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Abstract
In this paper we obtain some explicit expressions for the Euler char-

acteristic of a rank n coherent sheaf F on PN and of its twists F(t) as
polynomials in the Chern classes ci(F), also giving algorithms for the
computation. The employed methods use techniques of umbral calculus
involving symmetric functions and Stirling numbers.
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Introduction

The aim of this paper is to find a general polynomial expression for the Euler
characteristic χ(F) of a rank n coherent sheaf F on the projective space PN

on the field K, in terms of the Chern classes ci(F) of F .
For fixed N (the dimension of the projective space) and n (the rank of the

sheaf), we explicitly obtain the polynomial P (C1, . . . , CN) ∈ Q[C1, . . . , CN ]
such that

P (c1(F), . . . , cN(F)) = χ(F) =

N∑
j=0

(−1)jhjF

where we consider the Chern classes ci(F) on PN as integers and hjF is the
dimension of the i-th cohomology module H i(F) as a K-vector space.

More generally we obtain a general polynomial expression for the Euler
characteristic of every twist of F in terms of the Chern class ci(F) of F and
on t, namely:

G(c1(F), . . . , cN(F), t) = χ(F(t)) =
N∑

j=0

(−1)jhjF(t)
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It is well known that such polynomials exist and that they do not depend on
F (see for instance [1], Theorem 2.3), so that they can be computed by means
of the special cases given by the totally split sheaves ⊕O�N(ai) with ai ≥ 0:
this argument is usually called the “splitting principle”.

For our purposes those free sheaves are very easy to manage because
their Euler characteristic is only given by the 0-cohomology, χ(⊕O�N(ai)) =
h0(⊕O�N(ai)), so that it can be easily expressed as a sum of n binomials involv-
ing N and the ai’s; moreover also their Chern classes can be easily written in
terms of the ai’s, as symmetric functions cj(⊕O�N(ai)) =

∑
ai1 . . . aij , where

the sum is over every sequence of j indexes i1 < · · · < ij .
However in practice a general computation necessary involves “changes of

basis” for polynomials, mainly for those which are invariant with respect to
the action of the permutation group on the variables, that are not so easy to
express in a suitable way. In fact we have to expand polynomials expressed
through binomials into their expansion as a sum of monomials and then as a
sum of elementary symmetric functions.

We will divide the solution of the problem in three steps.

1. We first write the polynomial QN(x1, . . . , xn) ∈ Q[x1, . . . , xn] such that
χ(⊕O�N(ai)) = h0 (⊕O�N(ai)) = 1

N !
QN(a1, . . . , an) for every ai ≥ 0.

As a1, . . . , an is not an ordered sequence, the polynomial QN must be
invariant under the action of the permutation group on the variable xi.

2. Then we “change the basis” that is we substitute the variables xi (cor-
responding to the ai’s) by the variables Cj given by their symmetric
functions (corresponding to the Chern classes ci) so obtaining the poly-
nomial P (C1, . . . , CN).

The first step involves the Stirling numbers of first kind (that we introduce
in §1); here we show that they give the coefficients of the expansion of a the
polynomial RN(x) such that h0O�N(a) = 1/(N !)RN(a) (see Theorem 1.1 and
Corollary 1.3).

The second step is closely related to the umbral calculus (see [5] for an
overview of the subject). We also use the well-known Newton-Girard formulas
(see [6]) in order to obtain a faster algorithm to compute the polynomial P .

Finally using the relations between the Chern classes of a sheaf F and those
of the twists F(t) (see (6)), we compute the polynomial G(C1, . . . , CN , T ) ∈
Q[C1, . . . , CN , T ] such that χ(F(t)) = G(c1(F), . . . , cN(F), t).

Beyond the theoretical results, we also present some procedures for the
explicit computations of the polynomials P (C1, . . . , CN) and G(C1, . . . , CN , t),
for a fixed dimension of the projective space N and a fixed rank n for the sheaf
(see §3).
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1 Stirling Numbers of first kind

The Stirling number of first kind
[
N
m

]
is the number of permutations of N

elements which contain exactly m distinct cycles.
As a direct consequence of the definition, one can immediately see that:

•
[
0

0

]
= 1 but

[
0

m

]
= 0 if m > 0 and

[
N

0

]
= 0 if N > 0.

•
[
N

m

]
= 0 if m > n and

[
N

N

]
= 1

•
[

N

N − 1

]
=

(
N

2

)
because a permutation of N elements which contain

N − 1 cycles is determined by its only 2-cycle.

Consider a “square”table whose entries are the integers
[
N
m

]
, where each

row is associated to a value for N and each column is associated to a value for
m. The above properties of Stirling numbers say that in such a table:

• the triangle above the main diagonal is completely 0;

• on the main diagonal the entries are all 1’s;

• on the “second”diagonal, the entries are the binomials
(

N
2

)
.

The following recurrence relation for the Stirling numbers of the first kind
allows to complete the table:

[
N

m

]
=

[
N − 1

m − 1

]
+ (N − 1)

[
N − 1

m

]
(1)

This relation easily follow from the definition. In fact if we fix an element
α among the N , there are two kinds of permutations of N elements with m
cycles: the first addendum in the right side of (1) is the number of permutations
containing (α) as a 1-cycle; the second one corresponds to permutations not
containing the 1-cycle (α): for every permutation of the other N − 1 elements
with m cycles, the element α can be introduced in (N − 1) different ways (in
fact there are j different ways to put a new element in a cycle of j elements).

Now we can complete the table of the Stirling numbers of first kind
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0 1 2 3 4 5 6 7 8 . . .
0 1
1 0 1
2 0 1 1
3 0 2 3 1
4 0 6 11 6 1
5 0 24 50 35 11 1
6 0 120 274 225 85 15 1
7 0 720 1764 1624 735 175 21 1
8 0 5040 13068 13132 6769 1960 322 28 1
...

...
...

...
...

...
...

...
...

...
. . .

The above considered Stirling numbers of the first kind are often called
unsigned, in opposition to the signed Stirling numbers of first kind, which we
denote by s(N, m) and that are simply recovered from the unsigned ones by
the rule

s(N, m) = (−1)N−m

[
N

m

]
.

The original definition of signed Stirling numbers of first kind comes from a
particular polynomial, the falling factorial (x)N , which is “similar” to the one
we are interested in:

(x)N = x(x − 1) · · · (x − N + 1)

The signed Stirling numbers of first kind are defined as the coefficients of the
expansion

(x)N :=

N∑
k=0

s(N, k)xk.

We are mainly interested in the rising factorial polynomial

(x)(N) := x(x + 1) · · · (x + N − 1).

or, more precisely to the polynomial

RN(x) := (x + 1)(x + 2) · · · (x + N) = (x + 1)(N).

Theorem 1.1.

RN(x) = (x + 1)(N) =
N∑

k=0

[
N + 1

k + 1

]
xk. (2)
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Proof: We proceed by induction on N .
If N = 1, the thesis is immediately verified.
Then assume that the formula holds for RN−1(x). Applying the inductive

hypothesis to

RN (x) = (x + N)RN−1(x) = (x + N)
(
(x + 1)(N−1)

)
we obtain:

RN(x) = (x + N)

(
N−1∑
k=0

[
N

k + 1

]
xk

)
=

N−1∑
k=0

[
N

k + 1

]
xk+1 +

N−1∑
k=0

N

[
N

k + 1

]
xk.

The change k + 1 → k in the first sum of the right side and the recurrence
relation (1) give:

RN (x) =

[
N

N

]
xN +

N−1∑
k=1

([
N

k

]
+ N

[
N

k + 1

])
xk + N

[
N

1

]
=

=

[
N + 1

N + 1

]
xN +

N−1∑
k=1

[
N + 1

k + 1

]
xk +

[
N + 1

1

]

which is (2) (note that for every r > 0,
[
r
r

]
= 1). �

Remark 1.2. For a different proof of Theorem 1.1, we could refer to [2],
formula (6.11), and use the equality x(N+1) = xRN(x).

Corollary 1.3. For every a ≥ 0 the dimension of the vector space of the
degree a hypersurfaces in PN is given by:

h0O�N(a) =
1

N !
RN (a) =

1

N !

N∑
k=0

[
N + 1

k + 1

]
ak.

2 Invariant Polynomials and the Main Theo-

rem

Now let x1, . . . , xn be n variables and consider the polynomial QN(x1, . . . , xn) :=∑
j RN(xj) ∈ Q[x1, . . . , xn]. This polynomial is closely related to our problem,

because for every choice of n positive integers a1, . . . , an, we have χ(⊕O�N(ai)) =
h0(⊕O�N(ai)) = 1

N !
QN (a1, . . . , an).

It is quite evident that QN does not change under permutation of the
variables, that is it is invariant for symmetric group Sn. We just recall some
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basic definition and properties of the invariant polynomials; for more details
one can see, for instance, [3].

The action of the symmetric group Sn on Q[x1, . . . , xn] is given in the
following way.
If p(x1, . . . , xn) ∈ Q[x1, . . . , xn] and σ ∈ Sn, then:

(σ · p)(x1, . . . , xn) = p(xσ(1), . . . , xσ(n)).

We say that p ∈ Q[x1, . . . , xn] is invariant for the action of Sn if

σ · p = p ∀σ ∈ Sn.

It is easy to prove that the set of invariant polynomials that we denote by
Q[x1, . . . , xn]Sn is an algebra, called the algebra of symmetric polynomials.

Since Sn is a reductive linear algebraic group (see [3]), there is a set of
algebraically independent polynomials {f1, . . . , fn}, fi ∈ Q[x1, . . . , xn]Sn , such
that the polynomial ring they generate on Q is exactly Q[x1, . . . , xn]Sn , that is

Q[x1, . . . , xn]Sn = Q[f1, . . . , fn].

We call {f1, . . . , fn} a set of basic invariants.
There are of course many sets of basic invariants for Q[x1, . . . , xn]Sn, but

we will be interested only in two of these:

• the elementary symmetric polynomials:

C0 = 1; Cj :=
∑

λ1<···<λj

xλ1 · · ·xλj
j = 1, . . . , n.

• the power sum symmetric polynomials:

Bk :=

n∑
i=1

ak
i k = 0, . . . , n.

Since both {C1, . . . , Cn} and {B1, . . . , Bn} are sets of basic invariants and
so their elements are algebraically independent, we can consider them as inde-
terminates.

Every invariant polynomial, included QN(x1, . . . , xn) =
∑

i RN(xi), can be
written using either of the two sets of basic invariants: as a polynomial in the
indeterminates Cj’s and as a polynomial in the indeterminates Bk’s.

Lemma 2.1. In the above notation:

QN(x1, . . . , xn) =
N∑

k=0

[
N + 1

k + 1

]
Bk.



The Euler characteristic as a polynomial in the Chern classes 763

Proof: Applying Theorem 1.1, we immediately obtain

QN(x1, . . . , xn) =
n∑

i=1

(
N∑

k=0

[
N + 1

k + 1

]
xk

i

)
=

N∑
k=0

[
N + 1

k + 1

]( n∑
i=1

xk
i

)
.

where we can commute the two summations because they are independent. �

If we know the expression of an invariant polynomial in terms of a set of
basic invariants and want to obtain its expression in terms of the other one, we
have to manage the not so easy problem of the “change of basis”. For instance:

B0 = nC0 , B1 = C1 , B2 = C2
1 − 2C2.

In order to find a general expression of Bk as a function of the Cj’s, we recall
the Newton-Girard formula (see [6]):

(−1)rBr +

r∑
l=1

(−1)r+lBlCr−l = 0

Note that in fact this formula holds for every r ∈ N, with the convention that
Bk is the sum of powers xk

i and Ck = 0 if k ≥ n + 1.
With these notations, we can then prove

Lemma 2.2. For every 1 ≤ r ≤ n Br = det(Mr) where

Mr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C1 1 0 0 . . . 0 0
2C2 C1 1 0 . . . 0 0
3C3 C2 C1 1 . . . 0 0
...

...
...

...
...

...
(r − 1)Cr−1 Cr−2 Cr−3 Cr−4 . . . C1 1

rCr Cr−1 Cr−2 Cr−3 . . . C2 C1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3)

Proof: We proceed by induction on r. If r = 1 there is nothing to prove.
Assume r ≥ 2 and the thesis true for Bl, l ≤ r − 1. From Newton-Girard

formula we have

Br = Br−1C1 − Br−2C2 + · · ·+ (−1)r−2B1Cr−1 + (−1)r−1rCr. (4)

Observe that since the thesis is true for Bl, l ≤ r − 1, we can write the second
term of (4) as

Br =
r−1∑
l=1

(−1)l−1Cl det(Mr−l) + (−1)r−1rCr. (5)

Thanks to the presence of the 1’s above the main diagonal of the matrix (3),
this is exactly the determinant of Mr. �
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Remark 2.3. For a different proof of the previous result one can see [4],
Chapter V . However the proof we present is more constructive and gives rise
to a faster algorithm, that we will present in §3.

Finally, we obtain the main Theorem as an application of Lemmas 2.1 and
2.2

Theorem 2.4. Let F be rank n reflexive sheaf on PN . Consider

P =
1

N !

N∑
k=1

[
N + 1

k + 1

]
det(Mk) + n

where Mk is the k × k matrix previously defined and its determinant is a poly-
nomial in the variables C1, . . . , Ck.
Then

P (c1(F), . . . , cN(F)) = χ(F)

.

Proof: First, using the “splitting principle”, we know there is a polyno-
mial P ∈ Q[c1, . . . , cN ], depending only on N and n, such that χ(F) =
P (c1(F), . . . , cN(F)) for any rank n coherent sheaf F .

It is then sufficient to find such a polynomial for the sheaf ⊕n
i=1O�N(ai),

ai ≥ 0, with n ≥ N .
Thanks to Lemma 2.2, we can pass from the Bk’s to the Cj’s in the expres-

sion of Lemma 2.1 for QN(x1, . . . , xn):

QN(x1, . . . , xn) =
N∑

k=0

[
N + 1

k + 1

]
Bk =

N∑
k=1

[
N + 1

k + 1

]
det(Mk) + n(N !).

Using Corollary 1.3, we obtain

χ(⊕n
i=1O�N(ai)) = h0(⊕n

i=1O�N(ai)) =
1

N !
QN (a1, . . . , an) =

=
1

N !

N∑
k=1

[
N + 1

k + 1

]
det(Mk)(c1, . . . , ck) + n

where det(Mk)(c1, . . . , ck) means evaluating the polynomial in the Chern classes
of ⊕n

i=1O�N(ai).
�

Remark 2.5. In the proof of Theorem 2.4, the assumption n ≥ N for the
completely split bundle is not a lost in generality; in fact, a coherent sheaf F
of rank n ≤ N may have ci(F) 	= 0 for i ≥ n + 1.
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3 Implementation

In the previous paragraphs we obtained the following result:

Let F be a rank n coherent sheaf on PN . Then

χ(F) =
1

N !

N∑
k=1

[
N + 1

k + 1

]
det Mk(F) + n

where Mk is a k × k matrix whose definition is (3), det(Mk) ∈
Z[c1, . . . , ck] and with det Mk(F) we mean det Mk(c1(F), . . . , cN(F)].

The polynomial for χ(F) is not too easy to handle, since it contains some
determinants.

Anyway, if we fix the dimension N , it is quite easy to write a procedure to
compute the polynomial χ(F).

Here we write some procedures for Maple. Probably they are not the best
implementations for the algorithms we wish to expose, they are just intended
to be examples.

3.1 A first algorithm for χ(F)

First we write a procedure to write the r-th row of the matrix Mk

Row:=proc(r,k)

v:=[c[1]];

if (r=1)

then v:=[op(v),1];

for j from 2 to n-r do v:=[op(v),0] od;

return v;

else

if (r=2) then

if (k=2)

then return [2*c[2], c[1]];

else v:=[2*c[2],c[1],1] fi;

for j from 2 to k-r do v:=[op(v),0] od;

return v ;

else

for i from 2 to r-1 do v:=[c[i],op(v)] od

fi

fi ;

v:=[r*c[r],op(v)];
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if (r=k)

then return v;

else v:=[op(v),1]

fi;

for j from 2 to k-r do v:=[op(v),0] od;

return v;

end proc;

Then we write the procedure that outputs the matrix Mk

MatrixM:=proc(k)

if (k=1)

then return matrix(1,1,[c[1]])

fi;

V:=[];

for i from 1 to k do V:=[op(V),op(Row(i,k))]

od;

return matrix(k,k,[op(V)]);

end proc;

Finally, we write the procedure that returns the polynomial for χ(F) once
that we have fixed N

chi:=proc(n,N)

for i from 1 to N do S[i]:=linalg[det](MatrixM(i))

od;

return 1/N!*sum(abs(stirling1(N+1,k+1))*S[k],k=1..N)+n;

end proc;

With the procedure chi(n,N) one can then easily obtain the Euler char-
acteristic for a rank n coherent sheaf on PN , just fixing N .

The polynomial expression for the Euler Characteristic for a rank n sheaf
on P3 is known: one can see [1], Theorem 2.3. We give as examples the
polynomial expressions for χ(F) for a rank n sheaf on P4 and P5.

chi(n, 4);

1

24

[
c1

4 + 10 c1
3 − 4 c1

2c2 + 35 c1
2 − 30 c1c2 + 4 c1c3+

2 c2
2 + 50 c1 − 70 c2 + 30 c3 − 4 c4

]
+ n

chi(n, 5);

1

120

[
c1

5 + 15 c1
4 − 5 c1

3c2 + 85 c1
3 − 60 c1

2c2 + 5 c1
2c3 + 5 c1c2

2 + 225 c1
2+
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−255 c1c2 + 60 c1c3 − 5 c1c4 + 30 c2
2 − 5 c2c3 + 274 c1+

−450 c2 + 255 c3 − 60 c4 + 5 c5] + n

3.2 A faster algorithm for χ(F)

The procedure chi(n,N) is quite expensive from the computational viewpoint:
Maple 11 on a personal computer (Intel Pentium CPU 3.00 Ghz, 992 mb RAM)
took more than 20 seconds for the case N = 18.

We can improve the procedure because actually we do not need to con-
struct the matrices Mk to compute their determinant. We can just construct
a recursive procedure using formula (5).

First the procedure to compute detMk:

detM:=proc(k)

if k=1 then return c[1]

fi;

if k=2 then return c[1]^2-2*c[2]

fi;

M:=(-1)^(k-1)*k*c[k];

for i from 1 to k-1 do M:=M+(-1)^(i-1)*c[i]*detM(k-i)

od;

return expand(M) end proc;

Then we rewrite the procedure chi(n,N), but using detM(k):

chifast:=proc(n,N)

for i from 1 to N do M[i]:=detM(i)

od;

return 1/N!*sum(abs(stirling1(N+1,k+1))*M[k],k=1..N)+n;

end proc;

This last procedure is much faster than chi(n,N): for instance, we com-
putated the polynomial for χ(F) for a rank n coherent sheaf F on P20, on a
personal computer (Intel Pentium CPU 3.00 Ghz, 992 mb RAM) using Maple
11:

• chi(n,20) took 172.14 sec to output the polynomial;

• chifast(n,20) took only 7.72 sec to output the polynomial.
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3.3 An algorithm for χ(F(t))

Since we have already a polynomial form for χ(F), we can easily obtain the
polynomial associated to χ(F(t)) for every t ∈ Z. It is sufficient to remember
that, if F is a rank n coherent sheaf on PN and Chern classes ci, then

ci(F(t)) = ci + (n − i + 1)tci−1 +

(
n − i + 2

2

)
t2ci−2 + · · · +

(
n − 1

i − 1

)
ti−1c1 +

(
n

i

)
ti.

(6)

So we substitue Ci(T ) = Ci + (n − i + 1)TCi−1 +
(

n−i+2
2

)
T 2Ci−2 + · · · +(

n−1
i−1

)
T i−1C1 +

(
n
i

)
T i to Ci in P (C1, . . . , CN) obtaining

P (C1(T ), . . . , CN(T )) = G(C1, . . . , CN , T ) ∈ Q[C1, . . . , CN , T ].

With some little changes, we can rewrite the procedure chifast(n,N) for
any twist F(t), t ∈ Z: the procedure outputs a polynomial in the variable T .
First, we write a procedure to obtain a “twisted”Chern class

ct:=proc(j,N)

cT:=c[j];

for i from 1 to j-1 do

cT:=cT+binomial(N-j+i,i)*T^i*c[j-i]

od;

cT:=cT+binomial(N,j)*T^j;

return cT;

end proc;

Then we simply rewrite the procedure detM(k)

detMT:=proc(k,N)

if (k=1) then return ct(1,N)

fi;

if k=2 then return ct(1,N)^2-2*ct(2,N)

fi;

Mt:=(-1)^(k-1)*k*ct(k,N);

for i from 1 to k-1 do Mt:=Mt+(-1)^(i-1)*ct(i,N)*detMt(k-i,N)

od;

return expand(Mt)

end proc;

Finally, we rewrite chifast(r,N) using the “twisted”determinants

chit:=proc(n,N)

for i from 1 to N do M[i]:=detMT(i,N)
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od;

return

sort(collect(1/N!*sum(abs(stirling1(N+1,k+1))*M[k],k=1..N)+n,T),T);

end proc;

For instance, we obtain the polynomial associated to χ(F(t)) for a coherent
sheaf on P6

chit(n, 6);

1

240

[
6 T 6 + (6 c1 + 126) T 5 +

(
15 c1

2 + 105 c1 + 1050 − 30 c2

)
T 4+

+
(
60 c3 + 210 c1

2 + 20 c1
3 + 700 c1 + 4410 − 60 c1c2 − 420 c2

)
T 3+

+
(−60 c4 + 1050 c1

2 − 60 c1
2c2 − 2100 c2 − 630 c1c2 + 2205 c1+

+630 c3 + 9744 + 210 c1
3 + 60 c1c3 + 15 c1

4 + 30 c2
2
)
T 2+

+
(
420 c1c3 − 4410 c2 − 30 c1

3c2 + 30 c1c2
2 + 2205 c1

2 + 2100 c3 + 30 c5+

+700 c1
3 + 105 c1

4 + 6 c1
5 + 3248 c1 + 210 c2

2 − 420 c4 + 10584 − 30 c2c3 + 30 c1
2c3+

−30 c1c4 − 2100 c1c2 − 420 c1
2c2

)
T + 2205 c3 − 3248 c2 − 700 c4 + r + 350 c2

2+

+175 c1
4 + 1764 c1 − 105 c1c4 + 105 c1

2c3 − 105 c1
3c2 + 105 c5 − 105 c2c3 + 1624 c1

2+

−2205 c1c2 + 105 c1c2
2 + 700 c1c3 − 700 c1

2c2 − 6 c1
2c4 + 6 c1

3c3 − 6 c1
4c2 + 9 c1

2c2
2+

+c1
6 − 2 c2

3 + 6 c2c4 + 3 c3
2 + 21 c1

5 − 6 c6 + 735 c1
3 − 12 c1c2c3 + 6 c1c5

]
+ n.
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