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Abstract 

The human kinome includes Ror1, a poorly characterized orphan receptor. Here we report the findings of an 
investigation of Ror1 contributions to cancer, undertaken through an integrated screening of 43 cancer cell lines where 
we measured protein expression, tyrosine phosphorylation, and growth response following RNAi-mediated Ror1 
suppression. Ror1 was expressed in approximately 75% of the cancer cell lines without apparent histotype distribution. 
Gastric carcinoma cells (HS746T) and non–small cell lung carcinoma cells (NCI-H1993) exhibited high levels of Ror1 
tyrosine phosphorylation, and Ror1 suppression caused growth inhibition. Biochemical assays revealed unexpectedly 
that Ror1 is a pseudokinase that is devoid of catalytic activity. Intriguingly, the two cell lines featuring tyrosine-
phosphorylated Ror1 both exhibited amplification and activation of the Met oncogene. Ror1 phosphorylation was 
abrogated by Met inhibition, indicating Met-dependent transphosphorylation of Ror1. Conversely, Ror1 was not 
transphosphorylated by other constitutively active tyrosine kinases, including EGFR and ErbB2. Constitutive silencing of 
Ror1 in HS746T and NCI-H1993 carcinoma cells impaired proliferation in vitro and induced a dramatic inhibition of 
tumorigenesis in vivo. Together, our findings suggest a critical role for Ror1 in malignant phenotypes sustained by the 
Met oncogene. Cancer Res; 71(8); 3132–41. ©2011 AACR. 

1. Introduction 

Receptor tyrosine kinases (RTK) are transmembrane proteins with ligand-controlled intracellular kinase activity. They 
play central roles in several cellular processes as diverse as differentiation, proliferation, migration, angiogenesis, 
survival, and communication between cells. It has been largely shown that deregulation of RTKs (due to gene 
amplification, mutations, transcriptional overexpression, or autocrine stimulation) is causally linked to the initiation and 
progression of human cancers (1). Ror1 belongs to the evolutionarily conserved RTK family of Ror, which also includes 
Ror2 (2). The 2 receptors were originally identified by PCR cloning in a human neuroblastoma cell line (3). For a long 
time, their ligands remained elusive and both receptors were catalogued as “orphans.” It is now established that Wnt5A 
acts a ligand for Ror2 (4, 5), whereas the Ror1 ligand remains unknown. 

The Ror1 extracellular region contains an immunoglobulin domain, a cysteine-rich domain, and a kringle domain; the 
intracellular region includes several tyrosines, a putative tyrosine kinase domain, and a proline-rich stretch flanked by 2 
serine-threonine–rich domains (2). The tyrosine kinase domain of Ror1 is similar to that of Trk and MuSK; however, 
several key amino acids differ from the canonical consensus sequence of active kinases, shedding doubts on the actual 
enzymatic function of the receptor. 

On the physiologic ground, the Ror1 protein plays essential roles during mouse development (6); it is expressed in the 
face, limbs, heart, and lungs. Ror1 knockout mice are viable, but exhibit respiratory defects and die within 24 hours after 
birth. In humans, Ror1 expression is prevalent in heart, lung, and kidney (7). The role of Ror1 in disease is still obscure; 
mutations in the Ror1 gene have not been linked to any pathologic condition, and only recently Ror1 has been found 
overexpressed in a subset of chronic lymphocytic leukemias (8–10). To get insight into the potential role of Ror1 in solid 



human cancers, we undertook an RNA interference (RNAi) screen to analyze the effects of Ror1 silencing on cell 
growth. Unexpectedly, we found that Ror1 is a pseudokinase acting as a substrate for the oncogenic tyrosine kinase 
Met; by this function, Ror1 sustains the Met-driven transformed phenotype. 

2. Material and methods 

Cell cultures and cellular transfection 

Cell lines were obtained from American Type Culture Collection, National Cancer Institute Division of Cancer Treatment 
and Diagnosis Tumor/Cell line Repository (NCI-Frederick Cancer Research and Development Center), or Japan Health 
Sciences Foundation, and cultured according to the instructions from cell banks by using the appropriate medium, 10% 
FBS (Sigma Aldrich), penicillin/streptomycin solution (Sigma Aldrich), and 2 mmol/L L-glutamine (Sigma Aldrich). 
Transient transfection of cell lines was carried out by using Lipofectamine 2000 reagent (Invitrogen), according to the 
manufacturer's instructions. 

Reagents, vectors, and antibodies 

Lentiviral shRNA_A, shRNA_B, and nontargeting short hairpin RNA (NT_shRNA) are pLKO.1-puro vectors from 
MISSION TRC shRNA Plasmid DNA (product number TRCN0000002024, TRCN0000002025, and SHC002, 
respectively). shMET_A has already been described (11); shMET_B is a pGIPZ lentiviral vector from Open Biosystems 
(product number V2LHS_76544). Human full-length Ror1 cDNA (NM_005012.1) was purchased from Origene and was 
subsequently cloned in the pRRL2 lentiviral vector (12). Ror1 cDNA insensitive to shRNA_A was produced by insertion 
of 3 point mutations (A2757G, C2769G, and T2772C) by QuikChange II XL Site-directed Mutagenesis Kit (Stratagene), 
according to the manufacturer's instructions. 

The following primers were used (nucleotide mismatch is underlined) for subsequent complete cycles of mutagenesis: 

Mut1_fw: CAAAGCAAGCATCTTTGCTAGGAGACGCCAATATTC 

Mut1_rev: GAATATTGGCGTCTCCTAGCAAAGATGCTTGCTTTG 

Mut2_fw: CAAAGCAAGCATCTTTGCTAGGAGACGCGAACATTCATGGACAC 

Mut2_rev: GTGTCCATGAATGTTGGCGTCTCCTAGCAAAGATGCTTGCTTTG 

Mut3_fw: GCATCTTTGCTAGGAGACGCGAACATTCATGGACAC 

Mut3_rev: GTGTCCATGAATGTTCGCGTCTCCTAGCAAAGATGC 

All mutations were verified by DNA sequencing. 

The Met inhibitors were from Tocris Bioscience (PHA-665752) and Ortho-Biotech (JNJ-38877605); stock solutions of the 
drugs were prepared in dimethylsulfoxide and stored at −20°C. Primary antibodies were goat polyclonal anti-Ror1 (R&D 
Systems); mouse monoclonal anti–phospho-tyrosine (anti-pTyr; Upstate Biotechnology); rabbit polyclonal anti–phospho-
Met Y1234/Y1235 (Cell Signaling Technology); mouse monoclonal anti-Met DQ13 and DL21, produced in our laboratory 
(13, 14); rabbit polyclonal anti-Met (c-12; Santa Cruz Biotechnology); mouse monoclonal anti-EGFR (Upstate 
Biotechnology); monoclonal trastuzumab anti-ErbB2 (Roche); goat polyclonal anti–α-actin (I-19; Santa Cruz 
Biotechnology). Secondary antibodies were horseradish peroxidase (HRP)-conjugated rabbit anti-goat immunoglobulin 
G (IgG; Dako); HRP-conjugated anti-mouse and anti-rabbit IgGs (GE Healthcare Bio-Sciences). 

RNA extraction and real-time PCR 



RNA was extracted by using RNeasy Mini Kit (Qiagen), according to the manufacturer's protocol. cDNA was 
retrotranscribed by using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems), following the 
manufacturer's instructions. 

Quantitative real-time PCR with Sybr Green assay (Applera, Applied Biosystems) was used to measure the relative 
amount of Ror1 cDNA with respect to the amount of a housekeeping gene (PGK). Primers were designed by the Primer 
Express software (Applied Biosystems): 

Ror1_fw: TGCCAGCCCAGTGAGTAATCT 

Ror1_rev: GCCAATGAAACCAGCAATCTG 

PGK_fw: CTTATGAGCCACCTAGGCCG 

PGK_rev: CATCCTTGCCCAGCAGAGAT 

PCR reactions were carried out by a 7900HT sequence detection system (Applera), according to standard protocols. 

Virus preparation and cell transduction 

Lentiviral vectors were produced as described (15). Concentration of viral particles was assessed by determination of the 
viral p24 antigen concentration by using the HIV-1 p24 Core profile ELISA kit (Perkin-Elmer Life Science). Cells were 
infected with proper dilutions (1:10 or 1:20) of virus stocks in the presence of polybrene (8 mg/mL, Sigma), for at least 6 
hours. 

Western blotting analysis and immunoprecipitation 

Total cellular proteins were extracted by solubilizing the cells in boiling Laemmli Buffer (50 mmol/L Tris-HCl, pH 7.5; 150 
mmol/L NaCl; and 1% SDS). Immunoprecipitation was carried out following cell lysis in an Extraction Buffer containing 
50 mmol/L Hepes (pH 7.4), 5 mmol/L EDTA, 2 mmol/L EGTA, 150 mmol/L NaCl, 10% glycerol, and 1% Triton X-100 in 
the presence of protease and phosphatase inhibitors. Extracts were clarified at 12,000 rpm for 15 minutes, normalized 
with the BCA Protein Assay Reagent kit (Thermo), and incubated with different monoclonal antibodies for 2 hours at 
4°C. Immune complexes were collected with either protein G-Sepharose or protein A-Sepharose, washed in lysis buffer, 
and eluted. Extracts were electrophoresed on SDS-polyacrylamide gels and transferred onto nitrocellulose membranes 
(Hybond; GE Healthcare). Nitrocellulose-bound antibodies were detected by HRP-conjugated secondary antibodies and 
enhanced chemiluminescence (GE Healthcare). 

In vitro kinase assay 

For in vitro kinase assays, Ror1, ErbB2, and ErbB3 proteins were produced by transient transfection of the 
corresponding cDNA plasmids in COS-7 cells, extracted in Extraction Buffer and then immunoprecipitated as described 
earlier in the text. Immunoprecipitates were washed twice with Extraction Buffer and 3 times with kinase buffer (20 
mmol/L Hepes, pH 7.4; 5 mmol/L MnCl2; 5 mmol/L MgCl2; 100 mmol/L NaCl). In the case of autophosphorylation 
assays, the reaction was carried out by using 50 μL of kinase buffer containing radiolabeled [γ32P]ATP (5 μCi/sample) 
and 40 μmol/L of unlabeled ATP at 37°C. Reactions were stopped after different incubation times (0, 5, 15, 40 minutes) 
by placing samples on ice and adding stop solution (Extraction Buffer + 10 mmol/L EDTA). Supernatants were discarded 
and precipitated proteins were eluted by using boiling denaturing Loading Buffer and resolved by SDS-PAGE. The 
polyacrylamide gels were dried and analyzed by autoradiography. The same amounts of immunoprecipitates were 
resolved by SDS-PAGE and protein expression and loading were analyzed by immunoblotting with anti-Ror1 and anti-
ErbB2 antibodies. For kinase assays on exogenous substrates, the immune complexes were incubated in kinase buffer 
containing 40 μg poly[(Glu:Tyr),(4:1)] (Sigma) and 500 μmol/L ATP at 37°C for 20 minutes. The reaction was stopped by 
adding boiling denaturing Loading Buffer and resolved by SDS-PAGE and detected by immunoblotting with anti-pTyr 
antibody. 



 

Proliferation screening and cell proliferation assay 

Cells cultured in complete medium supplemented with 10% serum were plated in 96-well plates (2,000 cells/well). 
Twenty-four hours after seeding, cells were infected with lentiviral vectors (day 0). At days 0, 3, 6, and 9, cell 
quantification was done by using the MTS assay (CellTiter 96 Aqueous One Solution Cell Proliferation Assay; Promega), 
according to the manufacturer's instructions. Cell quantity was determined by measuring the absorbance at 485 nm by 
Victor X Multilabel Plate Readers (Perkin Elmer). Each point was carried out in triplicate. 

Migration assay 

To evaluate migration ability, 5 × 104 cells were seeded on the upper side of a Transwell chamber (Corning) on a porous 
polycarbonate membrane (8.0-μm pore size). The lower chamber of the Transwell was filled with Dulbecco's modified 
Eagle's medium/RPMI containing 10% FBS. After 16 hours of incubation, cells on the upper side of the filters were 
mechanically removed and cells migrated to the lower side were fixed, stained, and counted. 

Soft-agar assay 

A total of 3,000 cells were resuspended in complete medium containing 0.5% Seaplaque agar. Cells were seeded in 24-
well plates containing a 1% agar underlay and supplemented twice a week with complete medium. Colonies were 
quantified by using AlamarBlue stain (AbD Serotec), according to the manufacturer's instruction. Representative colonies 
were photographed by a Leica microscope with a ×10 objective. Each point was carried out in quadruplicate. 

Tumorigenesis assay 

Lentiviral vector–transduced cells (3 × 106 cells/mouse) in 0.2 mL of serum-free medium were subcutaneously injected 
into the right posterior flank of 6-week-old immunodeficient nu−/− female mice on Swiss CD-1 background (12 
mice/group; Charles River Laboratories). Tumor size was evaluated every 3 days by a caliper. Tumor volume was 
calculated by the formula: V = 4/3π × y/2 × (x/2)2, where x is the minor tumor axis and y the major tumor axis. A mass of 
15 mm3 was chosen as a threshold for tumor positivity. Mice with tumors below this threshold were considered tumor-
free. All the animal procedures were approved by the Ethical Commission of the University of Turin (Italy) and by the 
Italian Ministry of Health.  

3. Results 

Ror1 expression, phosphorylation, and functional activity in cancer cells 

A screening was undertaken in a panel of 43 cancer cell lines to asses: (i) the effect of Ror1 silencing on cell growth, (ii) 
Ror1 expression, and (iii) Ror1 tyrosine phosphorylation. First, we applied an RNAi-based approach to identify human 
tumors that rely on Ror1 for growth. The 43 cell lines were infected with lentiviral vectors containing shRNAs targeting 
the Ror1 gene: 2 shRNAs matching different Ror1 sequences (referred to as Ror1 shRNA_A and Ror1 shRNA_B) were 
used to minimize potential off-target effects; an NT_shRNA was used for mock transfectants. When tested on PC3 
prostate carcinoma cells (a representative cell line known to express Ror1 according to existing databases; ref. 16), both 
shRNAs effectively reduced Ror1 mRNA and protein levels (Fig. 1A). Six days postinfection, cell viability was measured 
and cells featuring at least 50% growth inhibition over control (NT_shRNA) were scored as positive hits. Two cell lines, a 
gastric (HS746T) and a lung (NCI-H1993) carcinoma, were identified (Fig. 1B). 

Figure 1. 

Integrated screening. A, PC3 cells were infected with 2 specific shRNAs targeting Ror1 (shRNA_A and shRNA_B) and a 
control nontargeting shRNA (NT_shRNA). Left, immunoblotting analysis shows that both Ror1-specific shRNAs induced 
an almost complete protein downregulation (80%–90% as assessed by densitometry); actin was used as a loading 
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The intrinsic catalytic activity of Ror1 was tested by using kinase assays that assessed Ror1 autophosphorylation as well 
as heterologous phosphorylation of exogenous substrates. Ror1 was expressed by transfection in COS-7 cells and the 
autocatalytic activity was evaluated in the presence of radiolabeled-ATP after different incubation times. Comparison 
with the active form of a reference tyrosine kinase (ErbB2) showed that the extent of Ror1 autophosphorylation is 
negligible (Fig. 2B). Immunopurified Ror1 was also unable to phosphorylate the exogenous peptide poly(Glu:Tyr); this 
behavior was different from that of ErbB2 and similar to that of ErbB3, which is catalytically inactive (Fig. 2C). Finally, 
overexpression of Ror1 in COS-7 cells did not affect the tyrosine phosphorylation pattern of endogenous proteins in 
whole cell extracts, again in accordance with the results from ErbB3 overexpression; in contrast, and as expected, ErbB2 
overexpression produced substantial changes in the tyrosine phosphorylation status of several proteins (Fig. 2D). 

Ror1 is transphosphorylated by the Met oncogene 

The observation that Ror1 lacks intrinsic catalytic activity suggests that its tyrosine phosphorylation might be due to 
transphosphorylation by another kinase. To pinpoint the tyrosine kinase(s) that may act as upstream regulator(s) of Ror1 
in HS746T and NCI-H1993 cells, we carried out an in silico analysis of existing databases and literature (19–21). 
Interestingly, we found that both cell lines share an uncommon genetic alteration in that they harbor focal and high-grade 
amplification of the Met oncogene–with an aberrant gene copy number of 6.35 and 8.66, respectively–that results in Met 
constitutive activation (22). 

To test whether constitutively active Met transphosphorylates Ror1, we treated HS746T and NCI-H1993 cells with the 
Met-specific inhibitor PHA-665752 at nanomolar concentrations. Pharmacologic blockade of Met led to complete 
abrogation of Ror1 phosphorylation in both cell lines (Fig. 3A). Similar results were obtained when Met neutralization was 
achieved by JNJ-38877605 (another Met-specific inhibitor) and by RNAi by using 2 different shRNAs (Supplementary 
Fig. S2A). In contrast, downregulation of Ror1 did not affect expression or phosphorylation of Met (Supplementary Fig. 
S2B). 

Figure 3. 

Ror1 phosphorylation depends on Met constitutive activation. A, immunoblotting analysis of Ror1 phosphorylation in 
HS746T and NCI-H1993 cells cultured in complete medium supplemented with 10% serum and treated for 2 hours with 
the Met selective inhibitor PHA-665752 (400 nmol/L). Lysates were run as Ror1 immunoprecipitates or as total extracts. 
Receptor phosphorylation status was checked by probing the membranes with anti-pTyr or anti-pMet antibodies. PHA-
665752 caused concomitant reduction of Met and Ror1 phosphorylation. B, immunoblotting analysis of Ror1 expression 
and tyrosine phosphorylation upon Ror1 lentiviral transduction (+) in 4 cancer cell lines displaying constitutive Met 
phosphorylation (EBC1, NCI-H1993, GTL16, and HS746T) and in a cancer cell line (PC3) displaying basally 
unphosphorylated Met (see also Supplementary Fig. S2). Cells were cultured in complete medium supplemented with 
10% serum and lysates were run as Ror1 immunoprecipitates. Ror1 expression was monitored by anti-Ror1 antibody 
and receptor phosphorylation was checked with anti-pTyr antibody. Input controls for Met and phospho-Met are 
represented by total cell extract (T.E.) used for each immunoprecipitation. When overexpressed, Ror1 was 
phosphorylated only in cancer cells expressing basally phosphorylated Met. C, immunoblotting analysis of Ror1 
phosphorylation in WT and Met-transfected HT29 cells (expressing high levels of Ror1). Cells were cultured in complete 
medium supplemented with 10% serum. Ror1 immunoprecipitates were probed first with anti-pTyr antibody (phospho-
Ror1 is indicated by an arrow) and then with anti-Ror1 antibody. Met expression was checked by anti-Met antibody on 
total lysates; actin was used as a loading control. Ectopic expression of Met in HT29 induced Ror1 phosphorylation. 
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We cannot formally exclude, based on the intrinsic limits of detectability of ATP-based kinase assays, that Ror1 
maintains a residual (but negligible) degree of enzymatic activity, as recently shown for ErbB3 (33). Although high-
resolution structural data of the kinase-like domain of Ror1 are warranted to unequivocally address this issue, several 
lines of evidence indicate that Ror1 acts indeed as a pseudokinase: (i) receptor overexpression does not lead to kinase 
autophosphorylation; (ii) immunopurified Ror1 is unable to phosphorylate exogenous substrates; (iii) Ror1 
overexpression does not modify the overall tyrosine phosphorylation status of endogenous proteins in whole cell lysates; 
(iv) the catalytic domain of Ror1 contains amino acid substitutions in critical residues that are evolutionarily conserved 
and that are known to regulate the enzymatic function of tyrosine kinases. 

Met-dependent transphosphorylation of Ror1 is not observed in normal epithelial cells expressing physiologic levels of 
Met, nor is it induced by acute Met activation in response to HGF exogenous stimulation (Supplementary Fig. S5); 
conversely, it specifically occurs in cancer cells that overexpress chronically active forms of Met and rely on deregulated 
Met activity for continuous growth and survival (oncogene addiction). In these cells, Ror1 transphosphorylation seems to 
be necessary to fully sustain “Met addiction”: in vitro, RNAi-mediated knockdown of Ror1 impairs cell proliferation and 
reduces anchorage-independent growth; in vivo, Ror1 silencing goes along with a delay in xenograft formation and 
progression. All these tumorigenic properties are rescued by overexpression of a shRNA-resistant Ror1 cDNA. The 
mechanistic explanation for these “enhancer” functions of Ror1 is largely unknown. On the basis of in silico analysis of 
the cytoplasmic domain, we can identify 3 tyrosines (Y641, Y645, and Y646) embedded in consensus sequences for 
Met-specific transphosphorylation (34). In turn, some of these tyrosines are predicted to bind, on phosphorylation, SH2-
containing transducers such as Src and Stat-3 (35, 36). 

It should be noted that not all the Met-addicted cell lines examined in this study express Ror1; we can speculate that, in 
these cells, the function of Ror1 as an expansion platform for signal transduction is surrogated by other unidentified 
kinases or pseudokinases. An example is the GTL16 gastric carcinoma, in which the function of signal transduction 
amplifier is exerted by Ron, a tyrosine kinase receptor endowed with weak catalytic activity (37). 

As a result of an oncogenic alteration, cancer cells may also develop secondary dependencies on genes that are 
themselves not oncogenes. Perturbation of these genes can result in oncogene-specific “synthetic lethal” interactions 
that could provide new therapeutic opportunities. Here we show that genetic inactivation of the Ror1 pseudokinase 
constitutes synthetic lethality with genomic amplification of Met. Therefore, Met-addicted tumors also display a 
“nononcogene” addiction to Ror1. The findings reported in this article highlight the complexity of signaling networks 
regulated by addictive oncoproteins and, in the meantime, reveal their fragility. Interfering with one single component 
seems to be sufficient to neutralize, or at least attenuate, the transformed phenotype sustained by altered oncogenes. 
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