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An atypical 7q11.23 deletion in a normal
IQ Williams–Beuren syndrome patient

Giovanni Battista Ferrero1,5, Cédric Howald2,5, Lucia Micale3, Elisa Biamino1, Bartolomeo Augello3,
Carmela Fusco3,4, Maria Giuseppina Turturo3, Serena Forzano1, Alexandre Reymond2 and Giuseppe Merla*,3

Williams–Beuren syndrome (WBS; OMIM no. 194050) is a multisystemic neurodevelopmental disorder caused by a hemizygous deletion

of 1.55Mb on chromosome 7q11.23 spanning 28 genes. Haploinsufficiency of the ELN gene was shown to be responsible for

supravalvular aortic stenosis and generalized arteriopathy, whereas LIMK1, CLIP2, GTF2IRD1 and GTF2I genes were suggested to be

linked to the specific cognitive profile and craniofacial features. These insights for genotype–phenotype correlations came from the

molecular and clinical analysis of patients with atypical deletions and mice models. Here we report a patient showing mild WBS

physical phenotype and normal IQ, who carries a shorter 1Mb atypical deletion. This rearrangement does not include the GTF2IRD1 and

GTF2I genes and only partially the BAZ1B gene. Our results are consistent with the hypothesis that hemizygosity of the GTF2IRD1 and

GTF2I genes might be involved in the facial dysmorphisms and in the specific motor and cognitive deficits observed in WBS patients.
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INTRODUCTION

Williams–Beuren syndrome (WBS) is a multisystemic developmental
disorder caused by a hemizygous deletion spanning 1.55 or 1.84 Mb on
chromosome 7q11.23, a segment encoding 28 genes.1–4 This region
frequently undergoes genomic rearrangements due to the presence of
low copy repeats flanking the commonly deleted region and results in
meiotic nonallelic paralogous recombination.1 Consistently, along with
the 7q11.23 deletion, recent papers reported the reciprocal duplication5,6

and inversion7,8 of the region. WBS has a prevalence estimated between
1/7500 and 1/20 000.9 The phenotype is widely heterogeneous in severity
and manifestations (see Table 1), but generally entails distinctive facial
dysmorphisms, cardiovascular abnormalities and mental retardation with
a particular cognitive profile.10 The main cardiovascular abnormality is a
generalized arteriopathy that is often accompanied by early hyperten-
sion.11 It is characterized by arteries stenoses, predominantly affecting the
supravalvular aortic (SVAS) and peripheral pulmonary (PPS) regions.
Nearly all WBS infants and young children exhibit developmental delay,
which subsequently results in mild to moderate mental retardation. WBS
is characterized by a specific cognitive profile with relative strengths in
selected language domains alongside a prominent weakness in visuospa-
tial construction.11 Similarly, WBS patients show a combination of high
sociability and empathy for others with high anxiety. Patients demon-
strate an adaptable behavior profile with relative strengths in socialization
and communication skills and obvious weakness in daily living skills.10,12

Endocrine abnormalities, including impaired glucose tolerance and
diabetes mellitus are commonly observed in WBS patients and recently
impairment of thyroid function and/or structure has been reported in
about a third of patients.13

The majority of deletions span the same interval, however, a few
individuals have smaller and/or larger deletions of the region. Their
phenotypic features vary from isolated SVAS to classic WBS associated

with infantile spasms or with autism spectrum behavior.5,14,15 Genotype–
phenotype correlation studies of these patients suggested important
insights in the genetic causes of some of the typical WBS symptoms.
So far, the strongest correlations have been found for some of the facial
features and cardiovascular problems linked to elastin haploinsuffi-
ciency.16,17 In addition, clinical and molecular correlations in atypical
patients and mouse models studies provided further genotype–phenotype
correlations. These studies revealed that the most telomerically mapping
genes such as GTF2I, GTF2IRD1 and CLIP2 (a.k.a. CYLN2) may
contribute to the behavioral and cognitive manifestation of WBS.14,18–24

Here we describe a male child (WBS207) with mild WBS physical
features, average intelligence with normal IQ and only some features
of the WBS neuropsychological profile. He carries a smaller atypical
deletion of B1 Mb that does not include GTF2IRD1, GTF2I and only
partially includes BAZ1B. Our results are consistent with the hypo-
thesis that associates GTF2IRD1 and GTF2I hemizygosity to the WBS
specific motor and cognitive deficits.

MATERIALS AND METHODS

Sample preparation
Genomic DNA from the proband and his parents were extracted from

peripheral blood leukocyte using QIAamp DNA Mini Kit (Qiagen, Hilden,

Germany). WBS and normal individuals’ samples to be used as controls were

selected from a previous study.21

Fluorescence in situ hybridization and quantitative real-time PCR
Fluorescence in situ hybridization was performed on metaphase cells following

standard technique using the LSI ELN, D7S486 and D7S522 probes (Vysis). At

least 30 metaphases were analyzed. All quantitative real-time PCR (QPCR)

reactions were carried out as described.21 Amplicons and primer pairs are

presented in Supplementary Table S1. The comparative Ct method reported

in25 was used to measure relative quantities.
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RESULTS

Clinical findings
The proband, an 11–year-old boy, is the second child of healthy non-
consanguineous Italian parents aged 38 years (father) and 33 years
(mother). The parents have both secondary educational levels, displaying
normal professional and social interactions; their cognitive assessment has
not been performed, due to lack of collaboration. Paternal and maternal

heights are 180 cm and 172 cm respectively. Family history is unremarkable
for mental retardation and/or congenital anomalies. He was born by
spontaneous delivery without complications after 40 weeks of gestation.
The pregnancy was complicated by uterine contractions from the 22nd
week of gestation, controlled with rest and oral b-mimetic (Isoxsuprine).
Birth weight, length and head circumference (OFC) were 2.830 kg (10th
centile), 47.5 cm (3rd to 10th centile) and 34 cm (25–50th centile), respec-
tively. Apgar scores were 9/9. He was breastfed, displaying a normal length
and weight growth. During the first month of life an umbilical hernia was
diagnosed, afterwards it spontaneously regressed. He was hospitalized for
the persistence of a systolic heart murmur. A cardiology ultrasound
examination unveiled a stenosis of the pulmonary valve with instantaneous
pressure gradient (Dp) of 30 mm Hg, hemodynamically insignificant. Yearly
echocardiography follow-up disclosed a mild SVAS (Dp 25 mm Hg) at 5
years of age. Hence the patient was referred to the pediatric-genetic clinic,
where the association of the arterial abnormality with peculiar facial traits
led to the clinical suspicion of WBS. The hypothesis was subsequently
confirmed by cytogenetics analysis (see below). Spontaneous improvement
of pulmonary valve stenosis and steadiness of SVAS have been documented
by annual echocardiography follow-up.

Developmental milestones were reached at appropriate ages. He walked
without support and spoke his first words at 13 and 15 months,
respectively, showing a definitively normal motor development. The
parents reported alteration of the normal 24 h sleep–wake cycle (sleep
time 2000 hours to 0300 hours) and an outgoing personality consisting of
increased approach to strangers and loquacity in early infancy. A cognitive
assessment using the WPPSI test was performed at 6 years of age,
revealing a normal full-scale IQ score of 105, although with an important
difference between verbal IQ (117) and performance IQ (91). Particularly,
he exhibited weaknesses on object assembly, geometric design and block
design subtests, and strengths on vocabulary and similarities subtests (see
Figure 1 for details). Remarkably, a mild impairment of ocular conver-
gence and some hampering of fine motricity (the patient is left handed)
were concurrently noted. The boy attended regular school with good
results, without requiring specific teaching backup. An ophthalmologic
assessment at 7 years of age revealed a hypermetropic astigmatism
associated with convergent strabismus of the right eye. A concomitant
evaluation by Developmental Test of Visual Perception (DTVP) disclosed
an attention deficit and confirmed the light motricity impairment. A
subsequent psychomotor evaluation, including DTVP, puzzles reproduc-
tion, block construction and drawing task, was performed after ocular
anomalies correction. It revealed adequate results in ocular-motor inte-
gration, in hand-eye coordination and in visual perception. Moreover
simple and complex ideomotor praxias resulted normal in movement
programming and execution, but a slight weakness was observed in visual
explorative and visual constructive performances (single scores not avail-
able). At the age of 11 years, the proband weight was 35 kg (50th centile),
height 132 cm (5th centile), head circumference 51 cm (10th centile).
Clinical evaluation disclosed bitemporal narrowing, broad forehead, short
upturned nose with bulbous tip, long philtrum, full lips, bilateral
clinodactyly of 5th fingers of the hands, hoarse voice, mild limitation of
supination and pronation of the forearm, valgus flatfoot and knock knees.
Echocardiography confirmed a hemodynamically insignificant mild SVAS
(Dp 20 mm Hg). An elevation of serum TSH level (6.10 mUI/l, n.v. 0.4–
4.4 mUI/l) with normal fT3 and fT4 levels was found; further analyses
revealed antithyroid antibodies (antithyroid peroxidase, 342 kU/l, n.v.
o40 kU/l), not associated with morphological abnormalities, leading to
medical therapy with L-thyroxine. Screening for celiac disease was negative
(quantitative serum IgA 163 mg/100 ml, antitissue transglutaminase IgA
0 IU/ml, antiendomysion IgA negative). Serum calcium (5.10 mEq/l),
creatinine, cholesterol, triglyceride, liver enzymes, urinalysis, urinary

Table 1 Proband phenotype compared to WBS typical phenotype

Clinical features of WBS Typical deletiona Proband

Cardiovascular

Supravalvular aortic stenosis (SVAS) 75% +

Peripheral pulmonary stenosis (PPS) 50% �
Valvular pulmonic stenosis 5%b +

Hypertension 50% �

Neuropsychological

Developmental delay 95% �
Mental retardation 75% �
Cognitive profile + +/�c

Psychological profile + +/�c

Behavioral profile + �

Craniofacial

Bitemporal narrowing + +

Periorbital fullness + �
Epicanthal folds + �
Stellate irides + �
Malar flattening + �
Short upturned nose + +

Bulbous nasal tip + +

Long philtrum + +

Full lips + +

Dental abnormalities/malocclusion + �

Endocrine

Subclinical hypothyroidism 30%d +

Precocious puberty 50% �
Hypercalcemia 15% �

Gastrointestinal

Feeding difficulties 70% �
Celiac disease 9.5% �
Constipation 40% �

Genitourinary

Congenital malformation 20% �
Enuresis 50% +

Ocular

Strabismus 50% +

Hypermetropia 50% +

Muscoloskeletal

Kyphosis 20% �
Lordosis 40% �
Radioulnar synostosis 20% +

Umbilical hernia 50% +

Other

Hoarse voice + +

Hyperacusis 80% �
aMorris et al 1988. J Pediatr.
bPober et al 2007. Am J Med Genet C Semin Med Genet.
cSee text for details.
dSelicorni et al, 2006. Am J Med Genet A.
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calcium, 24-hour ambulatory blood pressure monitoring (mean daytime
blood pressure 109/72 mm Hg, mean nighttime blood pressure 100/
63 mm Hg) and abdominal ultrasound examination completed by echo
color Doppler ultrasound of renal vessels were all normal.

Neurological examination did not show any abnormalities. An
updated cognitive and psychological assessment by specific tests could
not be performed because of parental refusal. Nevertheless the proband is
attending regular schooling, and teachers, unaware of the genetic
diagnosis, never pointed out any learning difficulties. Moreover, he
plays soccer in a nondisabled age-matched team, showing a normal
social life for his age, overall. We had the opportunity to observe the
patient during the entire day on the occasion of clinical follow-up
appointment and we noted that the outgoing personality traits referred
by the parents since 5 years of age completely disappeared as he did not
display increased sociability or anxiety with peers and/or strangers and an
adequate interaction was observed at clinical examination.

Deletion mapping by FISH and genomic QPCR
FISH analysis revealed a single signal in cells from proband WBS207,
whereas control probes detected two signals on chromosome 7 (data not
shown). To map the deletion breakpoints we used QPCR as described.21

The first set of assays detected hemizygosity for the genes comprised
between TBL2 and CLIP2 but not for BAZ1B and GTF2IRD1 (data not
shown). To narrow down the centromeric and telomeric breakpoints, we
designed new QPCR assays mapping to the BAZ1B and CLIP2 loci,

respectively (Figure 2; Supplementary Table S1). The centromeric break-
point maps between assay BAZ1B_17.002 (assay mapping in the third
intron of BAZ1B) and assay BAZ1B_17.003 (fourth intron of BAZ1B)
that are present in one and two copies, respectively. Thus BAZ1B is
hemizygote for its transcription start site (TSS) and at least its first three
exons. Note that both Ensembl release 50 (July 2008) and the UCSC
Genome Browser do not report other more distal TSSs for that gene.

The telomeric breakpoint reaches the gene CLIP2 but preserves the
two copies of the adjacent GTF2IRD1 and GTF2I genes. The boundary
assays are 5_CYLN2 (intron 3 of CLIP2) and 4.13_CYLN2/GTF2IRD1
(intergenic region between CLIP2 and GTF2IRD1), which are present in
a single and two copies, respectively (Supplementary Table S1 and
Figure 1). These analyses indicate that the WBS207 proband carries a
deletion of less than 1 Mb (0.84–0.94 Mb) that maps to the core of the
WBS critical region and excludes the GTF2I, GTF2IRD1 and the 3¢
portion of the BAZ1B gene. The absence of the deletion in both parents,
assayed by QPCR, indicated that the deletion occurred de novo (Figure 2).

DISCUSSION

We describe a patient with a B1 Mb deletion in the WBS genomic interval.
This atypical rearrangement is shorter than the classical deletion both at the
centromeric and telomeric sides. Cytogenetic and molecular analyses
showed that the proband carries a deletion that does not include
GTF2IRD1 and GTF2I at the telomeric end whereas the centromeric
breakpoint lies between introns 3 and 4 of the BAZ1B gene (Figure 2). Even

WBS207

typical WBS

16

4

8

12

0

sc
al

ed
 s

co
re

s

vo
ca

bular
y

ar
ith

m
et

ic

sim
ila

rit
ies

m
az

es

in
fo

rm
at

io
n

co
m

pre
hen

sio
n

objec
t a

ss
em

bly

pict
ure

 co
m

plet
io

n

geo
m

et
ric

 d
es

ig
ns

blo
ck

 d
es

ig
n

WBS207

typical WBS

140

60

80

100

120

0

20

40

sc
al

ed
 s

co
re

s

VIQ PIQ
FIS

Q
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if not formally proven, because of lack of mRNA for WBS207, the
expression of the BAZ1B is probably affected because the most distally
mapped transcriptional start site for that gene is hemizygous in our patient.
Although we were partially prohibited by the parents to pursue in-depth
cognitive profiling, the comparison of the phenotype of proband WBS207
with those of typical WBS patients revealed some interesting clues. From a
phenotypic perspective, he does not present a striking facial gestalt of WBS.
For instance, he does not present periorbital fullness, stellate iris, dental
abnormalities and the malocclusion commonly observed in WBS patients.
Similarly, he does not present hypercalcemia, feeding difficulties or other
gastrointestinal abnormalities (see Table 1). The most interesting feature of
WBS207 is the peculiar cognitive profile, characterized by a normal full-
scale IQ (105), with a difference between verbal IQ (117) and performance
IQ (91). He displayed strengths on all verbal subtests except for arithmetic
and weaknesses on object assembly, geometric designs and block design
subtests. He attends regular school without any support and does not
present overfriendly personality, even though parents reported an increased
approach to strangers and loquacity in early infancy.

Our data are in keeping with previous partial deletion studies (Figure 3).
Specifically, the mild clinical phenotype and the cognitive profile seen in
WBS 207 and the mapping of the breakpoints suggest a role for CLIP2,
GTF2IRD1 or GTF2I in some of the WBS facial features consistently with
previous reports.14,21,24,26 In the past years, the identification of an
increasing number of WBS with smaller than usual deletions of 7q11.23
shed light on the genetic bases of some of associated clinical features
(Figure 3). From these studies, it has been argued, for example, that CLIP2
hemizygosity contributes to motor coordination abnormalities.27 Other
reports suggested that the GTF2I and GTF2IRD1 genes have dosage-
dependent influences on craniofacial and neurological development and
that hemizygosity for these genes appears to be associated with the general
intellectual disability/mental retardation22 and/or visuospatial construc-
tion difficulties.19,21,24,28–30 Finally, further insights into genotype–pheno-
type correlations come from an intriguing report of an individual without

the abnormal motor behavior and the specific spatial and impaired
visual–spatial capacities. Genetic analysis showed that this patient had a
deletion that excluded the genes RFC2, CLIP2, GTF2IRD1 and GTF2I.27

Recently Korenberg’s group described a child with an atypical WBS
deletion.30 This female patient is hemizygote for GTF2IRD1, but the
rearrangement does not include the more distal GTF2I gene. Her cognitive
performance was overall remarkably above WBS typical range, but with
striking deficits in visual–spatial construction (VSC). In addition, she did
not show the typical overly social behavior seen in WBS individuals. These
observations combine with previously published cases suggest that hemi-
zygosity of the GTF2IRD1 gene is associated with the WBS facial features
and VSC deficits, whilst that of the GTF2I gene plays a crucial role in the
genesis of the WBS social behavior. Together these studies indicated that
the telomeric end of the WBS critical region contains genes that emerge as
the most promising candidates for the cognitive, behavioral and neural
phenotype seen in WBS patients. The detection of a normal full-scale IQ
in our patient supports the previous assumptions that GTF2IRD1 and
GTF2I genes are crucial for WBS cognitive features.19,22,27–31 Nevertheless,
we have to emphasize that our patient exhibits a peculiar discrepancy
between verbal IQ and performance IQ, resembling the PIQ/VIQ ratio
that has been reported in typical WBS patients.19,32,33 This finding seems
contrary to previous reports of absent or minor visuospatial deficit in
atypical WBS patients keeping GTF2IRD1 and GTF2I genes.19,28,31 None-
theless, WBS207 scores on performance subtests were heterogeneous
because he exhibited difficulties in geometric designs but not in picture
completion, even if both investigate VSC, and in object assembly and in
block design, but not in mazes, even if all investigate visual-motor
integration. Therefore, the low result of PIQ could be related to the
ocular anomalies (hypermetropic astigmatism associated with convergent
strabismus) in association to some hampering of his fine motricity.
Unfortunately, an updated and in-depth cognitive assessment by specific
tests could not be performed because of parental refusal. Moreover, as
parental IQs were unavailable, we can’t exclude that the high VIQ score

Figure 2 Mapping Williams–Beuren syndrome atypical deletion by QPCR. Relative DNA quantity was quantified for the WBS207 proband (red circles), his

mother (orange squares) and father (purple squares), as well as an unaffected control (CNTL1, light blue squares) and a WBS patient carrying the classical
deletion (WBS10, blue circles) at 24 human chromosome 7 loci (see Supplementary Table S1 for assay coordinates and primer sequences). The BAZ1B

gene (bottom left side) and the two first exons of GTF2IRD1 (bottom right side) are schematically represented. Note that patient WBS207 is hemizygous at

least for the last 13 exons of BAZ1B (black rectangles), whereas both copies of GTF2IRD1 are maintained.
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results from high biological potential derived from high-functioning
parents. Alternatively, the visual–spatial impairment showed by WBS207
could be explained by a long-range position effect of the deletion that
modifies the physiologic expression of GTF2IRD1 and/or GTF2I genes.
Consistently, submicroscopic deletion and duplication were shown to
modify the expression levels of some of their flanking genes.34–38 We
could also not rule out the possibility that abnormally low levels of LIMK1
combined with reduced levels of other proteins involved in brain function
(eg CLIP2) could affect spatial impairment, as suggested previously.35

GTF2I, GTF2IRD1 and GTF2IRD2 belong to the TFII-I gene family of
transcription factors.36 They interact promiscuously with multiple pro-
teins and DNA and could, therefore, influence a broad range of neural
physiological and developmental processes. GTF2I acts as a basal tran-
scription factor that binds to initiator elements of various promoters and
also regulates transcription through E-box elements at enhancers in
response to upstream signaling events.37 GTF2IRD1 can bind regulatory
elements upstream of genes involved in tissue development and differ-

entiation such as HOXC8, GOOSECOID and TROPONIN ISLOW.38,39 The
null mutants of the orthologous Gtf2ird1 and Gtf2i genes have been
generated.24,40,41 The deletion of Gtf2ird1 by targeted insertion of a LacZ
cassette in its second exon does not exhibit craniofacial dysmorphology or
dental abnormalities.41 In contrast, a previous report, a mouse model
with a deletion between Clip2 and the first exon of Gtf2ird1, presented
craniofacial abnormalities involving a misaligned jaw, a twisted snout and
dental abnormalities.24 The recently complete knockouts of the Gtf2ird1
and Gtf2i genes demonstrated that mice heterozygous for these genes are
often growth retarded and exhibit hypoplasia of the mandible, as well as
other craniofacial defects reminiscent of the characteristic facial appear-
ance and dental problems seen in WBS individuals.40 Concomitantly a
recent article showed that during mouse embryogenesis Baz1b is
expressed strongly in the cranial neural crest-derived mesenchyme that
drives facial morphogenesis. The reduction of the level of encoded protein
was the source of an array of craniofacial features similar to those shown
by typical WBS patients, such as a small upturned nose with flat nasal
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bridge, micrognathia (or mandibular hypoplasia), malocclusion, bitem-
poral narrowing and prominent forehead.42 These results suggest that
genes mapping at the proximal and the distal end of the WBS deletion
could be implicated in the genesis of the typical elfin facies. We should,
therefore, not exclude the possibility that some of the mild facial features
seen in the WBS207 patient could result from Baz1b haploinsufficiency.

Our study confirms the utility of atypical patients for WBS
genotype–phenotype correlation. The identification of more of those
subjects with a careful comparison of their genetic, clinical and
neuropsychological profiles will be needed and useful to assess the
contribution of each gene to the WBS phenotype. We also underline
the utility of QPCR as a feasible and reliable method to precisely map
deletion breakpoints. This technique represents a valid cost-effective
alternative to FISH and MLPA or other more expensive, although with
higher resolution, methods such as array CGH.

KEY POINTS

� Williams–Beuren syndrome is caused by a 1.55 Mb hemizygous
deletion on chromosome 7q11.23, a segment encoding 28 genes

� Genotype–phenotype correlation studies of few individuals
with smaller deletions are useful to assess the contribution of
each gene to the WBS phenotype

� The phenotype of the WBS207 atypical patient suggests that
GTF2IRD1 and/or GTF2I genes hemizygosity play(s) a role in
the facial dysmorphisms and in the specific motor and cogni-
tive deficits observed in WBS patients.
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