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Compton profiles of crystalline silicon with a high statistical accuracy and high-resolution (0.11 a.u. in full
width at half-maximum) are measured along the three main crystallographic directions and are compared to
the predictions of ab initio simulations performed at different levels of theory, within and beyond one-electron
approximations. The analysis of the Fourier transform of the Compton profiles reveals the failure of the density
matrix extracted from single-determinantal models in reproducing some fine features of the electron momentum
density of crystalline materials that can be attributed to the instantaneous Coulomb correlation of the electronic
motions. The use of a post–Hartree-Fock periodic scheme allows such features to be satisfactorily reproduced.
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I. INTRODUCTION

The simulation of crystalline systems is nowadays standard
practice in the frame of one-electron ab initio approxi-
mations: Hartree-Fock (HF), Kohn-Sham density-functional-
theory (KS-DFT), and mixed (hybrid-exchange) schemes.
Once the corresponding Hamiltonian has been chosen, the
computation can be carried out with a very high numerical
accuracy. To check the quality and the limitations of the
solutions so provided, we have recently advocated more
extensive use of the one-electron density matrix (DM) as a
subtler probe than just the total energy E;1 in fact, a number
of DM-related properties, such as the electron charge density
(ECD) ρ(r) and the electron momentum density (EMD) π (p)
are susceptible to detailed comparison with the experiment.
It is known, in particular, that the most popular among the
one-electron approximations, namely, KS-DFT, is conceived
and calibrated in such a way as to describe a set of independent
pseudoparticles that reproduce, in principle, the exact ECD
of the ground state of the system. Precisely due to this
constraint, one cannot expect that the same set of occupied
KS orbitals can provide its EMD satisfactorily as well.2 Ragot
has recently presented a detailed analysis of this topic,3 and
shown that current KS-DFT schemes perform in fact worse
than HF when EMD-related quantities are considered. Similar
conclusions were reached by Hart and Thakkar, who compared
the performance of different theoretical schemes (HF, post-HF,
and DFT) in reproducing the EMD moments of a set of 68
closed-shell molecules:4 generally speaking, HF was shown
to perform better in this respect than DFT.

From an experimental point of view, Compton scattering
experiments constitute a very powerful tool for the recon-
struction of the EMD of crystalline systems; this technique is
finding renewed interest in the solid state community, mainly
due to the enhancement of the resolution of its outcomes
(Compton profiles; CPs), made possible from the availability
of synchrotron radiation.5,6 In recent years, this technique has
been applied to the study of many “disordered” systems;7–11

nevertheless, its main field of application still remains that of

crystalline compounds, whose intrinsic anisotropy constitutes
a source of additional information.12–17

The importance of comparing accurate experimental and
theoretical EMDs is clear from the above: this is precisely
the aim of this study, which concerns the prototypical case of
crystalline silicon. It is motivated by two elements of novelty
in the respective areas. On the one hand, directional CPs of
unprecedented accuracy have been measured using an intense
synchrotron radiation source. On the other hand, we are now
in a position to calculate EMDs of crystalline systems using
not only a variety of one-electron approximations, but also
a post-HF technique that includes explicitly the Coulomb
instantaneous correlation between electrons. A preliminary
report on this subject has recently been published;18 we provide
here a more complete account of the experimental results and
of the theoretical schemes adopted.

Our CRYSCOR code19–22 implements Møller-Plesset pertur-
bation theory truncated at order 2 (MP2) in a local,23 fully
periodic formulation; its range of applicability is limited for the
time being to the ground state of nonconducting crystals. The
HF reference solution is provided by the CRYSTAL program.24

In recent years, CRYSCOR has been applied to the study
of correlation effects on the energetic properties of many
typologies of crystals like rare gases,25–27 ice,28–30 molecular
crystals,31–33 TiO2,34 and adsorption of atoms and molecules
on ionic and covalent surfaces.35,36 In a few cases, the effect
of the MP2 correction on DM-related properties has been
investigated.1,37

The history of experimental determinations of silicon CPs
has been long and fruitful. Since the first experimental work,
based on positron-annihilation measurements,38 through the
γ -ray study by Reed and Eisenberger,39 which, for many years,
was the benchmark in this field, through the work of Pattison
et al.,40 Shiotani et al.,41 and Kubo et al.,42 up to the present
data, the experimental resolution has progressively improved,
resulting in enhancement of the CP anisotropies.

A lot of theoretical work has been carried out to reproduce
such data. The positron-annihilation results38 were qualita-
tively reproduced in a pioneering model-potential study by
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Stroud and Ehrenreich.43 The results obtained by Seth and
Ellis44 with a Hartree-Fock-Slater variational method appear
to be in reasonable agreement with the results of Reed and
Eisenberger,39 except for an overestimation by about 1.5% in
the region of small p values. The inversion procedure devised
by Mueller45 for reconstruction of the EMD from the same
experimental CPs proved to be reliable. The pseudopotential
calculations performed by Nara et al.46 with different model
potentials correctly reproduced the oscillations of the CP
anisotropies but largely overestimated their amplitudes, thus
leading to the conclusion that these observables are insensitive
to the adopted model potential: this conclusion is questionable,
however, due to the different scale of computed and experi-
mental results, as commented on in Sec. V. Special reference
can be made to the work by Pisani et al.,47 reporting very
accurate simulations of the CPs of crystalline silicon at the
HF level performed with the CRYSTAL program (the one used
here to perform HF and DFT calculations), compared to the
experimental results of Pattison et al.40 The calibration of the
computational parameters implied in these calculations and
the role of the adopted basis set were accurately analyzed
and represent the starting point for the assessment of the
present computational setup (see Sec. III). In an attempt to go
beyond one-electron approximation, an ab initio variational
quantum Monte Carlo study was performed by Králik et al.48

where the effect of electron correlation was investigated; the
authors concluded that, when electron correlation is explicitly
considered, the computed profiles are lowered by about 1%
near p = 0, thus reducing the discrepancy with the experiment
in this region, which, however, still remains evident.

The structure of this paper is as follows. Section II
reports the experimental setup and the description of the data
processing adopted to correct the measured CPs for absorp-
tion, detection efficiency, and multiple scattering. Section III
presents the computational framework. The adopted setup is
described, with special attention given to the choice of the
basis set of localized Gaussian functions, which is calibrated
with respect to a well-converged plane-wave basis set. The
different modes of description of the EMD are defined in
Sec. IV: their main features are illustrated, and the relations
among them introduced. In Sec. V we present and discuss
our results. The quality of our computational setup is first
analyzed by checking the accuracy of the computed values
of x-ray structure factors. The experimental and theoretical
description of the EMD are next compared, with reference
to CPs and to their one-dimensional Fourier transform, the
autocorrelation function (AF). A general discussion follows.
Some conclusions are drawn in Sec. VI.

II. EXPERIMENTAL INFORMATION

Single crystals of silicon with surface normal oriented along
the [100], [110], and [111] directions were used. The size of the
crystals was 10 × 10 × 0.5 mm. The experiment was carried
out at 300 K. CPs were measured at the BL08W beamline
of SPring-8, where incident x-ray beams of 115.5 keV are
available with a photon flux of 1 × 1013 photons/s at the
sample. The scattering angle was 165.3◦. The high-resolution
spectrometer for Compton-scattered x rays consists of a
triangular Cauchois-type Ge (620) crystal bent to a radius

of 3200 mm and an x-ray image intensifier as a position
sensitive detector.49,50 The overall instrumental resolution
was 0.11 a.u. in full width at half-maximum (FWHM). The
accumulated count at the Compton peak channel was about 2 ×
105 counts/0.025 a.u. for each profile. The measured profiles
were duly corrected for absorption, detection efficiency, and
scattering cross section. Areas under the corrected profiles
were normalized to the effective total number of electrons, and
the normalized profiles are used as total CPs. For evaluating the
contribution of multiple scattering, we measured a 5-mm-thick
Si single crystal with the surface normal along the [100]
direction, where the multiple scattering is stronger than that of
the 0.5-mm-thick sample. With the ratio of the total intensity
of multiple scattering to that of single scattering obtained
by a Monte Carlo simulation,51 the contribution of multiple
scattering was estimated from the experimental profiles of the
0.5- and 5-mm-thick samples. The ratio of the total intensity
of multiple scattering to that of single scattering was 1.7%
for 0.5-mm-thick samples. Systematic errors, mostly coming
from the estimate of the multiple scattering contribution, are
canceled out in the CP anisotropies since both the dimensions
and the orientation of the sample plates are the same for
all three CP measurements. The statistical error at p = 0 is
approximately 0.2% the value of the total CP.

III. COMPUTATIONAL TECHNIQUES

All simulations described below are performed using two
“periodic” ab initio codes: CRYSTAL24 and CRYSCOR.19–22

All quantities of interest in both programs are expressed
as linear combinations of Gaussian “primitives” centered in
high-symmetry positions: these functions are referred to in the
following as atomic orbitals (AOs). The use of such a basis set
(BS) is mandatory for the local correlation approach adopted
in CRYSCOR. The experimental equilibrium geometry at 300 K
(a = 5.43 Å) has been adopted for all calculations to maximize
the comparability of the computed to the experimental data.

A. Computational setup

The CRYSTAL program is used here to perform both HF
and DFT calculations. Four one-electron Hamiltonians are
considered: the classical HF, two typical DFTs [a local density
approximation (LDA)52 and the generalized-gradient PBE53],
and a hybrid DFT (B3LYP).54 Accurate calibration of the basis
set is perhaps the most delicate step in defining the optimal
computational setup and is discussed in detail in Sec. III B, but
it is not the only one. In CRYSTAL, the truncation of infinite
lattice sums is controlled by five thresholds, T1 to T5, which
are set here to 16, 12, 12, 15, 30. Note, in particular, that a
tight value T1 = 16 must be adopted for a reliable description
of CPs and related quantities, instead of the default value of 6,
which is adequate for most other purposes: this is necessary to
generate geometrical information on a sufficiently large set of
lattice vectors. The DFT exchange-correlation contribution is
evaluated by numerical integration over the cell volume: radial
and angular points of the atomic grid are generated through
Gauss-Legendre and Lebedev quadrature schemes, using a
(75,974)p grid; grid pruning is adopted. Reciprocal space is
sampled according to a regular sublattice with a shrinking

125208-2



BEYOND A SINGLE-DETERMINANTAL DESCRIPTION OF . . . PHYSICAL REVIEW B 83, 125208 (2011)

factor equal to 8, corresponding to 29 k points in the irreducible
Brillouin zone.

After completing the self-consistent calculation, CRYSTAL

determines via a unitary transformation of the manifold of
occupied canonical crystalline orbitals (CO), {ψj,κ (r)}, the
equivalent set of Wannier functions (WFs),55–57 {wi,g(r)}. Here
the indices i,j run from 1 to N0/2, N0 being the number of
electrons per unit cell, while κ and g indicate the wave vector
and the general direct lattice vector, respectively. WFs are
real, well-localized, symmetry-adapted, mutually orthonormal
[〈 wi,g | wj,l 〉 = δij δg l], translationally equivalent [wi,g(r) =
wi,0(r − g)] functions.

WFs play an essential role in CRYSCOR, together with the
complementary set of projected atomic orbitals (PAOs); the
latter are local functions that span the virtual HF manifold
and are obtained by projecting out of each AO its “occupied”
portion.23 The functions in the two sets are concisely indicated
as i,j, . . . and a,b, . . . , respectively. The MP2 energy E(2)

can be written as a sum of all contributions Eab
ij , each

corresponding to a two-electron excitation from a pair of
WFs to a pair of PAOs [(ij ) ↑↑ (ab)]; the related amplitudes
are calculated via a self-consistent procedure. Exploitation of
translational symmetry allows us to impose the first WF (i) to
belong to the reference zero cell.

The input parameters of CRYSCOR serve essentially to fix
three kinds of tolerances, all concerning the treatment of
WFs and PAOs. The first parameter simply determines the
truncation of their tails: in the linear combinations that define
WFs and PAOs, those AOs are disregarded whose coefficients
are lower than t c, here set to 0.0001. The other two parameters
are used to exploit the local-correlation ansatz,23,58 according
to which all excitations can be ignored except those involving
close-by WF and PAO pairs. More precisely, the following se-
lection criteria are adopted. To the general WF (i) a domain Di

is associated consisting of a certain number of atoms close to it;
here Di is taken to correspond to the eight silicon atoms which
constitute the first two stars of neighbors of a given covalent
bond described by the i WF. Two WFs then define a pair-
domain D(ij ) which is simply the union of the corresponding
domains. Only those [(ij ) ↑↑ (ab)] excitations are retained for
which, first, both PAOs, a and b, belong to atoms in D(ij ), and
second, the distance dij between the centers of the two WFs is
within a certain value D; in the present application, D = 12 Å.
Once the relevant WF-PAO pairs are selected, the main compu-
tational step is the evaluation of the two-electron repulsion in-
tegrals, (ia | jb), between the respective product distributions.
The analytical calculation of such integrals is a very demanding
task; a way out of this difficulty has been to estimate the elec-
tron repulsion intervals using a periodic variant of molecular
density-fitting techniques,21,59 with extraordinary savings in
computer time and negligible loss of accuracy. Furthermore,
if the two WFs are sufficiently far apart (say, beyond a certain
distance D′, here set to 8 Å), the electron repulsion intervals
are evaluated at near-zero cost via a multipolar technique.

B. The basis set

The AOs χμg(r) used as a BS by CRYSTAL and CRYSCOR

are local, real functions of r, labeled by an index μ = 1, . . . p,
which identifies their shape and location within the reference

zero cell, and by an index g, which specifies the crystalline
cell to which they belong. As is standard practice in molecular
quantum chemistry, the AOs here are contractions of Gaussian
“primitives” of angular momentum components 	,m centered
in an atomic nucleus or at some special position in the
cell.

The choice of a suitable AO-BS, as a compromise among
the often conflicting requirements of accuracy, feasibility, and
computational cost, is an important issue. In a recent study
concerning the ab initio simulation of the DM of crystalline
solids,60 we have revised this problem by analyzing the
performance of different AO-BSs in the reproduction of two
quantities related to the ECD of silicon: the value of ρ(r)
at the bond midpoint and the F222 structure factor (whose
nonzero value is a measure of the asphericity of the ECD
about the individual atoms). For comparison, calculations were
performed with the Quantum-ESPRESSO code,61 where a plane-
wave BS was used for the valence electrons, while the core con-
tribution was described with the PAW (projector augmented
waves) technique. In both cases the PBE Hamiltonian was
adopted. The results of this comparison can be summarized
as follows. (i) The plane-wave basis sets perform very well;
with the improvement of their quality (represented by a
unique parameter, the so-called energy cutoff), they rapidly
converge to a definite value that can be taken as a reference.
(ii) Improving the quality of the AO-BS implies providing a
progressively better description of core electrons and allowing
wider variational freedom for the valence electrons; along
the series, the convergence to the reference value is slower
and less uniform with respect to plane waves, but is finally
achieved. (iii) The “converged” PBE results reproduce very
accurately the experimental ECD data, as commented on in
Sec. V A.

In the present work, we adopt the “best” AO-BS among
those tried in that study, that is, the one labeled 8-41G***(sp);
it represents an improved version of the 8-41G basis set
explicitly reported in Ref. 47. The 10 core electrons with
principal quantum numbers 1 and 2 are described by one s

and one sp shell, respectively, both comprising an optimized
combination of eight primitives. The rest of the BS provides
ample variational freedom for the valence electrons. Apart
from two independent sp shells of four and one primitive,
respectively, we have three single-primitive polarization func-
tions, two of d and one of f type. All these AOs are centered
in the Si nuclei. In addition, the BS includes an sp-type
shell (with exponent 1.4 a.u.) located at the midpoint of
the Si-Si bond: this further shell was found to contribute
to the proper description of the ECD at the center of the
bond.

With this AO-BS, the HF CRYSTAL calculation provides an
atomization energy of 0.235 Eh per unit cell of silicon (with
reference to the HF limit for the atom), which is close to
the estimated HF limit (0.240 ± 0.015Eh).47 The MP2 energy
evaluated with CRYSCOR is 0.100 Eh per cell, that is, the
near totality of the correlation energy of crystalline silicon,
estimated at 0.105 ± 0.015Eh:47 this shows that the present
BS can provide sufficient flexibility for the description of
low-lying excited states, as it is needed for the MP2 estimate
of correlation effects.
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IV. DENSITY MATRIX MANIPULATION

The spin-free DM of a crystalline, nonconducting, closed-
shell system described by a one-electron Hamiltonian (X) can
be written in several equivalent ways:

RX(r; r′) = 2
N0/2∑
j=1

∑
κ

ψX
j,κ (r)

[
ψX

j,κ (r′)
]∗

(1)

= 2
N0/2∑
i=1

∑
g

wX
i,g(r) wX

i,g(r′) (2)

=
∑
g,l

∑
μν

P X
μνg χμl(r) χν(l+g)(r′). (3)

In the first line, it is given in terms of the COs; in the second, of
the WFs; and in the third, of the AOs. The elements of the PX

matrix that appear in the last expression are defined as follows
per each pair of AOs μ and ν in two arbitrary cells related to
each other by a lattice vector g:

P X
μνg = 2

N0/2∑
j=1

∑
κ

e−ı κ·g[aX
j,κ;μ

(
aX

j,κ;ν

)∗]
, (4)

where aX
j,κ;μ denote the coefficients of the COs in the AO-BS

(translational invariance is exploited here).
Since the early days of quantum chemistry, it has

been known that one of the main deficiencies of single-
determinantal approximations is their inability to describe the
Coulomb hole, that is, the fact that electrons with opposite
spin instantaneously correlate their motions so as to stay as
far apart from each other as possible. A way to eliminate this
inadequacy, which affects not only the energy of the system,
but also its DM, may consist either in the explicit inclusion
in the expression of the wave function of terms that depend
on the interelectronic distance,62 or in a multideterminantal
expansion, or in a combination of the two schemes.63

These techniques are not easily applied to “large” systems,
in particular, to periodic ones. To extract information on the
DM from a nonvariational perturbative approach such as the
MP2 one implemented in CRYSCOR, rather than referring to
the wave function, it is preferable to adopt a Lagrangian
approach,64 according to which the DM provides the first-order
response of the energy of the system to an arbitrary external
one-electron perturbation. Note that even if formulations (3)
and (4) of the DM are no longer usable when one goes beyond
the one-electron approximation, we can still exactly write
within the selected representative Fock space,

R(r; r′) =
∑
g,l

∑
μν

Pμνg χμl(r) χν(l+g)(r′), (5)

with an appropriately corrected P matrix.
CRYSCOR provides precisely a Lagrangian estimate of the

correction PMP2 to be applied to the HF-DM:1,65

PHF+MP2 = PHF + PMP2. (6)

Once an estimate of the DM in the coordinate representation
R(r; r′) is available, its expression in the momentum represen-
tation P (p; p′) is obtained through a six-dimensional Fourier
transform. We are interested here in its diagonal element, the

EMD π (p) = P (p; p), and in three related functions, the AF,
B(r)66 (also referred to in the literature as the internally folded
density),67 the directional AF, Bhkl(r), and the directional CP,
Jhkl(p). A number of useful relationships exist among these
quantities and between them and the AO representation of the
DM, Eq. (5).

The AF is equivalently defined as the 3D Fourier transform
of the EMD, or as the auto-correlation integral of the position
DM:

B(r) =
∫

π (p) eı p·r dp ≡ 1

L

∫
R(r′; r + r′) dr′, (7)

the normalization factor 1/L ensuring that the condition
is obeyed: B(0) = N0. From here and from Eq.n (5), a
computationally convenient expression is obtained:

B(r) =
∑
μν

∑
g

Pμνg Sμνg(r), (8)

with

Sμνg(r) =
∫

χμ0(r′) χνg(r + r′) dr′. (9)

For each [hkl] crystallographic direction identified by the
unit vector ehkl , two interrelated functions of a single variable
can be defined, namely, the directional AF, Bhkl(r) = B(r ehkl),
and the directional CP, Jhkl(p):

Jhkl(p) =
∫

π (q) δ(q · ehkl − p) d q (10)

= 1

2π

∫
Bhkl(r) e−ı p r dr. (11)

Within the sudden-impulse approximation, Jhkl(p) is di-
rectly comparable to the outcome of Compton-scattering
experiments,68 after correcting the latter for limited resolution
and multiple scattering effects. In particular, the effect of
limited resolution can be expressed as a convolution of the
“infinite resolution” data with a normalized Gaussian function
g(p; σcp) characterized by a given standard deviation σcp (or,
equivalently, by the FWHM parameter wcp = σcp · 2

√
2log2),

which quantifies the experimental resolution:

J σ
hkl(p) =

∫ +∞

−∞
Jhkl(p

′) g(p − p′; σcp) dp′

= 1

2π

∫ +∞

−∞
Bσ

hkl(r) e−ı p r dr (12)

In the last integrand a “finite-resolution AF” appears, which is
simply the product of the AF from Eq. (7) or (8) by a Gaussian
function g(r,σbr), with σbr = 1/σcp, and can be extracted from
the experimental CP simply by Fourier back-transformation.

As shown below, a lot of information can be obtained
from the anisotropies of the AFs, Bhkl(r) − Bh′k′l′ (r), or
of the CPs, Jhkl(p) − Jh′k′l′(p), since many experimental
errors are canceled out when performing these differences.
A manipulation that will prove useful, though not rigorously
justified, is the separation of the DM and related quantities
into a core and a valence part. In many instances, as in
the case of silicon, the core bands (those with j = 1,Nc/2)
are energetically much lower than the other bands; their
eigenvalues, and the corresponding eigenfunctions, are very
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similar to those of the isolated atoms. This corresponds to
the well-known chemical property that only valence bands
(those with Nc/2 < j � N0/2) are affected by the formation
of the crystal. We can then identify a core DM RX,core(r; r′)
and a valence DM RX,val(r; r′) by extending the sums over j

in Eq. (4) to the two sets of bands, respectively: this is, in fact,
the approach adopted in this work.

When going beyond the one-electron approximation we can
still tentatively maintain the above separation. In particular,
when calculating the MP2 correction to the DM, we are only
considering biexcitations from valence WFs, that is, from WFs
that span the valence bands altogether. Therefore, the matrix
PMP2 in Eq. (6) would be more properly labeled PMP2,val. Since
the EMD, the AF, and the directional AFs and CPs are linearly
related to the DM, the core-valence separation can be applied
to them as well.

Finally, an important feature of calculated AFs must be
recalled. For an insulating crystal, simulated with a one-
electron Hamiltonian X, the DM can be formulated in terms
of WFs, owing to Eq. (2). By using this expression in Eq. (7),
and taking into account the orthonormality of the WFs, the
following nodal property is found to hold true:

BX(g) = 0 for all lattice vectors g �= 0 (13)

As a consequence, directional AFs must exhibit an oscillatory
behavior. The above property applies to both the core and
the valence part of the AF, since the two sets of WFs are
independent. However, BX,core(r) is so small at any g �= 0
that the oscillations about 0 are entirely due to the valence
part. Equation (13) holds true also for the finite-resolution
AF BX,σ (r) = BX(r) × g(r,σbr) [see Eq. (12)]. It no longer
needs to be satisfied when going beyond the one-electron ap-
proximation. Therefore, departures from this condition when
considering experimental AFs may be indicative of correlation
effects not accounted for by one-electron Hamiltonians.

V. RESULTS AND DISCUSSION

A. ECD simulation: A reminder

Before comparing experimental with theoretical EMDs, let
us briefly discuss what happens with the ECD. Reference is
made here to the data reported by Lu et al.69 and resulting from
a very accurate elaboration of experimental x-ray structure
factors; though relatively old, that paper is still an unsurpassed
reference in this respect. All the results presented here
were obtained by adopting the 8-41G***(sp) BS and the
computational setup described in Sec. III A. As anticipated
in Sec. I, the DFT is expected to accurately reproduce ECDs;
as a consequence, the adequacy of our computational setup
(in particular, of the adopted basis set) can be checked by
comparing the DFT estimates of ECD-related properties with
their experimental counterparts.

Table I reports a set of 18 static x-ray structure factors
(Fhkl), computed with different Hamiltonians and compared to
the experiment. The quality of the agreement can be measured,
as usual, by the corresponding agreement factor reported in the
last line in the table:

RX =
∑
hkl

∣∣FX
hkl − F

exp
hkl

∣∣
F

exp
hkl

× 100. (14)

TABLE I. Theoretical versus experimental static structure factors
Fhkl of crystalline silicon. Agreement factors in the last line are
defined in Eq. (14).

hkl HF HF + MP2 LDA PBE exp

111 10.770 10.760 10.740 10.740 10.728
220 8.645 8.650 8.655 8.650 8.656
311 7.995 8.002 8.023 8.023 8.020
222 0.235 0.222 0.162 0.167 0.191
400 7.455 7.460 7.445 7.450 7.449
331 7.283 7.278 7.222 7.232 7.247
422 6.735 6.735 6.695 6.705 6.716
333 6.429 6.428 6.403 6.412 6.427
511 6.461 6.460 6.430 6.438 6.438
440 6.070 6.070 6.030 6.040 6.046
444 4.988 4.987 4.964 4.970 4.979
551 4.823 4.822 4.799 4.805 4.807
642 4.562 4.561 4.541 4.546 4.555
800 4.194 4.193 4.176 4.181 4.176
660 3.876 3.876 3.860 3.865 3.866
555 3.764 3.764 3.751 3.755 3.760
844 3.152 3.152 3.141 3.144 3.135
880 2.541 2.541 2.534 2.536 2.533

R 0.32% 0.28% 0.20% 0.14%

As expected, the generalized-gradient PBE Hamiltonian per-
forms extremely well (RPBE = 0.14%), while the LDA Hamil-
tonian is slightly worse (RLDA = 0.20%). The HF results are
definitely less satisfactory (RHF = 0.32%); the MP2 correction
significantly improves them (RHF+MP2 = 0.28%) but not to an
extent to bring them to the same level of quality as the KS
results.

Similar conclusions are reached when considering the
calculated ECD along the bond, reported in Fig. 1. The
reference value here is the “experimental” density at the bond
midpoint ρ(δ) (also estimated by Lu et al.), which is accurately

FIG. 1. (Color online) Calculated electron charge density along
an Si-Si bond, near its midpoint. The experimental value at the
midpoint is represented by the triangle.
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predicted by the PBE Hamiltonian. The LDA slightly under-
estimates the value of ρ(δ), while HF strongly overestimates
it; passing from HF to HF + MP2, the charge density at the
bond midpoint decreases, but not by the full required amount.

B. CPs: Experiment versus theory

Table II reports the present experimental CP along [100] and
the corresponding calculated one, both uncorrected, JX

100(p),
and corrected, J

σ,X
100 (p), for the limited resolution of the

spectrometer [see Eq. (12), with σ = 0.047 a.u.], for the cases
X = HF, HF + MP2, and PBE. It is shown that the effect of
this correction is a reduction in the peak height of the computed
infinite resolution CPs by about 0.1% near p = 0.

Figure 2 shows the corrected J
σ,X
100 (p) CPs, computed with

the whole set of Hamiltonians used here (HF, HF + MP2,
PBE, LDA, B3LYP), along with the experimental data, whose
intrinsic uncertainty is about 0.2% at p = 0. At this level
of detail, all the theoretical CPs coincide among themselves
and are almost indistinguishable from the experimental curve,
except in the vicinity of p = 0: there, the value of the
experimental CP is less than that of the calculated ones
by about 5%. This relevant feature has been reported also
in previous papers: notable among them, the one by Kubo
et al.,42 who performed DFT calculations at various levels
of sophistication to analyze their experimental CPs and the

TABLE II. Experimental versus calculated CPs of crystalline Si
along [100]. For each Hamiltonian both the infinite-resolution [J (p)]
and the finite-resolution [J σ (p)] CPs are reported.

Exp. HF + MP2 HF PBE

p J σ (p) J σ (p) J (p) J σ (p) J (p) J σ (p) J (p)

0.0 4.1093 4.2849 4.2891 4.3143 4.3187 4.3198 4.3237
0.1 4.0904 4.2637 4.2692 4.2925 4.2980 4.3004 4.3052
0.2 4.0252 4.1919 4.1993 4.2209 4.2282 4.2371 4.2435
0.3 3.9120 4.0554 4.0652 4.0849 4.0952 4.1146 4.1254
0.4 3.7206 3.8390 3.8512 3.8649 3.8778 3.9017 3.9167
0.5 3.4482 3.5352 3.5458 3.5523 3.5633 3.5813 3.5930
0.6 3.1007 3.1681 3.1747 3.1743 3.1811 3.1891 3.1957
0.7 2.7315 2.7802 2.7841 2.7759 2.7797 2.7781 2.7822
0.8 2.3666 2.4067 2.4075 2.3935 2.3941 2.3833 2.3838
0.9 2.0509 2.0789 2.0761 2.0596 2.0565 2.0405 2.0365
1.0 1.8076 1.8220 1.8179 1.8003 1.7959 1.7808 1.7755
1.1 1.6274 1.6390 1.6361 1.6182 1.6151 1.6052 1.6017
1.2 1.5056 1.5126 1.5114 1.4947 1.4933 1.4892 1.4880
1.3 1.4143 1.4215 1.4215 1.4071 1.4070 1.4068 1.4069
1.4 1.3463 1.3505 1.3512 1.3394 1.3400 1.3412 1.3421
1.5 1.2911 1.2903 1.2914 1.2820 1.2831 1.2841 1.2853
1.6 1.2310 1.2360 1.2373 1.2298 1.2311 1.2313 1.2326
1.7 1.1818 1.1849 1.1864 1.1804 1.1819 1.2313 1.1825
1.8 1.1340 1.1357 1.1373 1.1325 1.1341 1.1324 1.1341
1.9 1.0875 1.0875 1.0892 1.0852 1.0870 1.0847 1.0865
2.0 1.0430 1.0399 1.0417 1.0383 1.0401 1.0374 1.0392
2.5 0.8169 0.8169 0.8188 0.8166 0.8185 0.8139 0.8158
3.0 0.6296 0.6285 0.6303 0.6285 0.6303 0.6257 0.6275
3.5 0.4884 0.4816 0.4832 0.4816 0.4832 0.4793 0.4809
4.0 0.3754 0.3719 0.3733 0.3719 0.3733 0.3702 0.3716
5.0 0.2346 0.2333 0.2332 0.2333 0.2333 0.2324 0.2323

FIG. 2. (Color online) Experimental versus calculated CPs along
[100]. The momentum p is in atomic units; J , in atomic units per
atom. All theoretical results are convoluted with the experimental
resolution function. Inset: MP2 contribution to the HF + MP2 CPs.

variational quantum Monte Carlo study by Králik et al.48

Possible reasons for this discrepancy are discussed in Sec. V D.
The Hamiltonian that provides the best description of the
CPs near p = 0 is HF + MP2. The MP2 correction to the
HF reference CPs is reported in the inset in Fig. 2 for
the three main crystallographic directions. It is shown that
when the instantaneous correlation between the electronic
motions is explicitly accounted for, the CPs are decreased
at low momenta and increased near p = 1 a.u. Even if
small (the MP2 correction is always within 1% of the total),
this correction brings the computed profiles closer to their
experimental counterpart. This result is expected since the
main effect of the correlation of electron motions is allowing
them to stay closer to the nuclei, hence to increase, on average,
their kinetic energy. Note, however, that in the present scheme
the MP2 correction is applied only to valence electrons. An
estimate of the corresponding effect on core electrons brings
in a further reduction of about 1% of the theoretical CPs near
p = 0. Relativistic effects on the description of core electrons
are not investigated.

Due to the fact that the core EMD is essentially isotropic,
the consequences of an inadequate description of the corre-
sponding distribution should cancel out when considering CP
anisotropies. Figure 3 compares experimental with calculated
data for these quantities, which convey a lot of information
since they reflect the intrinsic anisotropy of the electronic
structure of the crystal. We also report there, for the sake
of reference, some older experimental data of Pattison et al.40

Since the resolution for that experiment was different (and
worse) with respect to the present one, which was used for
correcting the calculated CPs, those data are not strictly com-
parable to the computed ones. It is worth noting that, with that
poorer resolution, it was almost impossible to assess the quality
of the agreement achieved with the different Hamiltonians;
this was, indeed, the conclusion reached by Nara et al.46 By
virtue of the extremely high resolution of the present CPs,
the anisotropy of the EMD is revealed in extreme detail,
in strict connection with the resolution of the spectrometer:
while passing from wcp = 0.41 in the work by Pattison et al.40

to wcp = 0.11 in the present data, the amplitudes of the
oscillations of the experimental CP anisotropies increase by
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FIG. 3. (Color online) CP anisotropies among the three main
crystallographic directions of silicon as computed with several
Hamiltonians and compared to the new experiment. Some older
(1992) data of Pattison et al.40 are also reported.

about a factor of 2. This allows us to discriminate the various
theoretical schemes, even if the agreement with the experiment
is generally good for all of them. At variance with the case
of the ECD (see Sec. V A), HF and, especially, HF + MP2
appear to perform much better than DFT-based treatments
in reproducing the finest features of the CP anisotropies:
this is not a surprise, for the reasons cited in Sec. I. The
PBE and LDA Hamiltonians are found to exaggerate the
anisotropies by about the same amount, while HF significantly
reduces them; the B3LYP hybrid Hamiltonian, as expected,
provides an intermediate description. The effect of the explicit
treatment of instantaneous electron correlation, as evaluated
at the HF + MP2 level, is to reduce the anisotropies and to
improve the agreement with the experiment.

C. AFs: Experiment versus theory

By means of Eq. (8) it is possible to obtain directly the
calculated AFs and, if needed, to separate core and valence
contributions. Their experimental counterpart is obtained in
principle through a 1D Fourier transform of the corresponding
CPs, which requires, however, knowledge of them up to
p = ∞. Due to the finite range (0–10 a.u.) of the experimental
CPs, the following computational scheme was applied to

extract from them their valence part. The isotropic J HF,core(p)
has first been evaluated from the DM corresponding to the
core bands of the HF periodic solution (see the “core” curve
in Fig. 2). This contribution (duly convoluted for limited
resolution) has been subtracted from all directional CPs; it has
been verified that the use of other one-electron Hamiltonians
resulted in no appreciable changes in the resulting valence CPs.
The “experimental valence CPs” so obtained were practically
0 beyond 6 a.u., as expected. However, oscillations about 0
within the experimental error were left at high momenta. This
numerical noise had to be eliminated because it would have
been unduly amplified in performing the Fourier transform.
In the region 1.6 < p < 10 a.u., the valence data were
therefore fitted with an exponential function. The directional
experimental valence AFs were hence obtained by using the
original pseudovalence CP data between 0 and 1.6 a.u., and
the fitted ones beyond 1.6 a.u.

Figure 4 compares the experimental valence AFs so
obtained with the PBE, HF, and HF + MP2 computed ones
along the [110] and [111] crystallographic directions. The
theoretical data include the damping factor g(r,σbr) [see
discussion following Eq. (12)]. To show the effect of this
correction, the uncorrected PBE data are reported as well: it is
seen that, due to the high experimental resolution, the damping
factor is still relatively unimportant in the region of interest
(its value is 0.90 at 10 a.u. and 0.65 at 20 a.u.). The agreement
between theory and experiment appears to be excellent and
is slightly better with the more advanced level of theory. As

FIG. 4. (Color online) Valence AFs along the [110] and [111]
directions computed at HF (thin solid lines), HF + MP2 (thick solid
lines), and PBE (long-dashed lines) levels of theory. All these data are
corrected for the finite experimental resolution; uncorrected PBE data
are also reported (short-dashed lines). The experimental valence AFs
[filled (red) circles] were obtained as described in the text. Vertical
segments along the two zero lines mark the length of the respective
shortest lattice vector RL. These plots partially coincide with those
reported in Ref. 18.
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FIG. 5. (Color online) Theoretical and experimental valence AFs
along the [100] crystallographic direction. Symbols as in Fig. 4. These
plots partially coincide with those reported in Ref. 18.

already pointed out, also the valence AFs, computed from
one-electron Hamiltonians, are expected to satisfy the nodal
condition (13). The vertical segments mark the length of the
shortest lattice vector RL for the two directions where such
zeros should occur. It is seen that the first nodal point along
[111] is so far from the origin that the valence AF is there
practically zero within the experimental errors. This is not true
for the [110] AF, where the nodal condition is nicely satisfied
by all theoretical curves and by the experimental one as well.

It was observed in Sec. IV that evidence of the inadequacy
of the single-determinantal description of the wave function
could come from the nonobservance of that property. As shown
in Fig. 5, [100] is the only direction where a significant
departure from that condition was observed: this is due to
the fact that the corresponding RL is still relatively short
(10.28 a.u.) and that the AF in this case approaches the nodal
point at a grazing angle, so that even a small correction may
result in a notable departure from it. The inset in Fig. 5 shows
the [100] AF data in a vicinity of the nodal point, at a very
expanded scale. While the HF and PBE AFs are 0 at r = RL,
as expected, the intersection with the 0 axis occurs at r/RL =
1.02 for the HF + MP2 and 1.03 for the experimental AF.

D. Discussion

The comparison just performed between experimental
and theoretical results concerning crystalline silicon con-
firms the generally recognized fact that DMs extracted from
single-determinantal pseudo–wave functions provided by DFT
calculations can very accurately reproduce ECD data, but
perform rather poorly in reproducing quantities related to the
distribution of electron momenta. HF-DMs behave oppositely,
in a sense, by providing an unsatisfactory agreement with
the experiment as concerns the ECD, while describing the
EMD rather accurately, better than the DFT, in any case. The
latter feature may be due to the fact that HF, at variance
with the KS-DFT, describes exactly the Fermi hole, that is,

the correlation among electrons with the same spin. It is
not surprising, then, that a simple post-HF ab initio scheme
like MP2 may provide results in very good agreement with
experimental EMDs, while higher order corrections may be
needed to obtain an accurate description of the calculated
ECD. In particular, the extremely high resolution of the present
experimental CPs has permitted us to clearly demonstrate the
departure from the nodal condition of the [100] AF, which is
reproduced rather faithfully by the post-HF scheme but cannot
be accounted for by single-determinantal wave functions.

Definite discrepancies are left, however, between the HF +
MP2 and the experimental EMD data. As just shown, they
concern, in particular, the absolute value of the CP at low
momenta (see Table II and Fig. 2) and the amount of departure
from the nodal condition of the [100] AF (see Fig. 5). This
disagreement may be attributed partly to experimental errors:
the inadequacy of the impulse approximation or multiple
scattering effects, only partly corrected for in the processing
of the experimental data, have been invoked, for instance,
to justify the systematic overestimation of theoretical with
respect to experimental CPs at low momenta.48 However,
the discrepancy seems to exceed the estimated experimental
uncertainties, so it can more likely be attributed to two kinds
of deficiency of the present theoretical simulations: the level
of the theoretical treatment and the neglect of nuclear motions.

As concerns the former aspect, the use of more flexible
basis sets and the inclusion of higher orders than MP2 of
the perturbative treatment might improve the agreement with
the experiment. The fact must also be mentioned that in our
Lagrangian scheme, orbital relaxation is not accounted for,65

which may result in a small underestimation of the MP2
correction. Finally, as discussed in Sec. V B, the effect of both
correlation and relativistic treatment of core electrons should
be explicitly included.

Concerning the second aspect, we recall that all the present
calculations refer to static nuclei with the lattice constant
set at its experimental value at 300 K. This approximation
does not affect our comparison with ECD data, because
reference is made in Sec. V A to experimental data corrected
for zero-point and thermal nuclear motion,69 so the related
disagreement must be traced back to the level of the “static”
theoretical treatment. Instead, the EMD data analyzed in the
following sections come from experiments carried out at room
temperature, not corrected for nuclear motion; it would be
desirable therefore to include these effects in the theoretical
treatment. This is not an easy task, and to our knowledge, it
has not received much attention in the literature so far. An
interesting approach was proposed by Dugdale and Jarlborg
for describing nuclear motion effects on the CP of alkali
metals:70 for this purpose they used a statistically averaged
CP coming from a number of supercell calculations, each
describing a thermally disordered distribution of the nuclear
positions; electron correlation was accounted for by means of
a modified Fermi distribution of level occupation. A different
scheme was tried by Sternemann et al. for interpreting the
change in the [110] CP of lithium when passing from 95 to
295 K;71 the experimental results were in good agreement
with LDA calculations, where an empirical pseudopotential
was introduced, simulating on average thermal disorder; the
experimental change in the lattice constant with temperature
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was also accounted for. It can be noted incidentally that,
according to the latter scheme, the nodal condition [Eq. (13)]
remains satisfied with reference to the geometry adopted in
each case. The case of silicon is so different from that of
alkali metals that new techniques are required. However, the
statistical approach just mentioned,70 if suitably modified, can,
in principle, be extended to nonconducting crystals.

VI. CONCLUSIONS

We have measured CPs of crystalline silicon and compared
them to the predictions of ab initio simulations performed at
different levels of theory. It has been shown that the manifold
of KS orbitals, which provides an excellent description of
the ECD, is inadequate for simulating properties related to
the electron momentum distribution. In particular, as is the
case for all schemes based on a single-determinantal approx-
imation of the wave function, it cannot describe departures
from the nodal property of the AF [Eq. (13)], which are
instead observed experimentally. Such departures may be
interpreted as fingerprint evidence of instantaneous Coulomb
correlation effects: as a matter of fact, a simple post-HF (MP2)
ab initio scheme newly implemented for periodic systems
accounts for this effect nicely. More generally, the results
obtained with the new scheme are in better agreement with the

experimental CP data than those obtained with more conven-
tional approaches.

Some discrepancies are left, however, which we have
attributed to two main factors: partial inadequacy of the level of
approximation adopted and neglect of nuclear motion effects.
Work to improve the description of properties related to the
DM of crystals is in progress in both directions. At the same
time, new experimental CPs are presently planned for a number
of systems, which will provide stringent tests of the accuracy
of the calculations. These measurements will be characterized,
on the one hand, by the fact that a rich set of directional CPs
is considered, which permits, in principle, the full EMD to be
reconstructed and, on the other hand, by the exploration of
temperature effects.

We hope that the present study will provide a new stimulus
for the production of very precise CPs for a variety of crys-
talline systems and for the refinement of existing theoretical
tools for the description of their DM-related properties.
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