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ABSTRACT 

In the present study we used a transgenic mouse model, carrying the neuropeptide Y 

(NPY) Y1 receptor gene promoter linked to the LacZ reporter gene (Y1R/LacZ mice) 

to test the hypothesis of its up-regulation by gonadal hormones. Y1 receptor gene 

expression was detected by means of histochemical procedures and quantitative 

image analysis in the paraventricular nucleus, arcuate nucleus, medial preoptic 

nucleus, ventromedial nucleus and bed nucleus of stria terminalis of two month-old 

female mice at different stages of estrous cycle. Qualitative and quantitative analises 

showed that Y1R/LacZ transgene expression was higher in the paraventricular, 

arcuate, and ventromedial nuclei of proestrus mice as compared to mice in the other 

stages of the estrous cycle. In addition, we performed a comparison with a group of 

sexually active males. In this comparison a significant difference (less in males) was 

observed between males and proestrus females in the same nuclei. In conclusion, 

these data indicate that fluctuations in circulating levels of gonadal hormones, 

depending by estrous cycle, are paralleled by changes in the expression of NPY Y1 

receptor in the hypothalamic nuclei involved in the control of both energy balance and 

reproduction. 
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1. INTRODUCTION 

Neuropeptide Y (NPY) is a 36 aminoacid peptide widely expressed throughout the 

central nervous systems (CNS) of vertebrates. In particular, NPY is present in key 

centers for the regulation of endocrine and neuroendocrine functions (for a review see 

[8]) as in the hypothalamic arcuate nucleus (ARC, [22]), and in the amygdala [12]). 

NPY neurons of the ARC mostly project to the paraventricular nucleus (PVN, the 

main site of the control of energy balance [2]), while the NPY neurons of the 

amygdala belong to circuits related to stress and emotionality [34].  

Due to its wide distribution, NPY is involved in a variety of biological effects 

grouped in four main fields: regulation of food intake [5], neuroendocrine control of 

reproduction and of sexual behavior [1], depression [29], anxiety and stress [33]. 

The intracerebroventricular injection of NPY caused a dose-related inhibition of 

copulatory behavior in adult sexually-experienced male rats [28], and inhibition of 

lordosis in ovariectomized steroid-primed female Syrian hamsters [7]. On the other 

hand, the administration of a NPY antagonist improves sexual behavior in male rats 

[27], and attenuates the termination of receptivity in female rats [6]. Gonadal 

hormones can influence NPY mRNA expression, in fact, castrated male rats show a 

decrease of NPY concentration in ARC [36]. In turn, NPY positive neurons make 

synaptic contacts on GnRH neurons and fibers [35], and modulate GnRH and LH 

secretion [32], for reviews see [9, 38]. Finally, NPY mRNA  expressing neurons are 

in larger number in males than in proestrus female in the caudal ARC [36] suggesting 

the existence of a functional sexual dimorphism. 

NPY stimulates LH secretion [16] and GnRH release in rats via the activation of the 

Y1 receptor subtype [39]. These activities are estrogen-dependent, and they seem to 

be related to interactions of estrogens with the Y1-R gene [39]. In vitro studies 

performed on transiently transfected NG108-15 neuroblastoma-glioma cells have 

shown that activation of estrogen receptor alpha (ER) stimulate transcriptional 

activity of the Y1-R, possibly by interacting with estrogen-responsive elements (ERE) 

[23]. Moreover studies in vivo demonstrated, by competitive RT-PCR, that the 

content of hypothalamic Y1R mRNA changes during the estrous cycle in female rats 

[39].  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

-  4 

In the present study we used a transgenic mouse model, carrying the Y1 receptor (Y1-

R) gene promoter linked to the LacZ reporter gene (Y1R/LacZ mice) [26], to identify 

the hypothalamic and limbic nuclei where changes in Y1-R take place during estrous 

cycle. In addition we investigated the putative existence of sexual differences in these 

regions.  

 

 

2. MATERIALS AND METHODS 

2.1 Animals 

A total of 24 Y1R/Lac Z transgenic mice (4 males and 20 females, line 62 from our 

breeding colony [26]) were employed in this study. The animals were housed into 

monosexual groups of five per cage with food and water ad libitum and were 

maintained on a 12h light-12 h dark cycle at a temperature of 22-28°C. 

The females were divided into 4 groups [proestrus (n=5), estrus (n=5), metaestrus 

(n=5), diestrus (n=5)], depending on the day of the cycle detected by examination of 

vaginal smears immediately before the sacrifice. 

Animal care was in accordance with the European Community Council Directive of 

November 24, 1986 (86/609/EEC), and the experimental protocol was approved by 

animal investigation committee of Italian MIUR and by the ethic committee of the 

University of Torino. 

 

2.2 Fixation and tissue preparation 

At the age of two months the mice were irreversibly anaesthetized by an 

intraperitoneal injection of tri-bromo-ethanol (250 mg/kg) followed by trans-cardiac 

perfusion of a saline solution (0.9%), until the return blood was clear, and then with 

150 ml of fixative [4% paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.3-

7.4]. 

Brains were dissected out of the skull, post-fixed for 2 h at 4°C in the same fixative, 

rinsed in 0.01 M saline PB (PBS), placed overnight in a 30% sucrose solution in PBS, 

frozen in liquid isopentane at -35°C, and stored in a deep freezer at -80° C. They were 

serially sectioned in the coronal planes at 25µm thickness with a cryostat. The plane 

of sectioning was oriented to match the drawings corresponding to the transverse 

sections of the mouse brain atlas [10]. Sections were collected in a cryoprotectant 

solution [37] at -20°C. Every fourth section (a section every 100 µm) one was 
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processed for Y1R histochemistry. Brain sections were always stained in groups 

containing male and females from all estrous cycle stages, so that between assays 

variance could not cause systematic group differences. 

 

2.3 Beta-galactosidase histochemistry 

Y1R/LacZ expression was determined by -galactosidase staining of brain coronal 

sections according to our previously described method [24-26] slightly modified (due 

to the perfusion of the animals, the sections were not further fixed). Briefly, sections 

were incubated overnight at 37°C in a solution containing 1mg/ml X-gal, 5mM 

potassium ferricyanide, 5mMpotassium ferrocyanide, 2mMMgCl2, 0,01% Triton X-

100 in 1X PBS. They were then washed in water for 5 minutes, counterstained with 

nuclear fast red, coverslipped with DPX mounting medium (Fluka Chemical Co., 

Buchs, Switzerland) and analyzed.  

 

2.4 Quantification of transgene expression as determined by -galactosidase 

histochemistry  

The expression of the transgene appears as blue dots. Sections were counterstained 

with neutral fast red and hypothalamic nuclei were identified on the basis of the 

mouse brain atlas [10]. For each mouse, two standardized sections of comparable 

levels of the medial preoptic nucleus (MPOM) (around bregma 0.14, 0.10 mm), 

ventromedial nucleus (VMH) (around bregma –1.46 –1.70), ARC (around bregma –

1.46 –1.70), bed nucleus of stria terminalis, pars medialis ventral portion (BSTMV) 

(around bregma -0.02, -0.10), and three sections of the PVN (around bregma -0.58, -

0.82, -0.94) were chosen. Quantification of the Y1R/LacZ transgene expression was 

made by computer assisted morphometrical analysis as previously described [24, 40]. 

Briefly, selected sections were observed by means of a x10 objective, and digitized. 

Image analysis was performed using the software NIH-Image (version 1.62, a 

freeware by W. Rasband, NIH, Bethesda, USA). Sections were at first digitized by 

using a built-in green filter to better identify the nuclei extension. A line, drawn 

following the boundaries of the selected nuclei, defined the area of interest (AOI). 

The same section was then digitized using a built-in red filter obtaining a strong 

enhancement of the histochemical signal. The AOI selected on the first image was 

finally superimposed on the second image to delimit the region in which dots should 
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be counted by using a manual thresholding method. For each animal and nucleus the 

cumulative number of dots and the cumulative areas of the analyzed sections were 

considered to obtain the average density expression of the transgene expressed as dots 

per µm
2
. This method provides semiquantitative analysis of changes in -

galactosidase expression, reflecting changes in promoter activity. 

 

2.5 Statistical analysis 

To detect global changes in the expression of the transgene, a one-way ANOVA 

(being the cycle phase the independent variable) for repeated measures (the different 

nuclei) of the average density values of each of the four female groups plus the male 

group was performed. To detect differences during the female cycle and possible 

sexual differences, the one-way ANOVA was repeated per each nucleus including 4 

female groups and male. Differences were considered statistically significant for 

values of p<0,05. These analyses were followed, when appropriate, by Fisher PLSD 

test. The software used was Statview 5.0 (Abacus Concepts, Berkely, CA, USA).  

 

 

3. RESULTS 

3.1 Distribution pattern 

The distribution pattern of Y1R/LacZ transgene expression in hypothalamic and limbic 

nuclei of male and female mice was in agreement to our previous studies. A relative 

large number of positive cells was observed in the PVN, ARC, VMH, and MPOA 

nuclei, as well as in the medial ventral portion of BST (BSTMV) [24, 26, 40]. Images 

typical of those subjected to computer-assisted quantitation of -galactosidase 

expression are shown in Fig. 1 (top) 

 

3.2 Quantitative analysis 

The one-way ANOVA for repeated measures (being the different groups the 

independent variable and the different nuclei the repeated measures) reported 

significant effects for all considered parameters: group effect [F(4,20)= 4.40, p=0.01], 

nucleus effect [F(4,4,20)=56.4, p<0.0001] and also interaction effect [F(4,4,16)=2.17, 

p=0.015]. Taking into consideration the densities’ values of the different nuclei 

together, the post-hoc Fisher PLSD test reported significant differences among males 
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and proestrus females (p=0.012), and proestrus females against estrus (p<0.05), 

metaestrus and diestrus ones (p<0.002) (Supplementary Fig. 1). 

The one-way ANOVA for each nucleus (Fig.1, bottom) confirmed that in all 

considered nuclei, the highest density of the Y1R/LacZ transgene expression was 

detected in proestrus females as compared to estrus, metaestrus and diestrus ones, and 

to males. A significant effect of cycle was detected in PVN [F(4,20)=3.65, p=0.02], 

VMH [F(4,20)=4.99, p=0.006], and ARC [F(4,20)=11.10, p<0.0001].  A tendency to 

significant difference was observed in the BSTMV [F(4,20)=2.621, p=0.065] whereas 

no significant differences among groups were measured in the MPOM [F(4,20)=0.69 

p=0.60].  

When compared to the other phases of the estrous cycle the expression of the 

transgene in proestrus was significantly higher in VMH and ARC. In the PVN a 

significant difference was detected only for comparisons between proestrus versus 

metestrus and versus diestrus. No differences in transgene expression were detected 

for the comparison proestrus-estrus. We examined the post-hoc test’s results also for 

BSTMV, and in this case a significant difference was detected for comparison 

proestrus versus metestrus and diestrus, in addition the transgene density in estrus was 

significantly higher than diestrus. The transgene expression in male group was 

significantly lower than proestrus female in PVN (p=0.016), ARC (p=0.0002), and 

VMH (p=0.011). No other comparison was significant. 

 

 

4. DISCUSSION 

The central event of the female reproductive cycle, ovulation, depends on the 

coordinated release of pituitary gonadotropin and modulatory factors. Several studies 

demonstrated that NPY is critically important in the neuronal regulation of the GnRH 

secretions and that Y1R is implicated in the augmentation of LH release (for a review 

see [14]). Demonstration that NPY acts thought the Y1R subtype to stimulate LH 

preovulatory surge was first drawn from the observation that specific pharmacological 

activation of Y1R stimulates the LH surge in proestrus rats [19]. NPY-induced 

augmentation of GnRH release during proestrus involves a dramatic increase of tissue 

responsiveness to NPY. Finally, this effect requires a proestrus hormonal environment 

[3].  Levine and coauthors [13, 39] have shown that the influence of the steroid 

environment may affect Y1R-mediated signalling and that estrogens up-regulate 
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responsiveness to NPY through regulation of Y1R gene expression in the 

hypothalamus. This was demonstrated by the observation that Y1R mRNA expression 

is significantly increased in the hypothalamus of proestrus rats and that a similar up-

regulation can be induced by exogenous estrogen treatment.[18, 39].  

With the use of Y1R/LacZ transgenic mice, we have here shown that Y1R gene 

expression is significantly higher in hypothalamus of proestrus mice as compared to 

mice in all the other phases of the estrous cycle. Specifically, the up-regulation of the 

Y1R gene expression was observed in PVN, VMH, ARC whereas low or no 

significant differences were observed in BSTv and MPOM, respectively. 

Our results showed also the presence of a sex difference of Y1R gene expression 

transgene in PVN, ARC and VMH nuclei, by comparison of male mice with female in 

proestrus, females having higher expression of the transgene. In the rat, NPY gene 

expression throughout the ARC is modulated by T in male rats, and a marked regional 

sex difference (higher in males vs proestrus females) exists in the distribution of NPY 

mRNA-containing cells in the caudal extremity of the ARC [36], suggesting the 

presence of both organizational and activational effects of gonadal hormones upon 

NPY expression. Our results suggest that this could be true also for Y1R expression in 

PVN, ARC and VMH, but in this case it is probably mediated by E2.  

At the molecular level, E2 may increase Y1R gene expression by direct interaction of 

ER with three hemipalindromic estrogen-responsive elements flaking the Y1R gene 

promoter, as previously suggested [23]. In accordance with our present results, other 

studies showed the regulation of the hypothalamic NPY-Y1 receptor mRNA during 

estrous cycle. Ovariectomy eliminated the increase of Y1R mRNA detected in 

hypothalamic extracts during the late morning or early afternoon of proestrus. E2 

treatment restores it. Moreover an involvement of progesterone receptor in 

stimulating Y1 receptor expression has been also demonstrated. Additional 

progesterone following E2 treatment produces even larger increases in Y1 receptor 

mRNA levels [39]. Accordingly, we found an increase in Y1R gene expression 

transgene in the PVN and ARC nuclei of 18 days pregnant mice as compared with 

estrus mice [24] 

It is interesting to notice that the hormonal changes related to estrous cycle failed to 

affect Y1R gene expression in those limbic nuclei (MPOM and BST) known to be 

important in regulating GnRH neurosecretion, which also express alfa and beta 
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estrogen receptors both in rats and mice [21, 30] and show estrus-dependent 

variations in other gonadal hormones dependent neural circuits (i.e. the nitrergic 

system [11, 31]).  

4.1 - Conclusion 

Growing evidence suggests that NPY may at least in part mediate communication 

among energy balance, GnRH secretion and sexual behavior. NPY consistently 

suppresses LH release when administered on a chronic basis, leading to the cessation 

of reproduction [4]. NPY synthesis and release are greatly increased in response to 

metabolic challenge inhibiting the pulsatile mode of LH secretion [15, 20], such as 

starvation and increased energy expenditure. In turn, NPY levels are reduced by 

treatments that ameliorate metabolic deficit and reinstate HPG function [17]. Thus 

regulation of Y1R gene expression induced by gonadal hormones during estrous cycle 

seems to be restricted to those hypothalamic nuclei that are involved in regulation of 

both energy balance and reproduction.  
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Legend to figure 

Fig.1 Top. Variations of transgene expression during the estral cycle and in the male 

Y1/LacZ transgenic mice. PVN paraventricular nucleus, VMH ventromedial nucleus, 

ARC arcuate nucleus, ME median eminence. Bar = 200 µm.  

Bottom. Bar graphs illustrating changes in the density of Y1/LacZ transgene in 

different nuclei expressed as number of dots/µm
2
x10

3
. The groups are the different 

phases of the female estrous cycle and the male group. * p<0.05 in comparison to 

Proestrus **p<0.01 in comparison to Proestrus ***p<0.001 in comparison to 

Proestrus 
@

 p<0.05 in comparison to Estrus  
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