
25 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

The Context Aware Workflow Execution Framework

Published version:

DOI:10.1504/IJAACS.2012.044784

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/29377 since 2017-10-30T16:48:29Z

This is an author version of the contribution published on:
Questa è la versione dell’autore dell’opera:

International Journal of Autonomous and Adaptive Communications Systems, 5(1), 2012, DOI:
 10.1504/IJWET.2010.034758

The definitive version is available at:
La versione definitiva è disponibile alla URL:

http://www.inderscience.com/info/inarticle.php?artid=44784

Int. J. Autonomous and Adaptive Communications Systems, Vol. , No. Special
Issue on: Context awareness for Self-Managing Systems. W. Dargie, N. Kuwahara,
M. Denko, Guest Editors, 1

The Context Aware Workflow Execution
Framework

Liliana Ardissono*, Roberto Furnari,
Anna Goy, Giovanna Petrone, and

Marino Segnan

Dipartimento di Informatica,
Università di Torino,
Corso Svizzera 185, 10149 Torino, Italy
Fax: +39 011 751603, E-mail: name.surname@di.unito.it
∗Corresponding author

Abstract: The development of self-adapting Web applications based
on composite architectures, such as Service Oriented Architectures (SOA),
is challenged by the lack of support to the specification of explicit adap-
tation policies for the context-aware management of the business, inter-
action and presentation logics.

In order to address this limitation, we propose a vertical architecture
extending SOA with advanced adaptation features. This article presents
the Context Aware Workflow Execution framework (CAWE), which en-
riches SOA with (a) context-aware workflow management; (b) dialogue
management capabilities supporting the adaptation of the interaction
with the user, and (c) context-dependent User Interface generation.

The article also briefly presents a prototype application developed by
exploiting the CAWE framework.

Keywords: Context-aware adaptation; Service Oriented Architectures;
Web applications; Context-dependent workflow execution

Reference to this paper should be made as follows: Ardissono, L.,
Furnari, R., Goy, A., Petrone, G., Segnan, M., (xxxx) The Context
Aware Workflow Execution Framework, Int. J. Autonomous and Adap-
tive Communications Systems, Vol. x, No. x, Special Issue on Context-
awareness for self-managing systems, pp.xxxxxx.

Biographical Notes: Liliana Ardissono is an Associate Professor at
the Dipartimento di Informatica of the Università di Torino, where she
obtained her University Degree and her Ph.D in Computer Science. Her
research interests include User Modeling, Adaptive Hypermedia and Ser-
vice Oriented Computing. She is Secretary of the Board of Directors of
User Modeling Inc. and she is a member of the Editorial Board of User
Modeling and User-Adapted Interaction - The Journal of Personaliza-
tion Research.

Roberto Furnari received a Laurea Degree in Computer Science in 1999
at the Università di Torino. In 2007 he started its Ph.D. program in

Copyright c© 200x Inderscience Enterprises Ltd.

2

Computer Science within the Doctoral School of Science and High Tech-
nology of the Università di Torino. His main research interests are in
Web Service orchestrations and choreographies.

Anna Goy is Researcher at the Department of Computer Science of
the Università di Torino, working in the area of Web-based systems.
She completed her Ph.D. in Cognitive Science (Università di Torino) in
1998, in the area of lexical semantics. Since many years she works on
distributed Web-based applications, Adaptive Hypermedia, and context-
aware systems.

Giovanna Petrone is a researcher of Computer Science at the Università
di Torino. Her research interests concern two main areas: Multi-agent
systems (with specific interest for distributed systems and Web Services)
and Intelligent User Interfaces (with specific attention to personalisation
in Web-based services). Previously, she has worked for several years
as a software engineer and architect in large US and Italian computer
companies and she was also Visiting Scholar at the Stanford University.

Marino Segnan is a Researcher at the Computer Science Department,
Università di Torino, working with the Advanced Service Architectures
group. His recent research activities deal with interaction models for
Web Services, choreographies, monitoring. His previous activity focused
on the development of a Qualitative Simulation Tool for Model-Based
Diagnosis. Previously, he worked with several companies, mainly on
projects involving Integrated Development Environments, User Inter-
faces, compilers, Transaction Management.

1 Introduction

The research on self-adapting systems mainly deals with the management of
Quality of Service, focusing on aspects such as load-balancing and failure recovery;
e.g., see Ghedira and Mezni (2006), Benlismane et al. (2005), Ardagna and Pernici
(2007), and Baresi et al. (2007). In contrast, the adaptation to the users and to
their surrounding context has been somehow neglected so far. However, this feature
has become particularly relevant, given the large number of systems which are now
available on the Web. In fact, Web applications can be used in rather different
contexts:

• With the large availability of broadband internet and wireless access, people
use various types of devices, in different environments, to interact with the
business services. Therefore, such services should tailor the User Interface
and the interaction logic accordingly.

• Web applications are used by a large user population having diverse prefer-
ences and capabilities. Thus, they should adapt their business logic and the
offered functions to specific requirements.

In order to improve the flexibility of such systems, the central role of the adaptation
logic should be recognised. However, this has not happened yet in the development
of systems based on composite architectures. As discussed in this article, Service
Oriented Architecture (SOA, Papazoglou and Georgakopoulos (2003)), the refer-
ence model for the development of composite applications, does not explicitly deal

3

with context awareness. In fact, it embeds all the adaptation decisions in the pro-
cess specifying the business logic of the applications.

In order to address this limitation, we designed a vertical SOA architecture
which extends Service Oriented Computing with context-awareness capabilities.
This article presents the CAWE (Context Aware Workflow Execution) framework
for the development of composite Web applications. The framework supports the
adaptation of the business logic, interaction logic and User Interface to the users
and to their context. Specifically, it supports:

• The context-dependent selection of the courses of action to be enacted, and of
the service providers to be invoked, during the execution of the application.

• The generation of a context-dependent User Interface, tailored to the user’s
device and preferences; e.g., background colours and font size.

• The management of tasks as dialogues with the user, supporting both the pro-
vision of extra-helpful information, and the management of a User Interface
fitting the size of her/his device.

These capabilities are based on the following architectural features:

• An explicit representation of the context variables to be taken into account.

• A declarative representation of the business, interaction and presentation log-
ics of the application.

• A declarative representation of the policies steering the adaptation of the
service to the user and to her/his context.

The analysis of two real-world application domains (an e-Health one, and a travel
one) proved the usefulness and the suitability of the adaptive features offered by
the framework. Moreover, the development of a prototype Web Application in the
first domain confirmed the applicability of the framework to real-world use cases.

The remainder of this article is organised as follows: Section 2 discusses the
problem addressed in this work. Section 3 describes CAWE and Section 4 provides
some technical details. Section 5 briefly presents our e-Health application, Section
6 positions our work in the related research and Section 7 concludes the article.

2 The problem

The research on User Modeling and Adaptive Hypermedia proposed techniques
supporting the adaptation of applications to the user’s preferences and character-
istics; e.g., see Maybury and Brusilovsky (2002), and Brusilovsky et al. (2007).
Moreover, the research on context-aware systems proposed techniques to model
and manage context information in ubiquitous systems; e.g., see Abowd and My-
natt (2000), Dey and Abowd (2000), Dourish (2004), Baldauf et al. (2007) and
Gross (2008). However, these techniques were applied to applications based on
monolithic architectures and having a simple business logic. In contrast, complex
systems, such as those which compose external services, adopt ad hoc solutions for
context awareness purposes.

4

As a matter of fact, Service Oriented Architecture provides limited support to
context awareness because it fails to recognise the central role of the adaptation
logic. Thus, it embeds the adaptation decisions in the workflow defining the business
logic of an application. Specifically:

• As far as the business logic is concerned, the workflow underlying the ap-
plication embeds the variables to be taken into account and describes the
alternative courses of action in a flat graph. Although this approach works
well in simple cases, it does not support the reactive composition of the busi-
ness logic, depending on the evolution of a dynamic context. In fact, it fails
to support the adoption of powerful decision making techniques to select the
most appropriate system behaviour. Moreover, it leads to the specification of
complex and articulated workflows, including a large number of paths describ-
ing the alternative courses of action to be enacted. This complexity makes
the workflows hard to read and to modify, and challenges the specification of
flexible adaptation strategies. On the contrary, Service Oriented Computing
poses complex adaptation requirements concerning, e.g., the dynamic compo-
sition of Web Service providers on the basis of their availability and of various
Quality of Service requirements.

• Similarly, the User Interface (UI) and the interaction with the user lack flex-
ibility:

– On the one hand, Web Service composition environments adapt the UI
pages to the user by applying device-dependent stylesheets. However,
they do not plan the distribution of content in the UI pages. In fact, they
present the same content on any type of device, without taking its screen
size, or other similar features, into account. This surface-level adaptation
leads to the generation of sub-optimised UI pages which either force the
user to do scrolling, or increase the length of the interaction during the
task completion.

– On the other hand, these environments only support the management
of one-shot interactions in which, for each workflow task, a UI page is
generated. Similar to the previous case, the strict association between
tasks and pages may cause the generation of oversize pages, if the tasks
are complex or the device has a small screen.

In order to address such limitations, we propose to extend Service Oriented Archi-
tecture with dialogue management capabilities supporting the dynamic selection
of the content to be displayed during the interaction with the user. Moreover, we
introduce the management of explicit adaptation policies, which can be exploited to
steer both the selection of the business activities to be performed and the generation
of the User Interface. The introduction of such policies has two main advantages:
first of all, policy languages enable the specification of adaptation strategies based
on the evaluation of complex conditions, thus supporting a fine-grained tuning of
the system behaviour. Second, the adaptation strategies can be specified declara-
tively, supporting their revision and extension during the application life-cycle.

5

Dialog
Manager

Context-Aware Workflow Manager (CA-WF-Mgr)

Workflow Specification
Knowledge Base

CtxMgr WS WS supplier

Workflow
Engine

Workflow
Adaptation
Module

CM UM RM
Context

Adaptation
Knowledge Base

Rule-based
Engine

Figure 1 Architecture of the CAWE framework. Web Service interfaces are depicted
as thick lines.

3 The CAWE framework

The CAWE framework supports the development of composite applications
which tailor the business and the interaction logic, as well as the User Interface, to
the user and to her/his surrounding context. Thanks to the explicit representation
of the adaptation logic, the framework enables the adoption of flexible techniques to
steer the system behaviour. As show in Figure 1, the CAWE architecture includes
two core components:

• The Context Manager service (CtxMgr WS) handles the context information
during the execution of the application; see Section 3.1.

• The Context-Aware Workflow Manager (CA-WF-Mgr) enacts a
context-sensitive workflow which defines the business logic of the application.
For this purpose, the CA-WF-Mgr employs two software components: the
Workflow Adaptation Module shapes the workflow depending on the context;
the workflow engine enacts the resulting workflow. See Section 3.2.

Within the CA-WF-Mgr, the Dialog Manager module acts as a bridge between
the user and the workflow engine. When the user logs in the application, the
Dialog Manager is invoked and takes the control of the interaction. The
module informs the CtxMgr WS about the user’s identity and the device
(s)he is using. Then, it handles the tasks to be completed as dialogues with
her/him; moreover, it adapts the User Interface to a context including both
the user’s device and her/his layout preferences. See Section 3.3.

The CA-WF-Mgr and the Dialog Manager invoke a rule-based engine to evaluate the
adaptation policies, which are represented as declarative rules: their precondition
is a boolean condition on context variables and their action specifies the adaptation
decision to be applied. Given the result of the rule evaluation, the two modules
apply the selected behavior.

6

Role Model (RM):
role: String (role name)
currentUM: String (reference to UM of current role filler)
UMList: list of String (references of UMs of role fillers)
FeatureList: sequence of FeatureType elements

User Model (UM):
ID: String (UM identifier)
CMRef: String (reference to the CM associated to the UM)
FeatureList: sequence of FeatureType elements

Context Model (CM):
ID: String (CM identifier)
UMRef: String (reference to the UM of the user)
FeatureList: sequence of FeatureType elements

FeatureType:
featureName: String
featureVal: String

Figure 2 Structure of the RMs, UMs and CMs. These models are represented as
XML documents; however, the figure presents them in a simplified format for readability
purposes.

The adaptation policies are stored in the Adaptation Knowledge Base and they
are grouped in packages, depending on the kind of decision they are devoted to.
Specifically, the business-logic package stores the policies steering the selection
of the courses of action to be enacted; the layout package supports the context-
dependent distribution of content in the UI pages; the style-selection package
specifies the selection of the (XSL) stylesheets to be applied. Henceforth, the poli-
cies concerning the generation of the User Interface, and the management of the
interaction with the user, are denoted as UI adaptation policies.

3.1 Context information

In order to support the adaptation of the application to the actors involved in the
service, and to their surrounding contexts, the CtxMgr WS handles a Role Model
for each role defined in the service, as well as a User Model and a Context Model
for each involved actor. Moreover, the CtxMgr WS handles, for each interaction
session, an i-user variable, which refers to the User Model of the actor interacting
with the application. Figure 2 shows the structure of the models:

• The Role Model (RM) associated to a role r stores the references to the User
Models of the actors who can fill r (UMList). Moreover, it stores a reference
to the UM of the current role filler (currentUM) and some domain-dependent,
default information about the role (FeatureList).

7

Rule 1:
package: business-logic
precondition: abstract-activity-name==BookBloodTest and

patient.UM.movable
action: implementation="WF10"

Rule 2:
package: business-logic
precondition: abstract-activity-name==BookBloodTest and

!patient.UM.movable and nurse-available
action: implementation="WF11"

Rule 3:
package: business-logic
precondition: abstract-activity-name==BookBloodTest and

!patient.UM.movable and !nurse-available
action: implementation="WF12"

Figure 3 Sample business logic adaptation rules (e-Health application). For readabil-
ity purposes, the rules are described in a simplified form.

• The User Model (UM) stores information about an individual actor; e.g.,
expertise, preferences, and physical capabilities (FeatureList). Moreover, it
contains a reference to the associated Context Model (CMRef).

• The Context Model (CM) stores information about the context surrounding
the actor; e.g., the device used to interact with the application.

As the features of the RMs, UMs and CMs depend on the application domain,
the developer has to define them at set-up time. However, the CAWE framework
provides some templates, which can be taken as a starting basis. For instance, the
UM and the CM templates include, respectively, the user’s font-preference (for
the UI layout) and her/his device.

3.2 Adaptation of the business logic

3.2.1 Business logic representation

The business logic of an application is represented as a context-sensitive work-
flow organised in an abstraction hierarchy which specifies the system behaviour at
different levels of detail. Specifically:

• Besides the standard workflow activities (prescribing the invocation of ser-
vice providers, the management of tasks, or some internal computation), a
context-sensitive workflow can include some abstract activities. These de-
scribe a generic type of behaviour, to be decided at runtime. An abstract
activity is thus an activity schema which does not directly define the opera-
tions to be performed when it is enacted.

• Each abstract activity is associated with a set of implementations describing
different courses of action to be selected for the completion of the activity,

8

depending on the context. Each implementation is a workflow which can
specify rather different behaviours; e.g., starting a task to be performed by a
human actor, invoking a Web Service, starting a subprocess, or carrying out
some internal computation. Notice that an implementation may include other
abstract activities; therefore, the context-sensitive workflow can be organised
as a multi-level hierarchy.

• The business logic adaptation policies (in package business-logic) steer the
context-dependent selection of the implementations to be enacted during the
execution of the abstract activities. These policies are described as condition-
action rules:

– The precondition of a rule is a boolean condition on context variables.
– The action is either the name of the implementation to be enacted, or the

reference to a group of rules to be evaluated for refining the adaptation
decision (rule chaining).

For instance, Figure 3 shows three sample policies defined in our e-Health appli-
cation; see Section 5. The preconditions of the rules specify the name of the ref-
erence abstract activity (BookBloodTest) and the relevant context variables; e.g.,
the patient’s mobility state (patient.UM.movable) and the availability of a nurse
(nurse-available). The action part specifies the identifiers of the implementa-
tions to be performed in each case; e.g., WF10. For readability purposes, in the
figure, we have reported the rules in a simplified, Java-like form; for details, see
Section 4.

3.2.2 Context-aware workflow execution

At runtime, the business logic of the application is composed by recursively
selecting the implementations of the abstract activities to be enacted. This selec-
tion is steered by the business logic adaptation policies, which support a reactive
planning of the system behaviour.

The Context-Aware Workflow Manager wraps a workflow engine which executes
the context-sensitive workflow as if it were a standard one.a However, when the
engine encounters an abstract activity, it works as follows:

1. First, it invokes the Workflow Adaptation Module on the abstract activity.

2. When the module returns the implementation to be enacted, the engine per-
forms it as a subprocess of the main process instance.

3. At subprocess completion, the engine resumes the execution of the higher-level
workflow.

For the selection of the implementation, the Workflow Adaptation Module em-
ploys the previously described rule-based engine, which works on the business logic
adaptation rules and fires the one best suiting the context. Given the name of
the selected implementation, the Workflow Adaptation Module retrieves the cor-
responding workflow and binds the input and output parameters to their current
values. Then, it returns the result to the caller.

aAs explained in Section 4, the abstract activities are syntactically similar to the other workflow
activities. Therefore, they can be performed by a standard Web Service composition engine.

9

login view
pending
tasks

choose
task

end
task

end
task
selection

focus on
next task
portion

give info on
parameters

ask info
on task

give
info on task

ask info on
parameters

V1 V2 V3

V5

V4

V6back
back-to-tasks

Figure 4 Finite State Automaton describing the interaction logic of the Dialog Man-
ager.

3.3 Adaptation of the interaction with the user

The Dialog Manager handles a task as a communicative goal to be achieved by
carrying out a dialogue with the user. Each dialogue step is aimed at achieving a
task portion and is managed by generating a UI page. In order to handle flexible,
but lightweight interactions, a dialogue management technique based on Finite
State Automata is applied. Figure 4 shows the automaton describing the interaction
logic of the Dialog Manager: the states correspond to the page types and the state
transitions are performed as a consequence of the user actions.

1. After the user has logged in the application (login arc), (s)he can ask for the
list of pending tasks assigned to her/him (view pending tasks). In order to
retrieve information about the tasks to be performed, and their parameters,
the Dialog Manager invokes the workflow engine via API.

2. Then, from state V2 the user selects the pending task (s)he wants to complete
(choose task arc). This action starts the task execution, which may involve
several request/response turns, organised as follows:

(a) The Dialog Manager sends the user’s browser a personalised UI page
representing an interaction turn (V3). The page includes a set of in-
put/output parameters to be acquired/presented and the navigation
links enabling the user to continue the interaction. Moreover, the page
includes the help links to get more specific information about the task
and its parameters.

(b) In turn, the user may perform different actions:

• Each help link, and each information link associated to the param-
eters, activates a nested dialogue. For instance, the ask info on
task transition leads to state V4, which represents the UI page pre-
senting specific information about a task.

• The focus on next task portion and the back transitions move
to the next, or to the previous dialogue step, respectively.

• The end task transition closes the dialogue (state V6).

10

Task-page-template
stylesheet: xsl stylesheet id
user-role: String
task-name: String
task-ID: integer
task-help-link: url
task-portion: integer
number-of-task-portions: number
back-link, continue-link, cancel-link, finish-link: url
input section
parameters: sequence of I-param elements

output section
parameters: sequence of O-param elements
other-info: sequence of O-param elements

I-param
name: String
value: boolean or number or String
help-link: url

O-param
name: boolean or number or String
help-link: url

Figure 5 Template specifying the structure of the UI pages for the visualisation of
the task portions. For readability purposes, the template is presented in simplified format.

3. When the Dialog Manager reaches state V6, it enables the user to inspect
another pending task (back-to-tasks), or to end the task management ac-
tivity (end task selection). Meanwhile, the Dialog Manager notifies the
workflow engine about the task completion, and feeds it with the acquired
data.

The generation of the personalised pages is based on the evaluation of the UI
adaptation policies. For example, Step 2a above is handled as follows:

1. The Dialog Manager selects the page layout by evaluating (via rule-based
engine) the rules belonging to the style-selection package.

2. Given the input and output parameters of the task, the Dialog Manager
groups the information items to be displayed in one or more subsets, in order
to fit the size of the screen of the user’s device, and to comply with the
her/his features (e.g., known vision impairments) and preferences (e.g., font
size). This is done by evaluating the rules of the layout package.

3. Then, the module fills an XML page template with the content to be dis-
played. For instance, Figure 5 shows the template of the pages devoted to the
management of the task portions. The input/output sections of the template
store the parameters of the task. The (optional) help-links refer to additional
information about the task and its parameters.

4. Finally, the Dialog Manager generates the page code by applying the stylesheet
to the filled template.

11

Rule 1:
package: layout
precondition: i-user.UM.font-preference==x and

i-user.CM.device=="desktop"
action: maxParameters = 20 * |18/fontSize|

Figure 6 Sample layout rule (e-Health application). For readability purposes, the
rule is described in a simplified form.

The UI adaptation rules are domain-dependent, but the CAWE framework offers
some templates, to be extended and modified. For instance, the rule in Figure 6
sets the maximum number of items to be displayed in a page, given the user’s device
and font preferences.

4 Technical details

The CAWE prototype is developed on top of jBPM, a business process man-
agement system implemented in Java; see Koenig (2004). jBPM is based on the
Graph Oriented Programming model, which complements Object-Oriented pro-
gramming with a runtime model for executing long lasting workflows of activities,
represented as graphs. The workflow specification language supported by jBPM is
jPDL (jBPMProcess Definition Language).

The abstract activities are represented as jPDL process-state nodes. When a
workflow instance execution gets in an abstract activity, a jPDL Action (associated
to an “enter-node” event) is used to invoke the Workflow Adaptation Module and
retrieve the subprocess to be performed.

The Dialog Manager module is implemented as a server-side program based on
the Model View Controller pattern; see Seshadri (1999). A Java Servlet (Sun Mi-
crosystems (2008)) plays the role of the Controller, which intercepts the user’s
HTTP requests and selects the View to be displayed on the user’s browser, given
the user’s request and of the workflow state. The interaction logic implemented by
the Controller is described by the Finite State Automaton of the Dialog Man-
ager. Each state of the automaton is associated to a View, representing the
corresponding UI page, except for the final state. The Dialog Manager uses the
AbstractWizardFormController, offered by the Struts library to manage the dia-
logues with the users; see Apache Software Foundation (2008).

The CAWE prototype exploits the JESS rule-based engine (Sandia National
Laboratories (2009)) to handle the adaptation policies. JESS is a lightweight, rule-
based engine implemented in Java, which supports the selection and execution of
condition-action rules. In order to guarantee high performance in the selection of
the rules to be fired, the engine applies an enhanced version of the Rete pattern-
matching algorithm, initially proposed in Forgy (1982). In the CAWE prototype,
JESS supports a very fast evaluation of the adaptation policies and introduces a
marginal overhead on the performance of the workflow engine.

12

Role Model (RM):
role: doctor
currentUM: um05
UMList: {um05}
FeatureList: {}

User Model (UM):
ID: um05
CMRef: cm11
FeatureList:
ID: 744
phone: +3901188493523
font-preference: 14
...

Context Model (CM):
ID: cm11
UMRef: um05
FeatureList:
device: PDA
...

Figure 7 Portions of the doctor RM, and of the UM and CM of an individual doctor.

5 The e-Health application

We exploited the CAWE framework to develop an e-Health prototype applica-
tion supporting the management of a clinical guideline. Clinical guidelines are an
excellent testbed for multi-user adaptivity and contex awareness. In fact, they are
long-lived processes, which benefit from a workflow-based implementation. More-
over, they involve actors who play different roles (e.g., doctors and administration
staff) and operate in dynamic environments, using desktop and hand-held devices.

The clinical guideline we selected specifies the activities to be performed in order
to monitor the health state of patients affected by heart diseases. Such patients,
who regularly stay in their homes, have to undergo periodical tests to check the
fluidity of their blood and revise the therapy accordingly.

5.1 Context information

Within the e-Health scenario, we identified five roles: patient, relative, nurse,
doctor, and administration staff. The top of Figure 7 shows the RM of the doctor
role. The rest of the figure sketches the UM and the CM of an individual user
playing that role. Specifically, the FeatureList field of the CM includes the device
used to interact with the application (device).

Similar models describe the other roles and the involved actors. In particular,
the user model of a patient includes the movable feature, which describes her/his
mobility state. This kind of information influences the guideline execution because

13

Figure 8 Abstract workflow of the e-Health scenario.

non-movable patients are entitled to receive home services and to use special trans-
portation means.

The context information is retrieved from the human users involved in the man-
agement of the clinical guideline and from automated sources, such as sensors con-
nected to the internet and the patient’s clinical record. The information stored in
the latter can be retrieved by invoking the Clinical Record Manager Web Service
of the hospital.

5.1.1 Business logic

Figure 8 shows a portion of the context-sensitive workflow of the application.
The types of nodes occurring in the workflow are auto-explicative; however, it
should be noticed that, as described in Section 4, abstract activities are represented
as process state nodes. The workflow can be roughly described as follows:

1. A doctor sets the date of the first blood test to be performed
(setFirstBloodTest).

2. The application reserves a blood test with a lab at the specified date and
evaluates the time interval before the test (BookBloodTest, eval).

3. If the patient’s health state is good, (s)he waits until the date of the test
(onAlarm). If any warning symptom occurs before that date (onMessage),
the service sets the urgency of the case (setUrgency).

4. At the specified date, or after a warning symptom, a blood sample is taken
from the patient and analysed (ManageBloodCollection). Then, a doc-
tor evaluates the results (evaluateResults). If they are good, the doctor
sets the therapy (storeTheraphy); then, the application notifies the patient

14

Rule 1:
package: style-selection
precondition: i-user.CM.device=desktop
action: stylesheet file: large-UI.xsl

Rule 2:
package: style-selection
precondition: i-user.CM.device=PDA
action: stylesheet file: medium-UI.xsl

Figure 9 Sample style selection rules (e-Health application). The rules are described
in a simplified form.

(emailPatient) and the flow restarts from item 2. Otherwise, the patient is
advised to go to the hospital (sendToHospital).

As a sample abstract activity, we analyse BookBloodTest. This activity has three
context-dependent implementations, not shown for brevity:

• WF10 handles the booking of the appointment for the blood test at the lab.
As this implementation requires that the patient autonomously goes to the
lab, it is suitable for patients which can be transported by car.

• WF11 schedules the collection of the patient’s blood at home (by means of a
nurse) and it is suitable to handle non movable patients.

• WF12 is an alternative solution devoted to non movable patients, when it is not
possible to have a nurse at the patient’s home. This implementation involves
the booking of a special transportation means to carry the patient to the lab.

Figure 3 (page 7) shows the business logic adaptation rules associated to
BookBloodTest. Their preconditions reflect the requirements described above; e.g.,
the precondition of Rule 1 includes the patient.UM.movable condition.

5.1.2 Interaction logic

The interaction logic is defined by the Finite State Automaton of the Dialog
Manager, and by the UI adaptation policies. We have already described the rules
of the layout package; see Figure 6. The rules shown in Figure 9 belong to the
style-selection package. In each rule, the precondition refers to the user’s device
(i-user.CM.device), as this is the main information needed for the stylesheet
selection. The action part specifies the name of the XSL document to be applied.

Figure 10 shows a UI page generated during the management of a task assigned
to a doctor: evaluateResults(). The page is targeted to a desktop device:

• The top bar displays the name of the application (eHealth), the username
(house) and the logout button.

• The lower part of the page shows the input (Form area) and output (Infor-
mation area) parameters of the task. Each parameter name is a link to its
more specific information.

15

Figure 10 First dialogue turn in the management of task evaluateResults, tailored
to a desktop device.

• The middle bar is organised as follows: the higher portion shows the task
name, the task ID (744) and the user’s role (doctor). The lower portion
includes: a help link for the visualisation of the task description; the position
of the interaction turn in the dialogue (Page 1 of 4); the Continue link (>>)
taking to the next turn and a Cancel link to reset the user’s inputs.

Figure 11 shows two UI pages, targeted to PDA. In order to cope with the smaller
screen size, the dialogue is performed in more steps than in the desktop case.

5.2 Discussion

In the development of the e-Health application, the context awareness support
offered by the framework was satisfactory for the following reasons:

• CAWE supports the dynamic definition of the business logic: the courses of
action to be enacted are dynamically selected and composed, by evaluating
possibly complex adaptation policies. The courses of action include perform-
ing a subprocess, invoking a service supplier, carrying out some computation
or starting a task; thus, the application can exhibit very different behaviours.
This flexibility is based on the specification of declarative adaptation policies
which enable the developer to define fine-grained conditions for the selec-
tion of the activities to be performed. At the same time, such selection does

16

Figure 11 First two dialogue turns in the management of task evaluateResults,
tailored to a PDA.

not significantly overload the system, as it is based on the execution of a
lightweight and efficient rule-based engine.

• The framework also supports the management of a flexible interaction logic.
In particular, it replaces the standard stylesheet selection with the evalua-
tion of declarative adaptation rules. Moreover, it adapts and distributes the
content to be visualised on the User Interface by taking various factors into
account; e.g., the screen size of the user’s device, her/his visualisation pref-
erences and the applied layout. Furthermore, the framework supports the
completion of tasks by presenting extra-helpful information about them.

The development of the application has also proved the applicability of CAWE in a
real use case, as the application developer has to devote a limited effort to configure
the knowledge bases of the system. Specifically:

• The specification of the features characterising the Role, User and Context
Models is a standard task to be performed in a user-adaptive system and
requires limited technical skills.

• The representation of the context-sensitive workflow, based on an hierarchy
of processes, factors out the common courses of action. Therefore, it reduces
the number of workflow paths, with respect to a flat representation. The
advantages are obvious: first, the workflow is smaller and modular, and thus
more readable; second, it is easier to modify, because the specification of
the courses of action is not replicated. The hierarchical representation also
facilitates the introduction of new courses of action, which can be added
locally to the abstract activities. Furthermore, it supports the top-down
development of the business logic.

Some more flexibility in the management of the interaction with the user might
be achieved by enabling the developer to modify the structure of the Finite State

17

Automaton of the Dialog Manager. However, this kind of revision requires deep
expertise in dialogue management systems; therefore, we decided to forbid it.

In order to test the generality of our approach, we instantiated the CAWE
framework on another application domain. We selected a business travel scenario
in a University and we identified the adaptation requirements emerging in such case.
This analysis confirmed the need to apply different adaptation policies depending
on the user’s role (e.g., Ph.D students and faculty members are subject to different
restrictions as far as conference participation is concerned), the device used to
interact with the system (usually, a different one when the user is in her/his office,
or is travelling), and individual user preferences (e.g., concerning the transportation
means, or the User Interface layout). The specification of the context-sensitive
workflow and of the adaptation policies for the business travel application confirmed
the usefulness and the suitability of the adaptive features offered by the framework.

6 Related work

In Service Oriented Computing, some contributions extend standard Web Ser-
vice composition languages with context-awareness features (e.g., C-BPEL; see
Ghedira and Mezni (2006)), in order to comply with Quality of Service (QoS)
requirements. For instance, Benlismane et al. (2005) monitor the service to prevent
QoS violations; Ardagna and Pernici (2007) handle the personalised Web Service
selection as an optimisation problem; Baresi et al. (2007) support the runtime
binding and replacement of service providers for failure recovery purposes. These
approaches are affected by the limitations of standard Web Service composition lan-
guages, such as WS-BPEL (OASIS (2005)) and its context-aware extensions (e.g.,
Context4BPEL, see Wieland et al. (2007)), which embed the adaptation logic in
the workflow specification. On a different perspective, Charfi and Mezini (2007)
propose using Aspect-Oriented Programming to improve the flexibility of the com-
positions; however, they focus more on modularisation than on adaptivity.

Our approach overcomes the limitations of these works by introducing the ab-
stract activities and by exploiting declarative adaptation policies for the runtime,
context-dependent selection of the courses of action to be enacted. In this way, the
business logic of the application is reactively shaped during its execution.

Our work also differs from the few workflow-based adaptive systems developed in
the Adaptive Hypermedia research. For instance, CAWE personalises the workflow
to the users and their context. Instead, in Holden et al. (2005) the system enacts
the same workflow for all the users and contexts.

The Semantic Web research applies planning technology to enhance the flexi-
bility in Web Service composition. Moreover, plan-based approaches are applied
to invoke Web Service providers in context-aware mode; e.g., see McIlraith et al.
(2001), Balke and Wagner (2003), Balke and Wagner (2004), Keidl and Kemper
(2004). In particular, Qiu et al. (2007) propose a hybrid approach that integrates
global planning and local optimisation, supported by an ontology-based context
representation. Also Vukovic et al. (2007) use planning for the run-time service se-
lection, in order to manage failure recovery. Furthermore, Horvitz and Subramani
(2007) propose opportunistic planning to support the user in the efficient achieve-
ment of goals diverging from her/his main activities. However, planning technology

18

is not suitable to handle long-lasting services and processes because it does not of-
fer persistence management. Therefore, up to now it has only been used to handle
short-lived composition plans. As a matter of fact, relying on a standard workflow
engine for the management of the business logic of an application has scalability
and robustness advantages, which are not guaranteed by other technologies. In
fact, several proposals for the adoption of planners in Web Service composition
turned out to exploit workflow engines for the service execution; e.g., see Mandell
and McIlraith (2003) and Laures and Jank (2005).

An interesting approach to the design of Web-based applications is provided by
the Web Engineering community; for example, Batini et al. (2007) propose a uni-
fied methodology for the design of multi-channel adaptive Web-based information
systems. We believe that this work is complementary to our own.

Concerning the management of the interaction with the user, context-aware
workflow systems only provide the adaptation of the User Interface to the user’s
device, in terms of stylesheet selection; e.g., see Keidl and Kemper (2004), and
the extension to WebML to model multi-channel, context-aware Web applications
proposed in Ceri et al. (2003). In comparison, CAWE supports applications which
adapt both the code of the UI pages and the interaction logic to a complex con-
text. Moreover, it supports the adaptation to multiple users, by tailoring the User
Interface and the interaction logic on an individual basis.

In the research about dialogue-based systems, some researchers employed scripts
describing domain-level activities and linguistic behaviour to model articulated
task-oriented dialogues; e.g., see Chu-Carroll and Carberry (1998). Moreover, plan-
ning technology was applied to manage short-lived interactions with the user; e.g.,
see Rich et al. (2002). Furthermore, plans and scripts were used to generate mes-
sages and explanations to the user; e.g., see Moore and Paris (1993) and Milosavlje-
vic (1999). We adopt Finite State Automata to handle the interaction with the user;
although these are less flexible than plans, they are more robust and lightweight,
and they support a predictable behaviour.

7 Conclusions

This article has presented the Context Aware Workflow Execution framework
for the development of context-aware composite Web applications. The framework
enriches Service Oriented Architecture with:

• Adaptation techniques enabling the execution of context-sensitive workflows.

• Dialogue management capabilities supporting flexible user interactions.

• Context-dependent User Interface generation techniques aimed at presenting
personalised information on different devices.

As such, it supports the development of Web applications which can self-adapt
to meet the requirements of heterogeneous users in dynamic usage environments.
These adaptation capabilities are based on the declarative representation of the
context variables to be taken into account, of the business, interaction and pre-
sentation logics, and of the policies steering the context-dependent selection of the
system behaviour.

19

The analysis of two real-world application domains proved the usefulness and
the suitability of the adaptive features offered by the framework. Moreover, the
development of a prototype Web Application in the first domain confirmed the
applicability of the framework to real-world use cases.

References

G.D. Abowd and E.D. Mynatt. Charting past, present and future research in ubiq-
uitous computing. ACM Transactions on Computer-Human Interaction, Special
Issue on HCI in the new Millennium, 7(1):29–58, 2000.

Apache Software Foundation. Struts. http://struts.apache.org/, 2008.

D. Ardagna and B. Pernici. Adaptive service composition in flexible processes.
IEEE Transactions on Software Engineering, 33(6):369–384, 2007.

M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-aware systems.
Int. Journal ad hoc and ubiquitous computing, 2(4):263–277, 2007.

W.T. Balke and M. Wagner. Towards personalized selection of Web Services. In
Proc. of 12th Int. World Wide Web Conference (WWW’2003), Budapest, 2003.

W.T. Balke and M. Wagner. Through different eyes - assessing multiple concep-
tual views for querying Web Services. In Proc. of 13th Int. World Wide Web
Conference (WWW’2004), New York, 2004.

L. Baresi, E. Di Nitto, C. Ghezzi, and S. Guinea. A framework for the deploy-
ment of adaptable web service compositions. Service Oriented Computing and
Applications, 1(1):75–91, 2007.

C. Batini, D. Bolchini, S. Ceri, M. Matera, A. Maurino, and P. Paolini. The UM-
MAIS methodology for multi-channel adaptive web information systems. World
Wide Web, 10(4):349–385, 2007.

D. Benlismane, Z. Maamar, and C. Ghedira. A view-based approach for tracking
composite Web Services. In Proc. of European Conference on Web Services
(ECOWS-05), pages 170–179, Växjö, Sweden, 2005.

P. Brusilovsky, A. Kobsa, and W. Nejdl. The Adaptive Web: Methods and Strategies
of Web Personalization, Lecture Notes in Computer Science, Vol. 4321. Springer-
Verlag, 2007.

S. Ceri, F. Daniel, and M. Matera. Extending webml for modeling multi-channel
contextaware web applications. In WISE - MMIS’03 IEEE Computer Society
Workshop, 2003.

A. Charfi and M. Mezini. AO4BPEL: An aspect-oriented extension to BPEL. World
Wide Web, 10(3):309–344, 2007.

J. Chu-Carroll and S. Carberry. Collaborative response generation in planning
dialogues. Computational Linguistics, 24(3):355–400, 1998.

20

A.K. Dey and D. Abowd. Towards a better understanding of context and context-
awareness. In Proc. CHI2000 Workshop on the What, Who, Where, When and
How of Context-Awareness, The Hague, Netherlands, 2000.

P. Dourish. What we talk about when we talk about context. Personal and Ubiq-
uitous Computing, 8(1):19–30, 2004.

C.L. Forgy. Rete: A fast algorithm for the many pattern/ many object pattern
match problem. Artificial Intelligence, 19:17–37, 1982.

C. Ghedira and H. Mezni. Through personalized web service composition specifi-
cation: from bpel to c-bpel. Electronic Notes in Theoretical Computer Science,
(146):117–132, 2006.

T. Gross. Cooperative ambient intelligence: towards autonomous and adaptive
cooperative ubiquitous environments. Int. Journal of Autonomous and Adaptive
Communications Systems, 1(2):270–278, 2008.

S. Holden, J. Kay, J. Poon, and K. Yacef. Workflow-based personalized document
delivery. International Journal on E-Learning, 4:131–148, 2005.

E. Horvitz and M. Subramani. Mobile opportunistic planning: methods and models.
In LNAI 4511: Proc. 11th Int. Conf. on User Modeling, pages 228–237, Corfu,
Greece, 2007.

M. Keidl and A. Kemper. Towards context-aware adaptable Web Services. In Proc.
of 13th Int. World Wide Web Conference (WWW’2004), pages 55–65, New York,
2004.

J. Koenig. JBoss jBPM white paper. http://www.jboss.com/pdf/jbpm whitepaper.pdf,
2004.

G. Laures and K. Jank. Adaptive Services Grid Deliverable D6.V-1. Reference ar-
chitecture: requirements, current efforts and design. Technical report, http://asg-
platform.org/cgi-bin/twiki/view/Public/ReferenceArchitecture, 2005.

D. J. Mandell and S. A. McIlraith. Adapting BPEL4WS for the Semantic Web:
The bottom-up approach to Web Service interoperation. In LNCS 2870, Proc.
2nd International Semantic Web Conf. (ISWC 2003), pages 227–241. Springer-
Verlag, Sanibel Island, Florida, 2003.

M. Maybury and P. Brusilovsky, editors. The adaptive Web, volume 45. Commu-
nications of the ACM, 2002.

S. McIlraith, T.C. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent
Systems, 16(2):46–53, 2001.

M. Milosavljevic. The automatic generation of comparison in descriptions of enti-
ties. PhD thesis, Macquarie University, Sydney, 1999.

J.D. Moore and C.L. Paris. Planning text for advisory dialogues: Capturing in-
tentional and rhetorical information. Computational Linguistics, 19(4):651–694,
1993.

21

OASIS. OASIS Web Services Business Process Execution Language.
http://www.oasis-open.org/committees/documents.php?wg abbrev=wsbpel,
2005.

M.P. Papazoglou and D. Georgakopoulos, editors. Service-Oriented Computing,
volume 46. Communications of the ACM, 2003.

L. Qiu, L. Chang, F. Lin, and Z. Shi. Context optimization of ai planning for se-
mantic web services composition. Service Oriented Computing and Applications,
1(2):117–128, 2007.

C. Rich, D. McDonald, N. Lesh, and C. Sidner. COLLAGEN: Java
middleware for collaborative agents services with multiple suppliers.
http://www.merl.com/projects/collagen, 2002.

Sandia National Laboratories. JESS, the Rule Engine for the Java-TM Platform.
http://www.jessrules.com/, 2009.

G. Seshadri. Understanding JavaServer Pages Model 2 architecture - exploring the
MVC design pattern. In JavaWorld, http://www.javaworld.com/javaworld/jw-
12-1999/jw-12-ssj-jspmvc.html, 1999.

Inc. Sun Microsystems. Java Servlet Technology.
http://java.sun.com/products/servlet/, 2008.

M. Vukovic, E. Kotsovinos, and P. Robinson. An architecture for rapid, on-demand
services composition. Service Oriented Computing and Applications, 1(4):197–
212, 2007.

M. Wieland, O. Kopp, D. Nicklas, and F. Leymann. Towards context-aware work-
flows. In Proc. Workshop on Ubiquitous Mobile Information and Collaboration
Systems (UMICS 2007) at CAiSE’07, Trondheim, Norway, 2007.

