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1. Introduction

Measure valued Markov processes arise naturally in modeling the composition
of evolving populations and play an important role in a variety of research
areas such as population genetics, bioinformatics, machine learning, Bayesian
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nonparametrics, combinatorics and statistical physics. In particular, in Bayesian
nonparametrics, there has been interest in measure-valued random processes
since the seminal paper by Feigin and Tweedie [10], where the law of the Dirichlet
process has been characterized as the unique invariant distribution of a certain
class of measure-valued Markov chains.

The Dirichlet process is a random probability measure whose introductory
properties and characterizations were extensively presented by Ferguson [11] and
Ferguson [12] and subsequently investigated by Blackwell [3] and Blackwell and
MacQueen [4]. Consider a complete and separable metric space E endowed with
the Borel σ–field E and let P(E) be the space of probability measures on E with
the σ–field P generated by the topology of the weak convergence. Let also α be a
nonnegative finite measure on (E, E ) with total mass a > 0. A random probabil-
ity measure P on E is a Dirichlet process with parameter α, henceforth denoted
P ∼ D(·|α), if for any k ≥ 2 and any finite measurable partition B1, . . . , Bk of E
such that α(Bj) > 0 for j = 1, . . . , k, the random vector (P (B1), . . . , P (Bk)) has
Dirichlet distribution with parameter (α(B1), . . . , α(Bk)). Various characteriza-
tions of the Dirichlet process have been proposed in the literature. In particular,
a well-known result obtained by Sethuraman [19] characterizes the law of the
Dirichlet process as the unique solution of a certain distributional equation on
P(E). Let α be as above, Y an E-valued random variable with distribution
P0 := α/a and θ a random variable independent of Y with Beta distribution
with parameter (1, a); Theorem 2.4 in Sethuraman [19] shows that a Dirichlet
process P on E with parameter α uniquely satisfies the distributional equation

P
d
= θδY + (1 − θ)P, (1.1)

where all the random elements on the right-hand side of (1.1) are independent.
Equation (1.1) has been widely used in the Bayesian nonparametrics literature
in order to provide properties and characterizations of the Dirichlet process and
its linear functionals. See the comprehensive review by Lijoi and Prünster [16]
and references therein.

A first interesting example of the applicability of (1.1) in the research area of
functionals of the Dirichlet process is given by Feigin and Tweedie [10], where
(1.1) is recognised as the distributional equation for the unique invariant mea-
sure of a measure-valued Markov chain {Pm, m ≥ 0} defined via the recursive
identity

Pm = θmδYm
+ (1 − θm)Pm−1 m ≥ 1 (1.2)

where P0 ∈ P(E) is arbitrary and {Ym, m ≥ 1} and {θm, m ≥ 1} are sequences of
E-valued random variables independent and identically distributed respectively
as Y and θ above and independent of each other. By investigating the functional
Markov chain {Gm, m ≥ 0}, with Gm :=

∫

E
g(x)Pm(dx) for any m ≥ 0 and for

any measurable linear function g : E %→ R, Feigin and Tweedie [10] provide
properties of the corresponding linear functional G of a Dirichlet process P on
E with parameter α, i.e. G :=

∫

E
g(x)P (dx). Further developments of the linear

functional Markov chain {Gm, m ≥ 0} are provided by Guglielmi and Tweedie
[14], Jarner and Tweedie [15] and more recently by Erhardsson [6].
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Recently, a generalization of (1.1) has been proposed by Favaro and Walker
[9]. Let α be as above, with total mass a, and let {Yj , j ≥ 1} be a Blackwell-
MacQueen Pólya sequence with parameter α (see Blackwell and MacQueen [4]),
i.e. {Yj , j ≥ 1} is an exchangeable sequence with de Finetti measure given by
the law of a Dirichlet process with parameter α. For a fixed integer n ≥ 1,
consider also a random vector (q1, . . . , qn) with Dirichlet(1, . . . , 1) distribution,
where

∑n
i=1 qi = 1, and a random variable θ with Beta(n, a) distribution, such

that {Yi, i ≥ 1}, (q1, . . . , qn) and θ are mutually independent. Then Favaro and
Walker [9] show that a Dirichlet process P on E with parameter α uniquely
satisfies the distributional equation

P
d
= θ

n
∑

i=1

qiδYi
+ (1 − θ)P (1.3)

where all the random elements on the right-hand side of (1.3) are independent.
It can be easily checked that equation (1.3) generalizes (1.1), which can be re-
covered by setting n = 1. In the present paper, by combining the original idea
of Feigin and Tweedie [10] and the distributional equation (1.3), we define and
investigate a new class of measure valued Markov chains having the Dirichlet
process as its unique invariant measure. In particular, (1.3) is recognised as the
distributional equation for the unique invariant measure of a certain class of
Gibbs sampler based measure-valued Markov chains whose transition functions
are driven by the predictive distributions of the Blackwell-MacQueen Pólya urn
scheme. An interesting application of this new class of measure valued Markov
chains arises in relation to a well-known stochastic model in population genet-
ics, the so-called neutral diffusion model. See Ethier and Kurtz [8]. This ap-
plication, together with the constructive definition of the Gibbs sampler based
Markov chain, provides a further connection between Bayesian nonparametrics
and population genetics along the same research lines recently investigated by
Walker et al [20] and Ruggiero and Walker [18].

Following these guidelines, in Section 2 we define and investigate the new
class of Gibbs sampler based measure-valued chains, and state the convergence
in distribution to the neutral diffusion model. A brief review of the essential
features of the neutral diffusion model can be found in the Appendix.

2. A Gibbs sampler based measure valued Markov chain

We first state a lemma, whose proof can be found in Wilks [21], Section 7, which
will be useful for the next result, and is reported here for ease of reference.

Lemma 2.1. Let U and V be independent random vectors with Dirichlet distri-
butions with parameters (α1, . . . , αn) and (β1 , . . . , βn) respectively. Let W , inde-
pendent of U and V , have Beta distribution with parameters (

∑n
i=1 αi,

∑n
i=1 βi).

Then
WU + (1 − W )V ∼ Dirichlet(α1 + β1, . . . , αn + βn).
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Consider now a sample (X1, . . . , Xn) of size n ≥ 1 from a Dirichlet process P
with parameter θP0, for θ > 0 and P0 ∈ P(E). Then it is well known that the
Dirichlet process enjoys the conjugacy property (see Ferguson [11]), meaning
that conditional on the data (X1, . . . , Xn), P is still a Dirichlet process with
updated parameter, namely

P |X1, . . . , Xn ∼ D

(

·|θP0 +
∑n

i=1
δXi

)

. (2.1)

Theorem 2.2 below provides a representation for the posterior process (2.1) in
terms of a stochastic equation. To this end, recall that a sample of size n from a
Dirichlet process P has marginal distribution given by the Blackwell-MacQueen
Pólya urn scheme, that is

Mn = P0

n−1
∏

j=1

θP0 +
∑

1≤i≤j δXi

θ + j
, (2.2)

with θ and P0 as above.

Theorem 2.2. Let αn, Hn, X(n) = (X1 , . . . , Xn) and W (n) = (W1,n, . . . , Wn,n)
be mutually independent, where

αn ∼Beta(n, θ)

Hn ∼D(·|α), α = θP0

X(n) ∼Mn

W (n) ∼Dirichlet (1, . . . , 1)

with Mn as in (2.2). Define

Qn = αnZn + (1 − αn)Hn (2.3)

where

Zn =
n

∑

i=1

Wi,nδXi
. (2.4)

Then Qn given (X1 , . . . , Xn) is a Dirichlet process with parameter α+
∑n

i=1 δXi
.

Proof. Denote by (x1, . . . , xn) the observed values of (X1, . . . , Xn). Then it is
sufficient to prove that for any k ∈ N and any measurable partition A1, . . . , Ak

of E, conditionally on (x1, . . . , xn) we have (Zn(A1), . . . , Zn(Ak)) has Dirichlet
distribution with parameters (

∑n
i=1 δxi

(A1), . . . ,
∑n

i=1 δxi
(Ak)). Then the result

follows from Lemma 2.1. Let V1, V2, . . . , Vn be independent and such that Vi ∼
Beta(1, n − i) for i = 1, . . . , n (so that Vn = 1 a.s.). If we define W1,n = V1

and Wi,n = Vi

∏i−1
j=1(1 − Vj) for i = 2, . . . , n, then it can be easily checked

that W1,n, W2,n, . . . , Wn,n are identically distributed with Wi,n ∼ Beta(1, n−1)
for i = 1, . . . , n and (W1,n, . . . , Wn,n) ∼ Dirichlet(1, . . . , 1). Observe that by
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construction we have 1 −
∑n−1

i=1 Wi,n =
∏n−1

j=1 (1 − Vj) and
∑n

i=1 Wi,n = 1. It
follows from Lemma 2.1 that, conditionally on xn we have

Vn(δxn
(A1), . . . , δxn

(Ak)) ∼ Dirichlet(δxn
(A1), . . . , δxn

(Ak)).

By induction we can write

n
∑

i=1

Wi,n(δxi
(A1), . . . , δxi

(Ak)) =
n−1
∑

i=1

Wi,n(δxi
(A1), . . . , δxi

(Ak))

+

(

1 −
n−1
∑

i=1

Wi,n

)

[Vn(δxn
(A1), . . . , δxn

(Ak))].

and by repeated application of Lemma 2.1 it can be easily checked that, condi-
tionally on (x1, . . . , xn)

(Zn(A1), . . . , Zn(Ak)) ∼ Dirichlet

(

n
∑

i=1

δxi
(A1), . . . ,

n
∑

i=1

δxi
(Ak)

)

.

Hence, by Lemma 2.1 it follows that, conditionally on (x1, . . . , xn), the vector
(Qn(A1), . . . , Qn(Ak)) has distribution

Dirichlet

(

θP0(A1) +
n

∑

i=1

δxi
(A1), . . . , θP0(Ak) +

n
∑

i=1

δxi
(Ak)

)

giving the result.

We now provide a dynamic version of (2.3), denoted Qn(·) = {Qn(k), k ≥ 1},
obtained by means of Gibbs sampling techniques, and investigate the properties
of the resulting random element. The dynamics on (2.3) are induced via (2.4)
as follows. Update iteratively a component Xi, say, of (X1, . . . , Xn), according
to its full conditional distribution

Mn(Xi ∈ ·|X1, . . . , Xi−1, Xi+1, . . . , Xn) =
θP0(·) +

∑

k≤n,k $=i δxk
(·)

θ + n − 1
(2.5)

where Xi is selected at random with uniform distribution. It is clear that we
are performing a random scan Gibbs sampler on (X1, . . . , Xn). The following
result identifies the limit in distribution of Qn(·), if appropriately rescaled and
for n tending to infinity, to be the celebrated neutral diffusion model. This is a
random element taking values in the space of continuous functions from R+ to
the space P(E) of probability measures. See the Appendix for a brief review.

Theorem 2.3. Assume E is compact. Let S(·) be a neutral diffusion model
with initial distribution ν ∈ P(P(E)), let Qn(·) be as above, and let Q̃n(·) be
the subsequence obtained by retaining only one every n2 iterations of Qn(·). If
Q̃n(·) has initial distribution νn ∈ P(P(E)) and νn ⇒ ν, then Q̃n(·) ⇒ S(·) in
CP(E)[0,∞].
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Proof. Note first that considering a subsequence of Qn(·) is equivalent to em-
bedding Qn(·) in continuous time and rescaling appropriately the process by
means of the distribution of the waiting times between discontinuities. Let the
waiting times be negative exponential with parameter λn and denote the result-
ing process Sn(·) = {Sn(t), t ≥ 0}. The infinitesimal operator for the process

X(n)(·) = {(X(n)
1 (t), . . . , X(n)

n (t)), t ≥ 0} can be written

Anf(x) =
n

∑

i=1

λn

n

∫

[

f(ηi(x|y)) − f(x)
]θP0(dy) +

∑n
k $=i δxk

(dy)

θ + n − 1
(2.6)

for f ∈ C(E), with C(E) denoting continuous functions on E, and ηi(x|y) =
(x1, . . . , xi−1, y, xi+1, . . . , xn). Taking λn = n(θ + n − 1)/2 (more generally,
choose λn ∈ O(n2/2), which yields the same result in the limit for n → ∞)
we have

Anf(x) =
n

∑

i=1

Bif(x) +
1

2

∑

1≤k $=i≤n

[

f(ηi(x|xk)) − f(x)
]

where Bif is the operator

Bg(x) =
1

2
θ

∫

[

g(y) − g(x)
]

P0(dy), g ∈ C(E)

acting on f as a function of its i-th argument. For m ≤ n define

Wj1,...,jm,n(t) = Wj1,n(t)
Wj2,n(t)

1 − Wj1,n(t)
. . .

Wjm,n(t)

1 −
∑m−1

l=1 Wjl,n(t)
(2.7)

for 1 ≤ j1 *= · · · *= jm ≤ n, with (W1,1, . . . , W1,n) as in Theorem 2.2. Here (2.7)
is simply the probability of picking m elements of n without replacement, once
the i-th element is assigned a weight Wi. Define also the probability measure
on Em given by

S(m)
n (t) = αnZ(m)

n (t) + (1 − αn)Hm
n

where
Z(m)

n (t) =
∑

1≤j1 $=··· $=jm≤n

Wj1,...,jm,n(t)δ(xj1
(t),...,xjm (t))

and Hm
n denotes the m-fold product measure Hn × · · ·× Hn. Finally, let φm ∈

C(P(E)) be, for f ∈ C(Em),

φm(Sn(t)) = 〈f, S(m)
n (t)〉 (2.8)

where 〈f, µ〉 =
∫

fdµ. The infinitesimal generator of the process Sn(·) for test
functions of type (2.8) and general λn can be written

A
nφn(Sn) =

λn

n

n
∑

i=1

∫

E×∆n

[φn(η̃i(Sn|z, W (n))) − φn(Sn)]Γ(n)dW (n) (2.9)

×
θP0(dz) +

∑

k $=i δxk
(dz)

θ + n − 1
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where λn is the Poisson rate driving the waiting times, the Dirichlet(1, . . . , 1) dis-
tributed vector W (n) := (W1,n, . . . , Wn,n) is defined on the (n− 1)-dimensional
simplex

∆n =

{

(W1,n, . . . , Wn,n) : Wi,n ≥ 0, i = 1, . . . , n,
n

∑

i=1

Wi,n = 1

}

and η̃i(Sn|z, W (n)) is Sn with z instead of xi and W (n) instead of the current
weights. Letting λn = n(θ + n − 1)/2 as above yields

A
nφn(Sn) =

θ

2

n
∑

i=1

∫

E×∆n

[φn(η̃i(Sn|z, W (n))) − φn(Sn)]Γ(n)dW (n)P0(dz)

+
1

2

∑

1≤k $=i≤n

∫

∆n

[φn(η̃i(Sn|xk, W (n))) − φn(Sn)]Γ(n)dW (n)

=
n

∑

i=1

[〈Mif, QS(n)
n 〉 − 〈f, S(n)

n 〉] +
1

2

∑

1≤k $=i≤n

[〈Φkif, QS(n)
n 〉 − 〈f, S(n)

n 〉]

(2.10)

where Mf(x) = (θ/2)
∫

E
f(y)P0(dy) and Mi is M applied to the i-th coordinate

of f , and QS(n)
n is defined as

Γ(n)

∫

∆n

S(n)
n dW (n)

with W (n) = (W1,n, . . . , Wn,n) as in (2.9). Note that when f ∈ C(Em), m < n,
for i = m + 1, . . . , n we have Mif = f and Φkif = f , and when i ≤ m and
k > m we have 〈Mif, µ〉 = 〈f, µ〉 and 〈Φkif, µ〉 = 〈f, µ〉 for every µ ∈ P(E).
Hence

n
∑

i=m+1

[〈Mif, QS(m)
n 〉 − 〈f, S(m)

n 〉] = (n − m)[〈f, QS(m)
n 〉 − 〈f, S(m)

n 〉]

and
n

∑

i=m+1

n
∑

k=1

[〈Φkif, QS(m)
n 〉 − 〈f, S(m)

n 〉] +
m

∑

i=1

n
∑

k=m+1

[〈Φkif, QS(m)
n 〉 − 〈f, S(m)

n 〉]

= (n − m)(n + m)[〈f, QS(m)
n 〉 − 〈f, S(m)

n 〉].

It follows that for f ∈ C(Em), m < n, (2.10) becomes

A
nφm(Sn) =

m
∑

i=1

[〈Mif, QS(m)
n 〉 − 〈f, S(m)

n 〉] (2.11)

+
1

2

m
∑

i=1

m
∑

k=1

[〈Φkif, QS(m)
n 〉 − 〈f, S(m)

n 〉]

+
1

2
(n + m + 2)(n − m)[〈f, QS(m)

n 〉 − 〈f, S(m)
n 〉].
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Now, we can write

〈f, QS(m)
n 〉 − 〈f, S(m)

n 〉 (2.12)

=αn

∑

1≤i1 $=... $=im≤n

f(xi1 , . . . , xim
)

[

Γ(n)

∫

∆m

Wi1,...,im,ndW (m) − Wi1,...,im,n

]

where Wi1,...,im,n is (2.7). It can be checked that the expectation of the term in
square brackets is zero, since W (n) = (Wi1 . . .Wim

) ∼ Dirichlet(1, . . . , 1), and
its second moment equals the second moment of Wi1,...,im,n. From the proof
of Lemma 2.1 it follows that Wi1,...,im,n is a product of m independent Beta
random variables such that

ξ1 = Wi1 ∼Beta(1, n− 1)

ξ2 =
Wi2

1 − Wi1

∼Beta(1, n− 2)

...

ξm =
Wim

1 −
∑m−1

j=1 Wij

∼Beta(1, n− m).

Hence the second moment of Wi1,...,im,n is just

E(ξ2
1 · · ·ξ

2
m) =

2m

(n + 1)[m]n[m]
(2.13)

where n[m] = n(n − 1) · · · (n − m + 1), so that as n → ∞ the term in square
brackets and (2.12) converge to zero in mean square. Note that this also implies

that 〈g, QS(m)
n 〉 − 〈f, S(m)

n 〉 → 〈g, S(m)
n 〉 − 〈f, S(m)

n 〉 as n → ∞. Furthermore we
have E(ξ1 · · ·ξm) = 1/n[m], which, together with (2.13), implies that, for large

n, Z(m)
n behaves like

1

n[m]

∑

1≤i1 $=··· $=im≤n

δ(xi1
,...,xim).

Finally, note that E(αn) = n/(n + θ) and Var(αn) = nθ/[(n + θ)2(n +1 + θ)] so

that αn → 1 in mean square for n → ∞. It follows that S(m)
n converges to the

product measure µm, where µ = limn n−1
∑

i≥1 δxi
, and that (2.11) converges

uniformly on P(E) to

Aφm(µ) =
m

∑

i=1

[〈Mif, µm〉 − 〈f, µm〉] +
1

2

∑

1≤k $=i≤m

[〈Φkif, µm〉 − 〈f, µm〉]

which is (A.2). From Theorem 1.6.1 of Ethier and Kurtz [7], the uniform conver-
gence of Anφm(Sn) to Aφm(µ) implies convergence of the corresponding semi-
groups on C(P(E)). Call νn the distribution of Sn(0) and ν that of S(0). It
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can be easily checked by means of Lemma 2.3.2 and Lemma 2.3.3 in Dawson
[5] that Xn(·) is an exchangeable Feller process. It follows that the closure of
(A.2) in C(P(E)) generates a Feller semigroup on C(P(E)), which by means of
Theorem 4.2.5 in Ethier and Kurtz [7] implies that if νn ⇒ ν then Sn(·) ⇒ S(·)
in DP(E)[0,∞). Since the limiting process has continuous sample paths with
probability one, from Billingsley [2], Section 18, it follows that the convergence
holds in CP(E)[0,∞).

The following proposition shows that the Dirichlet process is an invariant
measure and an equilibrium distribution for Qn(·).

Proposition 2.4. The law of a Dirichlet process D(·|θP0) is an invariant mea-
sure for Qn(·) for any n ≥ 1. Moreover, the law of Qn(·) = {Qn(k), k ≥ 1}
converges, as k → ∞, to the law of a Dirichlet process D(·|θP0) for every initial
distribution.

Proof. Assume Qn(0) = Qn, with Qn as in (2.3). Then Qn(0)|xn(0) ∼ D(·|θP0+
∑n

i=1 δxi(0)), where Xn(0) has distribution (2.2). At the following transition,
say at t ≥ 0, a randomly chosen xi is updated with a sample from (2.5) and by
means of the exchangeability of the vector X(n), the distribution of X(n)(t) is
still (2.2). This follows from the fact that the updating rule is a Gibbs sampler
(see Gelfand and Smith [13]). Since the vector of weights W (n)(t) is resampled
independently, it follows that Qn(t)|xn(t) ∼ D(·|θP0+

∑n
i=1 δxi(t)) for t ≥ 0. The

first statement then follows by Corollary 1.1 in Antoniak [1]. Note now that from
Theorem 4 in Roberts and Rosenthal [17] it follows that the transition function
of Qn(·) converges to the stationary distribution (2.2) in total variation. The
second statement is now implied by Theorem 2.2 together with Corollary 1.1
in Antoniak [1], since when Xn(·) is in steady state Qn(t)|xn(t) ∼ D(·|θP0 +
∑n

i=1 δxi(t)).

From Proposition 2.4 it follows that D(·|θP0) is the unique invariant distri-
bution of Qn(·).

Appendix: Background on the neutral diffusion model

The neutral diffusion model, also known as Fleming-Viot process, is a diffusion
taking values in the space P(E) of probability measures on (E, E ). A review
can be found in Ethier and Kurtz [8]. Assume the individuals of an infinite
population evolve subject to mutation and resampling (or random genetic drift).
Assume also the mutation is parent-independent, i.e. it does not depend on the
genotype of the parent, and the mutation process is driven by the operator

Bg(y) =
1

2
θ

∫

[g(z) − g(y)]P0(dz) (A.1)

for g ∈ C(E), θ > 0 and P0 a non atomic probability measure on (E, E ).
Since P0 is non atomic, every mutant has a type which has never been observed
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with probability one. Then the neutral diffusion model is characterized by the
infinitesimal generator

Aϕ(µ) =
m

∑

i=1

〈Bif, µm〉 +
1

2

∑

1≤k $=i≤m

〈Φkif, µm−1〉 − 〈f, µm〉 (A.2)

where the domain D(A) can be taken as the algebra generated by functions of
the type ϕ(µ) = 〈f, µm〉, where 〈f, µ〉 =

∫

fdµ, f ∈ C(Em), and µm denotes
an m-fold product measure. Also, Bi is (A.1) applied to the i-th component
of f , and Φki : B(Em) → B(Em−1) is defined, for every 1 ≤ k *= i ≤ m, as
Φkif(x) = f(ηi(x|xk)), with ηi(x|y) as in (2.6).
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