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Abstract 

We evaluated the distribution of 15 metal ions, namely Al, Cd, Cu, Cr, Fe, La, Mn, Ni, Pb, Sc, Ti, 

V, Y, Zn and Zr, in the soil of a contaminated site in Piedmont (Italy). This area was found to be 

heavily contaminated with Cu, Cr and Ni. The availability of these metal ions was studied using 

Tessier’s sequential extraction procedure: the fraction of mobile species, which potentially is the 

most harmful for the environment, was much higher than that normally present in unpolluted soils. 

This soil was hence used to evaluate the effectiveness of treatment with vermiculite to reduce the 

availability of the pollutants to two plants, Lactuca sativa and Spinacia oleracea, by pot 

experiments. The results indicated that the addition of vermiculite significantly reduces the uptake 

of metal pollutants by plants, confirming the possibility of using this clay in amendment treatments 

of metal-contaminated soils. The effect of plant growth on metal fractionation in soils was 

investigated. Finally, the sum of the metal percentages extracted into the first two fractions of 

Tessier’s protocol was found to be suitable in predicting the phytoavailability of most of the 

pollutants present in the investigated soil. 

 

Keywords. contaminated soil; heavy metals; sequential extraction; in situ immobilization; 

vermiculite; edible plants. 
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1. Introduction 

 

Peri-urban agriculture has been assuming greater significance in the last years due to an increase in 

population and urbanization. The input of metal pollutants to such marginal agricultural lands 

through sewage sludge and industrial effluents (Chhonkar et al., 2000a,b; Rattan et al., 2002, 2005) 

is a matter of concern because of the persistence of these metals in soils, uptake by crops and 

accumulative effects in animal and human beings (Gupta and Gupta, 1998). One remediation 

technology for metal-contaminated soil includes excavation of soil followed by washing and 

disposal of the treated material (U.S. Environmental Protection Agency, 1991). However, this 

remediation strategy is very expensive and gives rise to a considerable amount of wastes. Although 

phytoremediation, i.e. the use of plants for ameliorating metal-contaminated sites, has received 

considerable attention in recent years, one of the major problems associated with this approach is 

low metal removal rates (McGrath et al., 2002; Pierzynski et al., 2000; Rattan et al., 2002). Hence, a 

logical and rational remediation process appears to be chemical stabilization, i.e. metal 

immobilisation by using different amendments. Common methods for immobilisation of metals in 

soil are to apply lime, phosphates, organic matter residues and other natural or synthetic additives, 

like zeolites, beringite, hydrous oxides of Al, Fe and Mn (Bolan and Duraisamy, 2003; Gworek, 

1992; Khattak and Page, 1992; Vangronsveld et al., 1990). Altogether the chemical stabilization 

method is surely a relatively simple and cost-effective remediation technique for contaminated sites 

and hence it merits systematic investigation.  

For these reasons, in recent years, many researchers studied the behaviour of natural organic and 

inorganic materials having high adsorption capacity and which are particularly abundant and 

inexpensive, in order to use them as low-cost effective amendments for on-site remediation of 

metal-contaminated soils. 

Clay minerals, such as montmorillonite and vermiculite, have a high cation exchange capacity and 

high specific surface area associated with their small particle sizes. Such properties have made these 

materials the target of several adsorption studies. Previous investigations in our laboratory showed 

that vermiculite, a widespread natural clay, has a high total capacity toward some heavy metals 

(Malandrino et al., 2006). In the present work we have determined the extent and distribution of 

contamination in a site polluted by heavy metals and the metal availability by Tessier’s 

fractionation method. Then we have evaluated the effectiveness of the treatment with vermiculite on 

the uptake of pollutants present in the investigated soil by two plants, Lactuca sativa and Spinacia 

oleracea. Finally we have studied the changes in metal availability after application of vermiculite.  
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2. Experimental 

 

2.1. Site description 

The investigated site is located in northeast Piedmont, Italy, near the town of Borgomanero, in the 

province of Novara, as reported in Figure 1. The area, now uncultivated and characterised by a high 

environmental deterioration, was used as permanent meadow and woodland in the past. The 

contamination occurred because of the repeated floods of a small stream, which today has a new 

course, caused by the insufficient size of the stream bed with respect to the flow in rainy periods. 

The stream collected the wastewaters of local industries, some of which operating in the 

electroplating field, and its floods caused an accumulation of contaminants, mainly of inorganic 

nature, in the soil. The extension of the polluted area is estimated between 20,000 and 100,000 m
2
. 

The core of the contaminated zone is about 3,000 m
2
 wide: it is flat and covered by a layer of black 

sludge about 1.50 m deep carried by the floods, where a scant vegetation grows. The rest of the area 

is covered by trees and spontaneous plants. The land in the zone is made of alluvial deposits.  

 

Figure 1. Geographical map of Piedmont and detail of the area investigated (grey square). 

 

2.2. Apparatus and reagents 

A Delta 320 Mettler Toledo pH-meter provided with a combined glass-calomel electrod and an 

incorporated thermal probe was used for pH measurements. 

Sample dissolution for the determination of total concentrations was performed with a Milestone 

MLS-1200 Mega (Milestone, Sorisole, Italy) microwave laboratory unit. 

Metal determinations were carried out with a Varian Liberty 100 model (Varian Australia, 

Mullgrave, Australia) inductively coupled plasma-atomic emission spectrometer (ICP-AES). The 

calibrations were always performed with standard solutions prepared in aliquots of sample blanks. 

High purity water (HPW) produced with a Millipore Milli-Q system was used throughout. All the 

reagents used were of analytical grade. Standard metal solutions were prepared from concentrated 

stock solutions (Merck Titrisol). 

 

2.3. Soil sampling and characterization 

The soil material was sampled in several points, both in the site core and in the surrounding area 

where self-sown vegetation is growing. Namely, samples B1 and B3 were collected at the surface in 

the site core and samples B2 and B4 immediately below, at a depth of 10 cm; finally, samples B6 

and B7 were taken at the border of the site, at the surface and at a depth of 10 cm respectively. All 
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samples were collected with plastic tools and transferred into polyethylene bags. Subsequently they 

were air-dried, sieved through a 2-mm sieve, ground in a centrifugal ball mill and stored in plastic 

bags prior to laboratory analysis. Untreated soil aliquots were used in pot experiments. 

Grain size distribution, pH, organic carbon, organic matter and cation exchange capacity (CEC) 

were determined according to the official methods of soil analysis of the Italian legislation issued in 

1999 (Ministerial Decree, 1999) using the following procedures: Esenwein’s pipette method for 

particle size distribution; a 1:2.5 soil – 1 M KCl suspension for pH measurements; the Walkley-

Black method for organic carbon and organic matter content; the barium chloride method for CEC.  

 

2.3.1. Total metal content 

For the determination of the total metal concentrations acid digestion in a microwave oven was 

chosen as the dissolution procedure. 

Sample aliquots of 500 mg were treated with a mixture of 10 ml of aqua regia and 4 ml of 

hydrofluoric acid in PTFE bombs. Four heating steps of 5 min each (250, 400, 600, 250 W 

respectively), followed by a ventilation step of 25 min, were applied. Then 1.4 g of boric acid were 

added, and the bombs were further heated for 5 min at 250 W and again cooled by ventilation for 15 

min. The resulting solutions were filtered with paper filters and diluted to 100 ml with HPW. The 

solutions were employed for the ICP-AES analysis. 

 

2.3.2. Tessier sequential extraction procedure 

This sequential extraction procedure (Tessier et al., 1979, Tessier et al., 1980) partitions the metals 

into five operationally defined chemical fractions: extractable and exchangeable (1 M MgCl2, 

agitation for 1 h), bound to carbonates (1 M CH3COONa, plus CH3COOH (pH 5), agitation for 5 h), 

bound to Fe and Mn oxides (0.04 M NH2OH∙HCl in 25% CH3COOH, agitation for 6 h at the 

temperature of 96 ± 3 C°), bound to organic matter and sulphides (0.02 M HNO3 and 5 ml of 30% 

H2O2, agitation for 5 h at the temperature of 85 ± 2 C°) and residual. The fifth fraction was not 

considered because it is mainly present as scatter within the crystal lattices of the rocks and 

minerals that constitute the soil and it may be released only in the long term (Abollino et al. 2006; 

Davidson et al. 1998). 

After each extraction the suspension was centrifuged for 20 min at 4000 rpm. The solution was 

separated, while the precipitate was washed with 10 ml of HPW and centrifuged again for 5 min. 

The washing water then was added to the supernatant, while the precipitate was used for the 

subsequent extractions. The extracts were diluted to 25 (first fraction), 50 (second fraction) or 100 
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(next two ones) ml, stabilised by addition of 25, 50 or 100 µl of concentrated nitric acid respectively 

and analysed. 

 

2.4. Vermiculite properties 

Vermiculite was supplied by Aldrich. It is a naturally occurring mineral which contains a small 

amount of crystalline silica in the form of quartz. 

The main properties of the clay are reported in a previous paper (Malandrino et al., 2006). 

Altogether it has a good cation exchange capacity (CEC = 40.08 meq/100 g) and a high pH at the 

point of zero charge (pHzpc = 8.63). Potassium is the principal exchangeable ion present in the 

interlayer of this clay. 

 

2.5. Pot experiments with lettuce and spinach 

The soil sampled in the center of the site was put in polyethylene pots (5 kg in each pot) and treated 

by adding vermiculite (500 g). At the same time an aliquot of the soil and one of unpolluted soil 

were left unamended and used as reference. Each treatment was performed in triplicate. Lactuca 

sativa and Spinacia oleracea were planted in separated pots. The pots were laid out at room 

temperature (25 °C) and they were watered three times a week with 500 ml of tap water. Plants 

grown in the control pots were harvested after one month. The vegetables grown in the pots filled 

with polluted soil amended with vermiculite were harvested twice: after one month and after two 

months. All harvested plants were oven-dried at 60 °C for 16 h, then ground in an agate mortar. 0.2 

g of ground plant material were digested with 10 ml of concentrated HNO3 in a microwave oven, 

using the following heating program: 5 min at 250 W, 5 min at 400 W, 5 min at 600 W, 5 min at 

250 W and 25 min of air ventilation. After cooling, the digestion solutions were filtered with paper 

filters and diluted to 50 ml. The concentrations of Cr, Cu, Mn, Ni, Pb and Zn in the digests were 

determined by ICP-AES. 

The transfer capability of heavy metals from soil to the edible part of vegetables was described 

using the translocation factor, calculated according to the following formula: 

TF = metal concentration in edible plant parts (mg kg
−1

 dry weight) / metal concentration in 

substrate (mg kg
−1

 dry weight) (Cui et al., 2004; Greger et al., 2007; Li et al., 2010). 

At the end of the pot experiments, soil samples were taken out of each pot, air-dried, sieved through 

a 2 mm sieve and ground. Sub-samples were used to determine the pH changes and other sub-

samples were used to investigate changes in the metal fractionation with Tessier’s sequential 

extraction procedure (section 2.3.2). 

 



 6 

3. Results and discussion 

 

3.1. Soil characterization 

Table 1 reports particle size distribution and some general characteristics, namely percentages of 

organic carbon, organic matter and CEC, of the soils examined in this study. 

The average percentage of organic matter is higher in the uncontaminated soil than in the 

contaminated soil; this result was not unexpected since the soil used as reference was chosen to 

obtain a good growth of vegetables and it hence is rich in humus and other organic substances. As 

to particle size analysis, the most abundant components are sand and fine sand in the 

uncontaminated and in the contaminated soil respectively. Therefore both soils can be considered as 

“loamy sand” according to the USDA textural triangle (USDA Forest Service, Soil Conservation 

Service, 1983). The clay percentage in the uncontaminated soil is higher than in the contaminated 

soil, but this is not sufficient to explain the high CEC evidenced in the former. The most likely 

explanation of this trend is that part of this capacity is due to the higher humus content of this soil. 

 

3.1.1. Total metal content 

The pH and total content of 15 metals together with the relative standard deviations are reported in 

Table 2. It must be borne in mind that elements such as Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn are 

present in unpolluted soils at what can be defined “background level”, both as a result of natural 

phenomena, such as the contribution of the parent material, and of common anthropogenic 

activities. We can suspect or confirm the presence of pollution when the concentrations are higher 

than the typical values for soils found in literature and exceed the levels present in the nearby areas. 

In this study, in order to define the presence and level of contamination, the concentrations of 

elements were compared with the normal ranges in soils (Alloway, 1990) and Earth’s crust 

(Turekian and Wedepohl, 1961) and with the maximum acceptable levels in soils according to the 

Italian Legislation (Ministerial Decree 2006) for the reclamation of contaminated sites (Table 3). 

Italian limits depend on land use, and are lower for public and private green areas and residential 

sites (“A” limits) and higher for industrial areas (“B” limits). 

The soil samples considered have low pH values (mean: 5.10; range: 4.06 – 6.08), therefore they 

can be defined as acid (from very strongly acid to moderately acid). Such pH values are however 

within the range normally found in typical temperate environment (4 – 8), pH values in these 

samples result however in agreement with this range. The pH of the soils investigated can be likely 

low owing to the low buffering by Al; in fact this element is present at lower concentrations than 

the mean concentrations in soil and Earth’s crust. 
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High concentrations of Cd, Cr, Cu, Ni, Pb and Zn were found in Borgomanero site. In particular, 

the contents of Cr, Cu and Ni exceeded Italian “B” limits, and those of Cd, Pb and Zn were higher 

than “A” limits. The presence of Cu, Cr and Ni could be due to an input from the effluents of 

electroplating industries. 

The elements of mainly geochemical origin, such as Al, La, Mn, Y and Zr, are instead present at 

concentrations lower than the typical values in soil and Earth’s crust. This may be due to a "dilution 

effect” of the black sludge carried by the floods in this area on the native lithogenic element 

content. 

The contamination is high in the soil samples collected in the core of the site and it seems to 

decrease in the soil samples collected at the border of site, where the spontaneous vegetation is 

present. 

As a whole, the investigated metals can be divided into two groups: (1) Cd, Cr, Cu, Ni, Pb and Zn, 

whose concentrations are heavily affected by anthropogenic inputs, and (2) Al, Fe, La, Mn, Sc, Ti, 

V, Y and Zr, which are mainly of geochemical origin, even if a contribution from human activities 

(especially for Fe) cannot be excluded. 

 

3.1.2. Metal mobility 

We studied the fractionation of metals with Tessier’s protocol. This procedure has been applied and 

accepted by a large group of specialists (e.g. Irvine et al., 2009; Rico et al., 2009; Lopez Sanchez et 

al., 1996) even if, like all others sequential extraction procedures, it suffers from several drawbacks, 

such as lack of selectivity and element redistribution during extraction, and it provides operationally 

defined results (Bermond and Yousfi, 1997; Gómez-Ariza et al., 1999). In any case the partitioning 

of the metals into the different fractions is a suitable tool to estimate mobility and plant availability 

of many elements in soils (Sager et al., 2007) and gives an indication of their potential harmful 

effects (Yukselen and Gokyay, 2006). Figures 2a and 2b show the sequential extraction results. The 

data are expressed as percent fractions of the total concentration. 

 

Figure 2. Percentages extracted into the first four fractions according to Tessier’s procedure 

(untreated contaminated soil) for: a) Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn and b) Al, La, Sc, Ti, V, Y 

and Zr. 

 

The results obtained clearly show that the samples collected in the centre of the site (B1 – B4) are 

characterised by higher percentages of metals extracted into the first two fractions, hence they seem 

to be polluted in a higher extent. This could be the explanation for the absence of spontaneous 

http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=U2dMEj7GddL79jo2Pba&name=Irvine%20KN&ut=000268430400005&pos=1
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=U2dMEj7GddL79jo2Pba&name=Rico%20MI&ut=000263434100005&pos=1
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=U2dMEj7GddL79jo2Pba&name=LopezSanchez%20JF&ut=A1996TG77200019&pos=1
http://apps.isiknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&db_id=&SID=U2dMEj7GddL79jo2Pba&name=LopezSanchez%20JF&ut=A1996TG77200019&pos=1
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vegetation in the centre of the site. In fact many researchers (Sager et al., 2007; Lua et al., 2003; Li 

et al., 1995; Delmas et al., 2002) affirm that the exchangeable fraction, or the exchangeable plus 

bound to carbonates fractions, should be readily available to plant roots. 

The amounts found in the first fraction in B1 – B4 samples are very high, in particular for Cd, Cu, 

Ni, Pb and Zn. Also a relatively high percentage of Y was released: generally this element has a 

geological origin and it is not extracted into the first fractions at detectable levels. Nevertheless it is 

not possible to ascertain whether this behaviour is due to an anthropogenic origin, since its 

fractionation with Tessier’s protocol or with other sequential extraction schemes was rarely 

considered (Abollino et al., 2006). The relatively large MgCl2-extractable fraction of the above-

mentioned elements in this soil is also due, at least in part, to the low soil pH. 

The percentages extracted into the second fraction are lower than in the first one for most of the 

metals considered, even if they are higher than those usually reported for contaminated soils 

(Abollino et al., 2002; Lu et al., 2003). Altogether the percentages extracted into the first two 

fractions of Tessier are much higher than the ones obtained for agricultural soils of Piedmont 

studied in a previous work (Abollino et al., 2002). In such unpolluted soils, most elements (with the 

exception of Al, Fe, Mn, Ti) were undetectable by ICP-AES in the first fraction and were typically 

present at levels below 1 % in the second one. In particular Cd, Cu, Ni, Pb and Zn, whose total 

concentrations in B1-B4 samples are higher than the Italian “A” limits, were extracted at 

percentages between 4.62 and 32.50 % and between 3.17 and 20.45 % respectively into the first and 

second fraction, while the extraction percentages of the same metals from the agricultural soils were 

lower than 0.8 and 4 % respectively. These results clearly indicate that these metals can be 

identified as pollutants in Borgomanero soil. 

The percentages of metals extracted into the third fraction are usually higher than those present in 

the previous ones, reaching 77.83 % for Cd in B7 sample. The main soil pollutants are extracted 

into this fraction at high percentages with the exception of Cu that, instead, is principally released 

into the fourth fraction. This behaviour is in agreement with the general findings that this element 

forms stable complexes with organic matter (Wong et al., 2002). Instead, Mn is extracted at low 

percentages into the third fraction and it is mainly present in the residual fraction; this probably 

occurs because it derives from the dissolution of crystalline oxides containing this element. 

The behaviour of Cr is in agreement with its features of inert metal and with the results of many 

other studies, which reported a low availability for this element both in clean and contaminated soils 

(e.g. Burt et al., 2003; Abollino et al., 2006). It is interesting however to note that this element is 

present at high percentages in the third and fourth fraction, while usually it is extracted nearly 

exclusively in the residual fraction. It is possible that this element was discharged in the soil 
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investigated as Cr(VI). This form is more mobile than Cr(III) and is considered the most toxic form 

of Cr. Cr(VI) is a strong oxidising agent, having a high positive reduction potential, and in the 

presence of soil organic matter is reduced to Cr(III) (Bartlett and James, 1988; Alloway 1990). This 

reduction is more rapid in acid soils, like that of Borgomanero, than in alkaline ones. Some 

researchers found that, following reduction of Cr(VI), Cr in soil was present as hydrated oxides of 

Cr(III) mixed with or occluded in Fe oxides (Cary et al., 1977). This is a possible explanation for 

the behaviour of Cr in this soil.  

The other elements (Al, Fe, La, Mn, Sc, Ti, V and Zr) were extracted at low percentages in the first 

four fractions, showing that they are strongly bound to the soil matrix and, hence, can be considered 

as constituents of the soil. 

In general, a clear differentiation is evident between the two groups of elements evidenced above. 

In particular the metals identified as pollutants (Cd, Cr, Cu, Ni, Pb and Zn) are characterised by a 

high mobility and hence they could be released into the environment upon a change in ionic 

strength, soil pH or redox potential. Instead the elements identified as lithogenic (Al, Fe, La, Mn, 

Sc, Ti, V, Y and Zr) are mainly associated to the residual fraction and this is a further confirmation 

of their natural origin.  

 

3.2. Pot experiments with lettuce and spinach 

We considered two soil samples: a composite sample of Borgomanero soil and an uncontaminated 

soil used as control. Our previous studies on synthetic solutions showed that vermiculite is a very 

efficient sorbent for heavy metals (Malandrino et al., 2006; Abollino et al., 2008). In order to test 

the behaviour of this clay in a real scenario, we studied its effectiveness as soil amendment in 

reducing the phytoavailability of the metal pollutants. We evaluated the effect of the addition of 

vermiculite by measuring metal uptake by plants, using lettuce and spinach as test crops, and by the 

first two fractions of Tessier’s protocol, that provide assessment of potential metal availability to 

plants. In this way we also evaluated the suitability of the extractants used in such fractions in 

predicting the phytoavailability of metal pollutants. 

 

3.2.1. Effect of amendment on the uptake of metals by lettuce and spinach 

Heavy metals, when present in excess, disturb plant metabolism, affecting respiration, 

photosynthesis, stomata opening and growth. 

The extent of assimilation of heavy metals from soil depends on whether they are present in a form 

that can be absorbed by plants. For example, Pb can be strongly absorbed by soil particles and, thus, 

it is scarcely translocated to plants, while Cd ions are relatively mobile in soil and can be more 
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easily absorbed by vegetation. Plants accumulate heavy metals from soils through different 

mechanisms such as: absorption, ion exchange, redox reactions, precipitation – dissolution, etc. In 

addition to these accumulation mechanisms, the solubility of trace elements in soils depends on the 

minerals present in them (carbonates, oxides, hydroxides, etc.), on the level of soil organic matter 

(humic acids, fulvic acids, polysaccharides and organic acids), soil pH, redox potential, temperature 

and humidity (Tarradellas et al., 1996). Only the portions of elements which present availability are 

transferred into plants (Smical et al., 2008). 

In order to evaluate the effectiveness of treatment with vermiculite for the reduction of the 

phytoavailability of the pollutants, green salad (Lactuca sativa) and spinach (Spinacia oleracea) 

were selected as test plants. The first was chosen because it is easily available, it assimilates all 

relevant toxic metals, and common people have some experience in growing it worldwide. As early 

as 1957, lettuce seedlings were proposed as a means to investigate the amount of available nutrients 

in test soils, as an alternative to chemical extraction methods. In fact, lettuce is a general indicator 

for heavy metals because it can easily accumulate high metal concentrations per plant biomass. 

Spinach was chosen because, like lettuce, is a very popular and commonly seen leafy vegetable and, 

moreover, many researchers showed that it can be easily contaminated by Cd from soil (Wang et 

al., 2009; Dheri et al., 2007; Zupan et al., 1995). 

Figure 3a demonstrates that metal uptake by lettuce and spinach is much higher in the contaminated 

soil than in the control soil, due to the high percentages of available elements present in it (see 

section 3.2.2.). Moreover, it is evident that the addition of vermiculite strongly influences the 

amount of metals assimilated by plants, in particular for Cr, Cu and Ni, which have a higher 

concentration in Borgomanero site, and for lettuce, known as bioaccumulator plant (Sager et al., 

2007). In particular, comparing the metal concentrations in the leaf vegetables grown in the 

untreated polluted soil and in the same amended with vermiculite, a percentage decrease from 62 to 

nearly 100 % for pollutant (Cd, Cr, Cu, Ni, Pb, Zn) uptake was observed. 

As soil pH is the most important factor which governs the solid-solution equilibria of metals in soil 

(Hooda and Alloway, 1998), the effect of addition of vermiculite on soil pH was studied. The 

application of this clay raised the soil pH by approximately 2 units, from 4.17 to 5.99. Therefore, 

the influence of vermiculite on metal availability is first of all related to the increase in pH brought 

about by the addition of this amendment. Many researchers (Hooda and Alloway, 1998; Naidu et 

al., 1994; Paulose et al., 2007) evidenced an increase of metal sorption in soils with increasing pH. 

The reasons advanced for this behaviour are: 1) an increase in negative surface charge, resulting in 

an increase in cation adsorption; 2) a higher probability of formation of hydroxy species of cation 

metals that have a greater affinity for adsorption sites than the aqueous metal cations and, finally, 3) 
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a higher possibility of precipitation of metal hydroxides. Moreover, previous studies (Malandrino et 

al., 2006; Abollino et al., 2008) demonstrated that, in this pH condition, vermiculite presents a high 

uptake total capacity toward the considered metals. Since the pHzpc of this clay is 8.63, at pH ~ 6 

most of the silanol and aluminol groups on edges of the clay are protonated, hence the main 

mechanisms responsible for retention of these metals are sorption by reaction with the planar sites 

of the clay and consequent formation of outer-sphere complexes and introduction inside the 

lamellar spaces of this clay. 

Metal concentrations in lettuce and spinach plants grown in the unpolluted soil decreased in the 

order Zn > Mn > Cu > Ni ≈ Cr > Pb ≈ Cd. This behaviour suggests that, in natural conditions, these 

vegetables have a similar trend of assimilation capability for these elements. In the vegetables 

cultivated in the contaminated soil the order of heavy metal concentrations was different: Cu > Cr > 

Ni > Zn > Pb > Mn > Cd. This probably occurs because Cu, Cr and Ni were present at high 

concentrations in the contaminated soil and, hence, they were preferentially assimilated by plants 

even if the vegetables considered do not have higher assimilation capacity towards these elements 

in comparison to the other ones. The addition of vermiculite caused variation in the concentration 

order of heavy metals in lettuce and spinach relative to that observed in untreated contaminated soil. 

In detail, the concentrations in lettuce and spinach decreased, respectively, in the order Mn > Ni > 

Zn > Cu > Cr > Pb ≈ Cd and Zn > Ni > Cu > Mn > Cr > Pb ≈ Cd after the first harvest, while the 

sequences observed after the second harvest were respectively Mn > Zn > Cu > Cr > Ni > Pb ≈ Cd 

and Zn > Mn > Cu > Ni > Cr> Pb ≈ Cd. Therefore, it is evident that the addition of vermiculite 

caused a decrease in the phytoavailability of the pollutants such as Cr, Cu and Ni and that, 

increasing the contact time between contaminated soil and clay, the order of metal assimilation for 

both vegetables verges on that found in control soil, i.e. in natural conditions. Nevertheless the 

metal concentrations found in vegetables grown in soil treated with vermiculite were higher than the 

values usually reported for leaf vegetables grown in unpolluted soils (Gaw et al., 2008; Li et al., 

2010) and in our control soil. Further studies are necessary to find out whether, increasing the 

contact time between polluted soil and vermiculite, the metal concentrations in lettuce and spinach 

would fall again in the natural ranges for these vegetables. 

The TF values of heavy metals from soil to vegetables are shown in Figure 3b. 

 

Figure 3. a) Metal uptake by lettuce and spinach grown on uncontaminated soil, untreated 

contaminated soil and contaminated soil amended with vermiculite (metal uptake by: LNC = lettuce 

grown on uncontaminated soil; SNC = spinach grown on uncontaminated soil; VC = vegetables 

(lettuce + spinach) grown on untreated contaminated soil; LCV I = lettuce grown on amended 
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contaminated soil (first harvest); LCV II = lettuce grown on amended contaminated soil (second 

harvest); SCV I = spinach grown on amended contaminated soil (first harvest); SCV II = spinach 

grown on amended contaminated soil (second harvest). b) Translocation factors (TF) of metals 

from soil to plants (data for Cd not shown because the concentrations in plants were lower than the 

ICP detection limit). 

 

These values are higher than the TFs usually reported for field-grown vegetables (Smical et al., 

2008; Li et al., 2010). In fact it must be borne in mind that the uptake of metals from soils is greater 

in plants grown in pots than in the field from the same soil. This is probably due to differences in 

microclimate and soil moisture, and mainly to the fact that the roots of container-cultivated plants 

grow solely in contaminated soil and more closely near from each other, whereas those of field-

cultivated plants may reach down to less contaminated soil layers (Smical et al., 2008; Benzarti et 

al., 2008). The soil-to-plant TF values decrease in the order Zn > Mn > Ni > Cu > Cr > Pb > Cd. 

These values are similar for both vegetables but they differ significantly among control soil, 

contaminated soil and the same amended with vermiculite. The difference in TFs between control 

and contaminated soils may be related both to their metal content and to general soil properties. 

Actually, the control soil, besides being characterised by lower metal content, is also higher in 

organic matter and clay content and, hence, it has a higher uptake capacity towards metals. 

Compared to the very high content of Pb and Cd in the polluted soil, the transfer of these metals to 

the plants is always quite smaller than the uptake of the other metals. This could be due to the 

absorption of a higher quantity of Pb and Cd by the clay – humic complex in the soil (Smical et al., 

2008) or to the low affinity of plants for these elements, which have no role in their metabolism. 

The metal uptake of the two vegetables grown in contaminated soil added with vermiculite changed 

over time, i.e. from the first to the second harvest, with an opposite trend, showing an increase in 

the lettuce for all elements with the exception of Ni and a decrease in the spinach for all elements 

with the exception of Mn. This suggests that these plants have different capacity to absorb and 

eliminate toxic elements, but the detailed mechanism needs to be further investigated. Spinach 

seems to have a higher assimilation capacity since it absorbs in greater extent all elements with the 

exception of Cr but it is likely also less inhibited by these metals since the metal content in this 

plant decreases over time in correlation with an increase in biomass. 

The values of TF clearly show that the addition of vermiculite to the contaminated soil greatly 

decreases the translocation of toxic metals to the plants rendering it similar to that one found in the 

control soil for all elements with the exception of Mn. The different behaviour of this element is 
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explicable considering that it is essential for plants at higher concentrations and it is present as 

exchangeable ion in the interlayer of vermiculite. 

Altogether it is evident that the contaminated soil is not suitable for lettuce and spinach growth, 

whereas the treatment with vermiculite effectively reduces the phytoavailability of the pollutants to 

the two plants, even if the metal uptake in the two crops significantly differs over time.  

 

3.2.2. Effect of amendment on mobility and reactivity of metals in soil 

The percentages of metals in the fractions obtained by sequential extraction for contaminated soil, 

contaminated soil amended with vermiculite and the control soil before and after plant growth are 

reported in Figure 4. Cd was not considered in this part of the study because it was always lower 

than the instrumental detection limit (10 µg L
-1

) in the uncontaminated soil and it was not absorbed 

in significant amounts in the two vegetables considered. 

 

Figure 4. Metal percentages extracted into the first four fractions according to Tessier’s procedure 

for: untreated contaminated soil before (a) and after (d) plant growth; contaminated soil amended 

by vermiculite before (b) and after (e) plant growth; uncontaminated soil before (c) and after (f) 

plant growth. 

 

The percentages of metals extracted into the first two fractions were higher in the contaminated soil 

than in the control pot with the exception of Mn, that was characterised by a opposite trend, likely 

because it is not a pollutant in Borgomanero site and it is present at higher percentage as carbonate 

in the control soil. The application of vermiculite was effective in reducing the exchangeable and 

carbonate bound fractions of Cu, Ni, Pb and Zn in soil, that is of the elements present as pollutants 

in Borgomanero site with the exception of Cr. 

In the case of Ni, Pb and Zn, the plant growth caused a pronounced variation in the fractionation 

pattern for the contaminated samples, since the percentages extracted into the first two fractions 

increased whereas those extracted into fractions III and IV decreased. The most striking effect of 

plant growth on metal fractionation in the control soil was the increase of the amounts of Cr, Cu, 

Ni, Pb and Zn bound to organic matter and sulphides. These changes in fractionation can be 

explained with the interaction of root exudates with the surroundings solids. Excretion of root 

exudates, which contain organic acids, amino acids, sugars and high molecular weight compounds, 

increase the solubility and bioavailability of metals in the rhizosphere (Mench and Martin, 1991; 

Sager et al., 2007). 
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The rhizosphere is the zone about 1 – 2 mm wide between plant roots and the surrounding soil. It 

receives appreciable amounts of organic material from the roots, including exudates, mucilage, 

sloughed-off cells and their lysates. These organic compounds give rise to intense microbiological 

and biochemical activity in the rhizosphere which enables roots to mobilise some of the metals 

which are adsorbed in the soil, by acidification, redox changes, or the formation of organic 

complexes. It is possible that in the control soil, which has a higher organic matter content, the 

metals mobilised by roots in the rhizosphere are mainly present as organic complexes, while in the 

contaminated soil amended by vermiculite they are characterised by higher solubility. 

Metal percentages extracted in the first two fractions are increased in all samples following plant 

growth. It is necessary to specify that in any case the exchangeable and carbonate bound fractions 

of all elements in the contaminated soil treated with vermiculite were always lower than in the 

untreated contaminated soil. However, the effect of plant growth on fractions III and IV extracted 

from the untreated and amended contaminated samples goes in different directions, namely the 

metal percentages extracted into these fractions are increased in the former and decreased in the 

latter. Our findings agree with those of other researchers (Sager et al., 2007; Mench and Martin, 

1991) who found a significantly enhanced metal solubility in the rhizosphere of different plants and 

evidenced that the mobilization processes seem to be more important on moderately contaminated 

soils than on strongly contaminated soils.  

It must be borne in mind that the plant roots, when growing in pots, are in much closer contact with 

one another and with the adjacent soil than in the field and, for this reason, fractionation changes 

are more probable to be detected from pot experiments. Hence, it is not sure that the same 

fractionation changes would be found in field conditions. 

Finally, the sum of the first two fractions of Tessier’s protocol for Cu, Ni and Zn were significantly 

correlated with their concentrations in plants (r = 0.842 for Cu, r = 0.846 for Ni, r = 0.942 for Zn; p 

< 0.05), while a similar correlation was not found for Cr and Mn. Indeed, we found that the content 

of Mn in plants was negatively correlated with the sum of the amounts extracted into the first two 

fractions (r = - 0.959; p < 0.05). This probably occurs because Mn is not a pollutant in 

Borgomanero soil and it is an essential element for plants; a low correlation was found for Cr, 

probably due to its feature of inert metal that gives rise to its low mobility. Altogether in this study 

we found that the sum of first two fractions of Tessier’s protocol is suitable in predicting the 

phytoavailability of Cu, Ni and Zn but fails in the case of Cr and Mn. 
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4. Conclusions 

 

From this study, it can be concluded that: 

1) High concentrations of Cd, Cr, Cu, Ni, Pb and Zn were found in Borgomanero site. In 

particular, the contents of Cr, Cu and Ni exceeded Italian “B” limits, and those of Cd, Pb and Zn 

were higher than “A” limits.  

2) The percentages of metals extracted into the first two fractions of Tessier’s protocol were higher 

in the samples collected in the centre than in those taken at the border of the site. In particular, 

Cd, Cu, Ni, Pb and Zn were easily extracted from the soil, suggesting that they can be readily 

transferred to other environmental compartments, such as water and plants.  

3) The vermiculite is a good candidate as amendment for chemical stabilization of contaminated 

soils, because it demonstrated to reduce significantly the uptake of metal pollutants by lettuce 

and spinach. Its effectiveness increases with increasing contact time with the polluted soil. 

4) The plant growth had different effects on the metal fractionation pattern in the contaminated and 

in the control soils, namely giving rise to an increase in extractability into the first two fractions 

for the former and to an increase in the percentages released into the fourth fraction for the 

latter. Surely the excretion of root exudates, which contain organic acids, amino acids, sugars 

and high molecular weight compounds, plays an important role in increasing the mobility of 

metals in the soils. 

5) The sum of the metal percentages extracted into the first two fractions of Tessier’s protocol is 

suitable in predicting the phytoavailability of the pollutants present in the investigated soil (Cu, 

Ni and Zn) with the exception of Cr, owing to its features of inert metal. 

The knowledge of the soil-plant relationships in contaminated sites is an important issue because 

the use of polluted soils in urban and peri-urban areas for agriculture is increasing, and the 

consumption of plants grow in such soils could have a harmful effect to humans. 

In this scenario it is essential to individuate a simple and cost-effective remediation technique that 

allows the reduction of metal assimilation from contaminated soils by edible plants. The chemical 

stabilization by vermiculite proposed in this study demonstrated to meet all these requirements. 
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Table 1. General characteristics of the investigated soils 

 

 Contaminated Soil Uncontaminated Soil 

Organic Carbon (% w/w) 17.14 34.00 

Organic Matter (% w/w) 29.55 58.62 

CEC (cmol/kg) 31.30 56.82 

Particle Size Distribution   

% Sand 19.30 49.03 

% Fine Sand 56.88 31.37 

% Silt 10.10 5.88 

% Fine Silt 8.35 6.00 

% Clay 5.37 7.72 

 



Table 2. Total metal concentrations (mg kg
-1

), standard deviations and pH in soils at Borgomanero site 1 

 2 

 B1 B2 B3 B4 B6 B7 

pH 5.00 4.06 5.17 4.51 5.80 6.08 

Al 24,000 ± 1,300 27,840 ± 904 23,214 ± 984 30,060 ± 978 29,542 ± 4,352 20,964 ± 2,860 

Cd 5.93 ± 0.05 5.97 ± 0.09 4.81 ± 0.11 3.37 ± 0.22 1.07 ± 0.04 1.19 ± 0.13 

Cr 3,056 ± 106 3,332 ± 172 3,300 ± 18 3,408 ± 20 4,617 ± 200 2,174 ± 183 

Cu 4,424 ± 180 5,245 ± 206 5,340 ±287 4,680 ± 140 7,022 ± 282 1,576 ± 148 

Fe 30,000 ± 610 26,504 ± 1,225 29,152 ± 442 26,630 ± 183 28,390 ± 1,440 25,416 ± 1,223 

La 6.66 ± 0.21 8.09 ± 1.09 7.57 ± 0.90 8.33 ± 0.90 14.7 ± 0.8 6.25 ± 0.94 

Mn 268 ± 8 276 ± 16 270 ± 5 240 ± 4 296 ± 16 340 ± 8 

Ni 760 ± 18 1,345 ± 8 1,990 ± 40 1,106 ± 13 1,969 ± 89 904 ± 60 

Pb 847 ± 36 648 ± 39 641 ± 7 620 ± 22 1,017 ± 59 345 ± 6 

Sc 2.70 ± 0.34 3.08 ± 0.24 2.61 ± 0.24 2.77 ± 0.24 3.45 ± 0.50 2.39 ± 0.31 

Ti 5,737 ± 120 4,664 ± 253 4,513 ± 79 4,360 ± 138 6,873 ± 173 4,717 ± 254 

V 31.9 ± 1.8 27.5 ± 1.6 29.2 ± 0.2 26.6 ± 0.7 30.4 ± 2.1 20.3 ± 2.1 

Y 9.20 ± 0.45 7.32 ± 0.94 9.02 ± 0.94 8.07 ± 0.94 8.34 ± 1.21 8.34 ± 1.23 

Zn 379 ± 13 552 ± 18 1112 ± 10 573 ± 5 951 ± 45 545 ± 25 

Zr 47.1 ± 2.9 45.3 ± 1.4 41.5 ± 1.2 39.1 ± 2.0 49.5 ± 2.1 52.3 ± 3.2 

 3 



Table 3. Mean metal concentrations in soil samples at Borgomanero site, means and typical ranges 4 

in soil and earth’s crust, admissible levels in soil according to the Italian Legislation (mg kg
-1

) 5 

 6 

 Borgomanero site Soil
a, b 

Earth’s crust
c 

“A” Limit
d 

“B” Limit
e 

Al 25,937 72,000 55,320; 4,200 – 88,000   

Cd 3.72 0.35; 0.01 – 2.0 0.20; 0.035 – 0.42 2 15 

Cr 3,315 54; 5 – 1,500 204; 2 – 1,600 150 800 

Cu 4,715 25; 2 – 250 52.33; 4 – 250 120 600 

Fe 27,680 26,000 39,610; 3,800 – 94,300   

La 8.60 37 54; 10 – 115   

Mn 282 550; 20 – 10,000 1,617; 390 – 6,700   

Ni 1,346 19; 2 – 750 252; 2 – 2,000 120 500 

Pb 686 19; 2 – 300 17.80; 1 – 80 100 1,000 

Sc 2.83 8.9 10.50; 1 – 30   

Ti 5,144 2,900 3,407; 300 – 13,800   

V 26.80 80; 3 – 500 76.2; 20 – 250 90 250 

Y 6.90 25 38.22; 20 – 90   

Zn 685 60; 1 – 900 71.5; 16 – 165 150 1,500 

Zr 103 230 157; 19 – 500   

 7 

a
 Sposito, 1989 8 

b
 Alloway, 1990 9 

c
 Turekian and Wedepohl, 1961 10 

d
 Limit established by Italian Legislation for public and private green areas and residential sites 11 

e
 Limit established by Italian Legislation for industrial areas 12 

13 
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CAPTIONS TO FIGURES 14 

 15 

Figure 1. Geographical map of Piedmont and detail of the area investigated (grey square). 16 

 17 

Figure 2. Percentages extracted into the first four fractions according to Tessier’s procedure 18 

(untreated contaminated soil) for: a) Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn and b) Al, La, Sc, Ti, V, Y 19 

and Zr. 20 

 21 

Figure 3. a) Metal uptake by lettuce and spinach grown on uncontaminated soil, untreated 22 

contaminated soil and contaminated soil amended with vermiculite (metal uptake by: LNC = lettuce 23 

grown on uncontaminated soil; SNC = spinach grown on uncontaminated soil; VC = vegetables 24 

(lettuce + spinach) grown on untreated contaminated soil; LCV I = lettuce grown on amended 25 

contaminated soil (first harvest); LCV II = lettuce grown on amended contaminated soil (second 26 

harvest); SCV I = spinach grown on amended contaminated soil (first harvest); SCV II = spinach 27 

grown on amended contaminated soil (second harvest). b) Translocation factors (TF) of metals from 28 

soil to plants (data for cadmium not shown because the concentrations in plants were lower than the 29 

ICP detection limit). 30 

 31 

Figure 4. Metal percentages extracted into the first four fractions according to Tessier’s procedure 32 

for: untreated contaminated soil before (a) and after (d) plant growth; contaminated soil amended by 33 

vermiculite before (b) and after (e) plant growth; uncontaminated soil before (c) and after (f) plant 34 

growth. 35 

 36 
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