Triple-jet 36, 37, 38 1 195 1.1± 0.0
Quadruple-jet 36, 37, 38, 39 1 80 8.9± 0.2
EmissT 32 1 91 2.5± 0.2
jet + EmissT 32 1 180, 80 3.2± 0.1
acoplanar 2 jets 36, 37 1 200, 200 0.2± 0.0
acoplanar jet + EmissT 32 1 100, 80 0.1± 0.0
2 jets + EmissT 32 1 155, 80 1.6± 0.0
3 jets + EmissT 32 1 85, 80 0.9± 0.1
4 jets + EmissT 32 1 35, 80 1.7± 0.2
Diffractive Sec. E.3 1 40, 40 < 1.0
HT + EmissT 31 1 350, 80 5.6± 0.2
HT + e 31 1 350, 20 0.4± 0.1
Inclusive � 2 400 23 0.3± 0.0
� -� 3 20 12, 12 2.5± 1.4
Relaxed � -� 4 20 19, 19 0.1± 0.0
Single-jet 33 10 250 5.2± 0.0
Single-jet 34 1 000 120 1.6± 0.0
Single-jet 35 100 000 60 0.4± 0.0

Total HLT rate 119.3± 7.2

electron trigger come from the QCD and W ! e⌫ samples, whereas for the single photon
trigger the primary source is the jet(s) + � events.

E.5.4. Trigger tables

Table E.11 summarises the Level-1 triggers used in this study, their kinematic thresholds, the
individual and cumulative rates. We have assumed a DAQ capability of 50 kHz, taking into
account a safety factor of 3.
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Figure E.5. Heuristic comparison of HLT bandwidth assigned to various trigger paths calculated
in this study with the DAQ TDR. For the triggers introduced in this study the DAQ TDR entries
appear empty. See text for details on different kinematic cuts and changes in the HLT algorithms.

Table E.12 gives the full list of trigger paths proposed for L= 2⇥ 1033 cm�2 s�1 that
have been described earlier for an HLT output rate of approximately 120 Hz.

Fig. E.5 shows a graphic representation of the HLT bandwidth assigned to all trigger paths
presented in this study. For the triggers that appeared in the DAQTDR, the corresponding rates
are overlaid, in a heuristic comparison.
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Glossary

ADC Analog to Digital Converter
AdS Anti de Sitter space
ALEPH An experiment at LEP
ALICE A Large Ion Collider Experiment at the LHC
ALPGEN Monte Carlo event generator for multi-parton processes in

hadronic collisions
ATLAS A Toroidal LHC ApparatuS experiment

BMU Barrel Muon system
BR Branching Ratio
BX Bunch Crossing
BXN Bunch Crossing Number

CASTOR Calorimeter in the forward region of CMS
CDF Collider Detector Facility experiment at the FNAL Tevatron
CL Confidence Level
CLHEP Class Library for HEP
CMKIN CMS Kinematics Package (legacy Fortran)
CMS Compact Muon Solenoid experiment
CMSIM CMS Simulation Package (legacy Fortran)
CMSSW CMS Software framework
CPT Computing, Physics, TriDAS and software projects of CMS
CPU Central Processing Unit
CompHEP Monte Carlo event generator for high-energy physics collisions
CSC Cathode Strip Chamber muon system
CVS Concurrent Versions System

DØ Experiment at the FNAL Tevatron
DAQ Data Acquisition
DELPHI An experiment at LEP
DESY Deutsches Elektronen SYnchrotron laboratory, Hamburg
DST Data Summary Tape – a compact event format
DT Drift Tube muon system
DY Drell–Yan

EB Electromagnetic Calorimeter (Barrel)
ECAL Electromagnetic Calorimeter
ED Extra Dimensions
EE Electromagnetic Calorimeter (Endcap)
EM Electromagnetic
EMU Endcap Muon system
ES Endcap preShower detector
EW ElectroWeak

FAMOS CMS Fast Simulation
FLUKA Computer program for hadron shower calculations
FNAL Fermi National Accelerator Laboratory, USA
FSR Final State Radiation
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Gb Gigabit (109 bits)
GB Gigabyte (109 bytes)
GCALOR Computer program for hadron shower calculations
GEANT Detector simulation framework and toolkit
GMSB Gauge Mediated Symmetry Breaking
GUT Grand Unified Theory

H1 An experiment at the DESY HERA collider
HAD Hadronic
HCAL Hadron Calorimeter
HB Hadron Calorimeter (Barrel)
HE Hadron Calorimeter (Endcap)
HEP High Energy Physics
HEPEVT HEP Event (generated event format)
HERA Electron-proton collider at DESY
HERWIG Hadron Emission Reactions With Interfering Gluons, a Monte

Carlo event generator for high-energy physics collisions
HF Hadron Calorimeter (Forward)
HI Heavy Ion(s)
HIJING Heavy Ion Jet INteraction Generator, Monte Carlo event

generator for heavy-ion collisions
HLT High-Level Trigger
HO Hadron Calorimeter (Outer Barrel)

IGUANA Interactive Graphics for User ANAlysis – used for the CMS
Event Display Package

I/O Input/Output
IP Impact Parameter, also Impact Point or Internet Protocol
ISR Initial State Radiation, also Intersecting Storage Ring collider

at CERN

JES Jet Energy Scale

Kalman Filter Computational method for fitting tracks
kb kilobit (103 bits)
kB kilobytes (103 bytes)

L1 Level-1 hardware-based trigger
L3 An experiment at LEP
LCG LHC Computing Grid (a common computing project)
LED Large Extra Dimenstions, also Light Emitting Diode
LEP Large Electron Positron collider at CERN
LHC Large Hadron Collider
LHCb Large Hadron Collider Beauty experiment
LHCC LHC (review) Committee
LHEP Physics model of GEANT4
LL Leading Logarithm, also Log Likelihood
LO Leading Order calculation
LOI Letter Of Intent
LPC LHC Physics Center, Fermilab
LS Like-Sign
LSP Lightest Supersymmetric Particle
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Mb Megabit (106 bits)
MB Muon system (Barrel), also Mother Board or Megabyte

(106 bytes)
MC Monte Carlo simulation program/technique, also Mini-Crate of

DT system
ME Muon system (Endcap), also Matrix Element or Monitoring

Element
MET Missing Transverse Energy
metadata Data describing characteristics of other data
MIP Minimum Ionizing Particle
MSUGRA Minimal SUper GRAvity model of supersymmetry
MSSM Minimal SuperSymmetric Model
MTCC Magnet Test Cosmic Challenge

ndf number of degrees of freedom
NLO Next-to-Leading Order calculation
NN Neural Network
NNLO Next-to-Next-to-Leading Order calculation
NS Numbering Scheme

OO Object Oriented
OPAL An experiment at LEP
ORCA Object-oriented Reconstruction for CMS Analysis
OS Opposite-Sign, also Operating System
OSCAR Object-oriented Simulation for CMS Analysis and

Reconstruction

P5 Point 5 collision area of LHC
PAW Physics Analysis Workstation (legacy interactive analysis

application)
PB Petabyte (105 bytes)
PC Personal Computer
PD Pixel Detector
PDF Parton Density Function, also Probability Distribution

Function (p.d.f.)
PRS Physics Reconstruction and Selection groups
PS Proton Synchrotron, also Parton Showers
PV Primary Vertex
PYTHIA Monte Carlo event generator for high-energy physics collisions

QCD Quantum Chromodynamics
QED Quantum Electrodynamics
QGSP Physics model of GEANT4

RecHit Reconstructed hit in a detector element
RHIC Relativistic Heavy Ion Collider (at Brookhaven, USA)
RMS Root Mean Square
ROOT An object-oriented data analysis framework
RPC Resistive Plate Chamber muon system
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SLT Soft Lepton Tag
SM Standard Model, also SuperModule (ECAL) or Storage

Manager (DAQ)
S/N Signal to Noise ratio
SPS Super Proton Synchrotron collider at CERN
SS Same-Sign
SST Silicon Strip Tracker
SUSY SUperSYmmetry
SV Secondary Vertex

T1, T2 Tracking telescopes of TOTEM
TAG Event index information such as run/event number, trigger bits,

etc.
Tb Terabit (1012 bits)
TB Terabyte (1012 bytes)
TDR Technical Design Report
TEC Tracker EndCap
TIB Tracker Inner Barrel
TID Tracker Inner Disks
TOB Tracker Outer Barrel
TOTEM Separate experiment at P5 for forward physics
TPD Tracker Pixel Detector
TriDAS Trigger and Data Acquisition project

UA1 An experiment at the CERN SPS collider
UA2 An experiment at the CERN SPS collider
UE Underlying Event
UED Universal Extra Dimensions

VBF Vector Boson Fusion
VPT Vacuum PhotoTriode

WWW World Wide Web

ZDC Zero Degree Calorimeter
ZEUS An experiment at the DESY HERA collider
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Colour plates CP1–CP9

Various figures are in colour throughout the online edition but only plates CP1–CP9 are in
colour in both the print and online editions.

Figure CP1. Example of a pp! H+X event with Higgs particle decay H! � � . (See
section 2.1.)
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Figure CP2. Display of an event candidate in the CMS detector at the LHC for the Standard
Model Higgs boson decay channel H! ZZ⇤ ! 4e. The event is shown in a longitudinal (top)
and transversal (bottom) projection of the detector. A mass of 150GeV/c2 is measured from the
reconstructed electrons. (See section 2.2.)
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Figure CP3. Example of a H! ZZ! 4µ event showing only the reconstructed tracks. One
muon goes in the endcap detectors. (See section 3.1.1.)
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Figure CP4. Example of a pp! H+X event with H!WW! µ⌫µ⌫. (See section 3.2.2.1.)
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Figure CP5. Typical simulated event of a dimuon decay of 3 TeV/c2 Z0 produced at
L= 2⇥ 1033 cm�2 s�1, showing the muon tracks only. (See section 3.3.1.)
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