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Abstract. In this paper we investigate the economic rationality of the bed downsizing process, 
characterising the hospital industry worldwide in the last decades, as a measure to control public health 
care expenditure. Considering a sample of Italian hospitals, we provide fresh evidence on the factor 
substitutability in the production of hospital services. Differently from other studies, based on North-
American data and limited to pre-determined cost function models, we estimate a general specification 
(the Generalised Composite), and test it against traditional nested models (e.g. the Translog). For all the 
specifications we derive Allen, Morishima and Shadow elasticities of substitution between input pairs, 
obtaining a fairly consistent picture across all models and elasticity concepts. In particular, our results 
highlight a very limited degree of substitutability between factors in the production of hospital services, 
especially between beds and medical staff. These findings suggest that a restructuring policy of the 
hospital industry, which is confined to reducing the number of beds without involving workforce 
management, could not be a viable strategy for controlling public health care expenditure. 
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1. Introduction 

Hospital industries worldwide have been interested by a huge process of reorganisation 

in the last decades. At the macro level, in order to curb the presence of excess capacity, 

public producers’ number of beds has been reduced by Central or Regional governments 

almost anywhere (e.g., McKee, 2004; Kroneman and Siegers, 2004; Hensher et al., 

1999). At the micro level, a number of M&As - involving both private and public 

hospitals - has been observed in several countries, not only as a response to bed 

reduction, but also to exploit scale and scope economies, and improve effectiveness and 

quality of care. The process has been originated on two basic premises: on the one hand, 

the need to contain public health care expenditure imposed governments to find new 

ways to improve the efficiency (and the effectiveness) in the provision of health 

services. Empirical analyses on the determinants of health expenditure suggest a 

positive correlation between the share of inpatients expenditure (i.e., the bulk of hospital 

costs) and total health spending (e.g., Gerdtham and Jönsson, 2000, and Propper, 2001). 

As expenditure for hospital services represented (and still represent) a significant share 

of total health expenditure, it is not surprising that hospitals were clearly at the core of 

policies aimed at controlling expenditure growth. On the other hand, the perception that 

an ageing population would have different needs (especially chronic illnesses) with 

respect to past years caused traditional hospitals – which focus typically on acute care – 

not to be tailored to answer these structural changes in the epidemiological context. 

This massive ongoing reshaping of the hospital industry raises of course a 

number of questions, that only in recent years the academic literature has started to ask. 

A first problem to address is to understand whether hospital M&As are justified both 

from an efficiency and an effectiveness point of view. In this perspective, as discussed 

in Posnett (1999), results are somewhat mixed. As for efficiency, for instance, studying 
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the Canadian Province of Ontario, Preyra and Pink (2006) find large scale unexploited 

gains from consolidation in the hospital sector, while Bilodeau et al. (2002), 

concentrating on Québec, show the presence of both economies and diseconomies of 

scale, with some establishments operating at constant returns to scale. As for 

effectiveness, for example, focusing on U.S. surgical procedures, Birkmeyer et al. 

(2002) find that mortality rates are lower the higher the volume of patients treated, 

whereas Grilli et al. (1998) challenge this view, by surveying literature on cancer 

patients. 

A second question to focus on is the strategic reply of hospitals’ managers to bed 

reductions implemented by Central and Local governments. As for the occupancy rates, 

Kroneman and Siegers (2004) find for instance that behavioural responses are related to 

the hospital financing system: in particular, in global budget systems, occupancy rates 

appear to decline after a reduction in hospital bed supply, while in per diem financing 

systems, admission rates did not drop following bed downsizing. In both systems, no 

effects are detected on average length of stay. As for the health expenditure growth, in 

order to understand the potential role of industry restructuring, an important issue to be 

discussed concerns workforce management after bed reductions. According to the 

available literature, there exists a limited substitutability between beds and medical 

staff. This suggests that, after bed reductions, keeping constant the severity of patients 

and the quality of treatments, one should observe also a decrease in hospital staffing in 

order to avoid waste of resources. But while in the U.S. bed downsizing has been 

accompanied (at least in some cases) with staff reduction, in other countries (especially 

in Europe) the restructuring of the industry has been limited mostly to beds. This casts 

some doubts on the effectiveness of this policy in controlling health expenditure growth. 



 5

Since the few papers on the estimation of substitution elasticities in the 

production of hospital services are limited to non-European data, in this paper we 

provide first evidence on the degree of substitutability for a representative sample of 

Italian public hospitals, which properly reflects both the prevalence of public producers 

of health care services in most European countries, and – most importantly – the 

prevalence of public funding for health care expenditure. In particular, we estimate 

different cost function models and derive factors elasticity of substitution, considering 

all hospitals active in an Italian region1. Like other European countries, the Italian 

hospital industry experienced a wide restructuring process, and strong pressures to 

control costs; however, downsizing imposed by the Central government has been 

limited mostly to beds, while workforce reduction has been tackled at the regional level 

only blocking turnover, causing a large increase in medical staff per bed. Besides 

uncovering possible inefficiencies which can limit the potentially positive impact of 

hospital restructuring on health expenditure rationalization, the estimation of input 

elasticities of substitution is important per se, since the very few studies that have 

addressed so far this issue did not test the a priori imposed specification for the hospital 

cost function. 

The remainder of the paper is structured as follows: Section 2 surveys the 

economic literature on bed downsizing and its implication for workforce management, 

including also a discussion of the available estimates of input substitutability in the 

production of hospital services. Our empirical analysis is presented in Sections 3 and 4, 

where we first describe our modelling strategy, and then we present the main 
                                                 
1 The 19 Regions and the 2 Autonomous Provinces in Italy are the administrative entities in charge of 

managing health care services at the local level. See France et al. (2005). Notice that, as each region is 

held responsible of controlling its own health expenditure, this is the appropriate level of analysis for the 

problem at hand. 
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characteristics of the sample and the estimates of a long-run total cost function model. 

In Section 5 we provide several robustness checks, including the estimation of a short-

run variable cost function. Finally, Section 6 concludes with some implications for 

health policy. 

2. Bed downsizing and workforce management 

In this section, we briefly review the scant available literature on the impact of bed 

downsizing on the staffing of hospitals. The evidence suggests somewhat different 

effects, according to the prevalence of public or private producers. In the U.S., where 

the share of private producers is higher than elsewhere, bed downsizing has been 

sometimes accompanied also with staff reductions, with no clear effects on hospital 

performance. Chadwick et al. (2004) find for example that Human Resource 

Management practices are important determinants of successful downsizing, of both 

beds and the workforce. In particular, looking at financial performance of hospitals, 

they find a positive impact of consideration for employees’ morale and welfare during 

downsizing (like more extensive communication and advance notice, respectful 

treatment of laid off employees, attention to survivors’ concerns on job security). 

Somewhat contrary to this view, Aiken et al. (2002a, 2002b) find that better staffing is 

positively associated with higher nurse-assessed quality of care, lower risk-adjusted and 

failure-to-rescue rates, lower level of dissatisfaction and burnout, hence suggesting a 

deterioration of performance following downsizing. 

In other countries, especially in Europe, where the share of public producers is 

higher, the restructuring of the industry has been mainly driven by the need to control 

public health expenditure growth. Indeed, as shown by an abundant empirical literature 

(surveyed by, e.g., Gerdtham and Jönsson, 2000, and Propper, 2001), the ratio of 

hospital expenditure to total spending is positively related to health care expenditure. 



 7

However, differently from the U.S., the restructuring process has been limited in most 

cases to bed downsizing, while workforce management and planning has been 

conducted using fixed ratio relationships (e.g., physicians to patients) that have no 

empirical validity (e.g., Bloor and Maynard, 2003). Of course, this one-factor 

restructuring process has caused a consistent change in the input-mix, in particular an 

increase in medical staff per bed. Several factors can help explain observed variations in 

input-mix. For instance, a higher need of labour can be related to a higher severity of 

illness in acute care patients (e.g., McKee, 2004). This might be linked to the increase in 

patients turnover and the reduction in average length of stay (endogenously determined 

by clinicians), which characterised hospital industries in countries that adopted a 

Prospective Payment System. Or it might be a signal of the increase in the quality of 

services, both perceived by nurses or measured in terms of mortality rates (e.g. Aiken et 

al., 2002a, 2002b). 

In this paper, we aim at understanding whether the observed change in input-mix 

is economically rational for controlling health expenditure, by focusing on the 

production technology of hospital services2. While estimation of production and cost 

functions and efficiency analysis have received considerable attention in the literature 

on the hospital industry, economic studies working out also input substitutability in the 

production of hospital services are quite rare, and – most importantly – are all based on 

North-American data. A pioneering study is that by Bothwell and Cooley (1982), 

focusing on Health Maintenance Organizations in the U.S. They distinguish four inputs 

(administrative services, hospital services, medical professional staff services, and 

                                                 
2 As emphasised by Propper (2001), most governments are concerned with health expenditure growth, but 

the key issue for the appropriate design of health care system is efficiency. Our investigation of the 

optimal input-mix in the production of hospital services moves along these lines. 
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capital expenses for maintaining a health centre), and find that administrative services 

are complements to all the other inputs, but that there is substitution between all other 

input pairs. In particular, Allen elasticity of substitution between medical staff and 

capital expenses (the input pair we are most interested in, to understand the observed 

change in input-mix), is estimated to be 0.638, which suggests small substitution 

possibilities. Jensen and Morrisey (1986), studying the U.S. short-term general acute 

care hospitals, confirm this result, estimating that elasticity of substitution of medical 

staff with beds ranges between 0.247 (for non-teaching hospitals) to 0.303 (for teaching 

ones), and elasticity of substitution between nurses and beds ranges between 0.189 and 

0.305 (respectively, for the same type of hospitals). These estimates are even lower 

adjusting output for case-mix. The same difficulties in substituting between inputs is 

found also for medical staff and nurses, with estimated elasticities close to 0.35 for both 

types of hospitals. This last result is in contrast with Cowing and Holtmann (1983). 

Considering New York State hospitals and computing Allen elasticities, they find 

substantial substitutability between nurses and other types of workers in the short-run. 

More recent studies include e.g. Bilodeau et al. (2002) and Okunade (2003). 

Considering hospitals in Québec, the former study estimates an hospital cost function 

with five inputs (labour, drugs, food, supplies, and energy). While not reporting 

punctual estimates of Allen elasticities, the authors interpret substitutability of supplies 

and energy with labour as the hospitals’ general ability to substitute capital for labour. A 

more complete analysis of input substitutability – considering Allen, Morishima, and 

Shadow elasticity measures - is provided by Okunade (2003) for Health Maintenance 

Organizations in the U.S.. The general conclusion  is that HMOs production technology 

is characterised by significant but limited factor substitutions. More specifically, 

estimated Morishima elasticities of substitution between capital and medical staff are 
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respectively 0.51 (given a change in the price of capital) and 0.67 (given a change in  

the wage of medical professional staff). These estimates imply that a 10% increase in 

the price of capital will cause the ratio of medical staff to capital to raise to about 

5.12%; in a similar vein, a 10% increase in the wages of medical staff will lift the 

capital/medical staff ratio by about 6.7%. 

Taken together, the available evidence emphasizes two main points: first, at least 

in Europe, bed downsizing has not been accompanied also by a reduction in the 

workforce; second, estimates on factor substitutability in the production of hospital 

services generally suggest that substitution between capital and medical staff (both 

physicians and nurses) is rather limited. However, these estimates are mostly based on 

U.S. data, where the health care services are predominantly produced by private firms 

and financed with private funds. Thus, it is important – in order to understand the 

effectiveness of bed downsizing on health expenditure – to verify whether this holds 

true also in the European context. To this end, in the next sections, we provide original 

evidence on input substitutability, by considering different functional forms and 

different concepts of elasticity. 

3. Empirical analysis 

3.1. Modelling strategy 

As discussed above, the aim of the paper is to study the technological characteristics of 

hospital services supply, and the exploration of substitution possibilities among the 

different inputs involved in the productive process, especially between the number of 

beds and medical staff (both physicians and nurses). This motivates our modelling 

strategy, that relies on the estimation of a total cost function model. To taking into 

account some of the most common critiques which can be addressed to such an 

approach, that relies on the assumptions of long-run equilibrium and of cost minimizing 
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and efficient behaviour of the investigated productive units, we provide different 

robustness checks of our main results. 

As for the first issue, Smet (2002), in his survey on the cost structure of 

hospitals, suggests that for health organizations it would be more appropriate to estimate 

a short-run variable cost function. Obviously, estimating a short-run model precludes 

the chance to investigate substitution possibilities between capital and labour, which is 

our main focus here. In order to tackle the issue that our results could be distorted if 

firms are actually far from the long-run equilibrium, in Section 5 we will test the 

robustness of our findings by discussing also the estimates of a short-run variable cost 

function.3     

Another important potential source of distortion relates to the argument that 

firms are assumed to be cost minimizers, and this can be questionable for public 

producers. However, during the Nineties, the Italian Central government promoted a 

(still unfinished) reform process of the National Health Service (NHS) aimed at 

controlling health expenditure, and at putting pressures to Regional governments and 

public producers to minimize costs. These reforms  include, for instance, – at a micro 

level – the introduction of a Prospective Payment System based on DRGs to remunerate 

hospitals4, and – at a macro level – the launch of a seminal form of fiscal federalism.5 

Notice also that Eakin and Kniesner (1988), using a sample of US hospitals, provided 

                                                 
3 We are indebted to an anonymous referee for having raised this issue. 

4 About the impact of the new payment system for hospitals on different producers, see Barbetta et al. 

(2007).   

5 The pressures to control costs were introduced through these reforms by curbing bailout expectations, 

thus inducing harder budget constraints for Regional governments and, consequently, for public hospitals. 

For more details, see Bordignon and Turati (2009). 
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evidence that there are no substantial differences among technological estimates coming 

from non-minimum and minimum cost function.6 

A third caveat of our modelling strategy concerns the possible presence of cost 

inefficiency in the provision of health care services. Unfortunately, we are unable to 

estimate jointly a system of cost functions and related cost-share equations in a 

stochastic frontier framework, considering a Generalised Composite specification.7 

Without the inclusion of the information on input cost shares, the results obtained using 

one-equation frontier models, as far as input substitutability is concerned, are generally 

very poor. However, Canta et al. (2006), using the same dataset of the present study, 

estimated a single-equation stochastic cost frontier and found inefficiency scores that 

were significantly reducing across the period 2000-2004.8 

Considering all these issues, in Section 4 we then present the evidence stemming 

from the estimation of our preferred model – i.e., a total cost function – and in Section 5 

we enrich the analysis with some extensions and refinements.   

3.2. The sample 

The data used in the econometric analysis have been obtained by the Regione Piemonte 

(a highly industrialised area in the North-Western part of Italy, which constitutes one of 

                                                 
6 The authors conclude that «generalizing the traditional (minimum) cost function to a non-minimum cost 

function has a minor impact on the estimates of the observed cost concepts» (Eakin and Kniesner, 1988, 

p. 596). 

7 Recently, Kumbakhar and Tsionas (2005) showed how to estimate cost (technical and allocative) 

inefficiency by recurring to simulation-based Bayesian inference procedures in a well-specified Translog 

system including the cost frontier and related cost-share equations. 

8 While the authors do not investigate input substitutability, the results they obtained, as far as output and 

other technological characteristics are concerned, are very similar to the ones presented in Section 4.1. 

below. 
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the 21 administrative entities in charge of managing Regional Health Care Systems), 

and are relative to the productive activity and the cost structure of all the hospitals 

operating in the 27 Local Health Units (LHU) active during the period 2000-2004. LHU 

are vertically integrated organisations funded by the Region, and responsible of a whole 

array of hospital and community services9. The sample includes two types of hospitals: 

those directly managed by the LHU (ASL from now on), and other major hospitals that 

have been hived off from the LHU and transformed into independent enterprises called 

Aziende Ospedaliere (AO from now on). 

This unique dataset includes all the publicly owned firms involved in the 

provision of hospital services in Piedmont. The time span covered by the data follows 

the NHS reform process discussed above, so that our units are affected by the 

downsizing policy of the industry, which has been pursued during the 90s, and which is 

still regarded as one of the primary areas of intervention to control the growth in public 

health expenditure promoted by the Central government. Planning at the regional level 

of health care provisions (as envisaged in the recent Piedmont Socio-Health Plan for the 

years 2006-2010) foresees a reorganisation of the regional hospital network, with the 

aim of increasing the quality and the effectiveness of services, while controlling 

expenditure growth. This would imply a reduction of the required number of beds, due 

to the planned reduction of average length of stay, and a parallel increase in outpatient 

treatments, home care services, consultancy and day hospital treatments. 

Information on the number of beds and on the quantity and complexity of the 

services provided (total number of patients, average DRG weight, number of inpatient 

                                                 
9 See e.g. France et al. (2005) for a description of the Italian NHS. We stress again that the regional 

dimension of our dataset represents the correct choice given the regional level of the current organisation 

of the Italian NHS. 
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and outpatient days) have been collected for each single hospital within a LHU and for 

each AO. The total number of beds, both for inpatient and outpatient treatments, are 

then computed for each ASL by aggregating the values of the different hospitals which 

belong to the same LHU. Unfortunately, disaggregated information on the costs and on 

the labour force are available only for AO, but are not available for each hospital within 

each LHU. This limitation can represent a problem for ASL units, since staff costs can 

be related also to community services, rather than hospital services. For such units, 

considering all costs as relative to the core hospital activity would be inappropriate, so 

that caution must be put in choosing which type of costs can be included in the study. 

To that purpose, the different types of costs have been selected and reorganised so as to 

obtain a measure of operating cost with a composition that can be comparable for ASL 

and AO structures. We then selected the costs items that are more closely related to the 

core activity of hospitals, that is the provision of health care services. We come out with 

a final aggregation named operating hospital cost (OHC, the dependent variable in our 

econometric model) which is the sum of the costs of the following inputs, which are 

essential for the production of hospital services: labour (physicians and nurses as well as 

technicians, professionals and administrative staff), drugs, capital (the measure of which 

is proxied by the total number of beds). As shown in Table 1, for what concerns the 

relative weight of the different cost categories, the two types of hospitals are very 

similar. Labour costs are on average about 86% of operating hospital costs, while the 

weights of drugs and depreciation are respectively 9.6% and 4.4%. OHC has a mean 

value of 79 million euro for ASLs (average yearly growth rate of 3.6%) and 122 million 

euro for AOs (average yearly grow rate of 4.8%).  

 

[TABLE 1 HERE] 
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3.3. Explanatory variables of the cost model 

Exploiting the informative content of the database, we have obtained the following 

explanatory variables to be included in the estimation of the cost function: output, 

complexity of provided services (case-mix), input prices. The full sample is a panel of 

29 productive units which are observed over a period of 5 years, for a total of 145 

observations. As an index of production volume (Y) we opted for the total number of 

patients per year (both inpatients and outpatients). We included both types of patients to 

take into account the increase observed in the last decade in the share of outpatients out 

of total patients; this solves also the omitted variable bias emphasised by Crémieux and 

Ouellette (2001) for hospital cost functions. In addition, in order to account for the 

severity of illnesses and the composition of our output measure, a control variable of the 

average DRG weight (DRGW) has been added. This should reflect the differences in the 

production mix, i.e. the average degree of complexity of the services provided by the 

hospital structures10. 

As the labour input is concerned, a distinction has been made between medical 

staff (MS, including physicians and nurses) and other staff (OS, including technicians, 

professionals, and administration); as common in the literature, average prices for the 

two categories (PMS and POS, respectively) have been obtained by dividing costs by the 

                                                 
10 For example, a tonsillectomy is a typical operation with a low degree of complexity (DRG weight 

0.27), while thyroid (DRG weight 1.04) and cardiovascular operations (DRG weight 2.40) have an 

average and a high degree of complexity, respectively. Notice that DRG weights can be influenced by up-

coding at the hospital level. However, while we do not have direct evidence of such practices in Italy, 

Silverman and Skinner (2004) have shown that they are uncommon in public hospitals. 
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effective number of employees11. As a proxy for the price of drugs (PD) we used the 

ratio between the corresponding cost and the total number of inpatients and outpatients 

days per year. Finally, as common in the literature (see, e.g., Farsi and Filippini, 2008), 

the average price of the capital input (PK) has been computed by dividing depreciation 

charges by the total number of beds (K). Admittedly, this is only a crude measure of 

capital usage in the production of hospital services; however, this is just the policy 

variable we are interested in assessing substitution possibilities (e.g., Jacobs et al., 2006, 

for general comments and a survey). 

A time trend - that should capture the effect of technical progress - has been 

added to the model (T) and fully interacted with input price, output and DRG variables, 

in order to explore the possibility that technological change is not neutral and scale 

augmenting/reducing.12 

Table 2 reports the descriptive statistics of the variables used in the estimation. 

There is a high variability in the level of operating costs and in the output levels, which 

is partially due to the fact that our sample of hospitals is very heterogeneous in size, but 

can be also explained by the above mentioned differences among ASL and AO units13.  

 

[TABLE 2 HERE] 

 

                                                 
11 Notice that wages are contracted at the national level, with only minor contractual arrangements at the 

regional level. Hospital managers then define staffing taking as given the labour prices. 

12  In the more parsimonious version of the model in which T  has not been interacted, its coefficient can 

be interpreted as a growth (or decline) rate of costs due to a Hicks-neutral technological change. 

13 The sample consists of 7 small units (average number of beds ≤ 368), 15 units of an average size (368 < 

average number of beds ≤ 621) and 7 big units (average number of beds > 621). 
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3.4. Functional form and estimation procedure 

The bulk of empirical works on hospital costs adopted the well-known Translog 

specification. Given the complexity of hospital services production process, we do not 

impose a priori restrictions on the functional form and estimate a more general model, 

namely the Generalised Composite cost function, which has been first introduced by 

Pulley and Braunstein (1992, PBG). The PBG model reads as follows: 
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where the superscripts in parentheses π, φ and τ represent Box-Cox transformations (for 
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production cost of hospital services, Y is the output, DRGW is the average degree of 

complexity of the service provided, Pr indicates factor prices (with r = MS, OS, D and 

K), T is the time trend, and Z is a vector of additional control variables.14 By applying 

the Shephard’s Lemma, the associated input cost-share equations are: 
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14 The latter are respectively two dichotomous variables that identify large and medium-sized hospitals 

(DL and DM), one dummy for AO units (DAO), and one variable controlling for the ratio of outpatient beds 

to the total number of beds (OUTBED) 
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The Composite specification (PBC) is obtained by setting π = 1 and τ = 0. In a similar 

vein, the well-known Generalised Translog (GT) and Standard Translog (ST) models, 

as well as the Separable Quadratic (SQ) functional form, can be estimated by imposing 

simple restrictions on the system (1)-(2)15. 

The PB cost functions originate from the combination of the log-quadratic input 

price structure of the ST and GT specifications with a quadratic structure for outputs.16 

The relatively few studies which employed the PB specifications referred to the 

banking, telecommunications, multi-utilities and electricity sectors (e.g., Fraquelli et al., 

2005, Piacenza and Vannoni, 2009). Overall, the composite model has consistently 

proved to be successful in obtaining more stable and reliable estimates than the 

alternative functional forms (see Piacenza and Vannoni, 2004, for more details). The 

PBG model proposes to transform both sides of the cost function – from OHC = C(Y, P) 

to OHC(φ) = [C(Y, P)](φ) – in order to enlarge the set of plausible empirical 

specifications. The optimal value of φ can be estimated resorting to non-linear least 

squares routines. The comparison between the general PBG specification and the nested 

models (i.e. PBC, SQ, GT, and ST) can be made by LR tests using the estimated log-

likelihood values for the system (1)-(2). 
                                                 
15 More precisely, the GT model is obtained  by setting  φ = 0 and τ =1, while the ST model requires the 

further restriction π = 0. The SQ model is obtained from the PBC specification by adding the restrictions 

δYr = 0, δDRGWr = 0 and Trδ = 0 for all r. 

16 The log-quadratic input price structure can be easily constrained to be linearly homogeneous. To be 

consistent with cost minimization, equation (1) must satisfy symmetry (βrl = βlr for all couples r, l ) as well 

as the following properties: a) non-negative fitted costs; b) non-negative fitted marginal costs with respect 

to outputs; c) homogeneity of degree one of the cost function in input prices (Σrβr = 1 and Σlβrl = 0 for all 

r, as well as ΣrδYr = 0,  ΣrδDRGWr = 0 and Σr Trδ = 0); d) non-decreasing fitted costs in input prices; e) 

concavity of the cost function in input prices.  
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All the specifications of the cost function are estimated jointly with their 

associated input cost-share equations. In our four-inputs case, to avoid the singularity of 

the covariance matrix of residuals, the equation for other staff (SOS) was not included in 

each of the estimated systems. Prior to estimation, all variables were standardized on 

their respective sample means. Parameter estimates were obtained via a non-linear GLS 

estimation (NLSUR), which ensures estimated coefficients to be invariant with respect 

to the omitted share equation. 

4. Results 

4.1. The total cost function 

The results of the NLSUR estimation for the ST, GT, SQ, and PB models are presented 

in table 3.17 By looking at the summary statistics (last five rows), one can observe that 

computed R2 for the cost function is rather high and identical across specifications, 

while R2 associated to the factor-share equations are not dissimilar except from the SQ 

model, for which these are much lower (in particular for capital input). The poor ability 

of the SQ specification to fit the observed factor-shares is not surprising, given that it 

assumes a strong separability between inputs and outputs. McElroy’s (1977) R 
2 can be 

used as a measure of the general goodness of fit for the NLSUR system. The results 

suggest that the fit is almost identical for the different functional forms, and between 

83% and 86%. However, LR tests comparing PBG and the restricted specifications (see 

table 4) always lead to favour the Generalised Composite model (at the 5% significance 

level) with respect to PBC, SQ, GT, and ST alternative functional forms.  

 
                                                 
17 Tables 3 through 6 show the results of a parsimonious version of model (1), where T is not interacted 

with other variables and the additional regressors Zi are omitted. The estimates for the full model are 

presented in section 5. 
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[TABLE 3 AND 4 HERE] 

 

The first six rows of table 3 present the estimates of first-order coefficients for output, 

average DRG weight and factor prices, which are all highly significant and show the 

expected sign. Since the results are similar across specifications, we comment only on 

the estimated parameters for the PBG model, which is to be preferred over the 

alternatives according to LR tests. In particular, we briefly discuss cost elasticities with 

respect to Y, DRGW, PMS, PD and PK for the average hospital within the industry18. 

The output elasticity is defined as:  
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(3) 

At the normalization point, and for the first year of our sample (i.e., with T = 1), it can 

be computed as19: 
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In a similar vein, at the normalization point, the cost elasticity with respect to DRGW is: 
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18 The average LHU (the point of normalization) corresponds to a hypothetical LHU operating at an 

average level of production and degree of complexity, and facing average input prices.  

19 Notice that in the Translog functional form τ = 1, so that 
        

lnYlnC/ TYY αα +=∂∂ . 
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The estimate of the output elasticity is significantly lower than 1 (around 0.71, Standard 

Error 0.05), revealing the presence of remarkable scale economies (the index of returns 

to scale – 1/(∂ lnC/∂ lnY) – is about 1.41, SE 0.11) that could be better exploited, for 

instance, by enlarging the average size of hospitals managed by LHUs. On the DRGW 

side, it emerges a strong impact of the severity of illnesses on OHC (∂ lnC/∂ lnDRGW 

is about 0.39, SE 0.13), which is consistent with previous empirical literature on the cost 

structure of hospital services. Finally, as for the estimates of input cost-shares for the 

average hospital – corresponding to cost elasticities (∂ lnC/∂ lnPr ) with respect to the 

price of medical staff (0.66), drugs (0.10), and capital, proxied by beds (0.05) – they are 

very similar to their respective sample mean values (see SMS, SD and SK in table 2), thus 

confirming the general goodness of fit of the PBG cost function model. 

4.2. The elasticities of substitution 

Definitions. Given the main aim of this study, we computed Allen, Morishima, and 

Shadow elasticities of substitution for all the estimated models (Chambers, 1988). 

Ideally, one wants to measure for each couple of inputs the percentage change in the 

input ratio xr/xl due to a percentage change in the input price ratio Pl/Pr. Allen elasticities 

can be considered as one price-one factor elasticities, since they measure how the use of 

an input varies due to changes in the price of another input. They can be computed as: 

                                                           σA
rl = εrl/Sl                                                              (6)                            

where Sl is the lth cost share and εrl is the derived input-demand elasticity of input xr with 

respect to price Pl (dlnxr/dlnPl). While they have been criticized to a great extent in the 

literature, Allen elasticities are still widely used in applied production analysis as they 

serve as the basis for deriving other elasticities. Morishima elasticities represent two 

factor-one price elasticities and are closer proxies to the desirable measure. They are 
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computed as σM
rl = εrl – εll and measure how the r,l input ratio responds to a change in Pl. 

As expressed by (7), there is a useful link between Morishima and Allen elasticities: 

σM
rl = (σA

rl – σA
ll)Sl (7) 

It is straightforward to notice than when inputs are Allen substitutes, they must be also 

Morishima substitutes (since σA
ll is always negative) but the converse does not hold, so 

that inputs can well be Allen complements and Morishima substitutes. Finally, Shadow 

elastiticities of substitution are a weighted average of Morishima elasticities and, as such, 

they are two factor-two price elasticities: 
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Thus, in order to compute elasticities (6)-(8) for our different cost function models, it is 

important to compute the partial derivative ∂ Sr/∂ lnPl.20 From (2): 
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 [TABLE 5 HERE] 
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shown that in the ST, GT and SQ specifications, such derivative trivially corresponds to the coefficient 

βrl. 
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Empirical evidence. As can be seen in table 5, except from Allen elasticities for the input 

pair drugs-capital, all inputs are substitutes, but the low estimated values suggest that 

substitution possibilities are in general very limited. As an example, in the PBG 

specification, σM
MS,K = 0.13, suggesting that a 10% increase in the price of capital implies 

only a 1.3% change in the MS/K ratio. The highest figures are recorded for the input 

pairs involving OS, suggesting that the other three inputs (medical staff, drugs and 

capital) are particularly responsive to increases in the price of ‘non medical’ staff (σM
r,OS 

are higher than σM
OS,r for all r). The results are remarkably stable across specifications 

for almost all input pairs, and are broadly consistent with the ones previously appeared in 

the empirical literature. As discussed in Section 2, e.g. Jensen and Morrisey (1986) 

found substitution elasticities equal to 0.25 for the pair medical staff/beds and equal to 

0.19 for the pair nurses/beds. Bilodeau et al. (2002) found that labour and drugs were 

substitutes with substitution elasticities lower than 1. As far as capital is concerned, the 

substitution possibilities with other inputs are lower, i.e. the values of σM
r,K are lower 

than all the other σM
r,l couples and the values of σM

K,r are lower than all the other σM
l,r 

couples. 

 

[TABLE 6 HERE] 

 

Discussion. Table 6 presents the estimates of Shadow elasticities of input substitutability 

when the productive scale (Y ) and the DRG weight (DRGW) of the average hospital of 

our sample are increased (and reduced) proportionally, focusing on the cost function 

model best fitting the data, i.e. the PBG specification. Parameters λY and λDRGW refer to 

the coefficients used to scale down (λY = 0.25, 0.5; λDRGW = 0.5) and up (λY = 2, 3; λDRGW 
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= 2) the average values of the output (Y = 22,072 patients) and DRG weight (DRGW = 

1.12), respectively21. First, notice that for almost all input pairs (with the notable 

exception of MS-OS), it emerges a certain degree of complementarity only by scaling 

down the average producer. Even if estimated elasticities are always insignificant at the 

usual confidence levels, this result suggests a higher rigidity in managing inputs for 

small-scale low-complexity generalist community hospitals, for instance because they 

need to respect exogenously given standards for staff and beds, which are binding given 

their volumes of output. Clearly enough, this rigidity helps explain the findings of 

unexploited scale economies for very small hospitals. Second, note that by scaling up the 

average hospital, both with respect to output volume and with respect to output 

complexity, substitution possibilities (and statistical significance) increase, but 

substitutability remain fairly small and significantly less than unity. These results hold 

even scaling up contemporaneously the average hospital in the two mentioned directions. 

For instance, concentrating on the most interesting of these input pairs for us (MS-K), by 

doubling the DRG weight and tripling output volume, elasticity of substitution rises from 

0.14 to 0.30 only. Notice also that – for the MS-K pair – holding constant output volume 

at λY = 3, it emerges a slight decrease of substitution possibilities when increasing 

complexity of output. This last result shows up also for almost all other couples of 

inputs, and suggests that – at high volumes – substitution between factors becomes 

increasingly difficult when also complexity of treated patients increase. This finding is 

consistent with a high rigidity of the production process starting from high levels of 

output. Results are more ambiguous when holding DRG weights fixed at λDRGW = 2: 

increasing the levels of output eases substitutability for the MS-K, D-K, and K-OS pairs, 

while substitutability worsens for the remaining couples of inputs. Finally, note that for 

                                                 
21 Notice that scale parameters are based on values of Y and DRGW observed in our sample. 
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the MS-OS input pair, estimated elasticities are invariant both to scaling with respect to 

output volume and to scaling with respect to output complexity, being consistently close 

to unity (and statistically significant). Overall, our findings confirms then previous 

estimates in the literature, validating the difficulties for hospitals in substituting between 

input pairs, in particular between medical staff and beds. 

These difficulties cast some doubts on bed downsizing policies as an effective 

tool for controlling health expenditure in countries, like the European ones, where the 

share of public producers (and public funding) is significantly higher than in the U.S. 

Restructuring of the hospital industry limited to reductions in the number of beds, 

without tackling the likely presence of excessive staffing, can both bound the production 

possibilities and – more importantly – preclude potential savings in health expenditure. 

However, before commenting further on this crucial policy issue, we further discuss our 

results by providing several robustness checks. 

5. Extensions and robustness checks 

As anticipated in Section 3.1, we discuss here some critical issues of our empirical 

strategy, by testing the robustness of our results to alternative assumptions about model 

specification.  

First, in order to tackle the argument that our results could be distorted if firms 

are actually far from the long-run equilibrium, we estimate a short-run cost function, by 

including K among the explanatory variables, and by using the variable cost (VC) as the 

left hand side variable, which was computed by subtracting the capital cost from OHC. 

The results are quite similar to the ones presented in Section 4, with a cost elasticity 

with respect to Y (∂ lnVC/∂ lnY) equal to 0.602 and a cost elasticity with respect to K 

(∂ lnVC/∂ lnK) positive and equal to 0.082. This latter result is quite common in the 

literature (see, for example, Smet, 2002 and Aletras, 1999), and suggests that hospitals 
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are over-investing in capital. The estimates of short-run scale economies – 

1/(∂ lnVC/∂ lnY) – are equal to 1.66, while long-run scale economies, computed using 

the formula introduced by Caves et al. (1981) – [1 - (∂ lnVC/∂ lnK)]/ (∂ lnVC/∂ lnY) – 

are equal to 1.52. More interestingly for our analysis, the estimates of elasticities of 

substitution among the variable input pairs are very similar to the ones stemming from 

the total cost function estimation. For example, the last column in table 8 reports that 

σS
MS,D = 0.27, σS

MS,OS = 0.93 and σS
D,OS = 0.44. 

Remaining confined within a total cost function approach, we have performed 

additional robustness checks, that consider perturbations of the parsimonious version of 

equation (1), where the time trend is not interacted with the other right hand side 

variables and the additional explanatory variables Zi are not included in the regression. 

Table 7 shows the results of the EXTENDED MODELS. Columns 1 (EXTENDED MODEL 1) 

and 3 (FULL EXTENDED MODEL) show that 5 out of the 7 coefficients involving the time 

trend are not significantly different from zero. Columns 2 (EXTENDED MODEL 2) and 3 

show an increasing impact on costs of the two size dummies (DL and DM) and a 

decreasing impact on costs of the AO-type dummy (DAO) and of the OUTBED variable.   

 

[TABLE 7 HERE] 

 

Consistent with a priori expectations, after having controlled for the other right 

hand side variables, bigger hospitals are found to exhibit higher costs, while more 

autonomous units (Aziende Ospedaliere) are associated with lower costs. Finally, a 

higher ratio of outpatient beds to the total number of beds is effective in bringing a cost 

reduction. The computed elasticities of substitution across all input pairs are remarkably 

stable (see table 8, second column). 
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The inclusion of a time trend (which is invariant across firms) together with size 

and AO-type dummies (which are invariant across time) partially allows us to exploit the 

longitudinal dimension of our dataset. However, we have been also able to estimate a 

FIXED EFFECTS MODEL, which takes into account potential unobserved heterogeneity 

across production units and includes a separate dummy for each hospital.22 Once again, 

elasticities of substitution, reported in the third column of table 8, are very similar. 

 

[TABLE 8 HERE] 

 

We finally performed three additional checks. First, in order to test if results are 

affected by the choice of pooling together ASL and AO, we have also estimated the 

different models only on the ASL sub-sample. Second, in order to check for the impact 

of potential outliers, we adopt a jackknifing procedure, and exclude from the sample 7 

extreme observations, for which the staff (both MS and OS) per bed ratio was rather 

different from the average. Third and last, in order to reduce as much as possible the 

differences between AO (focusing on hospital services) and ASL (also active in other 

health activities) types, we have corrected the costs by attributing to the latter only 80% 

of labour cost and 75% of the cost of capital.23 In all the three cases, we obtained results 

(which are available upon request) that were virtually unchanged with respect to our 

original long-run cost model.  

                                                 
22 Estimates of hospital-specific fixed effects cost model have not been included here for brevity but are 

available upon request from the authors. 

23 These percentages, which should make the cost structure more homogenous across the two types, have 

been suggested in a report carried out by the Italian Ministry of the Economics and Finance (Relazione 

Generale sulla Situazione Economica del Paese, 1995, vol. II, tab. SA.2). 
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A final issue which can be raised is that our sample of firms is affected by a 

regulatory intervention aimed at hospital downsizing by means of the reduction in the 

number of beds. In particular, the constraints are imposed by the Central government at 

the regional level (i.e., the target of reducing the number of beds must be reached for the 

whole Piedmont region), so that one cannot include the constraint in the specification of 

the cost function (which refer to the hospital level). However, we are confident that the 

presence of this constraint is not seriously biasing the estimates for input elasticities. For 

example, Granderson and Lovell (1998) were able to introduce a firm-specific variable 

accounting for rate of return regulation in the gas industry and found that such 

regulation pushed firms to overinvest in capital and increased the estimates of elasticity 

of substitution of σM
K,r pairs and reduced those of σM

r,K pairs. Since, in our case, the 

constraint pushes toward the opposite direction (i.e., the reduction of beds), it is 

reasonable to assume that in an unregulated framework one should observe higher 

values for σM
r,K couples and lower values for σM

K,r pairs. Looking at the figures in table 

5, this means that the values of such pairs should get closer the ones to the others, thus 

making Morishima elasticities more symmetrical and leaving almost unchanged the 

values of Shadow elasticities. 

6. Concluding remarks 

The hospital industry in many countries has undergone an unprecedented process of 

restructuring, aimed at reducing excess capacity and increasing the appropriateness of 

care. In Italy (like in other European countries) this process has been limited to bed 

downsizing; the management and planning of the workforce potentially in excess has 

been conducted using fixed-ratio relationships with no empirical validity, often resulting 

in a change of the input-mix used in the production of hospital services. 
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In this paper, starting from the premise that industry restructuring is – at least 

partly – aimed at controlling expenditure growth, we investigate the economic rationality 

of input-mix change, providing fresh evidence on the factor substitutions characterising 

hospitals’ technology. We consider all producers located in Piedmont, a region in the 

North-Western part of Italy, where the hospital industry has been (and still is) marked by 

a wide reduction in the number of beds, while no significant decrease has been observed 

for medical staff (including both physicians and nurses). Differently from other studies, 

we do not impose a priori restrictions on the specification of the hospital cost function, 

and estimate a more general model, namely the Generalised Composite, embracing all 

the standard specifications usually adopted in the literature. For all the models, we derive 

Allen, Morishima and Shadow elasticities of substitution between input pairs, obtaining 

a fairly consistent picture across all specifications and elasticity concepts. In particular, 

confirming previous findings in the literature, our results suggest a very limited degree of 

substitutability between factors in the production of hospital services. This is particularly 

true for beds and medical staff. 

Given this evidence, one can notice that putting restrictions on bed capacity –  

without taking into account their limited possibility of substitution – might imply an 

inefficient use of resources, and severely limit the possibility to control public health 

expenditure by restructuring the hospital industry. More effective policies are probably 

needed to obtain the expected savings. An example in this direction is likely to be the re-

allocation of the workforce from the hospital towards the production of other health 

services, such as for instance home and community care. 
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Table 1. Breakdown of operating hospital cost by year and type of hospital 

 2000 2001 2002 2003 2004 all years

 ASL 

Labour 89.9% 88.9% 87.8% 86.1% 85.3% 87.6% 

Medical Staff 69.5% 68.5% 67.6% 66.3% 65.3% 67.4% 

Drugs 6.5% 7.2% 8.1% 9.7% 10.8%   8.5% 

Depreciation 3.6% 3.9% 4.1% 4.2% 3.9%   3.9% 

Operating hospital cost (103 €) 73,682 76,374 77,191 80,936 84,958 78,628 

 AO 

Labour 86.5% 85.5% 84.6% 83.4% 82.2% 84.7% 

Medical Staff 66.2% 65.2% 65.1% 64.6% 62.9% 64.8% 

Drugs 9.4% 9.7% 10.3% 11.5% 12.8% 10.6% 

Depreciation 4.1% 4.8% 5.0% 5.1% 4.9%   4.7% 

Operating hospital cost (103 €) 109,155 114,446 123,801 128,767 131,622 121,558 

 
 
 

Table 2. Summary statistics for the variables used in the cost function models 

 Mean St. Dev. Min Median Max 

Operating Hospital Cost    

Labor + Drugs + Capital (HOC, 103 €) 88,990 42,985 29,262 86,495 309,694

Production data    

Total number of patients (Y ) 22,072 13,237 639 19,728 68,715

Average DRG weight (DRGW ) 1.12 0.20 0.64 1.06 1.93

Total number of beds (K) 521 294 62 485 1,848

Outpatient beds / Total beds (OUTBED)  0.11 0.05 0.02 0.10 0.37

Input prices      

Medical Staff (PMS, € per MS worker) 46,181 2,133 41,665 46,319 55,572

Other Staff (POS, € per OS worker) 26,544 1,841 22,053 26,310 31,170

Drugs (PD, € per day) 63 31 21 57 200

Capital (PK, € per bed) 8,051 3,715 3,016 7,170 22,859

Input cost-shares   

Medical Staff (SMS) 0.67 0.04 0.57 0.67 0.75

Other Staff (SOS) 0.20 0.03 0.14 0.20 0.30

Drugs (SD ) 0.09 0.03 0.03 0.09 0.20

Capital (SK ) 0.04 0.01 0.02 0.04 0.09
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Table 3. NLSUR parameter estimates for the Generalised Composite (PBG), Composite (PBC), 
Separable Quadratic (SQ), Generalised Translog (GT) and Standard Translog (ST) models 

REGRESSORS a PBG MODEL PBC MODEL SQ MODEL GT MODEL ST MODEL 

Constant  1.004***  0.995***  1.003*** -0.021  0.982*** 
Y          0.717***  0.638***  0.683***  0.622***  0.638*** 
DRGW   0.391***  0.479***  0.553***  0.367***  0.441*** 
lnPMS  0.658***  0.658***  0.661***  0.660***  0.658*** 
lnPD   0.100***  0.101***  0.095***  0.098***  0.100*** 
lnPK  0.046***  0.046***  0.043***  0.044***  0.046*** 
T  0.003  0.002  0.004  0.011  0.008 
Y 2

 -0.321 -0.113 -0.136** -0.241  0.187* 
DRGW 2         0.322  0.031  0.002 -0.141 -0.560 
Y DRGW  0.526  0.613***  0.587***  0.272  0.214 
Y lnPMS -0.013 -0.011  0 -0.016* -0.010 
Y lnPD  0.019***  0.018***  0  0.021***  0.017*** 
Y lnPK  0.012**  0.011**  0  0.012**  0.010* 
DRGW lnPMS -0.025** -0.024*  0 -0.035** -0.034** 
DRGW lnPD  0.037***  0.037***  0  0.048***  0.048*** 
DRGW lnPK  0.012  0.012  0  0.015  0.015 
lnPMs POS   0.010  0.007 -0.004  0.005  0.006 
lnPMs PD -0.046*** -0.046*** -0.043*** -0.044*** -0.044*** 
lnPMs PK -0.029*** -0.028*** -0.023*** -0.027*** -0.027*** 
LnPOS PD -0.010 -0.009  0.001 -0.004 -0.006 
LnPOS PK  0.004  0.002  0.007  0.006  0.003 
lnPD PK -0.012** -0.012*** -0.017*** -0.014*** -0.013*** 
Box-Cox φ -0.446* -0.260 -0.260  0  0 
Box-Cox π  1.219***  1  1  0.563***  0 
Box-Cox τ  0.015  0  0  1  1 

System log-likelihood 1406.581 1402.422  1315.912   1385.590 1377.424 
System R 2 b  0.863  0.859  0.832  0.849  0.858 
- Cost function R 2   0.921  0.918  0.916  0.918  0.916 
- SMS equation R 2   0.514  0.507  0.446  0.528  0.512 
- SD equation R 2  0.769  0.771  0.581  0.766  0.782 
- SK equation R 2  0.571  0.592  0.073  0.518  0.570 

a The dependent variable is Operating Hospital Cost (OHC). 
b The goodness-of-fit measure used for NLSUR systems is McElroy’s (1977) R 

2. 
*** significant at 1 % level, ** significant at 5 % level, * significant at 10 % level (two-tailed test). 
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Table 4. Comparing Generalised Composite (PBG) against restricted models by LR tests 

Restricted model a χ2-statistic P-value 

PBC MODEL  (π = 1, τ = 0) 8.318 0.016 

SQ MODEL (π = 1, τ = 0, δYr = δDRGWr = 0 for all r ) 181.338 0.000 

GT MODEL (φ = 0, τ = 1) 41.983 0.000 

ST MODEL (φ = 0, π = 0, τ = 1) 58.314 0.000 
a The restrictions with respect to PBG model are reported in parentheses. 
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Table 5. Estimates of input substitutability elasticities (at mean values of output, average 
DRG weight and input prices) for different cost function models a   

Allen elasticities  
(1 factor, 1 price) 

PBG MODEL PBC MODEL SQ MODEL   GT MODEL     ST MODEL 

MS, K 0.02 (0.27) 0.09 (0.25) 0.17 (0.25) 0.06 (0.26) 0.10 (0.26)

MS, D 0.31 (0.13) 0.31 (0.12) 0.32 (0.12) 0.31 (0.12) 0.33 (0.13) 

MS, OS 1.08 (0.30) 1.05 (0.30) 0.87 (1.23) 1.04 (0.28) 1.05 (0.30)

D, K -1.62 (1.16) -1.56 (1.01) -3.30 (0.59) -2.26 (0.85) -1.94 (1.00)

D, OS 0.50 (0.57) 0.52 (0.54) 1.06 (0.38) 0.78 (0.47) 0.67 (0.53)

K, OS 1.39 (1.33) 1.22 (1.18) 1.85 (0.95) 1.66 (1.06) 1.38 (1.22)

Morishima elasticities 
(2 factors, 1 price)  

PBG MODEL PBC MODEL SQ MODEL GT MODEL     ST MODEL 

MS, K 0.13 (0.13) 0.14 (0.11) 0.18 (0.10) 0.15 (0.11) 0.15 (0.12)

K, MS 0.26 (0.18) 0.30 (0.17) 0.34 (0.17) 0.28 (0.18) 0.31 (0.18)

MS, D 0.26 (0.05) 0.20 (0.05) 0.31 (0.06) 0.29 (0.06) 0.29 (0.06)

D, MS 0.45 (0.09) 0.44 (0.09) 0.44 (0.09) 0.45 (0.09) 0.46 (0.09)

MS, OS 1.04 (0.28) 1.01 (0.28) 1.00 (0.43) 1.03 (0.26) 1.02 (0.28)

OS, MS 0.95 (0.25) 0.93 (0.25) 0.81 (0.86) 0.92 (0.24) 0.93 (0.25)

D, K 0.05 (0.10) 0.07 (0.11) 0.03 (0.11) 0.05 (0.12) 0.05 (0.12)

K, D 0.06 (0.13) 0.08 (0.08) -0.03 (0.07) 0.04 (0.08) 0.06 (0.08)

D, OS 0.92 (0.29) 0.90 (0.28) 1.04 (0.22) 0.99 (0.25) 0.95 (0.29)

OS, D 0.28 (0.09) 0.29 (0.09) 0.38 (0.08) 0.34 (0.09) 0.33 (0.09)

K, OS 1.10 (0.40) 1.04 (0.38) 1.20 (0.29) 1.16 (0.32) 1.09 (0.38)

OS, K 0.19 (0.18) 0.16 (0.15) 0.25 (0.13) 0.22 (0.14) 0.20 (0.17)

Shadow elasticities      
(2 factors, 2 prices) 

PBG MODEL PBC MODEL SQ MODEL GT MODEL       ST MODEL 

MS, K 0.14 (0.12) 0.15 (0.10) 0.19 (0.10) 0.16 (0.10) 0.16 (0.12)

MS, D 0.28 (0.05) 0.29 (0.05) 0.33 (0.06) 0.31 (0.06) 0.31 (0.06)

MS, OS 1.02 (0.27) 0.99 (0.27) 0.95 (0.53) 1.01 (0.25) 1.00 (0.28)

D, K 0.06 (0.10) 0.07 (0.09) 0.01 (0.09) 0.05 (0.10) 0.06 (0.10)

D, OS 0.50 (0.14) 0.50 (0.14) 0.59 (0.11) 0.55 (0.13) 0.54 (0.15)

K, OS 0.36 (0.21) 0.36 (0.18) 0.41 (0.15) 0.39 (0.16) 0.37 (0.20)

a Estimated asymptotic standard errors in parentheses. MS = Medical Staff, OS = Other Staff, D = Drugs, 
K = Capital (number of beds).   
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Table 6. Estimates of Shadow elasticities of input substitutability by scaled values of the 
average output and DRG weight (PBG model, average input prices) a 

Scaling procedure for DRG weight (DRGW )  Scaling procedure for 
the output (Y ) λDRGW  = 0.50 λDRGW  = 1  

(average value) 
λDRGW  = 2 

MS, K λY  = 0.25 -1.20 (1.52) -0.34 (0.51) 0.26 (0.32) 

 λY  = 0.50 -0.42 (0.54) -0.05 (0.22) 0.26 (0.23) 

 λY  = 1 (average value) 0.00 (0.24) 0.14 (0.12) 0.26 (0.16) 

 λY  = 2 0.23 (0.16) 0.26 (0.11) 0.28 (0.16) 
 λY  = 3 0.39 (0.19) 0.34 (0.15) 0.30 (0.19) 

MS, D λY  = 0.25 -0.75 (0.53) 0.04 (0.14) 0.48 (0.16) 

 λY  = 0.50 -0.19 (0.18) 0.18 (0.08) 0.45 (0.11) 

 λY  = 1 (average value) 0.12 (0.08) 0.28 (0.05) 0.42 (0.08) 

 λY  = 2 0.30 (0.07) 0.36 (0.05) 0.40 (0.09) 

 λY  = 3 0.41 (0.12) 0.41 (0.09) 0.41 (0.12) 

MS, OS λY  = 0.25 1.01 (0.22) 1.01 (0.24) 1.02 (0.29) 

 λY  = 0.50 1.01 (0.24) 1.02 (0.26) 1.02 (0.29) 

 λY  = 1 (average value) 1.02 (0.25) 1.02 (0.27) 1.02 (0.29) 

 λY  = 2 1.02 (0.28) 1.02 (0.28) 1.02 (0.29) 

 λY  = 3 1.03 (0.31) 1.02 (0.30) 1.02 (0.29) 

D, K λY  = 0.25 -1.61 (1.33) -0.45 (0.43) 0.22 (0.29) 

 λY  = 0.50 -0.64 (0.43) -0.14 (0.17) 0.22 (0.21) 

 λY  = 1 (average value) -0.14 (0.19) 0.06 (0.10) 0.21 (0.15) 

 λY  = 2 0.14 (0.14) 0.19 (0.11) 0.22 (0.16) 

 λY  = 3 0.31 (0.19) 0.27 (0.16) 0.24 (0.20) 

D, OS λY  = 0.25 -0.57 (0.58) 0.25 (0.20) 0.68 (0.18) 

 λY  = 0.50 0.00 (0.25) 0.39 (0.15) 0.65 (0.15) 

 λY  = 1 (average value) 0.33 (0.17) 0.50 (0.14) 0.63 (0.15) 

 λY  = 2 0.52 (0.16) 0.57 (0.15) 0.62 (0.17) 

 λY  = 3 0.63 (0.19) 0.63 (0.18) 0.62 (0.19) 

K, OS λY  = 0.25 -1.00 (1.58) -0.13 (0.57) 0.50 (0.36) 

 λY  = 0.50 -0.21 (0.60) 0.17 (0.29) 0.50 (0.27) 

 λY  = 1 (average value) 0.21 (0.31) 0.36 (0.21) 0.50 (0.23) 

 λY  = 2 0.46 (0.24) 0.49 (0.20) 0.51 (0.24) 

 λY  = 3 0.62 (0.26) 0.58 (0.23) 0.53 (0.27) 

a Estimated asymptotic standard errors in parentheses. Bold typeface values indicate 10% (or lower) 
significance level. MS = Medical Staff, OS = Other Staff, D = Drugs, K = Capital (number of beds).  
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Table 7. NLSUR parameter estimates for extended Generalised Composite (PBG) models 

REGRESSORS a EXTENDED MODEL 1 EXTENDED MODEL 2 FULL EXTENDED MODEL

Constant 0.997*** 0.957*** 0.972*** 
Y         0.701*** 0.608*** 0.577*** 
DRGW  0.505** 0.358*** 0.590** 
lnPMS 0.642*** 0.660*** 0.636*** 
lnPD  0.115*** 0.100*** 0.118*** 
lnPK 0.049*** 0.045*** 0.049*** 
T           -0.004 0.020*** 0.021 
Y 2

           -0.267 0.056 0.174 
DRGW 2        0.226 1.151** 0.947 
T 2 0.006 - 0.002 
Y DRGW 0.576 0.324*** 0.340** 
Y T 0.004 - 0.013 
DRGW T           -0.029 -              -0.046 
Y lnPMS           -0.003            -0.023***              -0.009 
Y lnPD 0.011 0.028*** 0.018** 
Y lnPK 0.011 0.015*** 0.012** 
DRGW lnPMS           -0.021            -0.039*              -0.035* 
DRGW lnPD 0.035*** 0.036** 0.050*** 
DRGW lnPK 0.013 0.022 0.015 
T lnPMS 0.005* - 0.007** 
T lnPD           -0.004* -              -0.005** 
T lnPK           -0.001 -              -0.001 
lnPMs POS            -0.009 0.010              -0.022 
lnPMs PD           -0.059***            -0.043***              -0.062*** 
lnPMs PK           -0.026**            -0.030***              -0.022** 
LnPOS PD           -0.006            -0.017              -0.003 
LnPOS PK           -0.002 0.003              -0.005 
lnPD PK           -0.011   -0.012***              -0.011* 
DM - 0.199*** 0.182*** 
DL - 0.218** 0.189** 
DAO -   -0.264***              -0.256*** 
OUTBED -   -0.146***              -0.140*** 
Box-Cox φ           -0.432 0.906*** 0.832*** 
Box-Cox π 1.247*** 0.479 0.299 
Box-Cox τ           -0.144 0.950*** 0.890*** 
System R 2 b 0.867 0.896 0.908 

a The dependent variable is Operating Hospital Cost (OHC). 
b The goodness-of-fit measure used for NLSUR systems is McElroy’s (1977) R 

2. 
*** significant at 1 % level, ** significant at 5 % level, * significant at 10 % level (two-tailed test). 
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Table 8. Estimates of Shadow elasticities of input substitutability (at mean values of output, 
average DRG weight and input prices) for different specifications of the PBG model a   

Shadow elasticities     
(2 factors, 2 prices) 

 BASIC  
MODEL 

 FULL EXTENDED  
MODEL 

FIXED EFFECTS  
MODEL 

VARIABLE COST  
MODEL 

MS, K 0.14 (0.12) 0.15 (0.14) 0.21 (0.05) - 
MS, D 0.28 (0.05) 0.24 (0.05) 0.32 (0.05) 0.27 (0.06) 
MS, OS 1.02 (0.27) 0.79 (0.29) 0.92 (0.34) 0.93 (0.28) 
D, K 0.06 (0.10) 0.05 (0.11) 0.10 (0.05) - 
D, OS 0.50 (0.14) 0.43 (0.15) 0.54 (0.14) 0.44 (0.13) 
K,OS 0.36 (0.21) 0.28 (0.21) 0.33 (0.10)  

a Estimated asymptotic standard errors in parentheses. MS = Medical Staff, OS = Other Staff, D = Drugs, K = 
Capital (number of beds).   

 


