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Abstract In this paper we consider the numerical integration on a polygonal domain
Ω in R

2 of a functionF(x,y) which is integrable except at a pointP0 = (x0,y0) ∈
◦

Ω , whereF becomes infinite of order two. We approximate either the finite-part or
the two-dimensional Cauchy principal value of the integralby using a spline finite
element method combined with a subdivision technique also of adaptive type. We
prove the convergence of the obtained sequence of cubatures. Finally, to illustrate the
behaviour of the proposed method, we present some numericalexamples.
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1 Introduction

This paper deals with the numerical evaluation of certain hypersingular integrals on a
polygonal domainΩ in R

2, i.e. a domain with the boundary composed of piecewise
straight lines.
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The above integrals arise in several engineering problems and in particular in
applied mechanics ([8] and references therein).

Firstly, we consider the integration of a functionF(x,y) on a convex domainD,
with F integrable except at a pointP0 = (x0,y0) where it becomes infinite of order
two. We setP0 as the origin of polar coordinates(r,θ), with r =

√

(x−x0)2 +(y−y0)2

and denote byr = R(θ) the polar equation of the contour ofD. Following Tricomi’s
presentation [10], we suppose

F(x,y) =
φ(θ)

r2 +F1(x,y), (1.1)

whereF1 denotes a function at most infinite of (algebraic) order lessthan two at
isolated points.

We set
∫

D
= F(x,y)dxdy:=

∫

D
F1(x,y)dxdy+

∫ 2π

0
φ(θ) logR(θ)dθ . (1.2)

If
∫ 2π

0
φ(θ) dθ = 0 then (1.2) defines the two-dimensional Cauchy principal value

integral [10]; otherwise, it defines the Hadamard finite-part [7].
The numerical evaluation of (1.2), with

F(x,y) =
f (x,y)

r2 (1.3)

andD a triangle, a rectangle or, more in general, a convex polygon, has been studied
in literature.

A classical approach consists in the decomposition ofD in triangles, each one
with the singular pointP0 at one vertex. Then, the integral on each triangle is evalu-
ated by a cubature rule of sufficiently high degree of exactness.

SinceP0 is the origin of polar coordinates,f (x,y) can be expressed by

f (x,y) = f (x0 + r cosθ ,y0 + r sinθ) = f̄ (r,θ). (1.4)

Cubatures based on product of univariate Gaussian rules on each triangle of the de-
composition ofD, are proposed in [6]. Convergence results are proved forf̄ (r,θ) ∈
Hs

µ,µ , s≥ 1, 0 < µ ≤ 1, whereHs
µ,µ denotes the space of functions with continuous

partial derivatives up to the orders and such that each partial derivative of orders
satisfies a Ḧolder condition of orderµ , i.e.

| f̄ (s)(r̄, θ̄)− f̄ (s)(r,θ)| ≤C(|r̄ − r|µ + |θ̄ −θ |µ), C > 0. (1.5)

Approximations for (1.2), based on local bivariate quadratic quasi-interpolating
splines on each triangle of the decomposition ofD, are studied in [1], where conver-
gence results are proved for̄f (r,θ) satisfying the condition (1.5), withs= 0.

Gaussian rules and bivariate splines are combined in [11] for evaluating

∫

D
=

g(P0,θ)

r p Φ(P)dP, p = 2,3,
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whereD is a rectangle. Convergence results are proved assuming that g(P0,θ) is
continuous andΦ(P) ∈ C

p+2(D).
In this paper, we consider the problem of the numerical evaluation of

I =
∫

Ω
= F(x,y)dxdy, P0 ∈

◦
Ω , (1.6)

whereΩ is a not necessarily convex polygonal domain andF is defined by (1.3) with
f (x,y) ∈ C(Ω \P0).

We propose a method based on a special spline quadrilateral finite element ([3,
12]), reproducing all bivariate polynomials of total degree at most two, and applied
by a subdivision technique also of adaptive kind.

We denote byD a convex subset ofΩ , such that the singular pointP0 ∈
◦
D. If f̄ ,

given by (1.4), satisfies the following condition onD
∣

∣ f̄ (r,θ)− f̄ (0,θ)
∣

∣ ≤ A(θ)rν , 0 < ν ≤ 1, 0≤ A(θ) < ∞, (1.7)

then we can expressF onD in the form (1.1), with

φ(θ) = f̄ (0,θ) and F1(x,y) =
f̄ (r,θ)− f̄ (0,θ)

r2 . (1.8)

We setI = I1+ I2, whereI1 =
∫

D
= F(x,y)dxdyis defined by (1.2), withF1 andφ given

in (1.8), andI2 =
∫

Ω\D
F(x,y) dxdy, with F defined by (1.3), is a regular integral.

We evaluateI2 by the cubature formula over polygons, having degree of exactness
2 [5] and based on the spline finite element method presented in [3], combined with
the subdivision technique also of adaptive kind ([4]). Then, we apply the same finite
element method to evaluateI1.

For f̄ satisfying the condition (1.7), we prove the convergence toI of the ob-
tained cubature sequence. Such condition is weaker than conditions on f̄ required by
previous methods in [1,6,11].

The above performances make our composite strategy suitable when f̄ (r,θ) and
f (x,y) are not smooth inD andΩ \D, respectively, for example with singularities
of the gradient. Moreover, the adaptive subdivision technique concentrates nodes in
regions of difficulty, reducing the computational cost withrespect to a non adaptive
one. However, whenΩ is a convex polygon and̄f (r,θ) is a smooth function, our
composite strategy cannot be competitive with more classical ones, based on high
degree polynomial approximation at Gaussian.

The integration nodes of our method lie on the boundary of each quadrilateral
element and, in the subdivision procedure, they are shared by several elements, i.e.
the subdivision procedure generates an embedded sequence of integration nodes. This
feature makes the computational cost of our method lower than that one of another
similar composite strategy, using a basic (polynomial) interpolatory type cubature,
whose interior nodes are not kept in the procedure of subdivision, as remarked in [5].

The paper is organized as follows. In Section 2 we review someresults related
to the spline finite element method and to the cubature for regular integrals based
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on it. In Section 3 we present the cubature for (1.6), we analyse the convergence
and we discuss its computational cost. Finally, Section 4 proposes some numerical
examples illustrating the behaviour of our cubatures. Somestructural characteristics
of our algorithm and a possible extension to other cases of singular integrals are also
discussed.

2 L8 spline operator and cubature

In this section, we review some results on the interpolationoperator and cubature by
L8 element basis presented in [3] and [5].
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Fig. 2.1 The 8 nodes and 13 domain points on a quadrilateral element.

For a convex quadrilateral elementQ, divided by four triangles∆1, . . . ,∆4 as
shown in Fig. 2.1(a), we consider the eight nodesV1, . . . ,V8, where

V5 = (V1 +V2)/2, V6 = (V2 +V3)/2, V7 = (V3 +V4)/2, V8 = (V4 +V1)/2,

and the quadratic spline space defined on the quadrangleQ, with C1 smoothness on
both diagonalsV1V3 andV2V4. The dimension of the spline space is eight, as given in
[3].

It is well known ([2]) that a polynomialp of total degree two on a triangle∆ can
be represented in the local Bernstein basis as

p(λ ) = ∑
|α|=2

γαbα(λ )

wherebα(λ ) = 2
α! λ α , λ = (λ1,λ2,λ3) are the barycentric coordinates of∆ , α =

(α1,α2,α3), |α| = α1 +α2 +α3 = 2, α! = α1!α2!α3! andλ α = λ α1
1 λ α2

2 λ α3
3 . Theγα

are calledBézier ordinates or B́ezier coefficientsof p. The points with barycentric
coordinatesα/2 are called domain points in∆ . The piecewise linear interpolant to
the points(α/2,γα) is calledBézier netor B-netor control netof p. Such a B-net
uniquely defines the patch, a fact which is made use of in the socalled Bernstein-
Bézier technique, where all information about the patch is extracted from this net.

Then, by the B-net method, there are thirteen domain points in the quadrilateral
element, as shown in Fig. 2.1(b). We denote by L8 basis the eight quadratic nodal
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basis splinesLi (i = 1, . . . ,8) interpolating the eight nodesV1, . . . ,V8, ([3]). The B́ezier
coefficients of each baseLi (i = 1, . . . ,8), according to the thirteen domain points, are
given in the following matrix

(L1L2L3L4L5L6L7L8)
T

=

























1 0 0 0 −1
2 0 0 −1

2 −1
2 −b

2 0 −b
2 −b

2
0 1 0 0 −1

2 −1
2 0 0 −a

2 −1
2 −a

2 0 −a
2

0 0 1 0 0 −1
2 −1

2 0 0 −d
2 −1

2 −d
2 −d

2
0 0 0 1 0 0 −1

2 −1
2 − c

2 0 − c
2 −1

2 − c
2

0 0 0 0 2 0 0 0 2a 2b 0 0 2ab
0 0 0 0 0 2 0 0 0 2d 2a 0 2ad
0 0 0 0 0 0 2 0 0 0 2c 2d 2cd
0 0 0 0 0 0 0 2 2c 0 0 2b 2bc

























wherea,b,c,d are defined by the following ratios:

a =
|V4V0|
|V4V2|

, b =
|V3V0|
|V3V1|

, c = 1−a, d = 1−b. (2.1)

The spline basis consists of piecewise quadratic polynomials C
1 continuous on the

two diagonals andC0 on the boundary ofQ. By the barycentric coordinates in each
triangle, it is easy to obtain the piecewise polynomial formLi(x,y), i = 1, . . . ,8 in
Cartesian coordinates by the above B-net form.

The Fig. 2.2 shows the representations in Cartesian coordinates of the L8 basis
on [−1,1]2.

The interpolation operator by the L8 basis onQ is defined by ([3])

LQ f (x,y) =
8

∑
i=1

f (VQ
i )LQ

i (x,y), (2.2)

whereVQ
i andLQ

i (x,y) (i = 1,2, . . . ,8) are the eight nodesVi and basis splinesLi(x,y)
defined onQ specifically.LQ f (x,y) interpolatesf at the eight nodes and reproduces
polynomials of degree two ([3]), i.e.,

LQ f (VQ
i ) = f (VQ

i ), i = 1, . . . ,8,

and
LQ f = f , ∀ f ∈ P2.

SinceLQ f ∈ C
1(Q), it is easy to obtain its partial derivatives. In particular, when

Q = [−1,1]2, thenV0 = (0,0), V1 = (−1,−1), V2 = (1,−1), V3 = (1,1), V4 =
(−1,1). Let fi = f (Vi), i = 1, . . . ,8, thenL[−1,1]2 f (x,y)= ∑8

i=1 fiLi(x,y), whereLi(x,y)
are shown in Fig. 2.2 in piecewise polynomial form. Differentiating the polynomials
in Fig. 2.2 atVi(i = 0,1, . . . ,4), we obtain the values of the first partial derivatives of
L[−1,1]2 f atV0,V1, . . . ,V4, as shown in Table 2.1.

Then, for a polygonal domainΩ , divided byN convex quadrilateral elements
Qk (k = 1, . . . ,N), the L8 cubature onΩ is defined by ([5])

ĨΩ f =
N

∑
k=1

ĨQk f ,
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Fig. 2.2 The piecewise polynomials of L8 basis on each triangles∆1, . . . ,∆4 in [−1,1]2.

Table 2.1 The partial derivatives ofL[−1,1]2 f atV0,V1, . . . ,V4.

V0 V1 V2 V3 V4
∂
∂x

f1− f2− f3+ f4+4 f6−4 f8
4

4 f5−3 f1− f2
2

f1+3 f2−4 f5
2

3 f3+ f4−4 f7
2

4 f7− f3−3 f4
2

∂
∂y

f1+ f2− f3− f4−4 f5+4 f7
4

4 f8−3 f1− f4
2

4 f6−3 f2− f3
2

f2+3 f3−4 f6
2

f1+3 f4−4 f8
2

where

ĨQk f =
∫

Qk

LQk f (x,y)dxdy=
8

∑
i=1

CQk
i f (VQk

i ). (2.3)

The coefficientsCQ
i =

∫

QLQ
i (x,y)dxdy, with Q= Qk (k = 1, . . . ,N), can be computed

as follows:

CQ
1 = −1

6b(S1 +S2 +S3 +S4),

CQ
2 = −1

6a(S1 +S2 +S3 +S4),

CQ
3 = −1

6d(S1 +S2 +S3 +S4),

CQ
4 = −1

6c(S1 +S2 +S3 +S4),

CQ
5 = 1

3((1+a+b+ab)S1 +(b+ab)S2 +abS3 +(a+ab)S4),

CQ
6 = 1

3((d+ad)S1 +(1+a+d+ad)S2 +(a+ad)S3 +adS4),

CQ
7 = 1

3(cdS1 +(c+cd)S2 +(1+c+d+cd)S3 +(d+cd)S4),

CQ
8 = 1

3((c+bc)S1 +bcS2 +(b+bc)S3 +(1+b+c+bc)S4),

(2.4)

whereS1, . . . ,S4 are the areas of the four triangles∆1, . . . ,∆4 in Q = Qk anda,b,c,d
are defined in (2.1).
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It is clear that the formula (2.3) and its coefficients (2.4) only depend on the four
verticesVQ

i , i = 1, . . . ,4. In particular, ifQ is a rectangle or a parallelogram with area
SQ then ([5])

a = b = c = d = 1
2, S1 = S2 = S3 = S4 =

SQ
4 and

CQ
1 = CQ

2 = CQ
3 = CQ

4 = − 1
12SQ, CQ

5 = CQ
6 = CQ

7 = CQ
8 = 1

3SQ.
(2.5)

The cubature is exact for quadratic polynomials on arbitrary convex quadrangu-
lations, and for cubic polynomials on rectangulations ([5]).

3 The algorithm for finite-part integral evaluation on a polygonal domain

We consider integrals of the form (1.6) forF(x,y) defined by (1.3), withf (x,y) ∈
C(Ω \P0). In order to evaluate (1.6), we use the following subdivision strategy.

1) The whole polygonal domainΩ is divided into several initial quadrilateral ele-
ments, where the singular pointP0 is at the center of a square elementD0, as
shown in Fig. 3.1(a).

2) In subdivision, the squareD0 is divided into one small squareD1 and four sym-
metric trapezoidal elements, as shown in Fig. 3.1(b) and so on, step by step, ob-
taining the squaresDk ⊂ Dk−1 ⊂ ·· · ⊂ D0.

3) Each quadrilateral element, except the squareDk, is divided into two or four
quadrilateral elements by equal subdivision or adaptive subdivision [4].

0
P


0
D


Ω


(a)

0
D


1
D

0
P


(b)
Fig. 3.1 A domain with singular point and initial quadrilateral elements.

Denote byD0 = P0 + [−h0,h0]
2 the square with edge 2h0 andP0 = (x0,y0) as

center, whereh0 is a positive constant such thatD0 ⊂ Ω . Then the contour ofD0 is

R0(θ) =



















−h0
sinθ , θ ∈ [−3π

4 ,−π
4 ],

h0
cosθ , θ ∈ [−π

4 , π
4 ],

h0
sinθ , θ ∈ [π

4 , 3π
4 ],

−h0
cosθ , θ ∈ [3π

4 , 5π
4 ].

(3.1)
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SetDk = P0+[−hk,hk]
2, wherehk = h0/2k, k= 1,2, . . .. Denote byRk(θ) the contour

of Dk, obtained by replacingh0 by hk in (3.1).
The above subdivision includes one squareDk and other quadrilateral elements in

the quadrangulation ofΩ \Dk = {Ω \D0}∪{D0\Dk}. Denote byδ the length of the
longest diagonal or edge in all elementsQ⊂ Ω \Dk. Then the subdivision procedure
can be described by consideringk→ ∞ andδ → 0.

The integral (1.6) can be expressed as follows

I =
∫

=
Ω

f (x,y)
r2 dxdy= I1 + I2,

where

I1 =
∫

=
D0

f (x,y)
r2 dxdy

and

I2 =

∫

Ω\D0

f (x,y)
r2 dxdy.

At the kth step, fork = 1,2, . . ., with reference toI1, using (1.2) and (1.8), we
write

I1 =
∫

D0

F1(x,y)dxdy+
∫ 2π

0
f̄ (0,θ) logR0(θ)dθ

=

∫ 2π

0

∫ Rk(θ)

0

f̄ (r,θ)− f̄ (0,θ)

r
drdθ +

∫

D0\Dk

F1(x,y)dxdy+
∫ 2π

0
f̄ (0,θ) logR0(θ)dθ

= I (k)
1,1 + I (k)

1,2 + I1,3,

whereI1,3 can be computed exactly by

I1,3 =

∫ 2π

0
f̄ (0,θ) logR0(θ)dθ

= logh0

∫ 2π

0
f̄ (0,θ)dθ −

∫ π/4

−π/4

2

∑
i=−1

f̄ (0,θ +
iπ
2

) logcosθdθ , (3.2)

sinceR0(θ) is fixed and given in Eq. (3.1).

IntegralsI (k)
1,1, I (k)

1,2 andI2 can be computed numerically by the spline interpolation
operatorLQ defined in (2.2) on each quadrilateral elementQ of the quadrangulation
on Ω \Dk, as follows.

In order to evaluateI (k)
1,1, we approximatēf (r,θ) on the squareDk by

LDk f̄ (r,θ) =
8

∑
i=1

f (VDk
i )L̄Dk

i (r,θ), (3.3)

whereVDk
i (i = 1, . . . ,8) are the eight nodes onDk andL̄Dk

i (r,θ) (i = 1, . . . ,8) are the
eight basis splines defined onDk, by replacingx andy by (x− x0)/hk = r cosθ/hk

and(y−y0)/hk = r sinθ/hk in the representations in Fig. 2.2, respectively.
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Therefore

I (k)
1,1 ≃ Ĩ (k)

1,1 =
∫ 2π

0

∫ Rk(θ)

0

LDk f̄ (r,θ)−LDk f̄ (0,θ)

r
drdθ =

8

∑
i=1

Ĉ(k)
i f (VDk

i ), (3.4)

where the cubature coefficients are

Ĉ(k)
i =

∫ 2π

0

∫ Rk(θ)

0

L̄Dk
i (r,θ)− L̄Dk

i (0,θ)

r
drdθ . (3.5)

By some algebra, it is easy to obtain

{Ĉ(k)
i }i=1,...,8 = {1,1,1,1,−1,−1,−1,−1}. (3.6)

Hence

I (k)
1,1 ≃ Ĩ (k)

1,1 =
4

∑
i=1

f (VDk
i )−

8

∑
i=5

f (VDk
i ).

In order to evaluateI (k)
1,2, denoting byNk the number of quadrilateral elements in

the subdivision ofD0\Dk, we write

I (k)
1,2 ≃ Ĩ (k,δ )

1,2 =
Nk

∑
j=1

∫

Q j

LQ j F1(x,y)dxdy

=
Nk

∑
j=1

8

∑
i=1

C
Q j
i F1(V

Q j
i ), (3.7)

whereC
Q j
i are the cubature coefficients (2.4) on each elementQ = Q j ⊂ D0\Dk.

Finally, denoting byM the number of quadrilateral elements inΩ \D0,

I2 ≃ Ĩ (δ )
2 =

M

∑
j=1

∫

Q j

LQ j F(x,y)dxdy

=
M

∑
j=1

8

∑
i=1

C
Q j
i F(V

Q j
i ), (3.8)

whereC
Q j
i are the cubature coefficients (2.4) on each elementQ = Q j ⊂ Ω \D0.

In conclusion,

I ≃ Ĩ (k,δ ) = Ĩ (k)
1,1 + Ĩ (k,δ )

1,2 + Ĩ (δ )
2 + I1,3. (3.9)

In order to study the convergence of proposed cubatures, we need the following
lemma.

Lemma 3.1 For any P0 as the origin of polar coordinates, if (1.7) holds on D0, then
for k = 1,2, . . .

|LDk f̄ (r,θ)−LDk f̄ (0,θ)| ≤ 8A(θ)rν .
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Proof By the definition ofDk and the operatorLDk in (3.3),LDk f̄ (r,θ) = LDk f (P) ∈
C

1(Dk) andLDk f (P) = L[−1,1]2 f (P−P0
hk

) is a piecewise quadratic polynomial onDk.

Note that only the values off at the nodesVDk
i (i = 1, . . . ,8) on the boundary ofDK

are used inLDk f (P). Then, by Table 2.1 and assumption conditions we have

{∣

∣

∣

∣

∂LDk f (P)

∂x

∣

∣

∣

∣

,

∣

∣

∣

∣

∂LDk f (P)

∂y

∣

∣

∣

∣

}

≤ 4
hk

max
i=1,...,8

| f (VDk
i )− f̄ (0,θ)|

≤ 4
hk

max
(r,θ)∈Dk

| f̄ (r,θ)− f̄ (0,θ)|

≤ 4
hk

A(θ)(
√

2hk)
ν . (3.10)

Note thatr = |P−P0| ≤
√

2hk, for P∈ Dk. Therefore, from (3.10)

|LDk f̄ (r,θ)−LDk f̄ (0,θ)|

≤ r max
(r,θ)∈Dk

∣

∣

∣

∣

∂LDk f̄ (r,θ)

∂ r

∣

∣

∣

∣

≤ rν(
√

2hk)
1−ν max

P∈Dk

∣

∣

∣

∣

∂LDk f (P)

∂x
cosθ +

∂LDk f (P)

∂y
sinθ

∣

∣

∣

∣

≤ 8A(θ)rν .

�

We state and prove the following convergence result.

Theorem 3.1 For any P0 ∈
◦

Ω as the origin of polar coordinates, if f∈ C(Ω \P0)
and (1.7) holds on D0, then

Ĩ (k,δ ) → I as k→ ∞ and δ → 0. (3.11)

Proof Let E(k,δ ) = |I − Ĩ (k,δ )|. From (3.9) we can write

E(k,δ ) ≤ E(k)
1,1 +E(k,δ )

1,2 +E(δ )
2 ,

where

E(k)
1,1 = |I (k)

1,1 − Ĩ (k)
1,1|, E(k,δ )

1,2 = |I (k)
1,2 − Ĩ (k,δ )

1,2 |, E(δ )
2 = |I2− Ĩ (δ )

2 |.

From (1.7) and Lemma 3.1,

E(k)
1,1 ≤

∫ 2π

0

∫ Rk(θ)

0

|( f̄ (r,θ)− f̄ (0,θ))− (LDk f̄ (r,θ)−LDk f̄ (0,θ))|
r

drdθ

≤
∫ 2π

0

∫ Rk(θ)

0

A(θ)rν +8A(θ)rν

r
drdθ

≤
∫ 2π

0
Â(θ)

(

∫ Rk(θ)

0
rν−1dr

)

dθ

=
∫ 2π

0
Â(θ)(Rk(θ))ν/νdθ .
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SinceÂ(θ) = 9A(θ) is bounded andRk(θ) → 0 ask → ∞, for anyε > 0, ∃ k0 ∈ N,

such thatE(k0)
1,1 < ε/3.

Then, fixk0 andDk0. By the error estimate on the operatorLQ in [5], from (3.7)
we have

E(k0,δ )
1,2 ≤

Nk0

∑
j=1

∫

Q j

|F1(x,y)−LQ j F1(x,y)|dxdy

=
∫

D0\Dk0

|F1(x,y)−LD0\Dk0
F1(x,y)|dxdy

≤ 2ωD0\Dk0
(F1,δ ) ·SD0 = 8h2

0ωD0\Dk0
(F1,δ ), (3.12)

where

LD0\Dk0
F1(x,y) =

Nk0

∑
j=1

LQ j F1(x,y),

ωD0\Dk0
(F1,δ ) is the modulus of continuity ofF1 ∈C(D0\Dk0), SD0 = 4h2

0 is the area

of D0 and, especially,δ is the length of the longest diagonal or edge in all elements
Q⊂ D0\Dk0.

Hence, for the same aboveε, ∃ δ0 > 0, such thatωD0\Dk0
(F1,δ0) < ε/(24h2

0).

If the subdivision ofD0 \Dk0 is such thatδ < δ0, then from (3.12) we can deduce

E(k0,δ )
1,2 < ε/3.

Similarly, from (3.8)

E(δ )
2 ≤

M

∑
j=1

∫

Q j

|F(x,y)−LQ j F(x,y)|dxdy

=

∫

Ω\D0

|F(x,y)−LΩ\D0
F(x,y)|dxdy

≤ 2ωΩ\D0
(F,δ ) ·SΩ\D0

, (3.13)

where

LΩ\D0
F(x,y) =

M

∑
j=1

LQ j F(x,y),

ωΩ\D0
(F,δ ) is the modulus of continuity ofF ∈ C(Ω \D0), SΩ\D0

is the area of
Ω \D0 and, especially,δ is the length of the longest diagonal or edge in all elements
Q⊂ Ω \D0.

For the same aboveε, ∃ δ1 > 0, such thatωΩ\D0
(F,δ1) < ε/(6SΩ\D0

). If the

subdivision ofΩ \D0 is such thatδ < δ1, then from (3.13) we getE(δ )
2 < ε/3.

In conclusion, fork > k0 andδ < min{δ0,δ1}, it holds

E(k,δ ) < ε. (3.14)

Therefore, (3.11) follows from (3.14). �

Now, we consider the computational cost of our cubature due both to the number
of integration nodes in (3.9) and to the construction of its coefficients.
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From Fig. 2.1(a) and from the description of our algorithm, it is clear that the
subdivision strategy generates an embedded sequence of integration nodes. Conse-
quently, the total number of cubature nodes isV + E, whereV is the number of the
vertices of the quadrangulation,E is the number of the edges, respectively. We out-
line that the number of function evaluations one has to perform is lower than that one
of another similar composite strategy using a basic (polynomial) interpolatory type
cubature with nodes interior to each quadrilateral element. Comparisons with the ten-
sor product 2×2 Gauss-Legendre cubature and the tensor product Simpson rule are
presented in [5].

With reference to the computational cost due to the construction of the basic rule
coefficients, defined either by (2.4), in case of a general quadrilateral element, or by
(2.5), in case of rectangles and parallelograms, we can remark that it is comparable
with the computational cost of another similar composite strategy applied on quadri-
lateral elements and based on classical rules, like those ones above mentioned. In-
deed, classical basic rules require bilinear transformations from general quadrilateral
elements to rectangular ones.

4 Numerical examples and conclusions

In this section, we propose some numerical examples to test our method for integrals
of the form (1.6), withF defined by (1.3). We consider several functionsf , given
in Table 4.1, and two kinds of integration domainsΩ : the square[−1,1]2 and the
nonconvex polygon in Fig. 4.1.

For Ω = [−1,1]2 and f = f1, we can compare numerical results of our cubature
with those ones presented in [6,9] and obtained by classicalmethods based on the
decomposition ofΩ in triangles having a common vertex atP0 and on tensor product
of univariate integration rules.

Table 4.1 The test functionsf .

i fi(x,y) = f̄i(r,θ) F1

1 x−x0
r = cosθ 0

2 (x−x0)ex

r = ex cosθ (ex−ex0 )cosθ
r2

3 r3/2+|x−x0|
r =

√
r + |cosθ | r−3/2

4
√

|x−y|
√

|x−y|−
√

|x0−y0|
r2

By (3.2), for each function̄f = f̄i (i = 1, . . . ,4), the integralsI1,3 are

∫ 2π

0
f̄1(0,θ) logR0(θ)dθ =

∫ 2π

0
cosθ logR0(θ)dθ = 0,

∫ 2π

0
f̄2(0,θ) logR0(θ)dθ = ex0

∫ 2π

0
cosθ logR0(θ)dθ = 0,

∫ 2π

0
f̄3(0,θ) logR0(θ)dθ =

∫ 2π

0
|cosθ | logR0(θ)dθ
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= 4logh0−
∫ π/4

0
4(sinθ +cosθ) logcosθdθ

= 4logh0−8arctanh(tan
π
8

)+4,
∫ 2π

0
f̄4(0,θ) logR0(θ)dθ =

√

|x0−y0|
∫ 2π

0
logR0(θ)dθ

=
√

|x0−y0|(2π logh0−4
∫ π/4

−π/4
logcosθdθ)

=
√

|x0−y0|(2π log(2h0)−4Catalan),

whereCatalan= ∑∞
k=0(−1)k(2k+1)−2 ≃ 0.915966 ([14]).

For the functionf = f1, we know the following explicit formula of the integralI
on Ω = [−1,1]2 ([6])

I =
∫

=
Ω

f1(x,y)
r2 dxdy

= log
[1−y0 +

√

(1+x0)2 +(1−y0)2][−1−y0 +
√

(1+x0)2 +(1+y0)2]

[−1−y0 +
√

(1+x0)2 +(1+y0)2][1−y0 +
√

(1−x0)2 +(1−y0)2]

and in Table 4.2 we present the relative errors of our cubature (3.9), combined with
an equal subdivision, for several singular pointsP0. In the Table, ’EleN’, ’NodN’ and
’Rel-Err’ denote the number of elements, the number of nodesand the relative error,
respectively. Such results show the convergence of our method.

Then, in order to improve its performance, we combine (3.9) with the adaptive
subdivision scheme proposed in [4]. Each quadrilateral element is checked, and the
elements with the largest estimated error are selected automatically to be subdivided
into two or four sub-elements according to the differences of integrand function val-
ues in next step. The termination condition is the successive step error less than the
given tolerance. The Table 4.3 shows the results, in terms ofrelative errors/total num-
ber of nodes, when the adaptive algorithm stops with tolerance 10−4 and 10−5, where
’Step-Err’ and ’Approximate Value’ denote the successive step error and the approx-
imate value of the integral, respectively.

We compare the above results with those presented in [6,9]. With reference to
numerical results of rules based on tensor product of Gaussian quadratures ([6], Table
2), we note they show a better convergence rate, as we espected, becausēf1(r,θ) =
cos(θ) is a smooth function. With reference to results of rules based on tensor product
of composite trapezoidal and Gaussian quadratures ([9], Table 1), the relative errors,
with respect to the total number of nodes, seem to be comparable with ours.

However, we can remark that a significant difference of all such cubatures is in
the node location. In the classical approach ([6,9]), the node location is fixed and
almost all nodes change when the accuracy degree increases.The advantage of our
rule with respect to the other considered ones, is that at anystep the previous nodes
are kept in the subdivision procedure, since they are vertices of the finer quadrilateral
subdivision, which the new nodes belong to. Moreover, our method can be efficiently
combined with other numerical algorithms based on quadrilateral element boundary
nodes. Finally, it is suitable in case of a nonconvex polygonal integration domain
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Ω and the adaptive subdivision allows to dynamically concentrate the computational
work in the subregions ofΩ where the integrand is more irregular.

Table 4.2 Ω = [−1,1]2, f = f1, (x0,y0)= (a) (0.4,0.1), (b) (0.6,0.2), (c) (0.8,0.4), (d)
(0.9,0.9).

Equal subdivision
EleN NodN Rel-Err (a) Rel-Err (b) Rel-Err (c) Rel-Err (d)

5 20 1.57E+00 3.30E+00 1.09E+01 4.54E+01
13 44 4.62E-01 9.05E-01 3.11E+00 1.22E+01
29 100 3.78E-02 9.94E-02 2.87E-01 1.36E+00
61 196 1.15E-02 3.82E-02 5.50E-02 4.90E-01

125 404 4.13E-03 1.05E-02 6.06E-02 3.46E-01
253 788 9.74E-04 4.49E-04 1.57E-02 1.43E-01
509 1588 2.75E-04 1.07E-03 6.89E-03 3.74E-02

1021 3124 4.85E-05 1.54E-04 3.26E-05 4.47E-03

Table 4.3 Ω = [−1,1]2, f = f1, (x0,y0)= (a) (0.4,0.1), (b) (0.6,0.2), (c) (0.8,0.4), (d) (0.9,0.9).

Adaptive subdivision with tolerance 10−4

(x0,y0) EleN NodN Rel-Err Step-Err Approximate Value
(a) 265 952 1.20E-04 1.54E-05 -1.234431115739747E+00
(b) 281 1020 1.61E-04 1.57E-05 -2.087387475120013E+00
(c) 345 1244 1.39E-04 1.01E-05 -3.419420090286125E+00
(d) 445 1574 2.79E-04 1.17E-05 -3.586671224186048E+00

Adaptive subdivision with tolerance 10−5

(a) 559 1960 9.44E-05 3.59E-07 -1.234462106679414E+00
(b) 589 2072 7.73E-05 9.14E-07 -2.087561495861009E+00
(c) 727 2574 9.79E-05 7.81E-07 -3.419560736761150E+00
(d) 923 3222 3.02E-05 6.09E-07 -3.585779065300728E+00

Another integration domainΩ is shown in Fig. 4.1 with six initial quadrilateral
elements. The coordinates of the ten vertices are(0,0.5), (0.1,0), (0.8,0.2), (1,0.85),
(0.6,0.8), (0.4,1), (0.3,0.3), (0.7,0.3), (0.7,0.6), (0.3,0.6). The singular point is
P0 = (0.5,0.45) and the test functionsfi , i = 1, . . . ,4 are given in Table 4.1.

The Table 4.4 shows the results when the adaptive algorithm stops with toler-
ance 10−4, where ’Step-Err’ and ’Approximate Value’ are defined as in Table 4.3.
The Fig. 4.2 presents meshes and nodes when the adaptive procedure stops for the
considered test functions.

All computations were carried out by Matlab ([13]).

In conclusion, we can remark the following further advantage of the proposed
approach. By (3.9), the finite part integralI is approximated by the sum of four regular

integralsĨ (k)
1,1, Ĩ (k,δ )

1,2 , Ĩ (δ )
2 , I1,3, where the first three are 2D integrals. By Eqs. (3.4),

(3.7) and (3.8),̃I (k)
1,1, Ĩ (k,δ )

1,2 , Ĩ (δ )
2 are the same kind of cubature on quadrangle with

the same kind of nodes, i.e., the eight boundary nodes on the quadrangle, as shown in
Fig. 2.1(a). It means that we can use only one procedure to evaluate the three integrals
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Fig. 4.1 A non-convex domainΩ with initial quadrilateral elements.

Table 4.4 Ω is the polygon given in Fig. 4.1,P0 = (0.5,0.45).

Adaptive subdivision with tolerance 10−4

f EleN NodN Step-Err Approximate Value
f1 563 1988 2.09E-05 -3.015424731852383E-01
f2 601 2054 1.03E-05 1.804458159572488E+00
f3 661 2172 6.90E-05 5.786696849043063E+00
f4 967 3474 3.03E-05 5.666572548642983E-01

just with different cubature weights (3.6) and (2.4) according to the integrands in
(3.4), (3.7) and (3.8). Besides, the computational cost, equivalent to the number of
nodes, can be easily obtained as that one of regular integration. In fact, the proposed
algorithm for finite part integrals is compatible and consistent with the algorithms for
regular cases presented in [4,5]. Therefore, it is easy to extend the approach to other
cases of singular integrals and by cubatures of high accuracy defined on various kinds
of elements. This topic will be discussed in our future work.
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