
16 August 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

o-Benzenedisulfonimide: an organic reagent and organocatalyst of renewed interest

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/86872 since



 

 

1

1

 

 

 

 

This is an author version of the contribution published on: 
Questa è la versione dell’autore dell’opera: 

 [Current Organic Chemistry, (15), 2011, 576-599; 
DOI:10.2174/138527211794474474] 

  

The definitive version is available at: 
La versione definitiva è disponibile alla URL: 

[http://benthamscience.com/journal/index.php?journalID=coc] 



 

 

2

2

o-BENZENEDISULFONIMIDE: AN ORGANIC REAGENT AND 

ORGANOCATALYST OF RENEWED INTEREST 

M. Barbero,* S. Bazzi, S. Cadamuro, S. Dughera 

Dipartimento di Chimica Generale e Chimica Organica dell’Università, Università di 

Torino, Via P. Giuria 7, I 10125 Torino, Italy. 

Fax: +39 011 6707642 

E-mail: margherita.barbero@unito.it



 

 

3

3

ABSTRACT:  

Synthesized nearly one century ago as a saccharine-like sweetener compound, the o-

benzenedisulfonimide has received a discontinuous attention in the past. In the last century, various 

synthetic procedures have been reported, in confirmation of the interest in this intriguing  

compound. In recent years, it has been used as a leaving group in reactions of nucleophilic 

substitution of amines with alcohols or phenols to give the corresponding ethers. Its N-

fluoroderivative is a stable and efficient fluorinating agent, which has found applications in several 

asymmetric syntheses. In previous studies, its conjugated base has been extensively used as 

stabilizing counter-ion of arenediazonium salts; safely isolated and stored in a dry state, ready to 

use, they have been applied successfully in many dediazoniation reactions, with interesting 

mechanistic insights. More recently, due to its high acidity, the o-benzenedisulfonimide has been 

used in catalytic amounts in some common acid-catalyzed organic reactions. Valuable aspects of 

this catalyst are its easy recovery from the reaction mixture and its reuse in other reactions, with 

clear economic and ecological advantages. Finally, the disulfonimide functional group has been 

proposed as a powerful chiral motif for strong Brønsted acids in asymmetric organocatalysis. 

 

Keywords: o-benzenedisulfonimide, organic synthesis, stabilizing anion, organocatalysis, 

recoverable catalyst, recyclable catalyst. 
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	 In this review, we report a survey of the literature concerning the synthetic applications and 

the useful potential of an organic reagent and organocatalyst of renewed interest, the o-

benzenedisulfonimide (1), and its derivatives.  

SO2

NH
SO2

1  

Fig. (1). 

 Cyclic disulfonimides are strong Brønsted acids: their acidity is comparable to that of strong 

mineral acids, higher than acyclic analogues; the acid-strengthening effect of the sulfonyl groups is 

likely enhanced by the incorporation in the five-membered ring [1a]. Several such compounds are 

reported in literature: by varying the ring size from 4 to 9, a substructure search on CAS databases 

resulted in 495 substances (using SciFinder software client, updated on 06/29/2009), most of them 

perfluorinated. In this review, we will cover the literature concerning synthesis, reactivity, and 

applications of the title compound and derivatives, following the chronological development. 

 

1.  SYNTHESIS OF o-BENZENEDISULFONIMIDE AND  DERIVATIVES 

1.1 SYNTHESIS OF o-BENZENEDISULFONIMIDE (1) AND RELATED 

STRUCTURES 

 
In general, cyclic disulfonimides have been prepared either by cyclization of disulfonyl 

halides (chlorides or fluorides) with ammonia and subsequent N-derivatization, or by cyclization of 

disulfonyl chlorides with ammonia derivatives. As a consequence, the key intermediate for the 

synthesis of the 1,3,2-benzodithiazole-1,1,3,3-tetraoxide (o-benzenedisulfonimide, 1) is the o-

benzenedisulfonyl chloride (2). This, by reaction with ammonia or derivatives, gives always the 

imide derivatives as major products, along with very low amounts of the corresponding bisamides. 
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All syntheses of 1 differ only by the starting reagent to prepare 2, the intermediate reaction steps or 

the purification procedure. The only real difference in the cyclization of o-benzenedisulfonyl 

chloride is that with nitrous acid, followed by reduction of the intermediate N-hydroxy derivative.   

SO2Cl

SO2Cl
2  

Fig. (2). 

o-Benzenedisulfonimide was synthesized for the first time by Holleman [2] and Hurtley and 

Smiles [3], nearly contemporarily, in 1921 and 1926. Both syntheses started from o-

aminobenzenesulfonic acid (3) via a very troublesome multistage route, and were differing in the 

oxidation step (HNO3 or KMnO4) and in the conversion of the disulfonyl chloride 2 into 

disulfonimide 1, via acidification of the intermediate ammonium salt 8 [2] or via reduction of the N-

hydroxy derivative 9 (Scheme 1) [3].  

1

SO3H

NH2

HNO2
SO3

-

N2
+

EtOCSS-K+
SO3

-

SCSOEt

HNO3
[2] or 

KMnO4[3]
SO3H

SO3H
3 4 5 6

1.BaCl2
2.Glauber salt

SO3Na

SO3Na
7

PCl5
SO2Cl

SO2Cl
2

SO2

N- NH4
+

SO2

8

NH3 in
EtOH/C6H6

[2]
1.Ba(OH)2

2.H2SO4

1
SO2

N
SO2

9

H2SO3/EtOH1.Na2SO3
2.H2SO4
3.NaNO2

[3]

OH

(yield not 
reported)

(88%)

(84% from 3)

(58% from 3) (73%) 50−60 °C (yield not 
reported)

 

Scheme 1. 

 These procedures were successively modified by Hendrickson and co-workers [4], by using 

gaseous ammonia in benzene/ethanol for the cyclization step (quantitative yield of ammonium salt, 

“sweet taste”), and Dowex 50X8 ion-exchange resin for the purification of 1 (79% yield from 2). 
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They described the acid 1 as “fully ionized in (and not extractable from) water and ... possess 

acidity comparable to that of hydrochloric acid”. In 1993 Blaschette’s group [5] modified 

substantially the preparation of the disulfonyl chloride 2 from acid 3 [6], using then gaseous 

ammonia in toluene/ethanol for the cyclization step and Lewatit S 100 ion-exchange resin for the 

purification (Scheme 2).   

SO3H

NH2

HNO2
SO3

-

N2
+

SO2/CuCl 
MeCOOH

3 4

SO3H

SO3H
6

1. NaCl

2. SOCl2/DMF

2
NH3

Tol/EtOH
1

SO2

N- NH4
+

SO2

8

1. Lewatit S 100

2. P2O5 (75% from 2)

 

Scheme 2. 

 An improved synthesis of o-benzenedisulfonimide was proposed by Davis and co-workers 

[7], in a four-step process starting from Li-benzenesulfonate (10) (49% overall yield); the sole 

purification step was the final filtration on Dowex ion-exchange resin (Scheme 3).  

SO3
-Li+

1. n-BuLi/0 °C
2. S8/ 0 °C−rt

SO3
-Li+

S

SO3
-K+

SO3
-K+

PCl5

2

110−170 °C

10 11

12

2
1. NH3/EtOH

2. Dowex
1

(49% from 10)

KMnO4

90 °C

 

Scheme 3. 

 Finally, two procedures have been reported to prepare the disulfonyl chloride 2. In 1986, it 

was prepared starting from anthranilic acid (13), through its conversion into the intermediates 2-(3-

methylbutoxy)-1,3-benzodithiole (14) or 1,3-benzodithiolium tetrafluoroborate (15), and treatment 

with chlorine/water; the overall yield of 2 from 13 was 46% via isolated 14 or 62–67% via isolated  
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15 [8]. The product 2 was then converted into 1 in 83% yield by a slightly modified procedure 

(Scheme 4) [9].  

COOH

NH2

i-C5H11ONO

CS2 S

S
OC5H11-i

HBF4  54%

S

S
H BF4

-

13 14 15

14 or 15
t-BuOH/H2O/CHCl3
Cl2/0−5 °C

2 1
1. NH3; Tol/EtOH

2. Dowex 50X8

65−70%  from 13

90 or 95%, 
respectively

83%
 

Scheme 4. 

 The second procedure was patented in 1996: amongst a number of aromatic and 

heteroaromatic sulfonyl halides prepared by oxidative chlorination or bromination of methyl 

sulfides or methyl sulfoxides, in the presence of water, 2 was obtained in 82% yield from o-

bis(methylsulfanyl)benzene  (16) [10]. 

SCH3

SCH3

16  

Fig. (3).  

 In conclusion, the key intermediate of the above syntheses is o-benzenedisulfonyl chloride 

(2), which accordingly can now be prepared starting from the commercially available o-

benzenedisulfonic acid dipotassium salt [3,7], anthranilic acid [8], o-aminobenzenesulfonic acid [2–

4,6,11], and from o-bis(methylsulfanyl)benzene [10]. In recent times, o-benzenedisulfonyl chloride 

has become commercially available, and now also o-benzenedisulfonimide is sold. 

 Structurally related to o-benzenedisulfonimide are compounds 17 [12], 18 [13], and 19 [14]; 

17 and 18 were obtained from the corresponding disulfonyl chlorides and ammonia, and 19 by 

pyrolysis of the corresponding N-R derivatives (N-R derivatives were prepared from the disulfonic 
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anhydride and primary amines, then treated with P2O5; direct reaction with ammonia failed). No 

further studies were done after their synthesis. 

SO2

N-NH4
+

SO2

17

SO2

SO2

NH

18

O

O

SO2

SO2

NH

19  

Fig. (4). 

 In confirming the renewed interest in this class of compounds, while this manuscript was 

being reviewed, two studies regarding the cyclic disulfonimides 20 [15] and 21 [16] below have 

been published. The disulfonimide functional group has been introduced as new chiral motif in 

these strong Brønsted acids.  

SO2

SO2

NH
20; R = 3,5-(CF3)2C6H3
21; R = H

R

R  

Fig. (5). 

(R)-3,3’-Bis[3,5-bis(trifluoromethyl)phenyl]-1,1’-binaphthyl-2,2’-disulfonimide (20) and (R)-1,1’-

binaphthyl-2,2’-disulfonimide (21) were synthesized from the optically pure 1,1’-binaphthyl-2,2’-

diols 22 through the intermediate O,O’-diaryl bis(N,N-dimethylthiocarbamates) 23, then isomerized 

to the S,S’-diaryl bis(N,N-dimethylthiocarbamates) 24 by a Newman–Kwart rearrangement. The 

two synthetic procedures differ on the subsequent oxidation step and conversion to the disulfonyl 

chlorides 26, key intermediates of the target chiral imides (Scheme 5). 
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R

R

OH

OH

22

1. NaH/DMF
2. ClCSNMe2

R

R

O

O

NMe2

S

NMe2

S

23: R = 3,5-(CF3)2C6H3, 62%;
      R = H, 69%

R

R

S

S

NMe2

O

NMe2

O

250 °C[15]

or microwave[16]

24: R = 3,5-(CF3)2C6H3, 95%;
      R = H, 65%

24

H2O2/
HCOOH[15]

NCS/
aq HCl/MeCN[16]

R

R

SO3H

SO3H

R

R

SO2Cl

SO2Cl

25: R = 3,5-(CF3)2C6H3, 81%

26: R = H, 87%

SOCl2/
cat. DMF

              26 

R = 3,5-(CF3)2C6H3, 97%

NH3/MeOH

NH3/C6H6

20

70%

21

91%

Scheme 5. 

1.2 SYNTHESIS OF o-BENZENEDISULFONIMIDE  DERIVATIVES 

 N-Hydroxy-o-benzenedisulfonimide (9): 

 N-Hydroxy-o-benzenedisulfonimide (9) was first prepared by Hurtley and Smiles in 88% 

yield through reduction of o-benzenedisulfonyl chloride (2) and then reaction with nitrous acid 

(Scheme 1) [3]. The same sequence was adopted by Hendrickson and co-workers giving 83% yield 

of 9  [4], and then improved by Kice and Liao in 1981 (92% yield of product) (Scheme 6) [17].  

SO2Cl

SO2Cl
2

1. Na2SO3/Na2CO3/H2O

2. H2SO4
3. NaNO2

SO2

N
SO2

9

OH

92%  

Scheme 6. 
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 N-Halogen-o-benzenedisulfonimides (27, 30): 

 In Hendrickson’s fundamental work, several derivatives of o-benzenedisulfonimide were 

prepared as attractive synthetic tools, since the imide anion seemed to be a good leaving group, 

owing to the charge stabilization by the two sulfonyl moieties. Unfortunately, most of these 

compounds did not show the expected reactivity; only halides 27 (X = Cl, Br) were very active 

sources of halogen cations. Their synthesis was achieved by treating anhydrous silver o-

benzenedisulfonimide 29 (from 1 and silver oxide) with chlorine or bromine in trifluoroacetic 

anhydride (Scheme 7) [4]. 

1 (hydrated)
AgNO3/H2O

SO2

N- Ag+.H2O
SO2 230−250 °C

SO2

N- Ag+
SO2

28

29

Cl2 or Br2

(CF3CO)2O SO2

NX
SO2

27: X = Cl, Br; > 90%

vacuum

 

Scheme 7. 

 N-Fluoro-o-benzenedisulfonimide 30 was synthesized in high yield by Davis and co-workers 

about 30 years later, as a stable and easily prepared highly efficient source of “electrophilic” 

fluorine, and until now it has been used in a significant number of reactions (Scheme 8) [18].  

SO3K

SO3K

12

2
PCl5

110−170°C

quant. yield

NH3/EtOH

DOWEX50x8
1

84-90%

F2 10% in N2

−40 °C,
CHCl3/CFCl3

SO2

NF
SO2

30

> 90%  

Scheme 8. 

 N-Aryl, N-Alkyl and N-dialkylaminoalkyl-o-benzenedisulfonimides (31):  

 N-Aryl and N-arylalkyl o-benzenedisulfonimide 31 were prepared according to Hurtley and 

Smiles [3] from o-benzenedisulfonyl chloride and aniline in essentially quantitative yield, or with 
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primary arylalkyl amines in EtOH solution, in the presence of sodium acetate: in this case the 

bisamides were recovered in considerable amounts (Scheme 9) [4]. 

SO2

N
SO2

31

R
SO2Cl

SO2Cl
2

RNH2

R = Ph (quant.), PhCH2 (36%), 
       PhCH2CH2 (51%)  

Scheme 9. 

 N-Alkyl analogues 31 were unusually prepared in low yields by electrophilic alkylation, by 

refluxing sodium o-benzenedisulfonimide (32) with alkyl iodides or dialkylaminoalkyl chlorides in 

ethyleneglycol monoethyl ether-water mixtures (Scheme 10) [19].  

SO2

N
SO2

31

R
RX

SO2

N-Na+
SO2

32

R =  Me (37%); Et (56%); Pr (34%); Bu (57%); 
       Et2NCH2CH2  (55%); Et2NCH2CH2 CH2 26%);     
       Bu2NCH2CH2  (62%)  

Scheme 10. 

 N-Methyl analogue (31; R = Me) was also prepared in quantitative yield from anhydrous 

silver o-benzenedisulfonimide (29) and methyl iodide in acetonitrile [20], whilst N-1-adamanthyl 

analogue was prepared from 29 and 1-bromoadamanthane in anhydrous benzene in 95% yield [21].  

Poor yields of N-phenyl-o-benzenedisulfonimide were obtained in transamidation reaction of 

sulfonimide 1 and aniline at 184–200 °C, whilst good yields were obtained starting from N-methyl-

o-benzenedisulfonimide [22]. 

 N-Dialkylcarbamoyl-o-benzenedisulfonimides (32): 

 Title compounds 32 were prepared treating silver o-benzenedisulfonimide (29) with diethyl or 

dimethylcarbamoyl chloride (Scheme 11) [23]; the molecular crystal structure was determined, the 

urea moiety showed a non-planar geometry. 
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SO2

N
SO2

32

CONR2
SO2

N-Ag+
SO2

29

R2NCOCl

 

Scheme 11. 

 N-Trialkylsilyl and N-trialkylstannyl-o-benzenedisulfonimides (33) (34)  : 

 Prepared by metathesis of silver 1,2-benzenedisulfonimide (29) with the appropriate trialkyl 

chlorosilane or chlorostannane, their crystal structures were determined [24]. Compounds 33 

displayed unusually long bonds between the trigonal-planar N and the tetrahedrally coordinate Si 

atom [24b]; the solid state structures suggested that the N-Si bond lengthening in these 

disulfonylated aminosilanes is induced by the π-acceptor character of the sulfonyl groups. 

SO2

N
SO2

33: M = Si
34: M = Sn

MR1R2R3

SO2

N-Ag+
SO2

29

MeCN

rt
+ ClMR1R2R3

 

Scheme 12. 

 Miscellaneous N-derivatives: 

 In order to check the activity of the conjugate base as good leaving group in electrophilic 

substitution reactions, several N-substituted derivatives were synthesized [4]. With the exception of 

the more promising compounds cited above (9,27,30), N-methoxy-o-benzenedisulfonimide was 

prepared by reaction with diazomethane but without synthetic developments, whilst other 

derivatives could not be prepared. 
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2. SYNTHETIC APPLICATIONS OF o-BENZENEDISULFONIMIDE AND 

DERIVATIVES 

2.1 o-BENZENEDISULFONIMIDE DERIVATIVES   

 N-Hydroxy-o-benzenedisulfonimide (9):  

 Compound 9 was studied as a potential source of hydroxyl cations (as a peracid) both as 

Baeyer-Villiger reagent and oxidant agent of aldehydes to acids, but the results were negative [4]. 

Nearly 30 years later, the oxidizing properties of 9 were reconsidered and exploited by Degani and 

Fochi in the conversions of benzyl alcohols 35 to benzaldehydes 36, benzaldehydes 36 to benzoic 

acids 37, sulfides 38 to sulfoxides 39, and thiols 40 to disulfides 41 (Scheme 13) [25]. The reaction 

conditions were mild, highly selective regarding the oxidation of sulfides to sulfoxides, and 

chemoselective: 4-(methylsulfanyl)benzaldehyde gave excellent yield of the corresponding 

sulfoxide, leaving the formyl group unchanged. 

(Ar)RCHO (Ar)RCOOH(Ar)RCH2OH

(Ar)RSH (Ar)RSSR(Ar)

(Ar)RSR'(Ar') (Ar)RSOR'(Ar')

MeCN/MeCOOH/60 °C

MeCN/MeCOOH or MeCN/60 °C

MeCN/MeCOOH or MeCN/60 °C

9         (1.2 eq) 9 (1 eq)

35 36 37

38 39

40 41

SO2

N
SO2

OH

9 (1 eq)

9 (0.5 eq)

MeCN/MeCOOH/60 °C

R = Ph (52%),
      4-MeC6H4 (57%), 
      4-MeOC6H4 (6%), 
      4-ClC6H4 (91%), 
      4-NO2C6H4 (45%)

R = Ph (75%), 
     4-MeC6H4 (75%), 
     4-MeOC6H4 (22%),       
     4-ClC6H4 (68%), 
     4-NO2C6H4 (64%)

Ar = Ph; Ar' = Ph (80−84%); 
Ar = Ph; R' = Me (87−76%);
Ar = 4-OHCC6H4; R' = Me (87%);
R = R' = Bu (70%);
R = R' = s-Bu (48−31%)

Ar = Ar' = Ph (89−87%);
R = R' = n-C8H17 (40−59%)  

Scheme 13. 
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 N-Fluoro-o-benzenedisulfonimide (30):  

 Although inactivated aromatic compounds were efficiently halogenated by using N-chloro- 

and N-bromo-o-benzenedisulfonimide (27) [4], these reagents did not receive further studies. Only 

N-fluoro analogue is currently used  as a halogenating agent. 

 As confirmed by the number of scientific publications, electrophilic fluorination has recently 

attracted considerable attention in organic synthesis, since fluorinated chemicals find applications in 

organic, agricultural, medicinal and material chemistry fields. Furthermore, several examples of 

asymmetric synthesis of fluorinated molecules have been successfully achieved. The topic is 

covered in many reports, and synthetic applications of compound 30 have been reviewed and 

compared with other fluorinating agents [26]. Without discussing all the examples, we will report 

on the most significant ones below.  

 N-Fluoro-o-benzenedisulfonimide (NFOBS, 30) was synthesized as above by Davis and co-

workers (Scheme 8); they also performed the most significant work in the area of electrophilic 

fluorination of metal enolates (enolates, azaenolates, 1,3-dicarbonyl compounds, ortho-methalated 

aromatic compounds, silyl enol ethers [18b]), and highly diastereoselective electrophilic 

fluorination of chiral metal enolates (imide enolates [27]). N-Fluoro reagents with different 

reactivities have been developed to overcome the limitations of fluorinating procedures employing 

highly reactive, corrosive and toxic reagents. Amongst them, N-fluoro-o-benzenedisulfonimide (30) 

and N-fluorobenzenesulfonimide [(PhSO2)2NF, NFSI, 42] are particularly interesting because of 

their high reactivity, stability and ease of preparation. In the cited paper [18b], metal enolates, silyl 

enol ethers, and 1,3-dicarbonyl compounds gave α-fluorinated products in high yields. Good control 

of monofluorination versus difluorination was generally observed. Interestingly, difluorination was 

explained by the enolization, and hence the difluorination, induced by the acidity of the o-

benzenedisulfonimide. NFOBS was sufficiently reactive to directly fluorinate activated aromatics, 

but not selectively. Regiospecific reaction was accomplished on aromatic organometallic 

compounds: Grignard reagent, phenyllithium, and ortho-lithiated aromatic substrates (generated 
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from directed metalation group aromatics, DMG, with alkyllithiums). Both 30 and 42 showed 

similar reactivity, but better yields were obtained with 30 in metal enolates, Grignard reagents and 

lithium reagents  fluorination, whereas 42 gave better yields in the fluorination of lithiated arenes 

(Scheme 14). The difference has been related to the cyclic structure of 30 that makes the approach 

of the nucleophile more favourable for steric reasons and makes 1 a leaving group better than the 

acyclic benzenesulfonimide; the mechanism  suggested is a SN2-type.  

Ar

SO2

NF
SO2

30

O
R

R'
Ar

O

R
R'

F

Ar COOMe

R

Ar COOMe

R F

3 examples, 87−95% (monofluorinated compounds)

2 examples, 65−86% (monofluorinated compounds, 
and minor amounts of difluorinated products)

N

O2S

N

O2S

F 2 examples, 45−65% (mono- and difluorinated 
compounds)

OTMS 30 (1.5 eq)

CH2Cl2, rt
O

F

5 examples, 40−86% (monofluorinated compounds)

30 (1.2 eq), 1.1−2.5 
NaHMDS or KHMDS

−78 °C to rt, 1−2 h

R R'

OO

R R'

OO
30 (1.2 eq)

CH2Cl2, rt
F

6 examples, 10−85% (monofluorinated compounds, 
and minor amounts of difluorinated products)

43, 45, 47, 49, 51 or  53 +

DMG

R

DMG

R F

30 (1.2 eq)
6 examples

53

46

44

47

49

48

43

45

54

50

51 52

44, 46, 48, 50, 52 or  54

−78 °C to rt, 1−2 h

30 (1.2 eq), 1.1−2.5 
NaHMDS or KHMDS

30 (2.2 eq), 1.1−2.5 
NaHMDS or KHMDS

BuLi, −40 
or −78 °C

−78 °C to rt, 1−2 h

 

Scheme 14. 

 Several examples of regiospecific synthesis of fluorinated aromatics using NFOBS and/or 

NFSI in the presence of DMG have also been reported [28] (Scheme 15). 
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 n-BuLi or s-BuLi (1−2 eq),
 NFOBS or NFSI

DMG

R

DMG

R
53 54

DMG = CONHBu, OCSNEt2, SO-t-Bu, SO2NHMe,     
             SO2NMe2, SO2NEt2, SO-t-Bu, SO2-t-Bu

F−78 or 0 °C

 

Scheme 15. 

 In the diastereoselective fluorination of chiral imide enolates, Davis and co-workers used 

Evans’ oxazolidinones (55) [29] as chiral auxiliaries to prepare the α-fluoroacids 57 and the β-

fluoroalcohols 58 with good de. Due to the enhanced acidity of the α-fluoro proton, some 

racemization occurred during the removal of the chiral auxiliary under basic conditions, whilst this 

was avoided by reducing with LiBH4. The efficiency of NFOBS (30, Scheme 16) [29] was 

compared with that of NFSI (42) [30] as fluorinating agent: compound 30 was proved to approach 

from the less hindered si-face of the imide enolate.  

O N

O O

R3

R1 R2

1. LDA
2. NFOBS (23) O N

O O

R3

R1 R2

55 56

− 78 °C to rt F

56: R1 = Ph, R2 = Me, R3 = n-Bu     88% yield (97% de)
      R1 = H, R2 = i-Pr, R3 = n-Bu      85% yield (96% de)
      R1 = Ph, R2 = Me, R3 = t-Bu      86% yield (96% de)
      R1 = H, R2 = i-Pr, R3 = t-Bu       80% yield (97% de)
      R1 = Ph, R2 = Me, R3 = PhCH2  84% yield (89% de)
      R1 = Ph, R2 = Me, R3 = Ph         86% yield (86% de)

LiOH or
LiOOH

R3HOOC

F

57

R3

F

58

HO
LiBH4

5 examples; 
45−84% yield
(89−95% de)

2 examples; 
45−84% yield
(80−89% de)

 

Scheme 16. 

 In one case, NFSI showed a better diastereoselectivity because of its greater steric bulk [31]. 

The procedure for asymmetric synthesis of fluoroorganic compounds  has been applied to obtain 2-

deoxy-2-fluoropentoses as final products from a non-carbohydrate precursor, and a fluorinated 

analogue of the side chain of the taxol [32]. 
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 N-Aryl, N-alkyl and N-dialkylaminoalkyl-o-benzenedisulfonimides (31):  

 Prepared in 1969 by Hendrickson [4] in order to study the feasibility of the C-N bond 

cleavage, these compounds appeared surprisingly inert, even by treatment with sodium cyanide or 

base or during sublimation at elevated temperatures: so the idea that o-benzenedisulfonimide anion 

would be a facile and useful leaving group was abandoned.  

 As in the case of compound 9, thirty years later, these products and naphthalene analogues 

received attention again. These derivatives were synthesized from the corresponding disulfonyl 

chlorides and primary amines (as major products along with traces of bisamides [34,35) by Carlsen 

and Fiksdahl, in the course of a wider study on nucleophilic substitution reactions of N,N-

disulfonylimides; they were usefully converted with good stereoselective control of the reactions. 

 These imides were then used in benzylation of alcohols or phenols (Scheme 17) [33], in 

stereoselective nucleophilic substitution of the starting chiral amines [34,35], and finally in 

stereoselective synthesis of optically active aryl alkyl ethers from enantiopure amines or alcohols  

[36].  

SO2

SO2

N
R

R1

24

R = 4-MeOC6H4; R1 = H

59

+  R2OH or ArOH
NaH/THF/rt

CH2OR2(Ar)

MeO
+ 1

3 examples; 57−78%  

Scheme 17. 

 Treatment of N-(4-methoxybenzyl)-1,2-benzenedisulfonimide with aqueous KOH in DMF 

yielded 4-methoxybenzyl alcohol, confirming that these reactions represented a mild procedure for 

the conversion of amines into the corresponding alcohols [33].  

o-Benzenedisulfonyl chloride 2 or 1,2-naphthalenedisulfonyl chloride 60 and enantiopure primary 

amines 61 were reacted in dichloromethane in the presence of Et3N (Schemes 18 and 19) 

[33,34,35].  
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The enantiomerically pure derivatives 31 were easily converted into alcohols 62 or azides 63 by 

nucleophilic attack of KNO2 and NaN3 respectively, with inversion of configuration at the chiral 

centre; reduction of the azido group afforded the inverted amines 64 (Scheme 18). The nucleophilic 

substitution was easier on the benzylic substrate; higher stereoselectivity was obtained carrying out 

the reactions in DMSO (84–90 and 94–98.5% inversion for 62 and 63, respectively) and by 

decreasing the reaction temperature, as expected for a SN2 mechanism. 

SO2

SO2

N
R

R1

31

R = C6H5, R1 = CH3       47%
R = c-C6H11, R1 = CH3  38%

KNO2

NaN3

R1

R

R1

R

HO

N3
R1

R
H2N

H2/Pd

62

63 64

2 +
R1

R
H2N

61

Et3N, CH2Cl2
rt

84−90% inversion,
68−80% ee

94−98.5% inversion,
88−97% ee

Scheme 18. 

 The above conversions were then applied to the naphthalene derivatives 65; however in this 

case the observed stereoselectivity was lower (Scheme 19). The result was explained by a higher 

contribution from an ionic or ion pair mechanism, owing to a greater stability of the naphthalene 

leaving group relative to the benzene, and not to a better nucleophilicity of the former anion 

compared to the latter  [35]. 

SO2

SO2 N

R
R1

65

R = C6H5; R1 = CH3

KNO2

NaN3

R1

R

R1

R

HO

N3

62

63

60−63% inversion,
20−26% ee

60−70% inversion,
20−40% ee

SO2Cl

60

SO2Cl

Et3N, CH2Cl2
rt

R1

R
H2N

61

+

 

Scheme 19. 
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 The same authors studied the stereoselective synthesis of chiral aryl ethers from an 

enantiopure amine, through the o-benzene- or the 1,2-naphthalenedisulfonimide intermediates 

(Scheme 20). The 1-phenylethyl phenyl (or 2-naphthyl) ethers 66 were formed in 39–44% (or 57–

68%) yields and 83–87% (or 70–79%) inversion [36]. Alternative methods of preparation of 66 via 

benzyne or TFA ester showed higher selectivity. 

SO2

SO2 N

R
R1

31 or 65

R = C6H5; R1 = CH3

NaH/DMF/16 h/rt+  C6H5OH 
    or 2-naphthol

O

66

 

Scheme 20. 

2.2 o-BENZENEDISULFONIMIDE as STABILIZING COUNTER-ION of 

DRY ARENEDIAZONIUM SALTS  

 It is well-known that arenediazonium salts are quite unstable in the dry state, potentially 

explosive [37], but arenediazonium tetrafluoroborates, sulfonates, trifluoroacetates, nitrates or salts 

with complex anions have been proposed as exceptions to this behaviour.  

 Bearing in mind two brief notes described some arenediazonium salts stabilized by 

fluorinated disulfonimides [38], Degani first thought about the advantage of utilizing the anion of o-

benzenedisulfonimide as stabilizing counter-ion of arenediazonium cations, even in the dry state, 

and then to revisit some synthetic applications of this versatile class of compounds. This resulted, in 

the last decade, in a significant number of papers by Degani’s research group.  

 Other studies were focused on selected arenediazonium o-benzenedisulfonimides, whose 

kinetics and azocoupling reactions were investigated for comparison with related tetrafluoroborates, 

confirming similar reactivity of both classes of diazonium salts, but greater stability and easier 

experimental procedures for dry salts 67 [39]. 
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 Dry arenediazonium o-benzenedisulfonimides (67): 

 Dry arenediazonium o-benzenedisulfonimides 67 were easily prepared by diazotization of 

aromatic amines 68 with isopentyl nitrite in the presence of 1 (1.2 equiv) in glacial acetic acid or in 

formic acid at 0–5 °C. The dry salts were always obtained in excellent yields and high purity, as 

proved by the conversion into the corresponding (2-hydroxy-1-naphthyl)aryldiazenes 69 (Scheme 

21). The ionic nature of salts 67 was confirmed by the X-ray analysis of one of these salts [9,40]. 

They are soluble in water as well as in polar protic and aprotic solvents, but insoluble in apolar or 

slightly polar solvents, exceptionally stable, storable for long periods, and ready to be used. 

ArN2
+Ar-NH2 0-5 °C, 5 min

20 examples; 85−99%

6768

1

i-C5H11ONO/ 
AcOH or HCOOH

69

20 examples; 84−99%

SO2

SO2

N-

Ar

OH2-naphthol/
aq NaOH 10 mol%

Ar = Ph; 2-, 3-, 4-MeC6H4;
        2-, 3-, 4-MeOC6H4; 2-, 3-, 4-ClC6H4;  
        2-, 3-, 4-BrC6H4; 2-, 3-, 4-NO2C6H4;
        4-Me2NC6H4; 2,6-Me2C6H3;
        2,6-Cl2C6H3; 1-naphthyl  

Scheme 21. 

 Since they have high, well-defined and reproducible decomposition points, decomposition of 

benzenediazonium o-benzenedisulfonimide (70, dp 110 °C) was studied in the presence and in the 

absence of toluene. In both cases, two products 71 and 72 were isolated, the former being 

predominant  (71 : 72 = 79 : 14 or 66 : 18, respectively) (Scheme 22). The reaction carried out in 

solvent furnished also a mixture of three isomers of phenylation of toluene, with an isomeric ratio 

consistent with a heterolytic mechanism. This clue and the poor electron donor properties of the o-

benzenedisulfonimide anion induced the authors to suggest a heterolytic decomposition mechanism. 

110 °C
C6H5N2

+

SO2

SO2

N- +

SO2

N-C6H5

SO2

S
N

SO2

O OC6H5

70 71 72  
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Scheme 22. 

 Salts 67 have been successfully converted in several classes of compounds; dediazoniation 

reactions with O, S, N, and C nucleophiles, in aqueous or organic medium, gave isolated yields of 

pure products comparable or often higher than those reported with conventional methods. It has to 

be highlighted that a further valuable aspect of all procedures reported below is the easy recovery of 

o-benzenedisulfonimide (1). After workup of the reaction mixtures, 1 was recovered in good to high 

yield and so reusable for the preparation of other arenediazonium salts, with noticeable economic 

and ecological advantages.  

 For general literature references dealing with each dediazoniation reaction, we refer to the 

literature cited in each article. 

 Diaryldiazenes and aryl(tert-butyl)diazenes (73):  

 The first synthetic application of salts 67 was the synthesis of diaryldiazenes and aryl(tert-

butyl)diazenes 73 by electrophilic C-coupling reactions of these salts with Grignard reagents (74) in 

equimolar amounts. The procedure was of general validity and gave high yields of products. In all 

the reactions, two isomeric products were observed, but complete isomerization of the Z into the E 

isomer was achieved by heating at 70 °C (Scheme 23) [41].  

67 + (Ar')RMgX THF, −78 °C
ArN=NR(Ar') 21 examples; 61−91%

3 examples; 45−52%
7374

Ar = Ph; 2-, 4-ClC6H4; 3-,4-MeOC6H4; 3-,4-BrC6H4
Ar' = Ph; 4-MeC6H4; 4-ClC6H4
R = t-Bu  

Scheme 23. 

 Aryl methanesulfonates (75): 

  Aryl methanesulfonates 75 (and three aryl trifluoromethanesulfonates) were easily prepared 

by thermal decomposition of some representative salts 67 in methanesulfonic acid (or 

trifluoromethanesulfonic acid), at a temperature between 60 and 120 °C, in reproducible good 
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yields (Scheme 24) [42]. The authors suggested that the reaction follows a DN+AN mechanism 

(Nucleofuge Detachment + Nucleophile Attachment)  of dediazoniation. The failure of the reaction 

with ortho substituted arenediazonium salts and the decomposition reaction of benzenediazonium o-

benzenedisulfonimide (70) in methanesulfonic acid  in the presence of toluene or nitrobenzene 

confirmed the suggested mechanism. Small amounts of substituted biphenyls were detected and the 

ratio of the isomeric products was consistent with an electrophilic phenylation.  

67
60−120 °C

+ CH3SO3H

75

ArOSO2CH3 15 examples; 70−90%

Ar = Ph; 2-, 3-, 4-MeC6H4;
        2-, 3- ,4-MeOC6H4; 2-, 3-, 4-ClC6H4;  
        2-, 3-, 4-BrC6H4; 2-, 3-, 4-NO2C6H4;
        2-MeSC6H4; 2-FC6H4;
        2-, 3-CF3C6H4; 1-naphthyl  

Scheme 24. 

  Aryl chlorides, bromides, and iodides (76):  

 Halodediazoniation reactions of a wide range of dry arenediazonium o-benzenedisulfonimides 

67 by using tetraalkylammonium halides 77 (2.5 equiv) were carried out in anhydrous acetonitrile at 

room temperature in the presence of copper catalyst, or at 60 °C (or room temperature) without 

catalyst. In 60 examples, yields were 61–94%, only in few cases were lower (8 examples, yields 

51–55%) (Scheme 25) [43]. 

67
rt or 60 °C

+ Q+ X-

76

Ar-X 60 examples; 61−94%
8 examples; 51−55%     (Cu)

Q+X- = Bu4N+I-, Bu4N+Br-, 
            Et3PhCH2N+Cl-

77

Ar = Ph; 2-, 3-, 4-MeC6H4;
        2-, 3-, 4-MeOC6H4; 2-, 3-, 4-ClC6H4;  
        2-, 3-, 4-BrC6H4; 2-, 3-, 4-NO2C6H4;
        2-PhSO2C6H4;
        2,4-(NO2)2C6H3; 1-naphthyl  

Scheme 25. 

 Normally halodediazoniation reactions follow a homolytic pathway: chloro and 

bromodediazoniation are catalyzed by metal ions or metals (acting as electron transfer agents to 
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arenediazonium ions), whilst in the iododediazoniation the iodide directly transfers one electron to 

the cation. Nevertheless, by using arenediazonium o-benzenedisulfonimide, at 60 °C in the absence 

of copper, all aryl bromides were obtained in slightly lower yields than those in the presence of 

catalyst (and at room temperature); on the contrary, only arenediazonium salts bearing strong 

electron-withdrawing groups in ortho and/or para positions on the aromatic ring, gave 

chlorodediazoniation products without catalyst at 60 °C. The explanation provided by the authors 

was that the anion of salt 67 could act as a primary electron donor reagent, giving rise to the outer-

sphere (or not bonded) electron transfer complex 78. This would then easily react with the bromide, 

but not with the chloride (except for the above substituted salts), according to the redox potentials 

of the two halide anions. 

etcArN2

SO2

SO2

N ArN2

SO2

S
N

.

.

. .

O O

78  

Fig. (6). 

 Alkyl aryl and diaryl sulfides (79):  

 It is well-known that alkyl and arylthiodediazoniation are dangerous reactions, due to the 

formation and accumulation of the highly explosive intermediate diazosulfides 81. By using 

arenediazonium o-benzenedisulfonimides 67, the reactions of Stadler and Ziegler were slightly 

modified and transformed into an efficient and safe procedure, of general applicability [44]. Various 

unfunctionalized and functionalized alkyl aryl and diaryl sulphides (79) were prepared by reacting 

dry salts 67 with sodium thiolates 80 (1.1 equiv) in anhydrous methanol, at 0–5 °C for the 

alkylthiodediazoniation and room temperature for the arylthiodediazoniation (Scheme 26).  
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67
0-5 °C or rt

+ Na+ -(Ar')RS

Ar = Ph; 2-, 3-, 4-MeC6H4; 2-, 3-, 4-MeOC6H4; 2-, 3-, 4-ClC6H4; 2-, 3-, 4-BrC6H4; 
        2-, 3-, 4-NO2C6H4; 4-CNC6H4; 4-HOOCC6H4; 2-, 4-HOC6H4; 4-MeOOCC6H4; 
        2-MeSC6H4;  2,4-(NO2)2C6H3; 2,6-Cl2C6H3; 1-naphthyl
Ar' = Ph; 2,6-Me2C6H3; 2,6-Cl2C6H3; 2,6-Br2C6H3
R = Me, Bu, s-Bu, t-Bu, c-C6H11,  n-C6H13, n-C8H17, n-C16H33, CH2Ph, CH2COOH,         
       CH2CH2COOH,  CH2CH2OH

Ar-N=N-SR(Ar') ArSR(Ar')

8180 79: 63 examples

 

Scheme 26. 

 In 63 examples, the yields were generally high; lower yields were obtained from sterically 

hindered arenediazonium cations or thiols. The mechanism of these reactions proceeds through a 

homolytic pathway, as confirmed by the observed negligibility of the substituent electronic effects 

and also by a radical diagnostic test. Nonetheless, the authors proposed a SRN2 mechanism, 

alternative to the SRN1 suggested for arylthiodediazoniation of arenediazonium tetrafluoroborates 

[45]. A bimolecular SRN2 homolytic chain process would better account for the reported 

observations and results: rate reaction increased by protic solvent, nearly equimolar amounts of 

reactants, considerable amounts of disulfides and arenes as by-products in the 

arylthiodediazoniation, halogen substitution never observed in halogen-substituted arenediazonium 

salts, and strong steric effects of bulky substituents on the ortho positions of either reactants.  

 Aryl thiocyanates (83):  

Aryl thiocyanates are generally prepared by thiocyanodediazoniation of diazotized aromatic 

amines and metal thiocyanates in aqueous solutions, mostly under Sandmeyer-type reaction 

conditions. However, this synthetic route suffers some limitations, such as low yields, considerable 

by-product formation, nucleophilic substitution of other aromatic ring substituents. All these 

drawbacks were overcome by using arenediazonium o-benzenedisulfonimides. Several aryl 

thiocyanates (83) were prepared in high yields and purity by reaction of dry 67 and sodium 

thiocyanate (1.1 equiv, in almost cases; 82) in anhydrous acetonitrile at room temperature in the 
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presence of copper powder or at 50 °C (or room temperature) in the absence of catalyst (Scheme 

27) [46]. 

67
rt or 50 °C

+ Na+SCN-

83: 22 examples; 30−100%
(Cu)

ArSCN

82

Ar = Ph; 2-, 3-, 4-MeC6H4; 2-, 3-, 4-MeOC6H4; 2-, 4-ClC6H4;  
        4-IC6H4; 2-, 3-, 4-NO2C6H4; 2-, 4-MeOOCC6H4;
        4-CNC6H4; 2,6-Me2C6H3; 2,4-(NO2)2C6H3;
        2,6-Br2C6H3; 2,5-Cl2C6H3; 2-PhSO2C6H4  

Scheme 27. 

 As already reported for bromodediazoniation [43], the thiocyanodediazoniation is a homolytic 

process, also in the absence of copper: the anion of the o-benzenedisulfonimide behaves as an 

electron transfer reagent, giving rise to the electron transfer complex previously hypothesized. 

These considerations were supported by diagnostic tests and comparative reactions with 

arenediazonium tetrafluoroborates. 

 1-Aryl-3,3-dialkyltriazenes (85) and conversion in aryl halides (76): 

Triazenes are a biologically interesting and synthetically useful class of compounds. Normally 

they are prepared by reaction of arenediazonium salts with secondary or cyclic amines, but there are 

several cases where their synthesis is particularly troublesome. Several 1-aryl-3,3-dialkyltriazenes 

85 were prepared in high yields by reaction of dry salts 67 (also deriving from weakly basic 

aromatic amines) with dimethyl or diethylamine (1.1 equiv; 84) and NaOH (1 equiv), or with above 

amines (2.2 equiv) in aqueous solution at 0–5 °C (Scheme 28) [47]. 

67
0−5 °C

+ R2NH

84
H2O (NaOH)

Ar-N=N-NR2

85: 12 examples; 90−95%

Ar = 4-MeOC6H4; 4-ClC6H4; 4-NO2C6H4; 2,6-Br2C6H3; 2,6-Cl2C6H3;  2,4-(NO2)2C6H3;
        2,4,6-Cl3C6H2; 2,4,6-Br3C6H2; 2-Cl-4-NO2C6H3; 2,6-Cl2-4-NO2C6H2; 2,6-Br2-4-NO2C6H2; 
R = Me, Et  

Scheme 28. 
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It is known the ability of triazenes to break down to release in situ diazonium ions, that 

directly reacted; the deprotection of the diazonium group is normally affected by acid and this can 

be a problem for the in situ subsequent reactions. The authors performed this break down by heating 

triazenes with o-benzenedisulfonimide (2.2 equiv, 1) in acetic acid or acetic acid-formic acid 

mixture: the dry salts 67 were separated from the dialkyl ammonium salt by cooling the reaction 

mixture at room temperature. This procedure is potentially very useful in organic synthesis, as it 

allows chemical modifications of both the intermediate triazene and the reconstituted 

arenediazonium salt.  

Furthermore, aryltriazenes 85 were converted into corresponding aryl iodides, bromides and 

chlorides 76, following two alternative procedures. The former used simply aqueous hydrogen 

halides 86 (3 equiv) in acetonitrile at room temperature or 60 °C, sometimes in the presence of 

aqueous HBF4 or copper powder (Scheme 29).  

Ar-N=N-NR2

85

rt or 60 °C

76

Ar-X X = I: 12 examples; 59−86%
X = Br: 8 examples; 70−94%
X = Cl: 6 examples; 68−85%

     (Cu)
+ HX

86  

Scheme 29. 

The presence of HBF4 was necessary for iodo and chlorodediazoniation of arenediazonium 

salts bearing strong electron-withdrawing substituents on the aromatic ring. The reason was that, in 

these cases, the triazene heterolytic dissociation, first step of the reaction, was slowed down, whilst 

the successive homolytic iododediazoniation was favoured. Finally, copper powder was needed in 

the conversion of the triazenes 85 into aryl chlorides and bromides, except for bromides from 

triazene nitro substituted: in these cases, the substituent enabled the electron transfer to the 

arenediazonium group from the bromide anion. 

The second procedure used  anhydrous methanesulfonic acid and tetraalkylammonium halides 

77  in anhydrous acetonitrile at temperatures ranging from room temperature to 80 °C, sometimes in 

the presence of copper powder, as mentioned above (Scheme 30).  
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Ar-N=N-NR2

85

rt or 80 °C

76

Ar-X X = I; 6 examples; 65−85%
X = Br; 7 examples; 68−85%
X = Cl; 5 examples; 65−84%

     (Cu)
+ Q+X-

77  

Scheme 30. 

 N-Alkylanilines (89): 

 N-Monoalkylanilines 89 were selectively prepared from arenediazonium salts 67 with 

alkyllithiums (2.2 equiv; 88) [48], through synthesis and isolation of the corresponding intermediate 

(Z)-(tert-butylsulfanyl)(aryl)diazenes 87 [44]. (Alkylsulfanyl or arylsulfanyl)(aryl) diazenes are 

highly unstable, decomposing in situ into the corresponding sulphides; exceptions are diazenes 87, 

that behave as a protected form of the diazonium functional group, like the better known triazenes. 

Unexpectedly, treatment of 87 with an alkyllithium in anhydrous diethyl ether at 0 °C or at –78 °C 

led selectively to pure N-monoalkylation products (Scheme 31). 

67
MeOH; rt

+ HS-t-Bu

89: 35 examples; 69−89%

MeO-Na+
Ar-N=N-S-t-Bu

87: 18 examples; 80−100%

RLi (88)

1. Et2O; 0 or -78 °C
2. H2O, rt

Ar-NHR

Ar = Ph; 2-, 4-MeC6H4; 4-MeOC6H4; 2-FC6H4; 2-ClC6H4; 2-, 3-, 4-BrC6H4; 2-MeSC6H4; 4-CNC6H4; 
        2,6-Me2C6H3;  2,6-F2C6H3; 2,6-Cl2C6H3; 2,6-Br2C6H3; X-C6H4CH2C6H4
R = Me, Bu, s-Bu, n-C6H13  

Scheme 31. 

 Besides the synthetic usefulness of the reaction, the authors proposed an interesting  

mechanism, on the basis of constant traces of hydrazines 92 as by-products and of suitable  

collateral proofs. Whilst the evidence of the intermediate 90 is almost certain, greater caution must 

be taken for the nitrene 91. It is worthwhile to highlight the umpolung of the amino nitrogen atom, 

in the diazene protected form, reacting as an electrophile towards carbanions (Scheme 32).  

Ar-N=N-S-t-Bu

87

+ RLi Ar-N-N-S-t-Bu Li+

R
88 90

_
Ar-N-N

R

:

:

91

H2O
89 +   HNO

+ 88 Ar-N-NHR

R
92  
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Scheme 32. 

 S-Aryl thiol esters (95): 

 An easy and safe procedure for the synthesis of S-aryl thiol esters 95 has been set up starting 

from arenediazonium o-benzenedisulfonimides 67 with sodium thioacetate or thiobenzoate (93) (2 

equiv) in dry acetonitrile; the intermediate diazo thiol esters 94 were observed (Scheme 33) [49]. In 

all the considered examples, the yields were higher than those reported in literature, regardless of 

nature and position of the substituents on the aromatic ring. 

67 + Na+ -SCOR

93: R = CH3, C6H5

Ar-N=N-S-COR

94

Ar-S-COR

95

28 examples; 81−100%  

Scheme 33. 

 Hydrodediazoniation with hydrogen peroxide: 

 A wide range of variously substituted dry salts 67 were hydrodediazoniated by hydrogen 

peroxide (30 wt% in H2O; 2 equiv, 96), in THF at reflux, yielding pure arenes 97 in high yields, in 

the presence of both electron-donating or electron-withdrawing substituents, and also of steric 

hindrance (Scheme 34). Collateral proofs in the presence of radical reaction inhibitors, or aryl 

radical trapping agents, led the authors to hypothesize a free radical mechanism [50]. 

67 +

96

H2O2
THF

reflux
Ar-H

97: 18 examples; 68−100%

Ar = 4-MeC6H4; 4-BuC6H4; 2-PhC6H4; 4-MeOC6H4; 4-PhOC6H4; 2-MeSC6H4; 4-NO2C6H4;
         4-MeCOC6H4; 4-CNC6H4; 2,6-Me2C6H3; 2,6-Br2C6H3; 2,4,6-Me3C6H2; 2,4,6-Br3C6H2; 
         2-Me-5-NO2C6H3; 3,5-(MeO)2C6H3  

Scheme 34. 
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 Heck-type arylation reactions: 

 Finally, the synthetic usefulness of dry arenediazonium o-benzenedisulfonimides 67 was 

tested in transition metal catalyzed cross-coupling reactions. They were first studied as electrophiles 

in Heck-type arylation reactions, arenediazonium salts (mainly tetrafluoroborates) being a valid 

alternative to conventional aryl halides and triflates [51]. Some common olefinic substrates used in 

this reaction were arylated by a wide range of arenediazonium salts 67 in the presence of Pd(OAc)2 

(1 mol% with respect to 67), in a suitable organic solvent. No ligands were necessary, complete 

stereoselectivity was observed and yields were excellent, regardless of the nature of the substituents 

(this finding being in contrast with the difficulties reported in literature for nitro substituted 

arenediazonium tetrafluoroborates [52]). Ethyl acrylate (98, 1.2 equiv), acrylic acid (99, 1.5 equiv), 

acroleyne (100, 1.5 equiv), and styrene (101, 1.2 equiv) gave high yields of arylated products 102–

105, always  in (E)-configuration; in the case of 99 and 100, a base (anhydrous CaCO3, in 

equimolar amount to 99 or 100) and anhydrous conditions were needed (Scheme 35).  

67 +
X X

Ar
98, X = COOEt
99, X = COOH
100, X = CHO
101, X = Ph

102, X = COOEt; 15 examples, 42−100% 
103, X = COOH; 4 examples, 55−96%
104, X = CHO; 5 examples 83−95%
105, X = Ph; 3 examples, 54−83%

Pd(OAc)2

Ar = 2-, 4-MeC6H4; 2-, 3-, 4-MeOC6H4; 4-ClC6H4; 3-, 4-BrC6H4; 4-IC6H4; 2-, 4-NO2C6H4;
        2-HOOCC6H4; 2,4-(NO2)2C6H3; 2-MeOCO-3-thienyl  

Scheme 35. 

 Heck-type arylation of cyclopentene (106, 1.2 equiv) gave 1-arylderivatives 107, with greater 

selectivity compared to corresponding reactions of tetrafluoroborates (Scheme 36). 

+67

106

Ar

107

9 examples, 70−90%  

Scheme 36. 
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 Dry arenediazonium o-benzenedisulfonimides were used in palladium-catalyzed arylation of 

allylic alcohols [53]. As known from literature, such reactions are generally poorly regiospecific 

and lead to mixtures of β- and α-arylated both carbonyl compounds and allylic alcohols; selective 

procedures have been proposed, but only a few reports refer to arylation by arenediazonium salts. 

Variously substituted salts 67 were reacted with a range of primary and secondary allylic alcohols, 

testing several reaction conditions (solvent, nature and equivalents of base and palladium catalyst). 

The synthetic goal were the β-arylated carbonyl compounds, useful intermediates for the synthesis 

of medicinal or natural products with biological properties. In optimized conditions, salts 67 and 

secondary allylic alcohols 108 (1.2 equiv) were reacted in aqueous 95% ethanol/NaHCO3 (1.2 

equiv) or acetonitrile/NaOAc (1.2 equiv), in the presence of Pd(OAc)2 (1 mol%), at 60 °C; they 

gave β-arylated ketones 109 as major products, along with traces of α-arylated ketones 110 and 

minor amounts of arylated allylic alcohols 111 (Scheme 37).  

67 +

108

Pd(OAc)2

R1

R2

OH

R1
R2

O

R1

R2

O

R1

R2

OH

Ar
+

Ar

109 110 111

+
Ar

15 examples

Ar = Ph; 4-MeC6H4; 2-, 4-MeOC6H4; 4-BrC6H4; 4-IC6H4;  2,6-F2C6H3; 2-, 3-, 4-NO2C6H4
R1 = H, Me
R2 = H, Me, n-C5H11, Ph  

Scheme 37. 

 According to literature, as electron-rich haloarenes disfavour Heck-type reactions, electron-

rich arenediazonium salts gave lower product yields. Furthermore, from the reaction of these salts in 

ethanol, the corresponding 1-aryl-3-ethoxyalk-1-enes 112 were isolated and identified by GC-MS 

and 1H NMR spectra. Their formation was attributed by the authors to a nucleophilic attack of the 

alcoholic solvent on an intermediate π-allylpalladium complex (Tsuji–Trost reaction [54]), as 

confirmed by carrying out the reaction in methanol and isolating the corresponding 1-aryl-3-

methoxyalk-1-enes. 
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R1
R2

OEt

112

Ar

 

Fig. (7). 

 Salts 67 and primary allylic alcohols 108 (R2=H; 1.2 equiv) in aqueous 95% ethanol/NaHCO3 

(1.2 equiv), in the presence of Pd(OAc)2 (1 mol%) at 60 °C, led to mixtures of arylated aldehydes 

113 and/or 114 with their diethyl acetals 115 and 116 (with the expected predominance of the 

former ones; Scheme 38). 

67 +

108 (R2 = H)

Pd(OAc)2

R1

H

OH

R1
H

O

R1

H

O

Ar +
Ar

113 114

+

R1

Ar+

115

OEt

OEt

Ar

OEt

OEt

116
4 examples  

Scheme 38. 

 Palladium-catalyzed cross-coupling reactions with aryl and alkyl tin compounds, 

and with trialkylboranes: 

 In order to broaden the synthetic potential of salts 67 as aryl electrophile components in 

transition metal catalyzed cross-coupling reactions, a wide range of dry arenediazonium o-

benzenedisulfonimides were reacted with aryltin derivatives 117 (1.1 equiv) under Stille conditions 

to give asymmetric biaryls 118, fundamental building blocks in organic synthesis [55]. All the 

reactions were carried out in THF in the presence of Pd(OAc)2 5% as precatalyst, at room 

temperature or 40 °C for arenediazonium salts ortho monosubstituted; yields were always high (23 

examples; average yield 80%), with the only exception of two ortho disubstituted salts (yields 22–

23%). In these cases, more consistent amounts of symmetric biaryls 119 were isolated, otherwise 

present in traces (Scheme 39). 
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67 + Ar'-SnBu3

Pd(OAc)2
Ar-Ar'     +   Ar'-Ar'

117 118 119

23 example: 118, 61−95%; 119, tr−9%
2 examples: 118, 22−23%; 119, 30−33%

Ar = 2-, 3-, 4-MeC6H4; 2-, 3-, 4-MeOC6H4; 4-BrC6H4; 4-IC6H4;  4-CNC6H4; 4-MeOCOC6H4;
        2-, 3-, 4-NO2C6H4; 2,6-Me2C6H3; 2,6-(NO2)C6H3
Ar' = Ph, 4-MeOC6H4; 4-ClC6H4;   2,6-Me2C6H3; 2-furyl; 2-thienyl  

Scheme 39. 

 In contrast to numerous examples of cross-coupling reactions between arenediazonium salts 

and aromatic or alkenyl organometallic compounds, very few examples are reported with alkyl 

organometallic compounds. Salts 67 were successfully tested in such palladium-catalyzed 

alkylation [56]. By reaction with tetramethyl or tetrabutyltin 120 (1.1 equiv), in THF at room 

temperature or in acetonitrile at 40 °C, in the presence of Pd(OAc)2 2.5 mol%, chemoselective 

methylation and butylation products 121 and 122 were obtained in high and modest yields, 

respectively; the presence of arenes 123, formed by hydrodediazoniation, was nearly always 

observed and often made purifications difficult (Scheme 40). 

67 +
Pd(OAc)2

 Ar-R                  +                    ArH

120: R = Me, Bu 121: R = Me; 13 examples, 68−100%
122: R = Bu; 5 examples, 15−44%

123

R4Sn

 

Scheme 40. 

 In order to improve product yields and to avoid the use of toxic tin derivatives, reactions of 

salts 67 were investigated with triethyl or tributylborane 124 (1.1 equiv) under Suzuki protocol, in 

THF at room temperature, in the presence of different palladium catalysts, with good yields of 

products 125 and 122 (Scheme 41). 

67 +
Pd cat

Ar-R                     +                      ArH

124 125: R = Et; 8 examples; 74−88%
122: R = Bu; 8 examples; 64−85%

123

R3B

Ar = 4-MeC6H4; 4-MeOC6H4; 4-CNC6H4; 4-BrC6H4; 2-, 3-, 4-NO2C6H4; 4-BuC6H4
R = Et, Bu  

Scheme 41. 
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 Palladium-catalyzed cross-coupling reactions with aryl and alkylindium 

compounds: 

 As a follow-up on our previous studies, dry arenediazonium o-benzenedisulfonimides 67 were 

reacted with triorganoindium compounds 126, and depending on the reaction conditions, it was 

possible to obtain biaryls 127 or diaryldiazenes 128 [57]. Before this paper, no reactions of 

arenediazonium salts with indium organometallics have been reported in literature. 

Triorganoindium compounds 126 were prepared from indium(III) chloride with aryllithium or 

Grignard reagents. 

As regards to the first synthetic application, in optimized conditions salts 67 were reacted with 

compounds 126 in a molar ratio 3:1, in THF at room temperature, in the presence of 

bis(triphenylphosphine)palladium (II) dichloride as precatalyst. Biaryls 127 were obtained in high 

yields, chemoselectively, independently from electronic but not steric effects (Scheme 42). 

67 +
PdCl2(PPh3)2 Ar-Ar'

126 127 128 129

Ar'3In + N N

Ar

Ar'
+ Ar'-Ar'

THF, rt

16 examples; 127: 70−94%; 128: tr−4%;

Ar = 4-MeC6H4; 2-, 3-, 4-MeOC6H4; 3-, 4-BrC6H4; 4-IC6H4;  4-ClC6H4; 4-MeOCOC6H4;
        2-, 3-, 4-NO2C6H4; 2,6-F2C6H3; 2,6-(NO2)C6H3; 4-CNC6H4; 2,6-Me2C6H3;
Ar' = Ph, 4-MeOC6H4; 4-ClC6H4;   4-MeC6H4; 2-thienyl  

Scheme 42. 

 In order to favour the electrophilic C-coupling reaction and maximize the yields of 128 

derivatives, salts 67 were reacted with triorganoindium 126 without catalyst. In optimal conditions 

the molar ratio 67 : 126 was 1 : 2, in THF at room temperature. Variously substituted aryldiazenes 

were obtained in good yields (except for sterically hindered arenediazonium cations), comparable to 

those previously obtained from the same arenediazonium salts (Scheme 43) [41]. 
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67 +

126 128

Ar'3In N N

Ar

Ar'
THF, rt

18 examples; 43−95%  

Scheme 43. 

 The behaviour of salts 67 with indium triorganocompounds was investigated by reaction with 

other organometallic reagents, including organotin, boronic acid, Grignard and lithium compounds, 

in the presence or absence of Pd0 catalyst. Results were explained by different nucleophilicities of 

the tested organometallic reagents. 

 Next, reaction of salts 67 with aliphatic triorganoindium compounds (triethyl 130, tributyl 131 

and trimethylindium 132; 2.5 equiv, in THF at room temperature) was investigated, but quite 

surprisingly, aqueous treatment of reaction mixtures gave N-ethyl- 133 and N-butylanilines 134 

(uncontaminated by N,N-dialkylanilines) or formaldehyde (aryl)hydrazones 135, respectively [58]. 

Reactions were not influenced by electronic or steric effects, although hindered samples were 

obtained in moderate yields (Scheme 44).  

67 +

130: R = Et
131: R = Bu
132: R = Me

R3In 1. THF, rt
2. H2O

Ar-NH-R

133: R = Et; 9 examples; 69−89%
134: R = Bu; 9 examples; 75−95%

or Ar-NH-N=CH2

135: 9 examples; 61−89%

Ar = Ph; 4-MeC6H4; 4-MeOC6H4; 4-BrC6H4; 4-MeOCOC6H4; 2-, 3-, 4-NO2C6H4; 2,6-Me2C6H3  

Scheme 44. 

 The mechanism previously proposed [44] was used in part also in this case: nucleophilic 

addition of 130 or 131 to the intermediate aryl(alkyl)diazene on the amino nitrogen atom and 

decomposition of this temporary adduct lead to the end products 133 or 134. 

67 + R3In Ar-N=N-R
+ 130 or 131

Ar-N-N-R

R

InR2

133  or  134

 

Scheme 45. 
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 In the case of trimethylindium 132 only formaldehyde (aryl)hydrazones 135 were obtained. 

Experimental results were justified by the well-known tautomerism between diazenes (I) and 

hydrazones (II), the latter being unable to undergo nucleophilic addition (Fig. 8).  

Ar-N=N-CH2R Ar-NH-N=CHR

I II  

Fig. (8). 

 Basing our hypothesis on previously reported but not unequivocal data [59], a theoretical 

study was performed with detailed density functional (DFT) calculations; results confirmed the 

higher stability of hydrazone tautomers, shifted towards diazene tautomers by the catalytic effect of 

water added at the end of the reaction. The key step is the nucleophilic addition to the N=N double 

bond; by using three different reaction pathways, the anomalous behaviour of 132 was explained on 

the basis of stronger C–In bond in  this organometallic reagent. 

2.3 o-BENZENEDISULFONIMIDE as BRØNSTED ACID CATALYST 

The high acidity of the Brønsted acid 1 is well-known. Hendrickson [4] and co-workers 

described o-benzenedisulfonimide as “fully ionized in (and not extractable from) water”; tabulated 

values for pKa are –4.1 (H0 at half-neutralization determined by UV spectra, at 20 °C in water [1b]), 

and –1.10 (calculated with the program ACD/pKa DB [60]). However, until our recent researches, 

to the best or our knowledge, no one has taken advantage of this finding. 

 Recently, during our investigations concerning the reactivity of dry salts 67 in metal-catalyzed 

cross-coupling reactions [53], along with the expected mixtures of α- and β-arylated carbonyl 

compounds and of arylated allylic alcohols, some ethoxyderivatives 112 were isolated. Their 

formation was ascribed to a Pd catalyzed Tsuji–Trost reaction of ethanol on the intermediate 

arylated allylic alcohol. Unexpectedly, such derivatives derived from acid-catalyzed dehydration of 

the two cited alcohols: the strong Brønsted acid actively involved even in catalytic amounts was o-

benzenedisulfonimide (1).  
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 So far, several good results have been obtained using o-benzenedisulfonimide in catalytic 

amounts, as a safe, easy to handle, nonvolatile, non corrosive, and recyclable Brønsted acid. This 

organocatalyst presents many advantages: highly soluble in both organic solvents and water, 

efficiently catalyzes some of the most common acid-catalyzed organic reactions in homogeneous 

catalysis conditions, and thorough studies on other synthetic applications are in progress. As in the 

case of arenediazonium salts 67, a further valuable and not negligible aspect of this catalyst is its 

almost complete and easy recovery after workup of the reaction mixtures. Owing to the complete 

solubility in water, it can be recovered virtually pure, ready to be reused in catalytic amounts in 

other reactions, immediately or after a fast purification on cation-exchange resin, without loss of 

catalytic activity, with clear economic and ecological advantages.  

 Dehydrative reactions: 

 First, the synthetic usefulness of 1 as catalyst was tested in some acid-catalyzed reactions, 

selected on the basis of their synthetic significance and methodological simplicity: dehydrative 

etherification and esterification; acetals synthesis, cleavage and interconversion; pinacol 

rearrangement [61a,61b]. All the reactions were conducted in open air flasks, using analytical grade 

solvents, the only side product being water.  

Protic acid catalyzed ether synthesis by alcohol dehydration is dependent on the choice of reactants 

and of Brønsted acid; generally, high acid concentration and high reaction temperatures are 

required. In order to prepare asymmetric allylic ethers 138, three different procedures have been set 

up by using o-benzenedisulfonimide, allylic alcohols 136 and aliphatic alcohols 137: in solution of 

alcohol 137, in THF as solvent, and under solvent-free conditions; in the last two procedures, 

aliphatic alcohols were used in stoichiometric ratio or in slight excess (Scheme 46).  
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R1

R3

R2

OH

+  R4OH
1 cat (5-10%)

(solvent)
R1

R3

R2

OR4

21 examples

+ R1

OR4

R2

H

4 examples

136 138137 139 (from 136, R3 = H)

R1 = H, Me, Ph; R2 = H, Ph; or R1R2 =−(CH2)−3; R3 = H, Me; R4 = Et, i-Pr, Bn, n-C8H17  

Scheme 46. 

All methods presented mild reaction conditions, short reaction times, good selectivity (only mixed 

ethers were formed, no side-products were isolated), good yields (in 8 examples: 70–88%; in 8 

examples: 28–60%), and reduced load of catalyst (normally 5%). When the well-known allylic 

rearrangement of the reasonable intermediate carbocation was allowed, ethers 139 were isolated in 

mixture with the isomeric ones 138. As the reaction was an equilibrium, the conditions were 

optimized to lead to more stable derivatives. Furthermore, E-isomers always were the only isolated 

products. Unfortunately, o-benzenedisulfonimide did not play a role in such stereoselectivity: a 

collateral proof with sulphuric acid as catalyst gave the same results, although in lower yield. 

 Dehydrative esterification of carboxylic acids 140 and alcohols 137 was examined only in a 

few representative examples; reagents were used in nearly equimolar amounts, at 90 °C in toluene, 

in the presence of 1 (20–30 mol%).  Our results agree with the known decreasing order reactivity of 

non-conjugated, conjugated and aromatic acids (Scheme 47). 

+  R4OH
1 cat (20−30%)

toluene, 90 °C

6 examples

140 141137

R OH

O

R OR4

O

 

Scheme 47. 

 Acetalization of aldehydes or ketones is one of the most useful methods used in protective 

groups chemistry. Drawbacks of the reaction are excess of alcohol, removal of water, use of a toxic 

or corrosive acid catalyst, sometimes needed in large amounts. In our conditions, dimethyl or 

ethylene acetals of a number of aldehydes and/or ketones were obtained in satisfactory yields by 
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reactions with methanol (also as solvent) or ethane-1,2-diol (3 equiv, in toluene), at room 

temperature or 90 °C respectively, in the presence of o-benzenedisulfonimide (0.5–1 mol%). In the 

presence of the same catalyst, some acetal cleavages and interconversions were achieved with good 

results (Scheme 48).  

R R1(H)

O

142

MeOH, 1

1

MeOH, 1
HOCH 2C

H 2O
H, 1 cat

1HOCH
2 CH

2 OH, 1 cat

R
OMe

OMe

R1(H)

143

O

O R

H

144  

Scheme 48. 

 Moreover, pinacol rearrangement of 1,1,2,2-tetraphenylethane-1,2-diol 145 was studied: 

depending on reaction conditions, benzopinacolone 146 or tetraphenyloxirane 147 were obtained, as 

in Scheme 49. 

Ph2C(OH)-C(OH)Ph2

145

1 (20%)/Tol

1 (10%)/Tol
90 °C, 1 h O

Ph

Ph

Ph

Ph

Ph3C-CPh

O

146; 100%

147: 91%

+  146   (8%)

110 °C, 7 h

 

Scheme 49. 

 In further studies, o-benzenedisulfonimide was taken in consideration as Brønsted acid 

catalyst in acylation of alcohols, phenols, and thiols with acid anhydrides [61c]. The number of 

recent methods reported in literature for this reaction is astonishing, and include the use of both 

homogeneous and heterogeneous conditions, in the presence of Brønsted or Lewis acids as 



 

 

39

39

catalysts. This confirms the interest in new simple, low-cost, and environmental benign procedures, 

involving solvent- and/or metal-free recyclable catalytic systems.  

To assess the general validity of the proposed procedure, scope and limitations of the use of 1 were 

investigated by reacting various aliphatic and aromatic alcohols and thiols 148 (20 and 4 examples, 

respectively) with various anhydrides 149  (3 examples) (Scheme 50).  

(Ar)R1-XH       +       (R2CO)2O
1

(Ar)R1-X-COR2

148 149: R2 = Me, Et, Ph 150: X = O; 23 examples; 70−100%
        X = S; 4 examples; 82−100%  

Scheme 50. 

Under our optimized procedures, the conditions were very mild: nearly equimolar amounts of 

reagents (1 : 1.1), low and recyclable catalytic load (5 mol%), very short reaction times, room 

temperature (60 or 80 °C for benzoylation only), complete conversion and high yields of acylated 

products 150, even in a preparation on large scale. The reaction worked well both with primary, 

secondary and tertiary alcohols, with stereoselectivity and without racemization of enantiomeric 

pure substrates; in very few cases the reaction failed, leading to a mixture of acid-catalyzed 

isomerization products, acylated or not. 

 Ritter-type reactions  

 The Ritter reaction is an efficient synthesis of amides from alkenes (or alcohols) and nitriles; 

many procedures have been achieved in the presence of Brønsted or Lewis acids, the main 

disadvantage being the use of toxic, corrosive, and/or expensive, and not recoverable catalysts.  

By using o-benzenedisulfonimide as catalyst (1, 10 mol% for 151, 20% for 152), Ritter-type 

reaction of various benzylic alcohols 151 or t-butyl alcohol 152 with aliphatic or aromatic nitriles 

153 (as solvent or in stoichiometric amount; in this case, only reaction rate was slowed down) gave 

amides 154 or 155 in good yields by heating at 100 °C or at reflux temperature (Scheme 51) [62a]. 

We highlight that catalyst 1 was recovered (as in all the above described procedures) and directly 
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reused in other two consecutive Ritter-type reactions, without purification steps: reaction times 

showed an increase, but yields of pure isolated product and recovery of 1 were always good. 

Ar R

OH
+ R1-CN

1
HN

Ar R

O

R1

151; R = Ar', Me

or t-BuOH

152 153 154

or

155

R = Ar'; 15 examples
R = Me; 6 examples

HN
t-Bu

O

R1

5 examplesAr = Ph, 4-FC6H4, 4-MeOC6H4, 2,4,6-Me3C6H2
Ar' = Ph, 4-FC6H4, 4-MeOC6H4, 4-NO2C6H4, 2,4,6-Me3C6H2
R1 = Me, Ph, 2-, 3-, 4-MeC6H4, 4-MeCOC6H4, vinyl  

Scheme 51. 

 The reactions were independent of electronic effects (13 examples: 73–99%), with regard to 

153; in contrast, steric effects reduced drastically the yield (2 examples: 30–51%). As regard to 151, 

electronic effects were important and they were explained by considering the hypothesized 

mechanism of the reaction. By monitoring the reaction by GC-MS, formation of intermediate ethers 

156 and their disappearance in favour of increase of final amides were always observed. 

Accordingly, the authors proposed the following catalytic cycle, where the conjugated base of 

catalyst 1 was omitted.  

1
151

H2O

Ar R
O R

Ar

R

Ar
156

N

RAr

R1

H2O

N

Ar R

OH2

R1

154

153

151

 

Fig. (9). 

 When Ar and R were 4-methoxyphenyl, no traces of the corresponding 154 were detected:  

only bis(4-methoxyphenyl)methane (157) and 4,4’-dimethoxybenzophenone (158) were isolated in 
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42 and 58% yield respectively. Under catalytic acid conditions, diarylmethyl isopropyl ethers 

undergo disproportionation reaction with selective hydride transfer leading to diarylmethanes and 

acetone [63]; therefore, 157 and 158 formation was explained by the authors as disproportionation 

products of the intermediate ether 156. 

157

CH2

OMe

158

OMe

O

MeOMeO

 

 Fig. (10). 

When R was a methyl group, vinylbenzenes as side-products were detected; electronic effects of 

electron-donating and electron-withdrawing groups were observed. 

Reactions of nitriles 153 with tert-butyl alcohol gave satisfactory yields, with the exception of the 

sterically hindered 2,6-dimethylbenzonitrile. 

Finally, four primary benzylic alcohols were reacted with acetonitrile: larger amounts of catalyst 

(until 1 equiv) was needed to obtain moderate yields of 154 (35–64%), along with nearly the same 

amounts of N-benzyl-o-benzenedisulfonimides 159 (28–35%), despite the known poor 

nucleophilicity of 1 (Scheme 52). 

Ar R

OH
+ R1-CN

151 153

R = H R1 = Me

1
HN

Ar R

O

R1

154

R = H; R1 = Me

+
SO2

N
SO2 Ar

159

 

Scheme 52. 

 Bearing in mind the disproportionation products observed in this study, the authors decided to 

investigate more in depth the reaction, both having the synthetic goal of diarylmethanes and a 

theoretical study confirmation. Therefore, various ethers 161 were synthesized in situ by reacting 

diarylmethanols or benzylic alcohols 151 with propan-2-ol (160),  in the presence of 10 mol% of 1 

as catalyst, and by heating at 80 °C until the complete conversion into diarylmethanes 162 and 
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acetone (163). Without electron-donating substituents on the aromatic ring the reaction did not 

occur, and it also failed with primary benzylic alcohols (Scheme 53). 

Ar R

OH

151

R = Ar', H

OR

Ar
+ OH

1 1
Ar-CH2-R + MeCOMe

162160 163

10 examples

161

 

Scheme 53. 

The theoretical study, performed within the Density Functional Theory (DFT), confirmed that the 

reaction proceeds through two steps: formation of a carbocation from the protonated ether followed 

by hydride transfer.  Although the latter is the rate determining step, the whole reaction rate is 

determined by the stability of the carbocation: the more stable ion leads to the lower potential 

energy profile, the faster reaction and, therefore, the better yield of product [62b].    

 Nazarov electrocyclization:  

 The electrocyclization of divinyl ketones into cyclopentenones, the Nazarov reaction, is a 

versatile method for realizing cyclopentenone frameworks in more complex carbo- and heterocyclic 

molecules, possessing biological activities. The reaction requires acidic activation but, whilst Lewis 

acid catalysis is well assessed, protic acid catalysis has been less explored; in this context, the 

catalytic efficiency of o-benzenedisulfonimide was evaluated on a wide range of  both activated and 

inactivated substrates [64]. It is well-known that the electrocyclization of dienones in 

cyclopentenones involves both a pentadienyl A and an hydroxyallyl cation B intermediate, as 

outlined in the catalytic cycle (Fig. 11).  
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O
R1

R2 R4

R31

OH

R1

R2 R4

R3

OH

R1

R2 R4

R3

OH

R1

R2 R4

R3

H

O

R1

R2 R4

R3

A

B

C

SO2

N
SO2

-

SO2

N
SO2

-

 

Fig. (11).  

 After several preliminary proofs of cyclization on β-damascone (164), looking for the best 

conditions in terms of amounts of catalyst, solvent, and temperature, a series of various eterocyclic-

derived dienones were successfully cyclized in the presence of 1 in catalytic amounts, with 

satisfactory results, comparable with those obtained under traditional Lewis or Brønsted acid 

catalysts (Scheme 54).  

O

1

O

164 165  

Scheme 54. 

 All the starting dienones 166, 167, 168, and 169 present one of the double bonds embedded in 

a heterocyclic framework; they were supposed to take advantage of the presence of the heteroatom 

in α-position of the dienone (Scheme 55). In the case of 167, isomerization of the terminal double 

bond must occur before the cyclization process takes place. Reaction conditions were optimized for 

each of the seven substrates (solvent, temperature, catalytic load 5–30 mol%), evidencing a strong 

solvent effect, as well solvent-free conditions.  
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 With a suitable substrate (166, R = Me), a good diastereoselectivity was observed, with a 5 to 

1 ratio in favour of the trans-diastereoisomer, in accord to previously obtained data, both under 

Brønsted and Lewis acid catalysis.  

 Interestingly, o-benzenedisulfonimide proved to be an efficient electrocyclization catalyst, 

also in the case of dienone 169, where other catalysts failed. Furthermore, its recyclability was 

again demonstrated. 

X
O

Ph

n

n = 2; R = H, Me;
X = NCOOMe, O

1

X

n

O

R
166 167

or
X

O

n

n = 2; X = O, S

168

7 examples; 40−78%
N

O

or

N
OEt

169

170

R

 

Scheme 55. 

2.4 ASYMMETRIC ORGANOCATALYSIS  

 The most recent and significant results concerning cyclic disulfonimides chemistry have been 

published in the last months.  

 The development of new organocatalysts is of crucial importance in asymmetric organic 

synthesis and many Lewis and Brønsted acids (and bases) have been proposed as useful 

organocatalysts in numerous organic transformations. In particular, very strong chiral Brønsted 

superacids have attracted the attention of chemists as promising catalysts because of their higher 

reactivity in the activation of substrates of low basicity, and the chiral environment induced by the 

corresponding chiral conjugated bases [65a] (concept also expressed as Asymmetric Counteranion 

Directed Catalysis, ACDC [65b]). 

 In this context, chiral disulfonimides 20 and 21 have been synthesized as new chiral strong 

Brønsted acids [15,16], and 20 has been shown to catalyze the asymmetric Mukaiyama aldol 
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reaction with high efficiency, high enantioselectivity and turnover numbers of up to 8800 [15]. (R)-

3,3’-Bis[3,5-bis(trifluoromethyl)phenyl]-1,1’-binaphthyl-2,2’-disulfonimide (20) was used in 

catalytic amounts (2−0.01 mol%) with good to excellent yields of aldol products 173 and high 

enantioselectivity (8 examples). In the presence of 5 mol% of catalyst, also aliphatic aldehydes gave 

good yields of products and reasonably good enantioselectivity (2 examples) (Scheme 56).  

R1CHO + R2

R2
OR3

OSiR3 20 (0.05−5 mol%)
R1

OSiR3

R2

COOR3

R2

171 172 173

173: 8 examples (20, 2 mol%); 78−98% (86 : 14−97 : 3% e.r.)
        2 examples (20, 5 mol%); 46−59% (75 : 25−91 : 9% e.r.)

R1 = Ar, styryl, alkyl

Et2O,−78 °C, 12−24 h

R2 = H, Me; R3 = Me, i-Pr
 

Scheme 56. 

 Moreover, catalyst 20 resulted to be more active and efficient than other known chiral 

binaphthyl acidic derivatives in the catalysis of asymmetric Mukaiyama aldol reaction, thus opening 

new promising perspectives of applications in asymmetric organic transformations. 

3. CRYSTAL STRUCTURE STUDIES ON o-BENZENEDISULFONIMIDE 

DERIVATIVES 

 Since molecules containing the sulfonimide [(SO2)2NH] moiety are strong NH acids, they can 

form with base either onium salts or uncharged hydrogen-bonded complexes. In literature, there is a 

substantial number of papers, mainly by A. Blaschette and P. J. Jones, from 1993 [5],  that report 

crystal structures of such derivatives with o-benzenedisulfonimide (1), belonging to both classes of 

compounds, normally prepared by metathesis from silver(I) o-benzenedisulfonimide (29) or by 1 

directly. In Table 1, we reported a list of studied onium compounds or coordination complexes in a 

chronological order. 

Table 1. 
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Compounds Lit. Ref. Compounds Lit. Ref. 

C6H4(SO2)2NAg·CH3CN [5] Me2[C6H4(SO2)2N]2Sn(OPPh3)2 and 

[Me2Sn(phen)2][C6H4(SO2)2N]2· CH3CN 

[75] 

C6H4(SO2)2NAg·H2O [66] C6H4(SO2)2NH and C6H4(SO2)2NCs [76] 

[C6H4(SO2)2N]2SnMe2(H2O)4 [67] C6H4(SO2)2NK·H2O, 

C6H4(SO2)2NRb·H2O, 

C6H4(SO2)2NNH4·H2O 

[77] 

{Me2[C6H4(SO2)2N]Sn(µ-OH)}2 [68] C6H4(SO2)2NNa·H2O [78] 

C6H4(SO2)2NAuPPh3O [69] C6H4(SO2)2NLi(H2O)3 [79] 

[C6H4(SO2)2N]2Ca(H2O)7 [70] [C6H4(SO2)2N]2Cd2(H2O)4 and 

[C6H4(SO2)2N]2Cu(H2O)4 

[80] 

[C6H4(SO2)2NLi(12-crown-4)] [71] [C6H4(SO2)2N]2Mg(H2O)6 and 

[C6H4(SO2)2N]2Be(H2O)4·2 H2O 

[81] 

[C6H4(SO2)2NNa(15-crown-5)] [72] [C6H4(SO2)2N]2Ba(H2O)2 [82] 

C6H4(SO2)2NH·CH3CN [73] C6H4(SO2)2NNH4·H2O and C6H4(SO2)2N 

[Ph3PNPPh3] 

[60] 

C6H4(SO2)2NAu(CyNH2)2 [74]   

 

The crystal structure of o-benzenedisulfonimide itself was determined: the five membered 1,3,2-

dithiazole ring has an envelope conformation, with the N atom lying outside the mean plane of the 

S–C–C–S moiety; in the crystal, the molecules are linked by N–H…O hydrogen bonds into chains 
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and in a three-dimensional network [73,74]. The structure of the  conjugated anion is described as 

an essentially planar bicyclic framework [67,72,73,74]. 

4. USES AND APPLICATIONS 

Some of the uses below have only a historical interest. Prepared by Holleman as saccharine 

analogue, sweetener properties of the o-benzenedisulfonimide  were tested: it “has at once a sweet 

and acid taste with a bitter after taste”[2]; however, the replacement of the imide hydrogen by an 

alkyl group led to practically tasteless compounds [83].  

N-Alkyl and N-dialkylaminoalkylderivatives have been reported to have local anaesthetic activity, 

more effective intradermally than by topical application [19]. 2-Methyl-5-chloro-6-

methylsulfamoylbenzo-1,3,2-dithiazole 1,1,3,3-tetraoxide showed diuretic activity [84]. A 

disulfonimide coumarin derivative is a bleach-resistant fluorescent whitener [85]. A N-aryl 

disulfonimide derivative has been copolymerized with acrylonitrile and methyl methacrylate to 

produce a useful fibre with permanent antistatic properties [86]. Heat-resistant polymers comprising 

poly(phenylene ethers), optionally styrene polymers and imides showed improved moldability [87]. 

5. CONCLUSIONS  

 o-Benzenedisulfonimide proved to be a useful reagent in organic synthesis. As outlined in the 

most recent studies, compared to strong liquid or solid Brønsted acids, extensively used from 

research laboratories to chemical manufacturing plants, the potential applications of 1 as safe, easy 

to handle, non corrosive, recoverable and recyclable organocatalyst are practically unlimited. 

Moreover, in the prospect of designing new chiral organocatalysts, investigations on new synthetic 

applications and structural modifications of 1 have gained the chemists attention and unprecedented 

results in asymmetric Mukaiyama aldol reaction have been recently reported. 
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