Evolutionary Dynamics of Multiple Sublineages of H5N1 Influenza Viruses in Nigeria, 2006-2008

Alice Fusaro ${ }^{1^{*}}$, Martha I. Nelson ${ }^{2}$, Tony Joannis ${ }^{3}$, Luigi Bertolotti ${ }^{4}$, Isabella Monne ${ }^{1}$, Annalisa Salviato ${ }^{1}$, Olufemi Olaleye ${ }^{6}$, Ismaila Shittu ${ }^{3}$, Lanre Sulaiman ${ }^{3}$, Lami H. Lombin ${ }^{3}$, Ilaria Capua ${ }^{1}$, Edward C. Holmes ${ }^{2,5}$, Giovanni Cattoli ${ }^{1}$
${ }^{1}$ Istituto Zooprofilattico Sperimentale delle Venezie, Research \& Development Department, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Epidemiology, Training and Control of Emerging Avian Diseases, Viale dell’Università 10, Legnaro, Padova, Italy
${ }^{2}$ Fogarty International Center, National Institute of Health, Bethesda; Maryland, United States of
America
${ }^{3}$ National Veterinary Research Institute, P.M.B. 01 VOM, Plateau State, Nigeria
${ }^{4}$ Dept. of Animal Productions, Epidemiology and Ecology, University of Torino, Faculty of
Veterinary Medicine, Gugliasco (TO), Italy
${ }^{5}$ Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State
University,Mueller Laboratory, University Park, Pennsylvania 16802, United States of America
${ }^{6}$ Virology Department, University College Hospital, University of Ibadan, Ibadan. Nigeria

Running title: Molecular Evolution of H5N1 Influenza A Viruses

Abstract word count: 225
Text word count: 4873

1 *Corresponding author: Alice Fusaro. Mailing address: Istituto Zooprofilattico Sperimentale delle
2 Venezie, Research \& Development Department, OIE/FAO and National Reference Laboratory for
3 Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Epidemiology, Training and
4 Control of Emerging Avian Diseases. Viale dell’Università 10, 35020, Legnaro, Padova, Italy.
5 Phone: 0039049 8084381. Fax.: 0039049 8084360. E-mail: afusaro@izsvenezie.it

Abstract

Highly pathogenic A/H5N1 avian influenza viruses (HPAI H5N1) have seriously affected the Nigerian poultry industry since early 2006. Previous studies have identified multiple introductions of the virus into Nigeria and several reassortment events between co-circulating lineages. To determine the spatial, evolutionary, and population dynamics of the multiple H5N1 lineages cocirculating in Nigeria, we conducted a phylogenetic analysis of whole-genome sequences from 106 HPAI H5N1 viruses isolated between 2006-2008 and representing all 25 Nigerian states and the Federal Capital Territory (FCT) reporting outbreaks. We identified a major new sub-clade in Nigeria that is phylogenetically distinguishable from all previously identified sublineages, as well as two novel reassortment events. A detailed analysis of viral phylogeography identified two major source populations for the HPAI H5N1 virus in Nigeria, one in a major commercial poultry area (southwest region) and one in northern Nigeria, where contact between wild birds and backyard poultry is frequent. These findings suggested that migratory birds from Eastern Europe or Russia may serve an important role in the introduction of HPAI H5N1 viruses into Nigeria, although virus spread through the movement of poultry and poultry products cannot be excluded. Our study provides new insight into the genesis and evolution of H5N1 influenza viruses in Nigeria and has important implications for targeting surveillance efforts to rapidly identify the spread of the virus into and within Nigeria.

INTRODUCTION

Since its emergence in 1996 in Guangdong, China, highly pathogenic avian influenza virus of the H5N1 subtype (HPAI H5N1) has disseminated widely across Asia, Europe, and Africa, infecting a range of domestic and wild avian species and sporadically spilling over into humans and other mammals $(4,37)$. Over time, the HPAI H5N1 virus has diversified into multiple phylogenetically distinct lineages, classified as clades 0-9 according to the unified nomenclature system (35). The H5N1 lineage currently circulating in central Asia, the Middle East, Europe and Africa is referred to as clade 2.2 (35), and has also been described as 'EMA' or Qinghai-like in previous publications $(28,4,16)$. This clade originated in April 2005 during a large outbreak of a phylogenetically distinct H5N1 virus among wild bird populations at Qinghai Lake in western China $(4,16)$ and rapidly spread west through central Asia and Europe, eventually reaching Africa in 2006 (28). Clade 2.2 has further diversified, forming the genetic third-order clade 2.2.1 (34) and three genetically distinct sublineages (I, II, and III) (2, 18, 29), all of which are found in Africa.

Since 2006 HPAI H5N1 viruses belonging to clade 2.2 have disseminated across multiple countries in western, eastern and northern Africa: Egypt, Niger, Cameroon, Sudan, Burkina Faso, Djibouti, Ivory Coast, Ghana, Togo, Benin, and Nigeria (2). With a large poultry industry, estimated at 140 million birds (11), Nigeria has experienced several major outbreaks of HPAI H5N1, posing a serious threat to food security and public health in Africa. The first case of HPAI H5N1 virus in Nigeria (sublineage I) occurred in January 2006 in the state of Kaduna, and subsequently was detected in Ghana, Burkina Faso, Ivory Coast, and Sudan (2). In February 2006 sublineage II was reported in Nigeria and disseminated widely across the country during 20062007, also appearing in Togo (2). Clade 2.2.1, which has been prevalent in Egypt, Israel, and the Gaza Strip from 2006-2008, was also detected in Nigeria in 2006 (10).

By the end of 2007, outbreaks of HPAI H5N1 in Nigeria appeared to have been successfully controlled by measures such as stamping-out with compensation, restrictions on movement of poultry, and enhanced surveillance (13). However, in July 2008 new cases of HPAI H5N1 from a
sublineage never previously detected in Africa (sublineage III) were registered in the Nigerian states of Kano and Katsina and in live bird markets in Gombe and Kebbi states (13, 20). Hence, Nigeria is the only African country where viruses belonging to clade 2.2.1 and to three different sublineages (I, II and III) of clade 2.2 have all been detected. At least three different reassortment events between sublineages have been documented in Nigeria. Salzberg et al. (2007) identified the first reassortant strain (which we refer to as 'R1'), in which four genome segments (HA, NP, NS and PB1) belong to sublineage I and the other four segments (NA, MP, PA and PB2) derive from sublineage II (28). Subsequently, phylogenetic analysis showed that a 2007 reassortant strain (which we refer to as 'R3') contained the HA and NS segments from sublineage I and the other six segments from sublineage II $(18,21)$. Another reassortant virus (which we refer to as 'R5') contained only the NS gene segment from sublineage I, while the other seven segments were derived from sublineage II (21).

Although the genetic diversity of the Nigerian HPAI H5N1 population has been well characterized, including multiple introductions of the virus into Nigeria and several reassortment events, little is known about the evolutionary and population growth dynamics of the virus within Nigeria. Particularly understudied are the spatial movements of individual sublineages among Nigeria's vast poultry population. To explore the spatial, evolutionary, and population dynamics of the multiple H5N1 lineages co-circulating in Nigeria, we conducted a phylogenetic analysis of whole-genome sequences from 106 HPAI H5N1 viruses isolated between 2006-2008 and representing all 25 Nigerian states and the FCT reporting outbreaks. Using the exact date and location of collection for each viral isolate, we inferred from their phylogenetic relationships the directionality of viral gene flow among Nigerian states and identified critical regions that are likely to serve as key sources for the H5N1 virus in Nigeria.

MATERIALS AND METHODS

Samples

The 106 viruses analysed in this study were selected from a panel of 300 H 5 N 1 HPAI positive samples, collected between January 2006 - November 2007 and in July 2008 from poultry in Nigeria, in order to achieve geographical and temporal representation of the H5N1 epidemic waves that occurred in Nigeria. The samples were provided by the National Veterinary Research Institute, Vom, Plateau State, Nigeria. Information regarding the viruses analyzed in the present study is recorded in table S1 in the supplemental material.

Nucleotide sequencing

Viral RNA was extracted from the infective allantoic fluid of SPF fowls’ eggs using the Nucleospin RNA II Kit (Machery-Nagel, Duren, Germany) and was reverse transcribed with the SuperScript III Reverse Transcriptase kit (Invitrogen, Carlsbad, CA - USA). PCR amplification was performed by using specific primers (primer sequences available on request). The complete coding sequences were generated using the Big Dye Terminator v3.1 cycle sequencing kit (Applied Biosystem, Foster City, CA - USA). The products of the sequencing reactions were cleaned-up using PERFORMA DTR Ultra 96-Well kit (Edge BioSystems, Gaithersburg, MD - USA) and sequenced in a 16capillary ABI PRISM 3130xl Genetic Analyzer (Applied Biosystem, Foster City, CA - USA). Sequence data were assembled and edited with SeqScape software v2.5 (Applied Biosystem). Sequences from all eight gene segments were aligned and compared with HPAI H5N1 representative sequences of viruses from Africa, Europe and the Middle East available on GenBank.

Nucleotide sequence accession numbers

The nucleotide sequences obtained in this study are available from GenBank under accession numbers CY047976 to CY048647, CY016276 to CY016283, CY017179 to CY017186, CY016284 to CY016291, CY016907 to CY016954, EU148356 to EU148451 or from the GISAID public database under accession numbers EPI161701 to EPI161708.

Phylogenetic analysis

For each of the eight genome segments, maximum likelihood (ML) trees were estimated using the best-fit general time-reversible (GTR)+I+ Γ_{4} model of base substitution using PAUP* (36).

Parameter values for the GTR substitution matrix, base composition, gamma distribution of amongsite rate variation (with four rate categories, Γ_{4}), and proportion on invariant site (I) were estimated directly from the data using MODELTEST (24). A bootstrap resampling process (1000 replications) using the neighbor-joining (NJ) method was used to assess the robustness of individual nodes on the phylogeny, incorporating the ML substitution model. The ML tree topology was also compared to the topology obtained using Bayesian methods available in the MrBayes v.3.1.2 program (27), again using the model of base substitution estimated by MODELTEST. Phylogenetic trees were visualized with FigTree v.1.1.2 (25). Fixed amino acid changes along major branches of the phylogeny were identified using the parsimony algorithm available in the MacClade program (17).

Substitution rates and population dynamics

Rates of nucleotide substitution per site, per year and the time to the most recent common ancestor (tMRCA) of the sampled data were estimated using the BEAST program version 1.4.8 (6), which incorporates the phylogenetic relationships of time-stamped viral isolates using a Bayesian Markov chain Monte Carlo (MCMC) approach. Uncertainty in the data is reflected in the 95% highest probability density (HPD) values, and in each case chain lengths were run for sufficient time to achieve coverage as assessed using the Tracer v1.4 program (26). For each analysis the Bayesian skyline coalescent prior was used, as this is clearly the best descriptor of the complex population dynamics of influenza A virus (7). Two molecular clock models, namely strict (constant) and uncorrelated lognormal (UCLN) relaxed clock, were compared by analyzing values of the coefficient of variation (CoV) in Tracer (26), such that CoV values >0 are evidence of non-clock-
like evolutionary behavior. In all cases we employed the GTR $+\Gamma_{4}$ model of nucleotide substitution, as more complex models resulted in over-parameterization. Substitution rates and
population dynamic analysis were performed for all the 106 Nigerian viruses and for Nigerian viruses belonging to sublineage II and I/II-N.

Phylogeography of AIV in Nigeria

We undertook a variety of analyses of the spatial dynamics of HPAI H5N1 in Nigeria. Because of the relatively small numbers of sequences sampled from each Nigerian state, we grouped sequences into six geographical regions, representing adjacent clusters of states, and which are color-coded on Figure 3. These regions are: Region 1 (green): Sokoto, Zamfara, Kebbi Niger; Region 2 (red): Katsina, Jigawa, Kano, Yobe, Kaduna, Bauchi, Gombe; Region 3 (blue): Borno, Adamawa; Region 4 (yellow): Taraba, Plateau, Nassrawa, Beneu, FCT; Region 5 (blue): Edo, Delta, Anambra, Enegu; Region 6 (purple): Kwara, Ekiti, Oshun, Lagos, Ogun, Oyo.

To explore the overall extent of spatial structure in these sequence data, we employed a Bayesian MCMC approach, available in the Bayesian Tip-associated Significance testing (BaTS) program (22). This analysis was based on the trees that were produced by the BEAST analysis described above, with 10% removed as burn-in and employing 1000 replications. From these trees we computed the significance of the parsimony score (PS) and association index (AI) statistics of the strength of geographical clustering by phylogeny (22). In addition, we computed the monophyletic clade (MC) statistic which measures the strength of clustering within individual geographic regions. Importantly, this approach accounts for uncertainty in the underlying phylogeny by using a large number of plausible trees.

To explore the direction of migration events between the six regions within Nigeria in more detail we employed a parsimony approach (19) computed on ML trees using PAUP*. In each analysis isolates collected from the six geographical regions were assigned a specific character state. We computed the minimum number of character state changes needed to give rise to the observed distribution (with ambiguous changes excluded). To determine the number of changes expected under a null hypothesis of panmixis (completely unrestricted migration), the character
states of all isolates were randomized 1000 times on the ML tree, and for each randomization the number of changes in character state was calculated in exactly the same manner. This is equivalent to the parsimony score (PS) analysis described above although based on a single phylogeny. By identifying the geographical distribution of positive PS values, it is possible to track the passage of viral gene flow.

Extensive genetic diversity of HPAI H5N1 virus in Nigeria from 2006 to 2008.

The maximum likelihood phylogenetic trees inferred for all eight genome segments of 106 HPAI H5N1 viruses sampled between January 2006 and July 2008 in 25 Nigerian states and the FCT revealed all four sublineages previously identified in Nigeria: sublineages I, II, III and clade 2.2.1 $(2,9,10,13,21)$. Sublineages I, III and clade 2.2 .1 were defined by high bootstrap ($>70 \%$) or posterior probability ($>90 \%$) values and long branches in all the phylogenetic trees (with the exception of the phylogenetic tree for the M gene), while sublineage II had poor bootstrap and posterior probability support (figures 1, 2 and figures S 1 to S 6 in the supplemental material). In addition, our phylogenetic analysis identified a major new sublineage in Nigeria, phylogenetically distinguishable from all previously identified sublineages of clade 2.2 , which circulated widely in Nigeria during 2006-2007. This sublineage is herein denoted as sublineage I/II-Nigeria ('I/II-N'), due to its phylogenetic proximity to sublineage I on trees inferred for the HA and NS genome segments and to the sublineage II for the remaining six segments. The vast majority (46/48) of isolates in this lineage were collected in Nigeria; the other two isolates were collected from Benin (figures 1, 2 and figures S 1 to S 6 in the supplemental material).

At a population level, the majority of Nigerian H5N1 viruses isolated between the years 2006-2008 belong to either sublineage II or I/II-N (47 and 46 of 106 isolates, respectively), whereas only 1 , 2, and 3 isolates belong to sublineage I, clade 2.2 .1, and sublineage III, respectively (figures 1, 2 and figures S1 to S6 in the supplemental material). A/chicken/Nigeria/641/2006(H5N1) is the
only Nigerian isolate from sublineage I for which the entire genome sequence is available, with only the HA segment from two additional Nigerian isolates from sublineage I available on GenBank: A/chicken/Nigeria/VRD44/2006(H5N1) and A/chicken/Nigeria/VRD83/2006(H5N1), accession numbers EF631174 and EF631177 (12). Either surveillance in Nigeria is not sufficient to detect additional isolates belonging to this sublineage in circulation, or sublineage I circulated in Nigeria for only a short duration at relatively low prevalence.

Only two isolates from clade 2.2.1 were detected among the 106 Nigerian samples: A/chicken/Nigeria/848-6/2006 (H5N1) and A/chicken/Nigeria/848-8/2006 (H5N1), which were collected between February and March 2006 in the states of Ogun and Lagos, respectively. The majority of isolates in clade 2.2.1 are from Egypt, the Gaza Strip, and Israel, collected from 20062008. However, the Nigerian isolates in this clade are phylogenetically distinguishable from the Egyptian isolates, and 5 key amino acid differences found across the viral genome distinguish A/chicken/Nigeria/848-6/2006(H5N1) and A/chicken/Nigeria/848-8/2006(H5N1) from the isolates from Egypt and the Middle East that also belong to clade 2.2.1 (figures 1, 2 and figure S 1 in the supplemental material).

Multiple reassortment events among Nigerian HPAI N5N1 viruses.

Although each sublineage generally contains the same set of isolates on each tree, genomic reassortment occasionally results in isolates being positioned within different clades on the phylogenies inferred for different genome segments. In addition to the three reassortment events evident from phylogenetic incongruities that have been described previously (R1, R3 and R5, Table 1) $(18,21,28)$, our phylogenetic analysis reveals two additional reassortment events. Topological differences in the phylogenetic trees suggest that the NS and NP segments of the isolate A/chicken/Nigeria/848-26/2006(H5N1) ('R2', Table 1) were more related to sublineage I and revealed the highest nucleotide identity, 99.7% for the NS segment and 99.9% for the NP segment with $\mathrm{A} /$ chicken/Nigeria/641/2006 (sublineage I), while the other gene segments belonged to
sublineage II. A/chicken/Nigeria/848-106/2007 and A/chicken/Nigeria/848-118/2007 ('R4') viruses fell into sublineage I/II-N, with the exception of the NA segment, which was closely related to sublineage II (table 1).

In some cases, reassortment events involve entire clades, as in the case of the novel sublineage I/II-N. For the majority of segments (PB2, PB1, PA, NP, NA, and M), sublineage I/II-N is most related phylogenetically to sublineage II, although a long branch still separates these clades in all cases except the M segment (figures 1, 2 and figures $S 1$ to $S 6$ in the supplemental material).

However, on the HA and NS trees (figure 1 and figure S5 in the supplemental material), sublineage $\mathrm{I} / \mathrm{II}-\mathrm{N}$ is phylogenetically more related to sublineage I, evidence that the entire sublineage I/II-N was generated by a major reassortment event between clades that are related to sublineages I and II, although separated by long branch lengths (figures 1, 2 and figures S1 to S 6 in the supplemental material). It is also possible that sublineage I/II-N acquired the M segment directly from sublineage II, as these clades are merged on the M phylogeny. However, phylogenetic resolution is too low in this portion of the tree to discern.

Variable rates of viral evolution in Nigeria.

The rate of evolutionary change (recorded as nucleotide substitutions per site, per year subs/site/year) was estimated for each segment for the entire population of Nigerian isolates and for each of the two main sublineages found in Nigeria, sublineages II and I/II-N (table 2). For the HA, NA, NS, PB1, PB2, PA and M gene segments, the lower 95\% HPD of CoV values of the relaxed molecular clock were approximately 0 , so a strict molecular clock model was used to estimate the evolutionary dynamics. However, the NP gene of the entire population of Nigerian isolates and the NP gene of sublineage I/II-N showed CoV values >0, so a relaxed (uncorrelated lognormal) molecular clock model, which allows for rate variation across lineages, was used for these two data sets. In each case, very similar results were obtained under both strict and relaxed molecular clock model. The mean substitution rates for all segments and subtypes were found to be within the range
typically observed for avian influenza viruses (5), although differences were found across segments and sublineages. The lowest rate of evolution was observed for the HA segment from sublineage I/II-N (2.88×10^{-3} subs/site/year, 95% HPD $1.54-4.29 \times 10^{-3}$), while the highest rate was observed for the NA segment from sublineage II (6.56×10^{-3} subs/site/year, 95% HPD $4.83-8.57 \times 10^{-3}$) (Table 2).

Evolutionary origins of the viral genetic diversity found in Nigeria.

To further explore the evolutionary origins of sublineage I/II-N in Nigeria, we estimated the time of the most recent common ancestor (tMRCA) of sublineage I/II-N (table 3). The tMRCAs for the NA, PB2, PB1, NP and NS gene segments of sublineage I/II-N isolates ranged from December 2005 to November 2006 (95% HPD) (table 3), dates which approximately overlap with when sublineages I and II were circulating in Nigeria and consistent with a Nigerian origin for sublineage I/II-N. The tMRCA of the HA gene segment ranges from August 2005 - August 2006 (95% HPD), which is antecedent to the period of detection of viruses belonging to the two parent sublineages. The tMRCA estimated for all the Nigerian isolates ranged from September 2004 to November 2005 ($95 \% \mathrm{HPD}$), which approximately coincides with the origin and spread of clade 2.2 at the Qinghai Lake outbreak and is consistent with multiple introductions of clade 2.2 into Nigeria. The estimates for the tMRCA of sublineage II in Nigeria ranged from August 2005 to January 2006 (95% HPD), approximately 1-6 months before sublineage II was first detected by surveillance in Nigeria in February 2006. The presence of viruses of the same sublineage in other areas of the world at the same time, such as Europe, indicates that this group was introduced into Nigeria at the beginning 2006 or the end of 2005 and might to have circulated undetected until February 2006. Finally, broader 95\% HPD values were observed for the PA segment, particularly for sublineages II (September 04 to March 06) and I/II-N (November 04 to July 06), suggesting that this segment has insufficient phylogenetic signal for precise estimates of tMRCA values.

To further investigate the source of the sublineages detected in Nigeria, we used BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify the HA sequences of viruses isolated outside Nigeria that showed the highest similarity to the first isolate that was collected from each Nigerian clade. In each case, the first Nigerian isolate from each sublineage showed the highest identity with viruses collected from birds in Eastern Europe some months prior to detection in Nigeria. The HA gene of the first isolate of sublineages I (A/chicken/Nigeria/641/2006) and II (A/chicken/Nigeria/848-1/2006) showed the highest identity (99\%) with viruses isolated from poultry in Romania and Russia in 2005. Nigerian viruses belonging to clade 2.2.1 possessed the highest similarity with viruses isolated from wild birds from Slovenia and Austria in 2006. Nigerian viruses isolated in 2008 from sublineage III showed the highest similarity with a virus collected from a mute swan in the Czech Republic: A/Cygnus olor/Czech Republic/10732/2007(H5N1).

The PB2 and PB1-F2 genes of sublineage I/II-N viruses possess three amino acid signatures (figures S1 and S2 in the supplemental material) typical of African H5N1 viruses. Furthermore, one of the earliest isolates of sublineage I/II-N, A/chicken/Nigeria/848-50/2006(H5N1) (collected in Kaduna state, 13 December 2006), is phylogenetically positioned as an outgroup on the HA, PB2, PB1 and PA trees, while on the NS tree it is more related to sublineage I, the apparent source of the HA and NS genes of sublineage I/II-N. Notably, this isolate does not possess the three amino acid signatures typical of sublineage I/II-N for the NS and PB1-F2 genes, (figures S1 and S5 in the supplemental material) but does contain such amino acids signatures for others genes, including HA and PB2, suggesting that this Nigerian isolate is an evolutionary intermediary between the parental sublineages (sublineage I and II) and sublineage I/II-N. This finding supports the hypothesis that sublineage I/II-N evolved locally in Nigeria.

Phylogeography of H5N1 within Nigeria.

Isolates collected from each of the 25 Nigerian states and the FCT recording outbreaks of H5N1 are interspersed throughout the phylogenetic trees inferred for each segment, indicative of widespread
viral gene flow throughout Nigeria. The two dominant Nigerian clades, sublineages II and I/II-N, were detected in $22 / 25$ and $18 / 25$ states, respectively (table S1 in the supplemental material). Despite the occurrence of viral traffic through Nigeria, our Bayesian MCMC analysis of geographical association revealed a clear clustering by geographic region ($p=0$ for both the AI and PS statistics in all gene segments); hence, there is localized in situ evolution of AIV within Nigeria. Such localized clustering was especially strong in the southeastern region (yellow), in which the MC statistic significant in all gene segments ($p<0.005$ in all cases; full results available from the authors on request). No other region exhibited a significant MC value (i.e. $p<0.05$).

An additional parsimony-based migration analysis (Supplementary Table S2) revealed that the direction of viral migration occurred predominantly from north-central (red region in figure 3) and southwestern regions (pink) to northeastern (blue), southeastern (yellow), and south-central regions (light blue). Hence, the north-central and southwestern regions perhaps serve as the critical sources for the spread of the HPAI H5N1 virus in Nigeria, whereas northeastern, southeastern and south-central regions appear to act primarily as an ecological sink (figure 3). That the southeastern region was also strongly significant according the MC statistic (see above) suggests that it represents a particularly strong sink population.

DISCUSSION

Through phylogenetic analyses of 106 Nigerian HPAI H5N1 isolates collected from 2006 to 2008, we have elucidated the evolutionary dynamics of one of the largest and most diverse influenza virus populations in Africa. First, we have identified a major new reassortant sublineage 'I/II-N' in Nigeria. Sublineage I/II-N appears to have evolved locally in Nigeria, although the origins of the HA and NS segments are more difficult to assess, as sublineage I is present in multiple countries. Our estimate of the tMRCA indicates that sublineage I/II-N likely originated in Nigeria between August 2005 - November 2006, approximately 1 to 15 months before being detected through surveillance. Hence, this virus may have been circulating undetected in Nigeria for
several months, perhaps accounting for the long branch between parental sublineages (I and II) and I/II-N evident on each phylogenetic tree. We also identified two novel reassortment events involving sublineages I and II (R2 and R4). Notably, all of the Nigerian reassortant viruses possess an NS gene of sublineage I origin and PB2, PA, MP and NA genes belonging to sublineage II, perhaps suggesting that these segments confer a selective advantage. Co-circulation of multiple genetically distinct sublineages has also been reported in others countries, such us China (33), Vietnam (23), Indonesia (32), Thailand (30). To explain the observed patterns of genetic reassortment of H5N1 in China, Vijaykrishna et al. suggested that viruses undergo regular reassortment with endemic H5N1 viruses in domestic ducks and subsequently are transmitted to poultry (33). Given that the hypothetical ancestor of sublineage I/II-N was collected from the area of Nigeria with the highest concentration of domestic ducks, this mechanism is further supported by the data presented in this study.

Our phylogeographic analysis identified the north-central (Katsina, Jigawa, Yobe, Kano, Kaduna, Bauchi and Gombe) and south-west (Lagos, Ogun, Oyo, Ekiti and Kwara) regions as the two major sources for the HPAI H5N1 virus in Nigeria. These findings are consistent with the distribution of poultry farms in Nigeria. Indeed, south-western Nigeria, particularly the states surrounding the city of Lagos, hold much of Nigeria's poultry industry (11). It is estimated that over 65% of Nigeria's commercial poultry is located in the five southern states of Lagos, Ogun, Oyo, Osun and Ondo (11). In north-central Nigeria, Jigawa and Yobe states are home to Hadejia-Nguru wetlands, characterized by permanent and seasonal lakes and a numerous population of migratory and residential waterfowl. This area also sustains a large back yard poultry population and the highest concentration of domestic ducks, reared under free-range conditions, providing opportunities for contact between wild birds and backyard poultry (3). It has been suggested that migratory birds may play a role in the introduction of HPAI H5N1 into Nigeria $(2,3,15,28)$. In fact, the migration paths ending in the Hadejia-Nuguru wetlands intersect with areas in Eastern Europe where HPAI H5N1 has been circulating since autumn of 2005 (3).

Of note, the first isolate of each sublineage (I, II, III) detected in Nigeria, as well as the likely ancestor of sublineage I/II-N, were collected from the northern part of Nigeria (table S1 in the supplemental material), and our BLAST analysis suggests that early Nigerian isolates show the highest similarity with influenza viruses from birds in Eastern Europe. This is also consistent with previous findings concerning the novel introduction into Northern Nigeria of sublineage III in 2008 (13) and these findings provide additional evidence that migratory birds from Eastern/Central Europe or Russia are implicated in the introduction of HPAI H5N1 viruses into Nigeria. This is consistent with the several reports concerning the introductions into European countries of distinct sublineages of clade 2.2 HPAI H5N1 viruses through wild birds, for example in Germany, Denmark, Hungary, France, and Italy (1, 14, 28, 29, 31). However, it is still not possible to exclude the involvement of trade of poultry and poultry products as a source of infection.

As such, our study has important implications for predicting and preventing the future introductions and spread of H5N1 in Nigeria and for targeted surveillance. Indeed, minimizing contacts between farmed poultry and wild birds in the northern regions of Jigawa and Yobe should reduce the risk of future outbreaks as well as improving passive surveillance for HPAI in sick or dead wild birds in these areas. Similarly, our analysis suggests that after the primary introductions in Nigeria likely through wild migratory birds, trade of poultry or poultry products was an important pathway for the spread of virus throughout the country. Increased monitoring of poultry trade from high-risk areas (north-central and south-west regions, see below), identified as the main sources of viruses in this study, should be implemented to reduce the spread of H5N1.

In addition to whether the HPAI H5N1 virus entered Nigeria, another major unresolved question is the evolutionary basis for why certain sublineages thrive in Nigeria, particularly sublineages II and I/II-N, while sublineages I and III and clade 2.2.1 appear to have spread little, despite the success of these clades in other regions, particularly clade 2.2.1 in Egypt. It is possible that surveillance in Nigeria is insufficient to detect the presence of clades circulating at low levels or in certain geographic regions. Indeed, our tMRCA estimates indicate that viral clades in Nigeria
may circulate for some months before being detected. The acquisition of the HA and NS segments from sublineage I by sublineage I/II-N also suggests that sublineage I may have circulated more extensively than was detected by surveillance. Direct associations among the H5N1 outbreaks in Egypt and the viruses circulating in Nigeria can be excluded, based on the findings presented herein. It is also possible that stochastic effects may have a greater impact on the population structure of HPAI H5N1 than selective pressures. Interestingly, sublineage I also appears to have circulated in poultry populations only for short durations in other African countries, including Ivory Coast (10 months), Burkina Faso (2 months), Sudan (7 months), and Ghana (4 months) (2). Similar situations were reported in Thailand, where one reassortant H5N1 strain emerged and replaced the two parental lineages (PC168-like and PC170-like) of clade 1 (30) Similarly, in Vietnam clade 2 viruses replaced clade 1 viruses in 2005 (23) and in China genotype Z gradually became predominant from 2002 to mid-2005 and in late 2005 in southern China it was gradually replaced by genotype V (8).

Additional influenza virus sequence data from other African countries is greatly needed to further understand the evolutionary dynamics of the multiple sublineages circulating in Nigeria and other parts of Africa. Sharing reliable genetic and epidemiological data in a timely manner can promote better HPAI control strategies and optimize targeted surveillance programs .

ACKNOWLEDGEMENTS

The Ministry of Agriculture of Nigeria is acknowledged for its continuous support and assistance for the avian influenza control program in the country. The authors wish to thank the staff of the Food and Agriculture Organization of the United Nation (UN-FAO) Headquaters in Rome, Italy; Dr. Tesfai Tseggai and the UN-FAO/ECTAD Unit, Abuja, Nigeria for their assistance in facilitating exchange of information, data sharing and sample submissions.

1 Part of this study has been conducted in the framework of the EU-projects EPIZONE (Network of excellence for epizootic disease diagnosis and control) and FLUTRAIN (training and technology 3 transfer of avian influenza diagnostics and disease management skills).

REFERENCES

\author{

1. Bragstad K, PH Jørgensen, K Handberg, AS Hammer, S Kabell, A Fomsgaard. 2007 First introduction of highly pathogenic H 5 N 1 avian influenza A viruses in wild and domestic birds in Denmark, Northern Europe. Virol J. 11;4:43
}
2. Cattoli, G., I. Monne, A. Fusaro, T. M. Joannis, L. H. Lombin, M. M. Aly, A. S. Arafa, K. M. Sturm-Ramirez, E. Couacy-Hymann, J. A. Awuni, K. B. Batawui, K. A. Awoume, G. L. Aplogan, A. Sow, A. C. Ngangnou, I. M. El Nasri Hamza, D. Gamatie, G. Dauphin, J. M. Domenech, and I. Capua. 2009. Highly pathogenic avian influenza virus subtype H5N1 in Africa: a comprehensive phylogenetic analysis and molecular characterization of isolates. PLoS One 4:e4842.
3. Cecchi, G., A. Ilemobade, Y. Le Brun, L. Hogerwerf, and J. Slingenbergh. 2008. Agroecological features of the introduction and spread of the highly pathogenic avian influenza (HPAI) H5N1 in northern Nigeria. Geospat Health. 3:7-16.
4. Chen, H., G.J.D. Smith, S.Y. Zhang, K. Qn, J. Wang, K.S. Li, R.G. Webster, J.S. Peiris, Y. Guan. 2005. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature. 436:191-192
5. Chen, R., E.C. Holmes. 2006. Avian Influenza virus exhibits rapid evolutionary dynamics. Mol. Biol. Evol. 23(12):2336-2341
6. Drummond, A. J. and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:214.
7. Drummond, A. J., A. Rambaut, B. Shapiro, and O. G. Pybus. 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22:1185-1192.
8. Duan L, J. Bahl, G. J. Smith, J. Wang, D. Vijaykrishna, L.J. Zhang, J.X. Zhang, K.S. Li, X.H. Fan, C.L. Cheung, K. Huang, L.L. Poon, K.F. Shortridge, R.G. Webster, J.S. Peiris, H. Chen, Y. Guan. 2008. The development and genetic diversity of H5N1 influenza virus in China, 1996-2006. Virology. 380(2):243-54.
9. Ducatez, M. F., C. M. Olinger, A. A. Owoade, S. De Landtsheer, W. Ammerlaan, H. G. Niesters, A. D. Osterhaus, R. A. Fouchier, and C. P. Muller. 2006. Avian flu: multiple introductions of H5N1 in Nigeria. Nature 442:37.
10. Ducatez, M. F., C. M. Olinger, A. A. Owoade, Z. Tarnagda, M. C. Tahita, A. Sow, S. De Landtsheer, W. Ammerlaan, J. B. Ouedraogo, A. D. Osterhaus, R. A. Fouchier, and C. P. Muller. 2007. Molecular and antigenic evolution and geographical spread of H5N1 highly pathogenic avian influenza viruses in western Africa. J. Gen. Virol. 88:2297-2306.
11. FAO (Food and Agricolture Organization of the United Nations). 2008. Poultry sector country review - Nigeria.
12. Fasina, F. O., A. C. Meseko, T. M. Joannis, A. I. Shittu, H. G. Ularamu, N. A. Egbuji, L. K. Sulaiman, and N. O. Onyekonwu. 2007. Control versus no control: options for avian influenza H5N1 in Nigeria. Zoonoses Public. Health. 54:173-176.
13. Fusaro, A., T. Joannis, I. Monne, A. Salviato, B. Yakubu, C. Meseko, T. Oladokun, S. Fassina, I. Capua, and G. Cattoli. 2009. Introduction into Nigeria of a distinct genotype of avian influenza virus (H5N1). Emerg. Infect. Dis. 15:445-447.
14. Gall-Reculé GL, FX Briand, A Schmitz, O Guionie, P Massin, V Jestin. 2008. Double introduction of highly pathogenic H5N1 avian influenza virus into France in early 2006. Avian Pathol. 37(1):15-23.
15. Kilpatrick, A. M., A. A. Chmura, D. W. Gibbons, R. C. Fleischer, P. P. Marra, and P. Daszak. 2006. Predicting the global spread of H5N1 avian influenza. Proc. Natl. Acad. Sci. U. S. A. 103:19368-19373.
16. Liu, J., H. Xiao, F. Lei, K. Qin, X.W. Zhang, X.L. Zhang, D. Zhao, G. Wang, Y. Feng, J. Ma, W. Liu, J. Wang, G.F. Gao. 2005. Highly pathogenic H5N1 influenza virus infection in migratory birds. Science. 19;309: 1206
17. Maddison, W. P. and D. R. Maddison. 1989. Interactive analysis of phylogeny and character evolution using the computer program MacClade. Folia. Primatol. (Basel) 53:190-202.
18. Monne, I., T. M. Joannis, A. Fusaro, P. De Benedictis, L. H. Lombin, H. Ularamu, A. Egbuji, P. Solomon, T. U. Obi, G. Cattoli, and I. Capua. 2008. Reassortant avian influenza virus (H5N1) in poultry, Nigeria, 2007. Emerg. Infect. Dis. 14:637-640.
19. Nakano, T., L. Lu, P. Liu, and O. G. Pybus. 2004. Viral gene sequences reveal the variable history of hepatitis C virus infection among countries. J. Infect. Dis. 190:1098-1108.
20. OIE - World Organization for Animal Health. 2008. UPDATE ON HIGHLY PATHOGENIC AVIAN INFLUENZA IN ANIMALS (TYPE H5 and H7).
21. Owoade, A. A., N. A. Gerloff, M. F. Ducatez, J. O. Taiwo, J. R. Kremer, and C. P. Muller. 2008. Replacement of sublineages of avian influenza (H5N1) by reassortments, sub-Saharan Africa. Emerg. Infect. Dis. 14:1731-1735.
22. Parker, J., A. Rambaut, and O. G. Pybus. 2008. Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty. Infect. Genet. Evol. 8:239-246.
23. Pfeiffer J, M. Pantin-Jackwood, T. L. To, T. Nguyen, D. L. Suarez. 2009. Phylogenetic and biological characterization of highly pathogenic H5N1 avian influenza viruses (Vietnam 2005) in chickens and ducks. Virus Res. 142(1-2):108-20.
24. Posada, D. and K. A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-818.
25. Rambaut, A. 2008. FigTree v 1.1.2.
26. Rambaut, A. and A. J. Drummond. 2007. Tracer v1.4.
27. Ronquist F. and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572-1574.
28. Salzberg, S. L., C. Kingsford, G. Cattoli, D. J. Spiro, D. A. Janies, M. M. Aly, I. H. Brown, E. Couacy-Hymann, G. M. De Mia, H. Dung do, A. Guercio, T. Joannis, A. S. Maken Ali, A. Osmani, I. Padalino, M. D. Saad, V. Savic, N. A. Sengamalay, S. Yingst, J. Zaborsky, O. Zorman-Rojs, E. Ghedin, and I. Capua. 2007. Genome analysis linking recent European and African influenza (H5N1) viruses. Emerg. Infect. Dis. 13:713-718.
29. Starick, E., M. Beer, B. Hoffmann, C. Staubach, O. Werner, A. Globig, G. Strebelow, C.

Grund, M. Durban, F. J. Conraths, T. Mettenleiter, and T. Harder. 2008. Phylogenetic analyses of highly pathogenic avian influenza virus isolates from Germany in 2006 and 2007 suggest at least three separate introductions of H5N1 virus. Vet. Microbiol. 128:243-252.
30. Suwannakarn, K., A. Amonsin, J. Sasipreeyajan, P. Kitikoon, R. Tantilertcharoen, S. Parchariyanon, A. Chaisingh, B. Nuansrichay, T. Songserm, A. Theamboonlers, and Y. Poovorawan. 2009. Molecular evolution of H5N1 in Thailand between 2004 and 2008. Infect. Genet. Evol. 9:896-902.
31. Szeleczky Z., A. Dán, K Ursu, E Ivanics, I Kiss, K Erdélyi, S Belák, CP Muller, IH Brown, A Bálint. 2009. Four different sublineages of highly pathogenic avian influenza H5N1 introduced in Hungary in 2006-2007. Vet Microbiol. 20;139(1-2):24-33.
32. Lam T.T., C.C. Hon, O.G. Pybus, S. L. Kosakovsky Pond, R.T. Wong, C.W. Yip, F. Zeng, F.C. Leung. 2008. Evolutionary and trasmission dynamics or reassortant H5N1 influenza virus in Indonesia. PLoS Pathog. 22;4(8):e1000130.
33. Vijaykrishna D, J Bahl, S Riley, L Duan, JX Zhang, H Chen, JS Peiris, GJ Smith, Y Guan.

Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses. PLos Pathogens
26;4(9):e1000161.
34. WHO/OIE/FAO H5N1 Evolution Working Group. 2009. Continuing progress towards a unified nomenclature for the highly pathogenic H 5 N 1 avian influenza viruses: divergence of clade 2.2 viruses. Influenza Other Respi Viruses 3:59-62.
35. WHO/OIE/FAO H5N1 Evolution Working Group. 2008. Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg. Infect. Dis. 14:e1.
36. Wilgenbusch, J. C. and D. Swofford. 2003. Inferring evolutionary trees with PAUP*. Curr. Protoc. Bioinformatics Chapter 6:Unit 6.4.
37. Xu, X., K. Subbarao, N.J. Cox, and Y. Guo. 1999. Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology. 224:175-183

1 Table 1. Genome constellations of the reassortant H5N1 viruses collected in Nigeria. The different
2 colors reflect segment whose sequences fall into different sublineages of clade 2.2.

	N.	HA	NA	PB2	PB1	PA	NP	NS	MP	REF
R1	4	sublineage I	sublineage II	sublineage II	sublineage I	sublineage II	sublineage I	sublineage I	sublineage II	Salzberg et al., 2007
R2	1	sublineage II	sublineage I	sublineage I	sublineage II	This study				
$\left\lvert\, \begin{aligned} & \text { R3- } \\ & \text { I/II-N } \end{aligned}\right.$	46	sublineage I/II-N	sublineage II	Monne et al., 2008						
R4	2	sublineage I/II-N	sublineage II	sublineage I/II-N	sublineage II	This study				
R5	2	sublineage II	sublineage I/II-N	sublineage II	Owoade et al., 2008					

1 Table 2. Estimates of the nucleotide substitution rate (subs/site/year) calculated for all the Nigerian
2 viruses, sublineage II and sublineage I/II-N

Gene	NIGERIAN VIRUSES		SUBLINEAGE II		SUBLINEAGE I/II-N	
	Mean sub. rate ($\times 10^{-3}$)	HPD Sub. Rate ($\times 10^{-3}$)	Mean sub. rate ($\times 10^{-3}$)	HPD Sub. Rate ($\times 10^{-3}$)	Mean sub. rate ($\mathrm{x} \mathrm{10}^{-3}$)	$\begin{gathered} \text { HPD Sub. } \\ \text { Rate }\left(\times 10^{-3}\right) \end{gathered}$
HA	5.07	4.25-5.94	5.42	3.98-6.89	2.88	21.54-4.29
NA	5.75	4.53-8.96	6.56	4.38-8.57	5.99	3.81-8.29
PB2	5.09	4.26-5.91	5.40	4.07-6.73	4.34	3.20-6.15
PB1	4.82	4.06-5.59	5.01	3.83-6.23	4.34	2.98-5.53
PA	5.03	4.22-5.83	3.28	1.85-4.72	3.26	1.95-4.76
NP	4.87	3.76-5.98	5.34	3.67-7.03	5.24	3.6-7.13
NS	5.34	4.07-6.74	6.23	4.09-8.53	4.94	2.58-7.44
MP	4.17	2.96-5.4	-	-	-	-

1 Table 3. Estimates of the Time to Most Recent Common ancestor (tMRCA) for all the Nigerian
2 viruses, sublineage II and sublineage I/II-N

Gene	NIGERIAN VIRUSES	SUBLINEAGE II	SUBLINEAGE I/II-N
	Mean tMRCA (95\% HPD)	Mean tMRCA ($\mathbf{9 5 \%}$ HPD)	Mean tMRCA (95% HPD)
HA	Mar 2005 (Jan $04-\operatorname{Aug} 05)$	Nov 2005 (Sep 05 - Dec 05)	Mar 2006 (Aug $05-\operatorname{Aug} 06)$
NA	Jun 2005 (Feb 05 - Oct 05)	Nov 2005 (Sep 05 - Jan 06)	July 2006 (Mar 06 - Nov 06)
PB2	Mar 2005 (Oct 04- Aug 05)	Oct 2005 (Oct 05 - Jan 06)	May 2006 (Jan 06 - Aug 06)
PB1	Feb 2005 (Sep 04 - July 05)	Nov 2005 (Sep 05 - Jan 06)	May 2006 (Jan 06 - Sep 06)
PA	Jun 2005 (Feb $05-$ Nov 05)	July 2005 (Sep 04 - Mar 06)	Sep 2005 (Nov 04 - July 06)
NP	June 2005 (Nov 04 - Nov 05)	Dec 2005 (Nov 05 - Jan 06)	Sep 2006 (Apr 06 - Nov 06)
NS	Oct 2004 (Jan $04-$ Jun 05)	Nov 2005 (Aug 05 - Jan 06)	Jun 2006 (Dec 05 - Oct 06)
MP	Mar 2005 (July 04 - Oct 05)	-	-

FIGURE LEGENDS

Figure 1: Maximum likelihood (ML) phylogenetic tree for the HA gene segment of HPAI H5N1 avian influenza viruses from Africa, Europe, Middle East and Asia. Sequences of Nigerian viruses analyzed in this study are highlighted in yellow. Sublineages and clades are colored as follows: clade 2.2.1 is green, sublineage I is orange, sublineage II is pink, sublineage III is red, and sublineage I/II-Nigeria is yellow. The numbers at each branch point represent bootstrap values (black) and posterior probabilities (red). The numbers of substitutions that occur along the main branches appear in the blue boxes.

Figure 2: ML phylogenetic tree for the NA gene segment of HPAI H5N1 avian influenza viruses from Africa, Europe, Middle East and Asia. The color scheme is the same as that used in figure 1.

Figure 3: Map showing Nigerian states. Regions identified in the migration analysis are highlighted with different colors.

Figure S1: ML phylogenetic tree for the PB1 gene segment of HPAI H5N1 avian influenza viruses from Africa, Europe, Middle East and Asia. The color scheme is the same as that used in figure 1.

Figure S2: ML phylogenetic tree for PB2 gene of HPAI H5N1 avian influenza viruses from Africa, Europe, Middle East and Asia. The color scheme is the same as that used in figure 1.

Figure S3: ML phylogenetic tree for the PA gene segment of HPAI H5N1 avian influenza viruses from Africa, Europe, Middle East and Asia. The color scheme is the same as that used in figure 1.

Figure S4: ML phylogenetic tree for the NP gene segment of HPAI H5N1 avian influenza viruses from Africa, Europe, Middle East and Asia. The color scheme is the same as that used in figure 1.

