
22 December 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Microbiota of the Planalto de Bolona: an artisanal cheese produced in uncommon environmental
conditions in the Capo Verde islands

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/78861 since



 1 

 
 
 
 

This is an author version of the contribution published on: 
Questa è la versione dell’autore dell’opera: 

Alessandria V., Dolci P., Rantsiouu K., Pattono D., Dalmasso A., Civera T., Cocolin L., 
World Journal of Microbiology and Biotechnology, Vol. 26, Issue 12, Springer, 2010, 

pagg. 2211-2221. 
The definitive version is available at: 

La versione definitiva è disponibile alla URL: 
http://link.springer.com/article/10.1007/s11274-010-0406-7 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



 2 

Microbiota of the Planalto de Bolona: an Artisanal Cheese Produced in Uncommon 

Environmental Conditions in the Cape Verde Islands 

 

Valentina Alessandria
1
, Paola Dolci

1
, Kalliopi Rantsiou

1
, Daniele Pattono

2
, Alessandra Dalmasso

2
, 

Tiziana Civera
2
 and Luca Cocolin

1*
 

 

1
Di.Va.P.R.A., Faculty of Agriculture, University of Turin, Italy 

2
Department of Animal Pathology, Faculty of Veterinary Medicine, University of Turin, Italy 

 

 

*Corresponding author: Di.Va.P.R.A., via Leonardo da Vinci 44, 10095 Grugliasco, Torino, Italy. 

Phone: 0039 011 670-8553, fax 0039 011 670-8549, email: lucasimone.cocolin@unito.it 



 3 

Abstract 

The present study aimed to evaluate the dominant microbial community naturally present in the 

Planalto de Bolona cheese, produced in the Cape Verde Islands. Samples of milk, curd and cheese 

from two different producers were examined through culture-dependent and independent-methods. 

Traditional plating and genetic identification of lactic acid bacteria (LAB) and yeast isolates were 

carried out. Moreover, DNA and RNA extracted directly from samples were subjected to 

Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE).  

Concerning the LAB population, a total of 278 isolates were identified: Lactococcus lactis subsp. 

lactis and Enterococcus faecium represented the most isolated species. Regarding yeasts, the 

analysis of isolates throughout the manufacturing period showed a consistent presence of the genus 

Candida. Divergences in species detection between culture-dependent and culture-independent 

methods were observed, as well as between DNA and RNA analysis. PCR-DGGE underlined high 

heterogeneity among bacterial species while yeast microbiota was dominated by Aureobasidium 

pullulans at DNA level. The obtained results represent a first approach in the understanding of the 

Planalto de Bolona cheese microbial ecology and consequently may constitute a first step towards 

the full comprehension of the microbiota of this artisanal cheese produced in unusual environmental 

conditions in the Cape Verde Islands. 
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Introduction 

The Bolona cheese is produced in the Cape Verde Islands, specifically in the Planalto de Bolona, a 

desert mountain area in the Island of Sant’Antao, where goat breeding represents one of the main 

sources of employment for the local population. The Bolona cheese is a pressed, fresh cheese 

produced from goat-milk, coagulated by addition of home made kid’s rennet, usually without any 

ripening. Its manufacturing is highly influenced by the lack of water resources characterising the 

desert environment in which it is produced. As water is scarce, the washing of cheese-making 

equipment is usually performed with whey. Cheese-making starts immediately after milking in tiny 

traditional stone huts with roofs of straw and matting. The milk transformation is often an open-air 

process, obtained without any thermal treatment or starter culture addition. Once the curd is ready, 

it is broken down to the size of corn grains and then separated from the whey, pressed by hand and 

salted. The characteristic shape of the Bolona cheese is obtained using a tuna-like can, and weighs 

about 400 g. Salted using local sea-salt, the cheese is usually sold and consumed within 72 hours. 

The microbial population naturally present in cheeses constitutes an important parameter involved 

in the definition of the composition, structural and sensorial characteristics of a specific cheese. The 

microbiota of each dairy product (as well as each fermented food) has its own history, during which 

the microbial population structure changes under the influence of continuous shifts in 

environmental factors occurring during its preparation (Coppola et al 2008). The microbiota of 

cheeses is mainly represented by lactic acid bacteria (LAB), which have important roles in their 

manufacturing. In seasoned cheeses, LAB have an impact both during the fermentation process, as 

well as during the later steps of the production, especially during seasoning, in terms of aroma 

production. In fresh cheeses, LAB populations are responsible for the acidification process, thereby 

preventing the growth of spoilage microorganisms, and for the development of aroma profiles 

associated with buttery and cream notes (Fox et al 2004). Following the above assumptions, the aim 

of this research was to investigate the indigenous bacterial population involved in the production of 

the Bolona cheese, in order to obtain preliminary knowledge of lactic acid bacteria (LAB) species 
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carrying out its fermentation in the peculiar environmental conditions described. The work also 

monitored the population of yeasts, which plays a significant role through their ability to metabolize 

milk constituents (Fleet 1990). The study adopted both culture-dependent and independent methods, 

in order to obtain a wider knowledge on the Cape Verde Bolona cheese microflora. LAB and 

yeasts, isolated by conventional methods, were identified by molecular methods. At the same time, 

total DNA and RNA were directly extracted from samples and Polymerase Chain Reaction-

Denaturing Gradient Gel Electrophoresis (PCR-DGGE) was carried out to understand the 

composition of dominant microbiota in food matrices. Analysis of RNA through reverse 

transcription PCR (RT-PCR) and DGGE was carried out to reveal and monitor the metabolically 

active microorganisms. 

 

Material and methods 

Dairy samples and microbiological analysis 

Samples of milk (M), curd (Cu) and cheese (Ch) produced in the Cape Verde Islands were collected 

from two different productions, each from two different producers. In this study the two producers 

are called P1 and P2 and, for each of them, A and B represent the two productions. A total of 6 

samples of milk, curd and cheese, 3 for each production, and for each producer, were included in 

the study and analyzed. Samples were picked up in the winter season with a difference of about 2 

months from each sampling. All samples were transported to the laboratory in Italy under strict 

refrigeration conditions and subjected to microbiological analysis. Samples were analyzed in by 

conventional microbiological methods. Ten millilitres of milk and ten grams of curd and cheese 

samples were homogenized in 40 ml sterile Ringer solution (Oxoid, Milan, Italy) with a stomacher 

machine, serially diluted in Ringer solution and plated on specific media for viable counts. The 

following analysis were carried out on duplicate agar plates: i) total aerobic mesophilic flora on 

Gelatin Peptone Agar (GPA) (Oxoid), incubated for 48 h at 30 °C; ii) mesophilic and thermophilic 

cocci on M17 (Oxoid), incubated respectively at 22 and 42°C for 48 h; iii) mesophilic (22°C) and 
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thermophilic lactobacilli (42°C) on de Man Rogosa Sharpe (MRS) agar (Oxoid); iv) enterococci on 

Kanamycin Aesculin Azide Agar (KAA) (Oxoid), at 37°C for 24 h; v) coagulase-negative cocci 

(CNC) on Mannitol Salt Agar (MSA) (Oxoid), at 30°C for 48 h; vi) total coliforms on Violet Red 

Bile Lactose Agar (VRBLA) (Fluka), at 37°C for 24 h; fecal coliforms on VRBLA at 42°C for 24 

h; vii) yeasts on Malt Agar (Oxoid) supplemented with tetracycline (1 µg/ml, Sigma, Milan Italy), 

at 25°C for 96 h. After counting, means and standard deviations were calculated.  

A total of 25 randomly selected colonies from each M17 agar, MRS agar and KAA agar, as well as 

10 colonies from Malt Agar, were isolated for each type of sample, in order to obtain a 

representative LAB and yeast population of Cape Verde Cheese. They were purified respectively on 

M17 agar, MRS agar, KAA agar and Malt agar and stored at -80°C in M17 broth for lactococci and 

enterococci, in MRS for lactobacilli and in YPD (1% yeast extract, 2% peptone and 2% glucose) for 

yeasts.  

 

DNA extraction from pure cultures 

Genomic DNA was extracted from 1 millilitre of an overnight culture of each isolate and 

centrifuged at 13,200 rpm for 10 min at 4°C to pellet the cells. The pellet was subjected to DNA 

extraction according to Rantsiou et al (2008). In the case of LAB, a treatment of 30 min at 37°C 

with lysozyme (50 mg/ml, Sigma) was carried out for cell lysis. 

 

Direct extraction of nucleic acids from dairy samples 

For curd and cheese samples, 10 g were homogenized in a stomacher bag with 40 ml of Ringer 

solution. Big debris was allowed to deposit for 5 min and 1 ml, for both RNA and DNA, of 

supernatant was collected and centrifuged at 13,200 rpm for 10 min to pellet the cells. For milk, 1 

ml, for both RNA and DNA, was directly centrifuges and the pellet used for nucleic acids 

extraction. 

After centrifugation, the pellet was re-suspended in 150 µL of proteinase K buffer (50 mM Tris-
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HCl, 10 mM EDTA pH 7.5, 0.5% [wt/vol] sodium dodecyl sulphate) and 25 µL of proteinase K (25 

mg/ml, Sigma) and 50 µL of lysozyme (50 mg/ml, Sigma) were added. The solution was transferred 

to 1.5 ml screw cap tube, containing 0.3 g of glass beads with a diameter of 0.5 mm, and submitted 

to heat treatment at 50°C for 1 h. Later on, 150 µL of 2X breaking buffer (4% [vol/vol] Triton X-

100, 2% [wt/vol] sodium dodecyl sulphate, 200 mM NaCl, 20 mM Tris pH 8 and 2 mM EDTA pH 

8) as well as 300 µL of phenol-chloroform-isoamyl alcohol 25:24:1 (pH 6.7, Sigma) in the case of 

DNA, or 300 µL of phenol-chloroform 5:1 (pH 4.7, Sigma) for RNA, were added and the tubes 

were submitted to three 30-s bead beater (Fast Prep; Bio 101, Ca, USA) treatments at 4.5 m/sec 

speed. Three hundred microlitres of TE (10 mM Tris, 1mM EDTA) were added in the tubes and a 

centrifugation at 13,200 rpm for 10 min was performed. The aqueous phase was collected and 

nucleic acids were precipitated by the addition of 750 µL ice-cold absolute ethanol. DNA and RNA 

were pelleted by centrifugation at 13,200 rpm for 10 min at 4°C, washed briefly in 70% ethanol and 

re-suspended in 50 µL of sterile water. In the case of RNA, DNase-free RNase (Ambion, Monza, 

Italy) was added and the RNA samples were incubated at 37°C for 3 h to digest DNA. RNA 

samples were checked for the presence of residual DNA by PCR amplification (Cocolin et al. 2001 

b). 

 

PCR and RT-PCR 

DNA extracted from bacteria isolates was amplified using PCR with a primer set designed by Klijn 

et al. (1991): P1V1 (5’- GCG GCG TGC CTA ATA CAT GC-3’) and P2V1 (5’TTC CCC ACG 

CGT TAC TCA CC-3’), while yeast DNA was amplified with primers NL1 (5’- GCA TAT CAA 

TAA GCG GAG GAA AAG-3’) and LS2 (5’- ATT CCC AAA CAA CTC GAC TC-3’), as 

reported by Cocolin et al. (2000). A GC-clamp (5’- CGC CCG CCG CGC GCG GCG GGC GGG 

GCG GGG GCA CGG GGG G-3’) was attached to the P1V1 and NL1 primers for DGGE analysis, 

as described by Sheffield et al. (1989). Both PCR reactions were performed in a final volume of 25 

µL containing 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 0.2 mM of deoxynucleoside 
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triphospates (dNTP), 1.25 U of Taq Polymerase (Applied Biosystems, Milan Italy), 0.2 µM of each 

primer and 100 ng of template DNA. Amplifications were carried out in a PTC-200 DNA Engine 

MJ Research thermal cycler (Biorad, Milan, Italy) as described by Cocolin et al. (2001b) for 

bacteria and Cocolin et al. (2000) for yeasts.  

To investigate the samples for the dominant bacterial species, the variable V3 region of 16S rRNA 

gene was amplified with primers 338f (5’-ACT CCT ACG GGA GGC AGC AGC AG-3’) and 518r 

(5’- ATT ACC GCG GCT GCT GG-3’) (Ampe et al. 1999). A GC clamp (5’- CGC CCG CCG 

CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG G-3’) was attached to the end of 5’ of 

primer 338f for DGGE analysis. The PCR was performed in a final 25 µl containing 10 mM Tris-

HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 0.2 mM deoxynucleoside triphospates (dNTP), 1.25 U 

of Taq Polymerase (Applied Biosystems, Milan Italy), 0.2 µM of each primer and 100 ng of DNA. 

The amplification cycle of denaturation at 95°C for 1 min, annealing at 42°C for 1 min and 

extension at 72°C for 1 min was repeated 35 times. The cycle was preceded by an initial 

denaturation at 95°C for 5 min and followed by a final extension at 72°C for 10 min.  

Concerning yeasts DNA, primers NL1 with GC clamp and LS2 were used. The reaction mix was 

the same used for yeast isolates as described above, adding 100 ng of DNA.  

The reverse transcription (RT) reactions were performed using the M-MLV reverse transcriptase 

(Promega, Milan, Italy). One microgram of RNA was mixed with 1 µL of 10 µM of primer 518r or 

LS2, for bacteria and yeast RNA, respectively, and sterile water to a final volume of 10 µL and 

incubated at 75°C for 5 min. The mix was placed on ice and a mixture containing 50 mM  Tris- HCl 

(pH 8.3), 75 mM KCl, 3 mM MgCl2, 10 mM DTT, 2 mM of each dNTP, 1 µL of 200 U/µL M-

MLV and 0.96 units of RNasin ribonuclease inhibitor (Ambion) was transferred to the reaction 

tube. The reverse transcription was carried out at 42°C for 1 h and 1 µL of RT reaction was added 

to the PCR reaction mix. 

 

DGGE analysis 
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The Dcode universal mutation detection system (Biorad, Milan, Italy) was used for DGGE analysis. 

PCR products of bacteria and yeast isolates were analyzed by DGGE as described by Cocolin et al. 

(2001b) and by Cocolin et al. (2000), respectively. 

PCR products obtained with primers 338f/518r were applied to a 8% (wt/vol) polyacrilamide gel 

(acrylamide-bis acrylamide 37:5:1) with a denaturing gradient from 30 to 60% (Cocolin et al. 

2001a), while in the case of PCR products obtained with primers NL1/LS2 the gradient was from 

30 to 50% in a 1X TAE buffer (2 M Tris base, 1 M glacial acetic acid, 50 M EDTA [pH 8]). Gels 

were subjected to a voltage of 130 volt for 4h at 60°C, stained for 20 min in 1x TAE containing 1x 

SYBR Green I (Sigma) and then analyzed under UV by using UVI pro platinum 1.1 Gel Software 

(Eppendorf, Hamburg, Germany). 

 

Molecular identification of the isolates 

DGGE profiles of isolates were grouped and representatives of each group were amplified with 

primers P1V1 and P4V3 (Klijn et al. 1991) targeting the 700 bp of the V1-V3 region of the 16S 

rRNA gene for bacteria DNA and with primers NL1/ NL4 (Kurtzman and Robnett 1997)  for yeast 

DNA to amplify partial 26S rRNA gene. The PCR products were sent to MWG Biotech (Edersberg, 

Germany) for sequencing and the resultant sequences were aligned with those in Gene Bank using 

the Blast program (Altschul et al. 1997), to determine the known relatives. 

 

Sequencing of bands 

The program BioNumerics Software (Applied-Maths, Sint-Martens-Latem, Belgium) was used for 

pattern analysis and for normalization of gels. Selected DGGE bands were extracted from the gels 

using sterile pipette tips, transferred into 50 µL sterile water and incubated overnight at 4°C. Two 

µL of the eluted DNA were re-amplified by using the conditions described above and checked by 

DGGE. PCR products that gave a single band, comigrating with the DNA/RNA control, were then 

amplified with bacteria and yeast primers without GC clamp and sequenced by a commercial 
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facility (MWG Biotech, Ebersberg, Germany). Sequences were aligned in Gene Bank using the 

Blast Program (Altschul et al. 1997). For those bands whose sequencing did not produce any result, 

cloning procedure was performed. PCR products were cloned in pGEM-T Easy vector (Promega, 

Milan, Italy) and the resulting colonies were checked also in this case by DGGE using previously 

amplified DNA and RNA extracted directly from the samples as a control. Only clones migrating as 

a single band and at the same position with respect to the control were sequenced at MWG Biotech 

and sequences were aligned in Gene Bank for identification purposes. 

 

Results 

Microbial dynamics as obtained by plate counts 

The mean microbial counts and standard deviation of dairy samples of Cape Verde are reported in 

Table 1. Traditional microbiological analysis showed increasing counts from the milk to the cheese 

in the productions of samples of both producers (P1-P2). The mesophilic aerobic bacteria count 

ranged from 3 log cfu/ml in milk and reached the maximum value of 6.25 cfu/g in the cheese of the 

second producer. 

Concerning the counts of presumptive lactococci and lactobacilli on M17 and MRS agar plates, 

similar trends were observed. Furthermore no differences were observed between mesophilic and 

thermophilic LAB. Differences were detected in the counts of the two producers: while in the milk 

the values of both P1 and P2 were similar ranging from 2.4 to 3.8 log cfu/ml, in the curd and in the 

cheese the counts of P2 presented higher values than those of P1 in all media. The highest value 

(7.5 log cfu/g) was reached in the cheese in M17 at 22°C.  

As far as the enterococci are concerned, the counts were lower than those of lactococci and 

lactobacilli (maximum value: 4.3 log cfu/g). 

The CNC reached the highest level in the cheese of both producers, with values of about 4.7 log 

cfu/g, while yeasts reached counts of 3.90 log cfu/g in cheese of P2. Total and fecal coliforms were 

present with similar counts and they presented higher values in the products of P2 (4.29 log cfu/g in 
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cheese). 

 

Molecular identification of LAB and yeast isolates 

The number and percentage of LAB and yeast isolates among samplings are reported in Tables 2 

and 3.  

Concerning LAB population, a total of 278 isolates were randomly selected from agar plates and 

subjected to molecular identification. Lactococcus lactis subsp. lactis (27.6% of the LAB 

population in P1 and 43% in P2) and Enterococcus faecium (39.4% in P1 and 35.1% in P2) 

represented the most isolated species. In addition, both productions showed a high heterogeneity of 

minor species, counting for the 33% in P1 and 22% in P2. For what concerns lactobacilli, 

Lactobacillus pentosus showed the highest percentages in both cases (9.4% in P1 and 6.6% in P2), 

while Lactobacillus plantarum and Lactobacillus brevis were found only in samples of P1 and with 

lower values (respectively 1.6% and 3.1%). Other enterococci species were isolated only in P2 and, 

in particular, in samples of milk: Enterococcus casseliflavus presented the highest occurrence (9.3% 

of the total LAB in P2), while Enterococcus italicus and Enterococcus durans were encountered in 

lower values. Enterococcus faecalis was isolated from curd and cheese. Other relevant values were 

highlighted for Leuconostoc mesenteroides  (9.4% in P1).  

In the P1, L. lactis subsp. lactis and E. faecium showed their highest values in the milk and then 

slightly decreased in the curd and in the cheese. In particular, the milk of P1 was characterised by a 

low presence of minor species (Leuc. mesenteroides, Weisella paramesenteroides, Leuconostoc 

citreum and Streptococcus parauberis), progressively increasing through the manufacturing in the 

curd and cheese, together with the development of other species (Lb. pentosus as the most 

noticeable).  S. parauberis and Leuc. citreum were isolated only in the milk. On the other hand, the 

milk of P2 presented instead a higher balance in the shares of the different species, with the minor 

species strongly diminishing throughout the manufacturing (from 51.4 % in the milk  to 12.7 % in 

the cheese). In this case, L. lactis subsp. lactis and E. faecium presented lower shares in the milk 
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(also due to the high presence of E. casseliflavus), then raising in the curd and in the cheese.  

Regarding yeasts, a total of 69 isolates were identified. The analysis of isolates throughout the 

manufacturing showed a consistent presence of the genus Candida in the samples of P1 (Candida 

pararugosa with 41.5%, Candida zeylanoides with 24.4% and Candida parapsilosis with 17.1%). 

The remaining share was constituted by Trichosporon coremiiforme present in milk, curd and 

cheese with the same percentage and Debaryomyces hansenii (isolated only in the milk). In the 

samples of P2, a high presence of minor species (Aureobasidium pullulans, C. pararugosa, 

Cryptococcus diffluens as the most noticeable) was observed in the milk. The Rhodotorula glutinis 

was found consistently in the milk then decreasing in the curd and in the cheese due to the 

development of  C. parapsilosis. 

 

DGGE analysis of samples 

Total DNA and RNA from all samples were extracted and analysed by PCR-DGGE. The DNA and 

RNA gels are shown in Figures 1, 2, 3 and 4 while the results of the identification of bands are 

presented in Tables 4 and 5. 

For what concerns the bacteria population, a high variability was observed in the samples of the two 

producers. Bands corresponding to L. lactis subsp. lactis (4-9-12-20-21-24-27, Figs.1 and 2) were 

the most frequent in the samples of both P1 and P2, in DNA as well as in RNA. Regarding the other 

species, a high heterogeneity was observed (Figs. 1 and 2): Lactobacillus helveticus (bands 13 and 

14) was only found in P1 curd samples at RNA level, and several other microorganisms appeared 

only once. This was noticed for Leuconostoc pseudomesenteroides (band 16), Moraxella osloensis 

(band 11) and Kocuria rhizophila (band 17), found at RNA level, and Propionibacterium acnes 

(band 7), Gluconobacter thailandicus (band 3) and Methylobacterium sp. (band 2), found for the 

DNA. Escherichia coli (band 6 and 22, Figs. 1 and 2) was only identified at DNA level in one 

production of both P1 and P2, and only in samples of cheese. Although P2 presented a lower 

number of different species, Klebsiella sp. (band 23) and a Firmicutes population (band 26) were 
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found only in P2 samples.  

Primers used for bacterial DNA analysis amplified eukaryotic DNA as well, highlighting the 

presence of Saccharomyces cerevisiae (only in P1), Sus scrofa mRNA and Delphinella strobiligena 

(in both P1 and P2). 

 Regarding yeast/mould population at DNA level, all the samples showed three bands that were 

impossible to separate. After cloning and sequencing, the band 1 (Fig. 3) resulted to be A. pullulans. 

Other bands were cut and resulted as Phoma herbarum (band 2, Fig. 3), Seyrigia humbertii revealed 

in a sample of curd (band 3, Fig. 3) and S. cerevisiae revealed in cheese (band 6, Fig. 4). 

In the case of RNA, a higher variability emerged. Bands 11 and 12 (Figs. 3 and 4) were identified 

as Rhizomucor miehei, and were found in samples of curd and milk. S. cerevisiae (band 7, 8, 15, 4 

and 5) was the most present species found at RNA level as shown in Figs. 3 and 4 and it was 

present in samples of both producers in milk, as well as in curd and cheese. Filobasidium elegans 

(band 9, Fig. 4) was found only in production B of P2 while Alternaria alternata was found in the 

cheese A of P1 (band 14, Fig. 3) and once in the curd of P2 (band 13, Fig.4). C. pararugosa was 

observed in cheese B of P1 (band 10) and in the milk B of P2 (band 16). 

 

Discussion 

This study provides a first overall analysis of the microbial communities in the milk and of their 

evolution in the curd and in the cheese produced in Cape Verde Islands.  

The conventional microbiological data highlighted a consistent count variation also between the 

productions of each producer, as suggested by the high standard deviation of the average counts. 

This may be due to the differences in terms of milk as well as to the low standardization of the 

peculiar technology of production. L. lactis subsp. lactis and E. faecium resulted the most frequent 

species on agar plates, with L. lactis subsp. lactis representing one of the most predominant species 

in cheese-making, as it is the case for many European artisanal dairy products (Cogan et al.1997). 

Concerning enterococci (E. faecium, together with E. italicus, E. durans, E. faecalis and E. 
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casselliflavus present in lower shares), their presence is widely reported in artisanal dairy products 

(Cogan et al. 1997; Dolci et al. 2008a 2008b). At the same time, their presence could be also 

associated to the low hygienic conditions during milking and storing processes (Garcia Fontan et al. 

2001), and in this case their occurrence may also be explained by the peculiar environmental 

conditions and the adopted production technology. Counts on MRS plates, a medium used to 

enumerate lactobacilli, resulted similar to those on M17, but the molecular identification showed 

that only a minimal share was represented by lactobacilli. This may be due to the low specificity of 

MRS medium, where also lactococci species grew. Supporting this hypothesis, it is interesting to 

point out how several authors already highlighted the scarce selectivity of the used media (Ampe et 

al. 1999; Randazzo et al. 2002; Ercolini et al. 2003; Rantsious et al. 2008). Moreover, on these 

selective media also species of staphylococci and W. paramesenteroides grew.  

Also in the case the of the culture independent method, species of lactobacilli represented a 

minority. They were found only at RNA level and only in the curds sample of P2. The scarce 

presence of lactobacilli is explainable considering that the Bolona is a fresh cheese and lactobacilli 

occurrence is usually higher in ripened semi-hard cheeses (Beresford et al. 2001). Culture-

independent methods were also used to overcome the problems usually associated with microflora 

growth on media (Ercolini 2004). This approach did not prove to be relevant in the case of L. lactis 

subsp. lactis, which was the most recurrent species throughout the manufacturing, as we observed 

from results obtained by plating. On the other hand for the majority of the other species, relevant 

differences were observed. For instance, enterococci present on the plates did not produce any 

bands in DGGE gels, most probably due to the detection limit of the PCR-DGGE method, which 

has been reported to be 10
3
-10

4
 cfu/g or ml (Cocolin et al 2001b). Moreover, several species not 

present on the plates were identified through the culture-independent method, and in particular 

Methylobacterium sp., G. thailandicus, K. rhizophila, M. osloensis, P. acnes, E. coli, Klebsiella sp. 

Some of them are usually present in cheeses, while others are very unusual in food and in particular, 

in cheeses.  
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The primers 338f-518r targeting the bacterial 16S rRNA gene V3 variable region did not present a 

high specificity and amplified eukaryotic species as well, in this way identifying S. cerevisiae, D. 

strobiligena and Sus scrofa mRNA. This phenomenon has been already highlighted in a study by 

Lopez et al. (2003), where it was shown that primers for the V3 region could also amplify yeast and 

fungal species. The presence of Sus scrofa mRNA in goat cheese is very odd, and may be once 

again explained if we consider the specific environmental and technological conditions 

characterizing the production of the Bolona cheese, in which animals of different species are 

sharing the same farm spaces.  

Literature analysis shows that few contributions concerning population dynamics took in 

consideration DGGE fingerprint obtained from RNA (Randazzo et al. 2002; Rantsiou et al. 2008). 

In this study, RNA was analyzed to monitor the active microflora and evaluate differences from 

DNA, which is usually used in order to profile the biodiversity within a specific ecosystem. Only a 

partial correspondence was revealed: L. lactis subsp. lactis was found also in RNA underlining its 

vitality. M. osloensis, Lb. helveticus, Leuc. pseudomesenteroides, and K. rhizophila and Firmicutes 

population were found only at RNA level.  

Regarding yeasts, the analyses showed maximum values of 4 log cfu/g, confirming yeasts’ ability to 

multiply in dairy products, despite their low values. Yeasts are usually detected in dairy products 

reflecting a good adaptation to a substrate rich on proteins, lipids, sugars and organic acids. In 

addition, yeasts are able to grow in substrates with high salt concentration, low temperatures, low 

pH and water activity (Lopandic et al. 2006). The occurrence of yeasts in cheeses may contribute 

positively to flavour development during the stage of maturation or, on the contrary, may lead to 

product spoilage (Fleet 1990; Pereira 2000 et al. 2000; Corbo et al. 2001). However, in this case the 

short shelf-life of the Bolona cheese induce to presuppose a scarce yeasts contribution to the 

characteristic of the product. 

The identification of yeast isolates showed a high number of genus Candida. In particular, in 

samples of P2, a high percentage was represented by C. parapsilosis. This result is in apparent 
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contradiction with their low ability to survive in cheeses (Jacques and Casaregola 2008). 

A completely different picture regarding the yeast ecology was obtained with the culture-

independent approach. Apart for C. pararugosa, that was detected in one RNA cheese sample, no 

other Candida species were observed by DGGE. Furthermore, differences were observed between 

DNA and RNA. In particular DNA was characterized by the presence of A. pullulans in all samples 

(while in plates the latter was found only in milk of P2), this being attributable to specific 

environmental contaminations. On the other hand, the main yeast species observed at RNA level 

was S. cerevisiae, which was present in samples of both producers. This is not unusual, as the 

presence of S. cerevisiae has been reported in several fermented dairy products and cheeses 

(Bankole and Okagbue 1992; Roostita and Fleet 1996; Prillinger et al. 1999; Gadaga et al. 2000; 

Abdelgadir et al. 2001; Jespenser 2003). Overall, the DGGE profiles at both DNA and RNA level 

for the two producers were rather similar. 

Divergences microbial species detection between culture-dependent and culture-independent 

methods could be due to different reasons: for example, the permanence in cheese matrix of DNA 

coming from cellular autolysis, or the high selectivity of some media towards specific 

microorganisms that find optimal conditions for their growth (Dolci et al. 2008a). The differences 

highlighted between the results obtained through the different methods confirmed the importance to 

combine molecular culture-independent methods with classical microbiological analysis in the 

study of complex microbial communities of the food matrices as reported in many other studies 

(Ercolini 2004; Dolci et al. 2008a; Rantsiou and Cocolin 2006; Rantsiou et al. 2008). In conclusion, 

the importance for the present research lies also in the fact that, within the African environmental 

contexts, fermented milk products are of great significance in their therapeutic value for alleviating 

lactose intolerance, their social value and as a means of generating income (Beukes et al. 2001). In 

this concern, the obtained results constitute the first attempt to provide an overview of the 

indigenous microbiota of the Bolona cheese.  They may constitute an important set of information 

to contribute to the improvement of the cheese-making production conditions in the characteristic 
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environment of Cape Verde Islands, by providing autochthonous strains which can be used as 

starter cultures to increase the standardization and quality of this artisanal product. 
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Table 1. Microbial counts (expressed as mean of log cfu/mL for milk and log cfu/g for curd and cheese of the 2 productions) and standard 1 

deviations (SD) of samples of P1 and P2. Refer to materials and methods for media specifications and incubation conditions. 2 

 3 

 4 

a
Count expressed in cfu/g 5 

b
n.a., “not applicable” 6 

 
GPA M17 22°C M17 42°C MRS 22°C MRS 42°C KAA MSA 

MALT 

AGAR 

VRBLA 

37°C 

VRBLA 

42°C 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

P1-M 3,36 0,31 3,51 0,33 3,23 0,21 3,17 0,14 2,46 0,31 1,21 0,24 3,04 0,21 2,15 0,11 1,55 0,21 0,57 0,81 

P1-Cu 4,54 0,50 4,47 0,15 4,31 0,07 4,48 0,30 4,10 0,59 1,06 0,40 3,91 0,80 2,68 0,99 < 5
a 

n.a
b 

<5
 a 

n.a
b 

P1-Ch 5,59 2,01 5,70 0,60 4,84 0,67 5,45 0,62 4,45 0,49 1,69 0,77 4,64 1,40 3,15 1,53 0,53 0,92 0,65 0,92 

P2-M 3,49 2,33 3,79 2,16 3,41 2,14 2,65 2,40 2,52 1,36 1,63 2,30 1,77 1,1 2,00 0,3 1,48 0,74 1,40 1,23 

P2-Cu 4,30 0,91 5,30 0,99 5,00 0,87 5,09 1,29 4,51 2,32 4,36 2,06 3,58 1,6 3,05 3,1 3,25 2,26 3,05 2,90 

P2-Ch 6,25 1,63 7,53 2,00 6,76 2,11 7,01 2,87 5,01 1,82 3,88 0,70 4,77 2,6 3,90 4,8 4,29 3,89 4,25 3,83 
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Table 2. Molecular identification of LAB isolates of P1 and P2. The isolates were selected 7 

randomly, grouped based on co-migration in PCR-DGGE and representatives of each group were 8 

sequenced to obtain an identification for the whole group. 9 

LAB isolates

n. % n. % n. % n. % n. % n. % n. % n. %

Enterococcus faecium 18 46,2 15 38,5 17 34,7 50 39,4 10 28,6 24 39,3 19 34,5 53 35,1

Lactococcus lactis subsp. lactis 15 38,5 8 20,5 12 24,5 35 27,6 7 20,0 29 47,5 29 52,7 65 43,0

Lactobacillus pentosus - - 4 10,3 8 16,3 12 9,4 2 5,7 4 6,6 4 7,3 10 6,6

Lactobacillus brevis - - 4 10,3 - - 4 3,1 - - - - - - - -

Lactobacillus plantarum - - 1 2,6 1 2,0 2 1,6 - - - - - - - -

Enterococcus casseliflavus - - - - - - - - 11 31,4 2 3,3 1 1,8 14 9,3

Enterococcus faecalis - - - - - - - - - - 1 1,6 1 1,8 2 1,3

Enterococcus italicus - - - - - - - - 1 2,9 - - - - 1 0,7

Enteroccus durans - - - - - - - - 2 5,7 - - - - 2 1,3

Staphylococcus capitis - - 1 2,6 1 2,0 2 1,6 - - - - - - - -

Streptococcus parauberis 1 2,6 - - - - 1 0,8 - - - - - - - -

Staphylococcus epidermidis - - - - - - - - - 1 1,6 - - 1 0,7

Macrococcus caseolyticus 1 2,6 1 2,6 - - 2 1,6 - - - - - - - -

Lactococcus garvieae - - - - 1 2,0 1 0,8 2 5,7 - - 1 1,8 3 2,0

Leuconostoc citreum 1 2,6 - - - - 1 0,8 - - - - - - - -

Leuconostoc mesenteroides 2 5,1 4 10,3 6 12,2 12 9,4 - - - - - - - -

Pediococcus pentosaceus - - 1 2,6 1 2,0 2 1,6 - - - - - - - -

Weissella paramesenteroides 1 2,6 - - 2 4,1 3 2,4 - - - - - - - -

Total 39 100,0 39 100,0 49 100 127 100,0 35 100,0 61 100,0 55 100,0 151 100,0

% Total P2Cu 2 Ch 2M1 Cu 1 Ch 1 M2 %Total P1

 10 

11 
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Table 3. Molecular identification of yeasts isolates of P1 and P2. The isolates were selected 12 

randomly, grouped based on co-migration in PCR-DGGE and representatives of each group were 13 

sequenced to obtain an identification for the whole group. 14 

 15 

Yeast isolates

n. % n. % n. % n. % n. % n. % n. % n. %

Candida pararugosa 6 42,9 6 46,2 5 35,7 17 41,5 1 7,1 - - - - 1 3,6

Candida zeylanoides 5 35,7 1 7,7 4 28,6 10 24,4 1 7,1 - - - - 1 3,6

Candida parapsilosis - - 4 30,8 3 21,4 7 17,1 - - 2 28,6 5 71,4 7 25,0

Aerobasidium pullulans - - - - - - - - 1 7,1 - - - - 1 3,6

Cryptococcus diffluens - - - - - - - - 2 14,3 1 14,3 - - 3 10,7

Cryptococcus sp. - - - - - - - - 1 7,1 - - - - 1 3,6

Discophareina fagi - - - - - - - - 1 7,1 - - - - 1 3,6

Rhodotorula glutinis - - - - - - - - 7 50,0 4 57,1 1 14,3 12 42,9

Debaryomyces hansenii 1 7,14 - - - - 1 2,4 - - - - 1 14,3 1 3,6

Trichosporon coremiiforme 2 14,3 2 15,4 2 14,3 6 14,6 - - - - - - - -

Total 14 100,0 13 100,0 14 100,0 41 100,0 14 100,0 7 100,0 7 100,0 28 100,0

M1 Cu 1 Ch 1  %Total P1 M2 Cu 2 Ch 2 % Total P2

 16 

17 
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Table 4. Identification of the bands obtained by PCR-DGGE of bacteria of P1 and P2 based on 18 

BLAST comparison in Gene Bank. 19 

 20 

Band
a
 Closest relative 

% 

Identity 
Source

b
 

1, 15, 25 Sus scrofa 100% AK239829 

2 Methylobacterium sp. 99% EU860986 

3 Gluconobacter thailandicus 100% AB436559 

4, 9, 12, 20, 21, 24, 

27 
Lactococcus lactis subsp. lactis 100% 

AB008215 

5, 8, 18, 19 Delphinella strobiligena 98% DQ471029 

6, 22 Escherichia coli 100% AJ567606 

7 Propionibacterium acnes 97% EF670442 

10 Saccharomyces cerevisiae 99% EU011664 

11 Moraxella osloensis 98% AM161159 

13, 14 Lactobacillus helveticus 99% EU273820 

16 Leuconostoc pseudomesenteroides 97% AB326299 

17 Kocuria rhizophila 99% EF204382 

23 Klebsiella sp. 100% FJ161951 

26 Firmicutes bacterium 100% EF636103 
a
Bands numbered as indicated on DGGE gels shown in Figures 1 and 2. 21 

b
Accession number of sequence of closest relative found with Blast search. 22 

23 



 25 

Table 5. Identification of the bands obtained by PCR-DGGE of yeasts of P1 and P2 based on 24 

BLAST comparison in Gene Bank 25 

 26 

Band
a
 Closest relative 

% 

Identity 
Source

b
 

1 Aureobasidium pullulans 99% DQ872874 

2 Phoma herbarum 99% EU082106 

3 Seyrigia humbertii 98% AY968421 

4, 5, 6, 7, 8, 15 Saccharomyces cerevisiae 100% GQ227687 

9 Filobasidium elegans or Cryptococcus magnus or 

Cryptococcus oeirensis
c
 

99% AF181548, 

FN357226, FN357225 

10, 16 Candida pararugosa 99% GQ139517 

11, 12 Rhizomucor miehei 100% AF198253 

13,14 Alternaria alternata 99% GQ221851 
a
Bands numbered as indicated on DGGE gels shown in Figures 3 and 4. 27 

b
Accession number of sequence of closest relative found with Blast search. 28 

c
The 26S rRNA gene region was 100% identical therefore avoiding identification. 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 



 26 

 46 

Fig. 1. Bacterial DGGE profiles of the nucleic acids extracted directly from samples of P1 and 47 

amplified with primers 338f and 518r. Bands indicated by numbers were excised and after re-48 

amplification (as described in Materials and methods), subjected to sequencing. The identification 49 

of the bands is reported in Table 4 50 

 51 

 52 



 27 

 53 

Fig. 2. Bacterial DGGE profiles of the nucleic acids extracted directly from samples of P2 and 54 

amplified with primers 338f and 518r. Bands indicated by numbers were excised and after re-55 

amplification (as described in Materials and methods), subjected to sequencing. The identification 56 

of the bands is reported in Table 4 57 

 58 



 28 

 59 

Fig. 3. Yeasts DGGE profiles of the nucleic acids extracted directly from samples of P1 amplified 60 

with primers NL1 and LS2. Bands indicated by numbers were excised and after re-amplification (as 61 

described in Materials and methods), subjected to sequencing. The identification of the bands is 62 

reported in Table 5 63 

 64 

 65 
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 66 

Fig. 4. Yeasts DGGE profiles of the nucleic acids extracted directly from samples of P2 amplified 67 

whit primers NL1 and LS2. Bands indicated by numbers were excised and after re-amplification (as 68 

described in Materials and methods), subjected to sequencing. The identification of the bands is 69 

reported in Table 5 70 

 71 


