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Abstract: This paper provides a construction in the Bayesian framework of the
Fleming-Viot measure-valued diffusion with diploid fertility selection, and high-
lights new connections between Bayesian nonparametrics and population genet-
ics. Via a generalisation of the Blackwell-MacQueen Pólya-urn scheme, a Markov
particle process is defined such that the associated process of empirical measures
converges to the Fleming-Viot diffusion. The stationary distribution, known from
Ethier and Kurtz (1994), is then derived through an application of the Dirichlet
process mixture model and shown to be the de Finetti measure of the particle
process. The Fleming-Viot process with haploid selection is derived as a special
case.
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1. Introduction And Preliminaries

The Fleming-Viot process, introduced by Fleming and Viot (1979), is a dif-
fusion on the space P(X ) of Borel probability measures on X , endowed with the
topology of weak convergence, where X is a locally compact complete separa-
ble metric space called the type space. The general form of the generator which
provides the Fleming-Viot process is given by Ethier and Kurtz (1993) as

Aφ(µ) =
1
2

∫

X

∫

X
µ(dx){δx(dy) − µ(dy)} ∂2φ(µ)

∂µ(x)∂µ(y)

+
∫

X
µ(dx) G

(
∂φ(µ)
∂µ(·)

)
(x) +

∫

X

∫

X
µ(dx)µ(dy)R

(
∂φ(µ)
∂µ(·)

)
(x, y)

+
∫

X

∫

X
µ(dx)µ(dy)(σ(x, y) − 〈σ, µ2〉)∂φ(µ)

∂µ(·) ,

where ∂φ(µ)/∂µ(x) = limε→0+ ε−1{φ(µ + εδx)−φ(µ)}, µ2 denotes product mea-
sure, and we take the domain D(A) to be the set of all φ ∈ B(P(X )), where
B(P(X )) is the set of bounded, Borel measurable functions on P(X ), of the
form φ(µ) = F (〈f1, µ〉, . . . , 〈fm, µ〉) = F (〈f , µ〉), where 〈f, µ〉 =

∫
fdµ and, for
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m ≥ 1, we have f1, . . . , fm ∈ D(G) and F ∈ C2(Rm). Also, G is the generator of
a Feller semi-group on the space Ĉ(X ) of continuous functions vanishing at infin-
ity, known as the mutation operator, R is a bounded linear operator from B(X )
to B(X 2), known as the recombination operator, and σ ∈ Bsym(X 2) is called
selection intensity function. Here Bsym(X 2) is the set of nonnegative, bounded,
symmetric, Borel measurable functions on X 2. We assume throughout the paper
that R ≡ 0, i.e., there is no recombination in the model.

Ethier and Kurtz (1986) showed that when there is no selection nor recom-
bination, and the mutation operator is

Gf(x) =
1
2
θ

∫
[f(z) − f(x)]ν0(dz), (1.1)

where θ > 0 and ν0 is a non atomic probability measure on X , then the sta-
tionary distribution of the Fleming-Viot process (in this case often called neutral
diffusion model) is the Dirichlet process with parameter (θ, ν0), denoted by Πθ,ν0 .
The Dirichlet process, introduced by Ferguson (1973), is defined as follows. Let α
be a finite measure on X , endowed with its Borel sigma-algebra B(X ). A random
probability measure µ∗ on X is said to be a Dirichlet process with parameter α if
for every measurable partition B1, . . . , Bk of X , the vector (µ∗(B1), . . . , µ∗(Bk))
has the Dirichlet distribution with parameters (α(B1), . . . ,α(Bk)). A recent con-
tribution by Walker, Hatjispyros and Nicoleris (2007) showed how the neutral
diffusion model is strictly related to Bayesian nonparametrics.

Assuming (1.1) holds, define φm(µ) = 〈f, µm〉, for f ∈ B(Xm) and µm being
a m-fold product measure, and consider a diploid selection function σ ∈ Bsym(X 2)
and no recombination. Then the generator of the Fleming-Viot process is (cf.,
e.g., Donnelly and Kurtz (1999))

m∑

i=1

〈Gif, µm〉 +
1
2

∑

1≤k %=i≤m

〈Φkif − f, µm〉

+
m∑

i=1

(
〈σi·(·, ·)f, µm+1〉 − 〈σ(·, ·) ⊗ f, µm+2〉

)
, (1.2)

where Gi is (1.1) operating on f as a function of xi alone, Φkif is the function
of m − 1 variables obtained by setting the ith and the kth variables in f equal,
σi·(·, ·) denotes σ(xi, xm+1), and σ(·, ·)⊗ f denotes σ(xm+1, xm+2)f(x1, . . . , xm).
Ethier and Kurtz (1994) showed that in this case the stationary distribution is

Π(dµ) = Ce〈σ,µ2〉Πθ,ν0(dµ), (1.3)

where C is a constant and 〈σ, µ2〉 =
∫∫

σ(x, y)µ(dx) µ(dy).



BAYESIAN CONSTRUCTION OF FLEMING-VIOT PROCESS WITH SELECTION 709

The purpose of the present work is to extend Walker, Hatjispyros and Nico-
leris (2007) and further detail how Bayesian nonparametrics is connected to pop-
ulation genetics, and to the Fleming-Viot diffusion in particular. More specif-
ically, this paper provides an explicit construction of the Fleming-Viot process
with diploid selection, whose generator is (1.2), based on ideas borrowed from
the Bayesian nonparametric literature. Our arguments present interesting appli-
cations of some typically Bayesian models, as Pólya predictive schemes, Gibbs
sampling procedures, and Bayesian hierarchical models, to population genet-
ics. The outline of the construction is the following. First a generalisation of
the Blackwell-MacQueen Pólya urn scheme is introduced by means of a mix-
ture model and the key predictive distribution is computed. Then we define
an X n-valued Markov jump process, representing the evolution in time of the
individuals, whose transitions are based on the new predictive, and it is shown
that, with a particular choice for the selection function, the associated process
of empirical measures converges weakly to a Fleming-Viot process with diploid
fertility selection. By exploiting the properties of the Gibbs sampling algorithm,
it is then shown that the stationary distribution of the measure-valued diffusion,
known to be (1.3), is the de Finetti measure of the exchangeable variables intro-
duced in the mixture model. In Section 3 some insight into the functional form
of Π(dµ) will be provided from a Bayesian viewpoint. Finally, the Fleming-Viot
process with haploid selection is derived as a special case.

2. Conditional Predictive Density

Let pn(dx1, . . . , dxn), for n even (which we assume henceforth), be the ex-
changeable law associated with the Blackwell-MacQueen urn-scheme (cf. (2.3) be-
low and Blackwell and MacQueen (1973)). Let Pn denote a pairing of {1, . . . , n}
such that, given Pn, k is paired with jk. The distribution of the pairings is as-
sumed to be uniform. We will also use σ̃n(xk, xjk), where σ̃n ∈ Bsym(X 2). Then
we consider a generalisation of pn via the function σ̃n(x, y), by introducing

qn(dx1, . . . , dxn, Pn) ∝ pn(dx1, . . . , dxn)
∏

k

σ̃n(xk, xjk). (2.1)

In Section 3 a representation of (2.1) in terms of a mixture model is provided. It
is clear that integrating out Pn, we obtain an exchangeable law. Removing one
element of the vector (x1, . . . , xn), say xi, then the predictive, jointly with Pn, is

qn(dxi, Pn|x−i) ∝ pn(dxi|x−i) σ̃n(xi, xji),

where x−i denotes (x1, . . . , xi−1, xi+1, . . . , xn). Now

qn(Pn|x−i) ∝
∫

pn(dxi|x−i) σ̃n(xi, xji);
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and since from (2.1) we can write

qn(dxi|x−i, Pn) =
pn(dxi|x−i) σ̃n(xi, xji)∫
pn(dw|x−i) σ̃n(w, xji)

,

we obtain

qn(dxi|x−i) ∝
n∑

j %=i

qn(Pn|x−i)
pn(dxi|x−i) σ̃n(xi, xj)∫
pn(dw|x−i) σ̃n(w, xj)

∝ pn(dxi|x−i)
n∑

j %=i

σ̃n(xi, xj).

Thus we have

qn(dxi|x−i) =
pn(dxi|x−i)

∑n
j %=i σ̃n(xi, xj)∫

pn(dw|x−i)
∑n

j %=i σ̃n(w, xj)
. (2.2)

When pn is derived from the Dirichlet process prior, the predictive for xi is given
by the Blackwell-MacQueen urn scheme

pn(dxi|x−i) =
θ ν0(dxi) +

∑
k %=i δxk(dxi)

θ + n − 1
. (2.3)

Then the predictive (2.2) can be written as

qn(dxi|x−i) =
θ
∑n

j %=i σ̃n(xi, xj) ν0(dxi) +
∑n

k %=i

∑n
j %=i σ̃n(xi, xj) δxk(dxi)

∫ (
θ
∑n

j %=i σ̃n(w, xj) ν0(dw) +
∑n

k %=i

∑n
j %=i σ̃n(w, xj) δxk(dw)

)

=
θn,i νn,i(dxi) +

∑n
k %=i

∑n
j %=i σ̃n(xi, xj) δxk(dxi)

θn,i +
∑n

k %=i

∑n
j %=i σ̃n(xk, xj)

, (2.4)

where

θn,i = θ

∫ n∑

j %=i

σ̃n(w, xj) ν0(dw), (2.5)

νn,i(dw) =
∑n

j %=i σ̃n(w, xj) ν0(dw)
∫ ∑n

j %=i σ̃n(w, xj) ν0(dw)
. (2.6)

Expression (2.4) is the transition density of the Markov particle process defined
in Section 4, and the full conditional distribution driving the Markov chain con-
structed via a Gibbs sampler in the next section. Observe that in (2.4) a larger
σ̃n implies a larger probability for the first coordinate of being selected to update
xi; that means the larger the σ̃n the higher the fitness of the individual who is
going to have an offspring. Here fitness means the tendency to have the property
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or quality that makes an individual more likely to give birth. In this framework,
this is mathematically modeled by the pair-dependent coefficient σ̃n that quan-
tifies the degree of possession of that property or, in other words, the level of
fitness. In population genetics terms, such a function describes the intensity of
fertility selection. When σ̃n(x, y) ≡ 1 for all n we recover the Dirichlet case, that
is (2.3).

Note that, from (2.1), it is also possible to derive the distribution of the
pairing. Indeed

qn(Pn) ∝
∫

Xn
pn(dx1 . . . dxn)

∏

k

σ̃n(xk, xjk),

from which is also clear the key role of the selection function: since a pair with
higher fitness will give a higher value of σ̃n, those individuals which are fitter
when paired will increase the probability of that specific pair occurring.

3. Gibbs Sampling

The Gibbs sampler (see Geman and Geman (1984) and Gelfand and Smith
(1990)) is an iterative procedure that belongs to the more general class of Markov
Chain Monte Carlo algorithms, whose use is nowadays wide-spread in the
Bayesian literature. The Gibbs sampler can be synthetically outlined as fol-
lows. Suppose we want to sample from f(z1, . . . , zn|ϑ), but this is not feasible.
Given a vector of initial values (z(0)

1 , . . . , z(0)
n ), we sample updates for each zi from

the so-called full conditional distribution f(zi|z1, . . . , zi−1, zi+1, . . . , zn,ϑ), which
is typically easier to deal with. This is done iteratively, so that

z(1)
1 ∼ f(z1|z(0)

2 , . . . , z(0)
n ,ϑ),

z(1)
2 ∼ f(z2|z(1)

1 , z(0)
3 , . . . , z(0)

n ,ϑ),
...

z(1)
n ∼ f(zn|z(1)

1 , . . . , z(1)
n−1,ϑ),

z(2)
1 ∼ f(z1|z(1)

2 , . . . , z(1)
n ,ϑ),

and so on. This produces a Markov chain whose stationary distribution is given
by the joint distribution f(z1, . . . , zn|ϑ), so that after a sufficient number of itera-
tions an arbitrarily large sample from the distribution of interest is available (see
for example Gelfand and Smith (1990)). Observe that the stationary distribution
of a single component zi is f(zi|ϑ). Note also that the result still holds if the
coordinates are updated in a random order (called random scan), as long as all
coordinates are visited infinitely often.
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In this section the theoretical properties of the Gibbs sampler are exploited
to derive the stationary distribution of a chain of random distribution functions,
which will be of great help in Section 4 for the derivation of the stationary distri-
bution of the Fleming-Viot process. We can represent qn in (2.1) in the following
way. We take µ ∼ Πθ,ν0 and x1, . . . , xn|µ to be independent and identically
distributed according to µ. We then assume there is a conditional density for
continuous variables (y1, . . . , yn), with each yi defined on the real line, whereby

p̃n(y1 = 1, . . . , yn = 1|x1, . . . , xn, Pn) =
∏

k

n σ̃(xk, xjk),

the product being over n/2 terms. Hence, qn(dx1, . . . , dxn, Pn) is the conditional
law of (x1, . . . , xn, Pn) given (y1 = 1, . . . , yn = 1). Here we are considering an n
factor in the product because we are going to take σ̃ of order n−1. The reason
for this choice will be made clear in Section 4.

Consider now a Gibbs sampler algorithm implemented on (x1, . . . , xn, µ),
where at each iteration x1, . . . , xn are sampled from the full conditionals (2.4),
that is qn(dxi|x1, . . . , xi−1, xi+1, . . . , xn), and µ is sampled from the Dirichlet
process conditional on (x1, . . . , xn), denoted by Πθ,ν0(·|x1, . . . , xn). Note that
(see Ferguson (1973))

Πα( · |x1, . . . , xn) = Πα+
Pn

i=1 δxi
( · ).

From the properties of the Gibbs sampler it follows that the stationary dis-
tribution of the X n-valued Markov chain generated by (x1, . . . , xn) is given by
qn(dx1 · · · dxn). Furthermore, since

p̃n(y1 = 1, . . . , yn = 1|µ, Pn) =
{

n

∫∫
σ̃n(x, y)µ(dx)µ(dy)

}n
2

which does not depend on Pn, the stationary distribution of the chain of random
distribution functions is the law of (µ|y1 = 1, . . . , yn = 1), denoted by Πn(dµ),
given according to Bayes’ theorem by

Πn(dµ) =
Πθ,ν0(dµ)p̃n(y1 = 1, . . . , yn = 1|µ)∫
Πθ,ν0(dν)p̃n(y1 = 1, . . . , yn = 1|ν)

;

i.e., it is proportional to
{

n

∫∫
σ̃n(x, y)µ(dx)µ(dy)

}n
2

Πθ,ν0(dµ). (3.1)

Note that P(X ) is compact if X is, in which case {Πn, n ≥ 1} is tight. If we
now set σ̃n(x, y) = n−1[1 + 2n−1σ(x, y)], where σ(x, y) ∈ Bsym(X 2), we obtain

Πn(dµ) ∝
{

1 +
∫∫

1
n/2

σ(x, y)µ(dx)µ(dy)
}n

2

Πθ,ν0(dµ)



BAYESIAN CONSTRUCTION OF FLEMING-VIOT PROCESS WITH SELECTION 713

and, taking the limit for n → ∞, yields

Π∞(dµ) ∝ exp
{∫∫

σ(x, y)µ(dx)µ(dy)
}
Πθ,ν0(dµ).

This is the stationary distribution of the chain of random distribution functions
when the sample size, i.e. the dimension of the chain, grows to infinity, and is
also the de Finetti measure of the sequence (x1, x2, . . . |y1 = 1, y2 = 1, . . .). The
de Finetti measure of an infinite exchangeable sequence (z1, z2, . . .) is defined as
the unique probability measure Q on the space P(X ) such that, for every n > 0,

(z1, . . . , zn) ∼
∫

P(X )
ξn(d·)Q(dξ),

where ξ is a probability measure sampled from Q and ξn denotes a n-fold product
measure. In other words, conditional on ξ, the random variables (z1, . . . , zn) are
iid ξ. See Aldous (1985) for more details.

4. The Particle Process and the Associated Measure-Valued Process

In this section we construct an X n-valued Markov particle process based
on (2.4) and an associated P(X )-valued process, and show that, in a special
case for the function σ̃n, for large n the latter converges in distribution to the
Fleming-Viot process with diploid fertility selection.

Consider a vector of n particles, and define the particle process as follows.
Instantaneously after each transition, a particle xi, for 1 ≤ i ≤ n, is selected
with uniform probability, and a holding time is sampled from an exponential
distribution of parameter λn,i = λn(xi). At the next transition, the ith particle
is replaced with a random sample from (2.4). Since the holding time depends
on xi, which belongs to the current state only, the process is clearly Markovian.
Consider now the Markov chain embedded at jump times. Since the transition
laws are given by qn(dxi|x−i), the chain is otherwise obtained by implementing
a Gibbs sampler on qn(dx1, . . . , dxn), of which (2.4) is the full conditional dis-
tribution. This ensures that qn is the stationary distribution of the X n-valued
chain and, given that between jumps the vector is constant, the continuous time
process.

For f ∈ B(X n), the generator of the X n-valued process is

Anf(x) =
n∑

i=1

λn,i

n

∫ [
f(ηi(x|y)) − f(x)

]

×
(
θn,i νn,i(dy) +

∑n
k %=i

∑n
j %=i σ̃n(y, xj) δxk(dy)

θn,i +
∑n

k %=i

∑n
j %=i σ̃n(xk, xj)

)
,
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where ηi(x|z) = (x1, . . . , xi−1, z, xi+1, . . . , xn), which equals

n∑

i=1

λn,i θn,i

n
(
θn,i +

∑n
k %=i

∑n
j %=i σ̃n(xk, xj)

)
∫

[f(ηi(x|y)) − f(x)]νn,i(dy)

+
n∑

i=1

n∑

k %=i

n∑

j %=i

λn,i σ̃n(xk, xj)

n
(
θn,i +

∑n
k %=i

∑n
j %=i σ̃n(xk, xj)

) [f(ηi(x|xk)) − f(x)].

If we let the Poisson intensity rate be

λn,i =
n

(
θn,i +

∑n
k %=i

∑n
j %=i σ̃n(xk, xj)

)

2
, (4.1)

we obtain
n∑

i=1

1
2
θn,i

∫
[f(ηi(x|y))−f(x)]νn,i(dy)+

∑

1≤k %=i%=j≤n

1
2
σ̃n(xk, xj)[f(ηi(x|xk))−f(x)].

(4.2)

Consider now the same choice for σ̃n as in Section 3, i.e.,

σ̃n(x, y) =
1
n

+
2
n2

σ(x, y), (4.3)

where σ ∈ Bsym(X 2). Substituting (2.5), (2.6), and (4.3) in (4.2) yields

Anf(x) =
1
n

∑

1≤j %=i≤n

G
n,σj

i f(x)

+
1
2

∑

1≤k %=i≤n

[f(ηi(x|xk)) − f(x)]

+
1
n2

∑

1≤k %=i%=j≤n

σ(xk, xj)[f(ηi(x|xk)) − f(x)],

where
Gn,σjf(x) =

1
2
θ

∫
[f(y) − f(x)]

(
1 +

2σ(y, xj)
n

)
ν0(dy) (4.4)

and G
n,σj

i is the operator Gn,σj applied to the ith argument of f .
As in Donnelly and Kurtz (1999), define the probability measure µ(m) on

Xm, m ≤ n, by

µ(m) =
1

n(n − 1) . . . (n − m + 1)

∑

1≤i1 %=···%=im≤n

δ(xi1 ,...,xim ). (4.5)
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Also, for f ∈ B(Xm), m ≤ n, define φ(m)(µ) = 〈f, µ(m)〉 and Anφ(m)(µ) =
〈Anf, µ(m)〉, where 〈f, µ〉 =

∫
fdµ. Then the generator for the process of empir-

ical measures in the n-dimensional case is

Anφ(n)(µ) =
1
n

∑

1≤j %=i≤n

〈Gn,σj

i f, µ(n)〉

+
1
2

∑

1≤k %=i≤n

〈Φkif − f, µ(n)〉

+
1
n2

∑

1≤k %=i %=j≤n

〈σkj(·, ·)(Φkif − f), µ(n)〉,

where σkj(·, ·) denotes σ(xk, xj), and Φkif is the function of f where the coordi-
nate at level k has replaced the coordinate at level i.

Observe that for f ∈ B(Xm), m ≤ n,
n∑

i=m+1

n∑

j %=i

〈Gn,σj

i f, µ(n)〉 = 0,

n∑

i=m+1

n∑

k %=i

〈Φkif − f, µ(n)〉 = 0,

n∑

i=m+1

n∑

k %=i

n∑

j %=i

〈σkj(·, ·)(Φkif − f), µ(n)〉 = 0,

given that in all cases xi is not an argument of f and thus f does not change.
Further, that

m∑

i=1

n∑

k=m+1

〈Φkif − f, µ(n)〉 = 0

given that 〈Φkif, µ(n)〉 = 〈f, µ(n)〉 when xk is not an argument of f . Hence, when
f ∈ B(Xm), m ≤ n, we have

Anφ(m)(µ) =
1
n

∑

1≤j %=i≤m

〈Gn,σj

i f, µ(m)〉

+
n − m

n

m∑

i=1

〈Gn,σm+1
i f, µ(m+1)〉

+
1
2

∑

1≤k %=i≤m

〈Φkif − f, µ(m)〉

+
1
n2

∑

1≤k %=i%=j≤m

(
〈σkj(·, ·)Φkif, µ(m)〉 − 〈σkj(·, ·)f, µ(m)〉

)
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+
n − m

n2

m∑

i=1

m∑

j %=i

(
〈σij(·, ·)f, µ(m)〉 − 〈σ·j(·, ·)f, µ(m+1)〉

)

+
n − m

n2

∑

1≤k %=i≤m

(
〈σk·(·, ·)Φkif, µ(m+1)〉 − 〈σk·(·, ·)f, µ(m+1)〉

)

+
(n − m)2

n2

m∑

i=1

(
〈σi·(·, ·)f, µ(m+1)〉 − 〈σ(·, ·) ⊗ f, µ(m+2)〉

)
, (4.6)

where we used the notation σh·(·, ·)f = σ(xh, xm+1)f(x1, . . . , xm) and σ(·, ·)⊗f =
σ(xm+1, xm+2)f(x1, . . . , xm).

Note that in the fifth term we have σij , since the operator Φki has replaced
the particle at level i in f with xk, which is the reason for the different dimension
of integration. The same applies to the last term.

Given now that (4.4) converges to

Gf(x) =
1
2
θ

∫
[f(y) − f(x)]ν0(dy),

we have that 〈Gn,σm+1
i f, µ(m+1)〉 converges to 〈Gif, µ(m+1)〉 = 〈Gif, µ(m)〉. The

last identity is due to the fact that the (m + 1)-th dimension is referred to an
argument of σ in (4.4), which vanishes in the limit.

Since in addition, for large n, µ(m) is essentially product measure, the limiting
operator is

Aφm(µ) =
m∑

i=1

〈Gif, µm〉 +
1
2

∑

1≤k %=i≤m

〈Φkif − f, µm〉

+
m∑

i=1

(
〈σi·(·, ·)f, µm+1〉 − 〈σ(·, ·) ⊗ f, µm+2〉

)
, (4.7)

where φm(µ) = 〈f, µm〉 for f ∈ B(Xm). Aφm(µ) is the generator of the Fleming-
Viot process with diploid fertility selection (cf. (1.2)). The above computation
implies that the measure-valued process, constructed by means of the generalised
Pólya urn scheme, converges in distribution to the Fleming-Viot process with
fertility selection.

Theorem 4.1. Let X be a compact Polish space, f ∈ B(Xm) for m ≤ n, µ(m)

be as in (4.5), and σ ∈ Bsym(X 2). Let the mutation operator Gn,σj be defined by
(4.4) and Φki : X n → X n−1 be defined, for k, i ≤ n, by

Φkif(x1, . . . , xn) = f(x1, . . . , xi−1, xk, xi+1, . . . , xn).

Let {µn(t)}t>0 be a Markov process with sample paths in DP(X )([0,∞)) and with
generator (4.6). Let {µ(t)}t>0 be the Fleming-Viot process with generator (4.7).
Then µn ⇒ µ in the Skorohod topology.
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Proof. Given the convergence of (4.6) to (4.7), the result follows by an appli-
cation of Theorem 1.6.1 and 4.2.5 of Ethier and Kurtz (1986), together with the
observation that the martingale problem for (4.7) is well-posed (cf., Ethier and
Kurtz (1993)).

Observe that for σ ≡ 0, i.e. when there is no selection, (4.7) reduces to
the generator of the neutral diffusion model whose stationary distribution is the
Dirichlet process. This is consistent with the generalisation of the predictive
distribution described in Section 3, which for σ ≡ 0 reduces to the the Blackwell-
MacQueen case.

5. Stationary Distribution

As stated in the Introduction, it was shown by Ethier and Kurtz (1994)
that the measure-valued process with generator (4.7) has stationary distribution
given by (1.3). In this section we provide a different proof of this result, based on
the construction of the previous sections. In particular, in Section 3 the use of
the Gibbs sampler enabled us to elicit the stationary distribution of the chain of
random distribution functions. What remains to do is to connect the de Finetti
measure of the sequence with the empirical measure of the particles when the
population size goes to infinity.

Theorem 5.2. Let X be a compact Polish space, and let {µ(t)}t>0 be the
Fleming-Viot process with generator (4.7). Then

Π∞(dµ) = C exp
{∫∫

σ(x, y) µ(dx)µ(dy)
}
Πθ,ν0(dµ) (5.1)

is the stationary distribution of {µ(t)}t>0, where C is a constant and Πθ,ν0 de-
notes the Dirichlet process with parameters (θ, ν0).

Proof. In Section 4 we showed that qn(dx1, . . . , dxn) is the stationary distribu-
tion of the X n-valued particle process. Then, for fixed t ≥ 0 in steady state of the
particle process, from Section 3 it follows that (x1, . . . , xn|µ, y1 = 1, . . . , yn = 1)
are i.i.d. µ with µ ∼ Πn, where Πn is proportional to (3.1). Hence the limit as n
tends to infinity of n−1 ∑n

i=1 δxi has distribution Π∞ (see, for example, Aldous
(1985)). That is, the limiting distribution of the empirical measure of the parti-
cles (x1, . . . , xn) is given by the de Finetti measure of the infinite exchangeable
sequence (x1, x2, . . . ) conditional on (y1 = 1, y2 = 1, . . . ). Since the particles are
in steady state, this holds for every s ≥ t.

Furthermore, the CP(X )[0,∞) martingale problem for A is well posed (cf.,
Ethier and Kurtz (1993)), that is, A characterises a unique solution. In this case
Lemma 4.9.1 of Ethier and Kurtz (1986) states that if the limiting process has
the same distribution at all instants, this is a stationary distribution. Uniqueness
follows from Ethier and Kurtz (1994).
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Clearly, when σ(x, y) ≡ 0 we recover the Dirichlet process.

6. Haploid Case

In this section we show how the parameters of the model simplify in the
special case of haploid selection. The Fleming-Viot process with haploid fertility
selection has generator given by

m∑

i=1

〈Gif, µm〉 +
1
2

∑

1≤k %=i≤m

(
〈Φkif, µm−1〉 − 〈f, µm〉

)

+
m∑

i=1

(
〈σi(·)f, µm〉 − 〈σ(·) ⊗ f, µm+1〉

)
, (6.1)

where σi(·) denotes σ(xi) and σ(·) ⊗ f denotes σ(xm+1)f(x1, . . . , xm) (cf., Don-
nelly and Kurtz (1999)). Its stationary distribution is

Π(dµ) = Ce2〈σ,µ〉Πθ,ν0(dµ), (6.2)

where 〈σ, µ〉 =
∫
σ(x)µ(dx). Note that (6.2) is a special case of (1.3), when

σ(x, y) = σ(x) + σ(y). See also Ethier and Shiga (2000).
A construction analogous to that exposed so far can be done starting from

pn(y1 = 1, . . . , yn = 1|x1, . . . , xn) =
n∏

i=1

σ̃n(xi)

together with x1, . . . , xn|µ ∼iid µ and µ ∼ Πθ,ν0 . Proceeding as in Section 2 we
obtain

qn(dx|x1, . . . , xj−1, xj+1, . . . , xn) =
θn νn(dx) +

∑n
i %=j σ̃n(xi) δxi(dx)

θn +
∑n

i%=j σ̃n(xi)
, (6.3)

where θn = θ
∫
σ̃n(x)ν0(dx) and νn(dx) = σ̃n(x)ν0(dx)[

∫
σ̃n(x)ν0(dx)]−1. Defin-

ing a Markov particle process as in Section 4, where now the transition law for
the new particle is given by (6.3), and letting λn,i = 2−1n(θn +

∑
k %=i σ̃n(xk)), we

obtain
n∑

i=1

1
2
θn

∫
[f(ηi(x|y)) − f(x)]νn(dy) +

∑

1≤k %=i≤n

1
2
σ̃n(xi)[f(ηi(x|xk)) − f(x)].

Consider the particular choice σ̃n(x) = 1 + n−12σ(x), where σ is a bounded
nonnegative measurable function on X ; this yields

Anf(x) =
n∑

i=1

1
2
θ

∫
[f(ηi(x|y)) − f(x)]{1 +

2σ(y)
n

}ν0(dy)
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+
1
2

∑

1≤k %=i≤n

[f(ηi(x|xk)) − f(x)] +
1
n

∑

1≤k %=i≤n

σ(xk)[f(ηi(x|xk)) − f(x)].

Proceeding as in Section 4 we can derive the generator for the process of the
empirical measures in the n-dimensional case through

Anφ(n)(µ) =
n∑

i=1

〈Gn
i f, µ(n)〉 +

1
2

∑

1≤k %=i≤n

〈Φkif − f, µ(n)〉

+
∑

1≤k %=i≤n

1
n
σk(·)〈Φkif − f, µ(n)〉,

where Gnf(x) = (1/2)θ
∫

[f(z) − f(x)]{1 + 2σ(z)/n}ν0(dz). When f ∈ B(Sm),
m < n,

Anφ(m)(µ) =
m∑

i=1

〈Gn
i f, µ(m)〉 +

1
2

∑

1≤k %=i≤m

〈Φkif − f, µ(m)〉

+
1
n

∑

1≤k %=i≤m

(
〈σk(·)Φkif, µ(m)〉 − 〈σk(·)f, µ(m)〉

)

+
n − m

n

m∑

i=1

(
〈σi(·)f, µ(m)〉 − 〈σ(·) ⊗ f, µ(m+1)〉

)
.

The limiting operator is then

Aφm(µ) =
m∑

i=1

〈Gif, µm〉 +
1
2

∑

1≤k %=i≤m

〈Φkif − f, µm〉

+
m∑

i=1

(
〈σi(·)f, µm〉 − 〈σ(·) ⊗ f, µm+1〉

)
, (6.4)

where Gn has been replaced by G, defined in (1.1).
Following an analogous procedure to that used in the proof of Theorem 5.2,

one can show that the stationary distribution of the Fleming-Viot process with
generator (6.4) is (6.2), as we know from Ethier and Kurtz (1994) and Ethier
and Shiga (2000).
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