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Abstract In this paper we consider the numerical integration on agmial domain
Q in R? of a functionF (x,y) which is integrable except at a poiR§ = (X, Yo) €

502, whereF becomes infinite of order two. We approximate either thedipiart or
the two-dimensional Cauchy principal value of the intedralusing a spline finite
element method combined with a subdivision technique alsadaptive type. We
prove the convergence of the obtained sequence of cubafimedly, to illustrate the
behaviour of the proposed method, we present some numekaaiples.
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1 Introduction

This paper deals with the numerical evaluation of certajpeigingular integrals on a
polygonal domair in R?, i.e. a domain with the boundary composed of piecewise
straight lines.
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The above integrals arise in several engineering problemdsira particular in
applied mechanics ([8] and references therein).

Firstly, we consider the integration of a functi6iix,y) on a convex domaib,
with F integrable except at a poifb = (xo,Yo) where it becomes infinite of order
two. We sef, as the origin of polar coordinatés 6), withr = /(X —X0)2 + (Y — Yo)?
and denote by = R(0) the polar equation of the contour bf Following Tricomi’s
presentation [10], we suppose

F(X’y) = + F]_(X,y), (1.1)

®(6)
r2
whereF; denotes a function at most infinite of (algebraic) order liss two at
isolated points.
We set

fF(xy)dxdy::/ Fixy) dxdy+ [ o(6)logR(6) d6. (1.2)
D D 0

2n
If / @(0)d6 = 0 then (1.2) defines the two-dimensional Cauchy principhlesa

0
integral [10]; otherwise, it defines the Hadamard finitet P&
The numerical evaluation of (1.2), with

Fixy) = %Y (1.3)
andD a triangle, a rectangle or, more in general, a convex polylyas been studied
in literature.

A classical approach consists in the decompositio® df triangles, each one
with the singular poinB, at one vertex. Then, the integral on each triangle is evalu-
ated by a cubature rule of sufficiently high degree of exastne

SinceR, is the origin of polar coordinate$(x,y) can be expressed by

f(x,y) = f(Xo+rcosb,yo+rsind) = f(r,6). (1.4)

Cubatures based on product of univariate Gaussian ruleagntgangle of the de-
composition ofD, are proposed in [6]. Convergence results are proved fiof)

Hj w$>1,0< <1, whereHs p,u denotes the space of functions with continuous
partial denvatlves up to the orderand such that each partial derivative of order

satisfies a ldlder condition of ordef, i.e.
1f9(F 8)— fO(r,8) <C(F—r|*+|6—6]*), C>0. (1.5)

Approximations for (1.2), based on local bivariate quadrguasi-interpolating
splines on each triangle of the decompositiooare studied in [1], where conver-
gence results are proved fé(r, 0) satisfying the condition (1.5), wite= 0.

Gaussian rules and bivariate splines are combined in [YHvaluating

%gp"e P)dR p=23
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whereD is a rectangle. Convergence results are proved assumihg(t®a6) is
continuous andp(P) € CP?(D).
In this paper, we consider the problem of the numerical extedn of

! :7@ F(xy)dxdy ReO, (1.6)
Q

whereQ is a not necessarily convex polygonal domain &nd defined by (1.3) with
f(x,y) € C(Q\ P).

We propose a method based on a special spline quadrilateitel giement ([3,
12]), reproducing all bivariate polynomials of total deg@ most two, and applied
by a subdivision technique also of adaptive kind.

We denote byD a convex subset al, such that the singular poify € D. If f,
given by (1.4), satisfies the following condition &n

|f(r,0)—f(0,0)| <AB)rY, 0<v<1l 0<A(6) <o, 1.7
then we can expressonD in the form (1.1), with

- f(r,0)— (0,0)

@(0)=1f(0,0) andF1(x,y) = (1.8)

We setl =11+ 1, wherel; = % F (x,y) dxdyis defined by (1.2), witl; andg given
D
in (1.8), andl; = /\ F(x,y) dxdy, with F defined by (1.3), is a regular integral.
Q\D

We evaluatd, by the cubature formula over polygons, having degree ofteras
2 [5] and based on the spline finite element method presentd],icombined with
the subdivision technique also of adaptive kind ([4]). Th&a apply the same finite
element method to evalualtg

For f satisfying the condition (1.7), we prove the convergencé ¢ the ob-
tained cubature sequence. Such condition is weaker thatitimoms onf required by
previous methods in [1,6,11]. B

The above performances make our composite strategy suitdt#nf (r,6) and
f(x,y) are not smooth iD and Q \ D, respectively, for example with singularities
of the gradient. Moreover, the adaptive subdivision teghaiconcentrates nodes in
regions of difficulty, reducing the computational cost wiéispect to a non adaptive
one. However, whei® is a convex polygon and(r,0) is a smooth function, our
composite strategy cannot be competitive with more clatsioes, based on high
degree polynomial approximation at Gaussian.

The integration nodes of our method lie on the boundary oh ep@drilateral
element and, in the subdivision procedure, they are sharesd\eral elements, i.e.
the subdivision procedure generates an embedded sequUémiegmation nodes. This
feature makes the computational cost of our method lower that one of another
similar composite strategy, using a basic (polynomialgripolatory type cubature,
whose interior nodes are not kept in the procedure of sufidivj as remarked in [5].

The paper is organized as follows. In Section 2 we review smgelts related
to the spline finite element method and to the cubature faulaedntegrals based
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on it. In Section 3 we present the cubature for (1.6), we a®athe convergence
and we discuss its computational cost. Finally, Sectionoppses some numerical
examples illustrating the behaviour of our cubatures. Ssimestural characteristics
of our algorithm and a possible extension to other casesighifar integrals are also
discussed.

2 L8 spline operator and cubature

In this section, we review some results on the interpoladiperator and cubature by
L8 element basis presented in [3] and [5].

(@) (b)

Fig. 2.1 The 8 nodes and 13 domain points on a quadrilateral element.

For a convex quadrilateral eleme@ divided by four triangless,..., A4 as
shown in Fig. 2.1(a), we consider the eight nodes. ., Vs, where

Vs = (V1 +V2)/2, Ve = (Vz +V3)/2, V7 = (V3 JrV4)/2, Vg = (V4+V1)/2,

and the quadratic spline space defined on the quadr&)giéth C! smoothness on
both diagonal¥/;Vs andV,V,. The dimension of the spline space is eight, as given in
[31.

Itis well known ([2]) that a polynomiap of total degree two on a triange can
be represented in the local Bernstein basis as

p(A) = Yaba(A)
laj=2

wherebg(A) = %/\", A = (A1,A2,A3) are the barycentric coordinates &f a =
(01,02,03), [0 = a1+ 0p+ 03 = 2,a! = a1l ozl ag! andA @ = AP AS2A58. Theyg
are calledBézier ordinates or Bzier coefficient®f p. The points with barycentric
coordinatesr /2 are called domain points iA. The piecewise linear interpolant to
the points(a/2,yy) is calledBézier netor B-netor control netof p. Such a B-net
uniquely defines the patch, a fact which is made use of in theaed Bernstein-
Bézier technique, where all information about the patch isaeked from this net.

Then, by the B-net method, there are thirteen domain paintiseé quadrilateral
element, as shown in Fig. 2.1(b). We denote by L8 basis th& ejigadratic nodal
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basis spline&; (i=1,...,8) interpolating the eight nod&4, ..., Vs, ([3]). The Bazier
coefficients of each bade(i =1,...,8), according to the thirteen domain points, are
given in the following matrix

(LLloLslglslelsL QT

1 1 b b b

100 0 ~2 01 0o -3 7 3 oa -3 3
o100-3 -3 0 0 -8 -3 -8 0 -3
oo10 0 - -3 0o o -9 -1 -9 -9
_(ooo0o1 0 o -3 -} -5 0o -5 -1 -¢
0000 2 0 0O 0O 2a 2 0 0 2
0000 0O 2 0 O 0 @ 22 0 2ad
0000 O O 2 0 0 0 e 2d 2cd
0000 0O O O 2 2 0 0 2 2bc

wherea, b, c,d are defined by the following ratios:
= |V4V°|, b= ‘V3V°|, c=1-ad=1-b 2.1)
IVaVa| VaVa|

The spline basis consists of piecewise quadratic polynisrfiia continuous on the
two diagonals and’® on the boundary o). By the barycentric coordinates in each
triangle, it is easy to obtain the piecewise polynomial fdrix,y), i =1,...,8in
Cartesian coordinates by the above B-net form.

The Fig. 2.2 shows the representations in Cartesian catedirof the L8 basis
on[-1,1.

The interpolation operator by the L8 basis@ris defined by ([3])

8
Lof(xy) =_;f<viQ>LP<x,y>, (2.2)

whereV.2 andL2(x,y) (i=1,2,...,8) are the eight nodas and basis splineis (x, y)
defined onQ specifically.Lq f (x,y) interpolatesf at the eight nodes and reproduces
polynomials of degree two ([3]), i.e.,

Lof (V) = f(V9),i=1,....8,

and
LQf =f,Vf eP,.

SinceLqf € CY(Q), itis easy to obtain its partial derivatives. In particulahen
Q = [-1,1% thenVp = (0,0), Vi = (—1,-1), Vo = (1,-1), Vs = (1,1), V4 =
(—1,1). Letfi="f(Vi),i=1,...,8,then_; ;2 f(xy) = 32 ; fiLi(x,y), whereLi(x,y)
are shown in Fig. 2.2 in piecewise polynomial form. Diffetiating the polynomials
in Fig. 2.2 atvi(i = 0,1,...,4), we obtain the values of the first partial derivatives of
L[_l,l]zf atVo, V1, ...,V4, as shown in Table 2.1.

Then, for a polygonal domai, divided by N convex quadrilateral elements
Q« (k=1,...,N), the L8 cubature o® is defined by ([5])

N
iof =§ igf,
PR
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A1 fz
%(—l+x+2xz+y+3xy+2y2) —%(—l+x) (-1+y)
%(—l—x+2x2+y—3xy+2y2) %(—l—x+2xz+y—3xy+2y2)
—%(l+x) (1+y) %(—l—x+2x2—y+3xy+2y2)
T -1+ (1+7) T -1+ (1+7)

-z -zy-y) -l (rex-zy)
%(l+2x—yj (1+7) %(l+2x—x2—2y2)

T l+y® “1-lx) (Lex+2y)
—%(l+y) (-1+Zx+7) %(—1+x)2

it Ay

—%(—l+x) (-1+7) %(—l+x+2x2+y+3xy+2y2)
T+ (-1+7) T l+x) (-1+7)
%(—l—x+2x2—y+3xy+2§r2) —%(l+x) (1+y)
%(—l+x+2x2—y—3xy+2y2) %(—l+x+2x2—y—3xy+2y2)
2 (-1+yy® ST lex) (~lex+2y)
—%(—l+y) (1+2Zx+7) %(l+x)2

T d-2x+2y-v9) L tew) (mlex-2y)

T -lvy) (l-2Zx+y) S l-zx-x"-2v9)

Fig. 2.2 The piecewise polynomials of L8 basis on each triandlgs. ., A4 in [-1,1]2.

Table 2.1 The partial derivatives di[ 1 1]zf atVo,Va,...,Va.

Vo Vi Vs Va Va
T, TatTa 4l 4l 4l 3T, 1113, 4l 3t 4f; 4T3,

2 2
fitfo—fo—la—dfgtaly  4lg-3h—fs  4fo—Sh—fy  f+30-4fs  h+3h-4g
Z 2 2 2 2

SIS

where

8
@f:/'@JWJNNYIZFQWW%) (2.3)
Qx i=

The coef'ficientS),Q = fQ LiQ(x, y)dxdy, with Q= Qk (k=1,...,N), can be computed
as follows:

CQ~%N&+&+&+&%
—laS+S+S+ ),
CQ~%M&+&+%+&%
CR=—te(Si+ S+ S+ ), (2.4)
C2=3i((1+a+b+ab)S +(b+ab)S +abSs + (a+ab)S), '
Co=1((d+ad)sS +(1+at+d+ad)S+ (a+ad)S+ads),
C7 = 1(cdS + (c+cd)S+ (1+c+d+cd)Ss + (d+cd)Sy),
Cg = 1((c+bc)S1+bcS + (b+b0)Ss + (1+b+c+bo)Sy),

whereSy, ..., S, are the areas of the four trianglés, ..., A4 in Q = Q¢ anda, b, c,d
are defined in (2.1).
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It is clear that the formula (2.3) and its coefficients (2.4)yadepend on the four
vertices\/iQ, i=1,...,4. In particular, ifQ is a rectangle or a parallelogram with area

S then ([5])

R-cf-C§—CP—-h%, C2-CF-CP—CF-I%
The cubature is exact for quadratic polynomials on arhjitcanvex quadrangu-
lations, and for cubic polynomials on rectangulations)([5]

3 The algorithm for finite-part integral evaluation on a polygonal domain

We consider integrals of the form (1.6) fér(x,y) defined by (1.3), withf (x,y) €

C(Q\ R). In order to evaluate (1.6), we use the following subdivisstrategy.

1) The whole polygonal domaif® is divided into several initial quadrilateral ele-
ments, where the singular poiRg is at the center of a square elemé&hy, as
shown in Fig. 3.1(a).

2) In subdivision, the squar@y is divided into one small squai®; and four sym-
metric trapezoidal elements, as shown in Fig. 3.1(b) andhsstep by step, ob-
taining the squaredy € Dy_1 C --- C Do.

3) Each quadrilateral element, except the squageis divided into two or four
quadrilateral elements by equal subdivision or adaptibelisision [4].

(a) (b)

Fig. 3.1 A domain with singular point and initial quadrilateral elerteen

Denote byDg = Py + [—ho, ho]? the square with edgehg and Py = (xo,Yo) as
center, wheréyg is a positive constant such tHag € Q. Then the contour dDg is

b 0€ =5 .

oy i
o 0€ -4, 4]
Ro(6) = ¢ s S (3.1)
ser 0€13, %),
w00 0 € [T 7]
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SetDy = Py+ [—h, he]2, whereh, = hg /2K, k= 1,2,.. .. Denote byRy(8) the contour
of Dy, obtained by replacingg by hy in (3.1).

The above subdivision includes one squ2ageand other quadrilateral elements in
the quadrangulation d® \ Dy = {Q \ Do} U{Dg\ Dg}. Denote byd the length of the
longest diagonal or edge in all eleme@s- Q \ Dx. Then the subdivision procedure
can be described by considerikg- 0 andd — 0.

The integral (1.6) can be expressed as follows

=4 TOY) ey 11+ 15,
Q I

where

|1:7[ f(><7y)dxOIy
Do

r2

and

|2:/ f(xz’”dxdy
Q\Dp T

At the kth step, fork = 1,2, ..., with reference td1, using (1.2) and (1.8), we
write

Il—/ Fi(x,y) dxdy+/ 09 )logRp(6)d6

_/2"/ (0 e)drd6+ ' (xydxdy+/ £(0,6)logRo(6)d6

Do\ Dy
- |11+|12+|l37

wherely 3 can be computed exactly by

2m _
|13:/0 £(0,8)logRy(6)d8

2m _

Iogho/ (0,6)d6 — / f(O L )|ogcosede (3.2)
n/4is= 1

sinceRp(0) is fixed and givenin Eq. (3.1).

Integralsl1 1), I ) andl can be computed numerically by the spline interpolation
operator_g defined in (2.2) on each quadrilateral elem@&naf the quadrangulation
on Q \ Dy, as follows.

In order to evaluateﬁ, we approximate‘_(r, 0) on the squar®y by

6) = if(vi%ﬂﬁk(r, 0), (3.3)

whereV.% (i = 1,...,8) are the eight nodes ddy andL ¥ (r, 8) (i = 1,...,8) are the
eight basis splines defined @y, by replacingx andy by (x— Xg)/hx = r cos8/hg
and(y—yo)/hx =rsinf/hy in the representations in Fig. 2.2, respectively.
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Therefore
2n ) L r 0)—
1M~ = / / i f %) drdo — Zc . (3.4)
where the cubature coefficients are

21 (R(6) | Pk — Pk
0 0

By some algebra, it is easy to obtain
(i 8={1111,-1,-1,-1,-1}. (3.6)

Hence

In order to evaluatesz), denoting byN, the number of quadrilateral elements in
the subdivision 0Dy \ Di, we write

N
119~ 115 = Z / LojFa(x.y)dxdy

Nk & Qe 9
Zc IRV, 3.7)

j=1i

Wherelej are the cubature coefficients (2.4) on each eler@eatQ; C Dg\ Dy.
Finally, denoting byM the number of quadrilateral elementsn\ Do,

M
Iy ~ |”£5> _ / Lo, F (x,y)dxdy
M

iCQ‘F VO, (3.8)

whereClQj are the cubature coefficients (2.4) on each eler@eatQ; C Q \ Do.
In conclusion,

| 60— 14 759 19 1y, (39)

In order to study the convergence of proposed cubaturesgee te following
lemma.

Lemma 3.1 For any R as the origin of polar coordinates, if (1.7) holds o,B2hen
fork=1,2,...

Lo f(r,6) — Lo, f(0,0)] < 8A(O)r
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Proof By the definition ofDy and the operatdrp, in (3.3),Lp, f(r,0) =Lp, f(P) €
CY(Dx) andLp, f(P) = Lj_1 2 f(72) is a piecewise quadratic polynomial &y.

Note that only the values df at the nodeS/ka(i =1,...,8) on the boundary obg
are used inLp, f(P). Then, by Table 2.1 and assumption conditions we have

OLo, f(P)| Lo, F(P|\ _ 4 o -
< = Dy _
{1758 |25 2 < i max ity - floo)
4 _ _
< — f(r,0)— (0,0
S he oax [1(r,6) — 1(0,0)]
< hiA(e)(\/éhk)V. (3.10)
k

Note thatr = |P — Py| < v/2h, for P € Dy. Therefore, from (3.10)

“—Dkf(rve)_LDJ(f(o?e”

<r max dLDkf(r,e)’
(r,0)eDy or
dLp, f(P oLp, f(P
< rV(v2h )tV max Dk7()00594— Dk7()sin9
P<Dy ox oy
< 8A(O)r".

O
We state and prove the following convergence result.

Theorem 3.1 For any R € fO) as the origin of polar coordinates, if € C(Q \ P)
and (1.7) holds on B, then

&) | as k— o and & — 0. (3.11)
Proof Let E®9) = || —[(k9)|, From (3.9) we can write

0 < el el e

)

where

k Mk k,0 k k,0
EN =0T BN = -1

5 5
P By = ll2— 157,

)

From (1.7) and Lemma 3.1,

k>§/2n Re(8) |(f(r,8) — £(0,8)) — (Lp, f(r,8) — Lp, f(0,8))]
o Jo r

drdf

Zn/Rkw) A(B)r’ +8A(0)rv
0 r

A
< /OZHA(Q) (/ORK(G) r"ldr> 46
A

drd6

A(6)(R«(6))" /vde.
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SinceA(8) = 9A(0) is bounded an®,(6) — 0 ask — o, for anye > 0, I kg € N,
such thaEi',“lﬁ <e/3.

Then, fixkg andDy,. By the error estimate on the operatgy in [5], from (3.7)
we have

N
Elod) o < IFL(x,Y) — Lo, F1(x,y)|dxd
1,2 721 Q 11Xy Q] 1(X, Y y
]:

= Fi(x,y)—L Fi(x,y)|dxd
DO\DkO| 1(X,Y) Do\Dy, 1(X,y)[dxdy

where
Ni
LDO\DkO Fl(X, y) = Z LQ] Fl(X, y)a
=1

Wbg\Dy, (F1,6) is the modulus of continuity df; € C(Dg \ Dy,), Sp, = 4h3 is the area
of Dg and, especiallyd is the length of the longest diagonal or edge in all elements

QcC Do\ Dko‘
Hence, for the same abowe 3 & > 0, such thath\DkO(Fl,éo) < g/(24n3).

If the subdivision ofDg \ Dy, is such thaid < &, then from (3.12) we can deduce
Ef"g"s) <&g/3.
Similarly, from (3.8)

M
S Z/Q [F(xy) —Lo;F (x,)ldxdy
j=17%]j

= [ IF(xy) ~ LapgF (.y)ldxdy
\Do
< 2w \p,(F. 9) - So\py; (3.13)
where

M
L_Q\DOF (Xv y) = zlLQj F (Xa y)7
J:

wWo\p,(F,9) is the modulus of continuity oF € C(Q\ Do), Sp\p, is the area of
Q\ Dg and, especially) is the length of the longest diagonal or edge in all elements
Qc Q\ Do.

For the same above, 3 & > 0, such thatwg\p,(F,d1) < €/(6Sp\p,)- If the
subdivision ofQ \ Dy is such thad < d;, then from (3.13) we geEé‘S) <&g/3.

In conclusion, fok > kg andd < min{d, 41}, it holds

EkO) < ¢, (3.14)

Therefore, (3.11) follows from (3.14). O
Now, we consider the computational cost of our cubature dde to the number
of integration nodes in (3.9) and to the construction of d@sfticients.
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From Fig. 2.1(a) and from the description of our algorithimisiclear that the
subdivision strategy generates an embedded sequencesgfation nodes. Conse-
quently, the total number of cubature node¥i$ E, whereV is the number of the
vertices of the quadrangulatioR, is the number of the edges, respectively. We out-
line that the number of function evaluations one has to peris lower than that one
of another similar composite strategy using a basic (patyiat) interpolatory type
cubature with nodes interior to each quadrilateral elen@oiparisons with the ten-
sor product %« 2 Gauss-Legendre cubature and the tensor product Simplsoareu
presented in [5].

With reference to the computational cost due to the construof the basic rule
coefficients, defined either by (2.4), in case of a generadlgiageral element, or by
(2.5), in case of rectangles and parallelograms, we canrketiat it is comparable
with the computational cost of another similar compositategy applied on quadri-
lateral elements and based on classical rules, like thoss above mentioned. In-
deed, classical basic rules require bilinear transfolwnatirom general quadrilateral
elements to rectangular ones.

4 Numerical examples and conclusions

In this section, we propose some numerical examples to teshethod for integrals
of the form (1.6), withF defined by (1.3). We consider several functidnggiven

in Table 4.1, and two kinds of integration domai€¥s the squard—1,1]> and the
nonconvex polygon in Fig. 4.1.

ForQ =[-1,1]? and f = f;, we can compare numerical results of our cubature
with those ones presented in [6,9] and obtained by classietthods based on the
decomposition of2 in triangles having a common vertexRtand on tensor product
of univariate integration rules.

Table 4.1 The test functiond.

= hEe o

1 @ = cos@ 0

2 L) _ X cosh Mfw
3 | ol rycos) o

By (3.2), for each functiorf = fT(i =1,...,4), the integrald, 3 are
2T _ 2n
/ £1(0,8)logRo(6)d6 :/ cos10gRo(6)d6 = O,
0 0

2m _ 2
/O £2(0,8)logRo(6)d6 — e?@/o cosBlogRo(6)d6 — O,

2m _ 2
/O f3(076)I0gR0(6)d6=/0 |cosh|logRo(6)d6
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/4
= 4Iogho—/ 4(sin6 + cosB)logcosfdo
0

= 4logho — 8arctanl(1tang) +4,

2m _ 2m
| f4(0.6)logRo(6)d6 = \/Fa—Yol [ logRo(6)d
-TT/4
= /%o — Yol (21tlogho — 4 / ,logosae)
—711/4
= /I%0 — yo| (21tlog(2hy) — 4Catalar),

whereCatalan= 3 _o(—1)%(2k+1)~2 ~ 0.915966 ([14]).
For the functionf = f1, we know the following explicit formula of the integral
onQ = [1,1]? ([6])

B f1(x,y)
| = 7[9 dedy

[1-yo+ v/ (1+%0)%+ (1—-y0)q[-1— Yo+ v/ (1+%0)?+ (1+Y0)?
[~1—Yo+ v/ (1+%0)2+ (1+Y0)2][1 - Yo+ /(1 —X0)?+ (1 - y0)?]

= log

and in Table 4.2 we present the relative errors of our cubgf®), combined with
an equal subdivision, for several singular poiRgsin the Table, ’EleN’, ’'NodN’ and
'Rel-Err’ denote the number of elements, the number of neahekthe relative error,
respectively. Such results show the convergence of ouradeth

Then, in order to improve its performance, we combine (3.8 whe adaptive
subdivision scheme proposed in [4]. Each quadrilaterahetd is checked, and the
elements with the largest estimated error are selectednatially to be subdivided
into two or four sub-elements according to the differendaategrand function val-
ues in next step. The termination condition is the succesdi®p error less than the
given tolerance. The Table 4.3 shows the results, in termslative errors/total num-
ber of nodes, when the adaptive algorithm stops with tokgdi®* and 10°°, where
'Step-Err’ and 'Approximate Value’ denote the successiep ®rror and the approx-
imate value of the integral, respectively.

We compare the above results with those presented in [6,Bh ference to
numerical results of rules based on tensor product of Gamsgiadratures ([6], Table
2), we note they show a better convergence rate, as we edpbetmausd;(r,0) =
coq 0) is a smooth function. With reference to results of rules Basetensor product
of composite trapezoidal and Gaussian quadratures ([BleTd, the relative errors,
with respect to the total number of nodes, seem to be comieandth ours.

However, we can remark that a significant difference of athscubatures is in
the node location. In the classical approach ([6,9]), theenlocation is fixed and
almost all nodes change when the accuracy degree incrédseadvantage of our
rule with respect to the other considered ones, is that aseapythe previous nodes
are kept in the subdivision procedure, since they are wxtf the finer quadrilateral
subdivision, which the new nodes belong to. Moreover, ouhiecan be efficiently
combined with other numerical algorithms based on quadrédelement boundary
nodes. Finally, it is suitable in case of a nonconvex polyjontegration domain
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Q and the adaptive subdivision allows to dynamically conegatthe computational
work in the subregions a® where the integrand is more irregular.

Table 4.2 Q = [-1,1]2, f = f1, (Xo,Y0)= (a) (0.4,0.1), (b) (0.6,0.2), () (0.8,0.4), (d)
(0.9,0.9).

Equal subdivision

EleN NodN Rel-Err(a) Rel-Err(b) Rel-Err(c) Rel-Err(d)
5 20 1.57E+00 3.30E+00 1.09E+01 4.54E+01
13 44 4.62E-01 9.05E-01 3.11E+00 1.22E+01
29 100 3.78E-02 9.94E-02 2.87E-01 1.36E+00
61 196 1.15E-02 3.82E-02 5.50E-02 4.90E-01
125 404 4.13E-03 1.05E-02 6.06E-02 3.46E-01
253 788 9.74E-04 4.49E-04 1.57E-02 1.43E-01
509 1588 2.75E-04 1.07E-03 6.89E-03 3.74E-02
1021 3124 4.85E-05 1.54E-04 3.26E-05 4.47E-03

Table 4.3 Q = [~1,1)2, f = f1, (X0.Yo)= (3) (0.4,0.1), (b) (0.6,0.2), (c) (0.8,0.4), (d) (0.9,0.9).

Adaptive subdivision with tolerance 16

(X0,Yo) EleN  NodN Rel-Err Step-Err Approximate Value
(a) 265 952 1.20E-04 1.54E-05 -1.234431115739747E+00
(b) 281 1020 1.61E-04 1.57E-05 -2.087387475120013E+00
(© 345 1244 1.39E-04 1.01E-05 -3.419420090286125E+00
(d) 445 1574  2.79E-04 1.17E-05 -3.586671224186048E+00

Adaptive subdivision with tolerance 10
(a) 559 1960 9.44E-05 3.59E-07 -1.234462106679414E+00
(b) 589 2072 7.73E-05  9.14E-07 -2.087561495861009E+00
(c) 727 2574  9.79E-05 7.81E-07 -3.419560736761150E+00
(d) 923 3222  3.02E-05 6.09E-07 -3.585779065300728E+00

Another integration domai is shown in Fig. 4.1 with six initial quadrilateral
elements. The coordinates of the ten verticeg@@5), (0.1,0), (0.8,0.2), (1,0.85),
(0.6,0.8), (0.4,1), (0.3,0.3), (0.7,0.3), (0.7,0.6), (0.3,0.6). The singular point is
Py = (0.5,0.45) and the test function§,i = 1,...,4 are given in Table 4.1.

The Table 4.4 shows the results when the adaptive algoritbps with toler-
ance 104, where 'Step-Err’ and 'Approximate Value’ are defined as able 4.3.

The Fig. 4.2 presents meshes and nodes when the adaptivedprecstops for the
considered test functions.

All computations were carried out by Matlab ([13]).

In conclusion, we can remark the following further advaetad the proposed
approach. By (3.9), the finite part integtas approximated by the sum of four regular

integralsrfl), q'fz’é), I;‘S), l13, where the first three arelRintegrals. By Egs. (3.4),
(3.7) and (3.8)1?&1), IYZ"S), Igé) are the same kind of cubature on quadrangle with

the same kind of nodes, i.e., the eight boundary nodes onudragngle, as shown in
Fig. 2.1(a). It means that we can use only one procedure toateghe three integrals
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Fig. 4.1 A non-convex domai®2 with initial quadrilateral elements.

Table 4.4 Q is the polygon given in Fig. 4.8 = (0.5,0.45).

Adaptive subdivision with tolerance 16
f EleN NodN  Step-Err Approximate Value
f1 563 1988  2.09E-05 -3.015424731852383E-01
fo 601 2054 1.03E-05 1.804458159572488E+00
fa 661 2172 6.90E-05 5.786696849043063E+00
fa 967 3474 3.03E-05 5.666572548642983E-01

just with different cubature weights (3.6) and (2.4) acaogcto the integrands in

(3.4), (3.7) and (3.8). Besides, the computational costivatent to the number of

nodes, can be easily obtained as that one of regular integrét fact, the proposed
algorithm for finite part integrals is compatible and cotesis with the algorithms for

regular cases presented in [4,5]. Therefore, it is easytenexhe approach to other
cases of singular integrals and by cubatures of high acgdefined on various kinds
of elements. This topic will be discussed in our future work.
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