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ABSTRACT 

The main aim of this work was to study in a model hydroalcoholic solution, containing 12% of 

ethanol and at pH 3.20, the kinetics of anthocyanin extraction from Vitis vinifera L. cv Nebbiolo 

berries of different skin hardness. This mechanical property was evaluated as the breaking skin 

force measured by Texture Analysis, a rapid and low-cost analytical technique. By TAxT2i Texture 

Analyzer, a puncture test was carried out on two groups of berries separated according to their 

density by flotation in order to obtain more homogenous samples and minimize the effect of 

different stages of ripening of the berries. Among the berries containing 242±8 g/L of reducing 

sugars in the pulp juice, two groups of berries with different skin hardness were selected: soft 

(0.26±0.04 N) and hard (0.47±0.05 N). In our experimental conditions, at the end of maceration, the 

extracts from the higher skin hardness group showed the higher contents of total anthocyanin: +25 

mg/L (+9.4%). The anthocyanin profile of extracts, obtained at different extraction times, showed 

no significant differences among the distribution of different anthocyanins. Only in the early phases 

of dissolution, did the extracts reveal a dissimilar anthocyanin profiles and in the extracts of hard 

skins higher percentages of cyanidin and peonidin derivatives were present. Additionally, the 

evolution of skin mechanical properties from veraison to overripe and the influences of biotype on 

these parameters at harvest are reported in this work. 

 

Keywords: Vitis vinifera L., grapes ripeness, skin mechanical properties, texture analysis, clones, 

anthocyanin extractability, Nebbiolo, Barolo wine. 



INTRODUCTION 

Anthocyanins are the pigments responsible for the red colour of grape berries and the respective 

wines produced from them;
[1,2]

 they play a key role in the formation of polymeric pigments 

responsible for the stable colour of aged red wines.
[3] 

Anthocyanins are gradually accumulated in 

the berry skin throughout grape ripening from veraison onwards;
[4]

 their concentrations depend 

mainly on the cultivar
[5,6]

, but, for the same varieties, can vary widely among different vintages, 

vineyard practices, climatic conditions, soil features and crop load.
[7] 

In particular, as a function of 

these aspects, the anthocyanin concentrations of Nebbiolo grapes, one of the most important and 

well-known Italian vine varieties and the object of this study, can vary between 500 and 900 mg kg
-

1
 of grapes.

[8-10]  

The extraction of anthocyanins during fermentation is conditioned by several factors such as grape 

variety,
[11]

 use of pectinolytic enzymes,
[12]

 ethanol concentration
[13]

, time and temperature of 

maceration and other strategies of enological technique.
[14,15]

 However, these pigments are not 

always easily extracted from skins during winemaking and a low extraction can result in poorly 

colored wines, even when their amount in the grapes is considered sufficient. 

Many studies have been conducted to define the best method to evaluate polyphenolic compounds 

in grapes and the ease with which they are released from skins. Currently, the cellular maturity 

index or extractability index (EA), defined by Glories and Augustine,
[16] 

is the method of choice to 

estimate the extractability of anthocyanins with adequate reliability and to predict the phenol 

composition and the chromatic characteristics of wines.
[17-19]

 However, the operative protocol to 

measure EA requires trained technicians and laborious procedures. 

It is conceivable that physical-mechanical properties of skins assessable by Texture Analysis, a 

modern analytical technique used for the measurement of the physical characteristics of plant 

tissue,
[20] 

might be favorably used as extractability markers because of the relationship, determined 

by multiple linear regression, found among skin hardness and thickness and cellular maturity 

index.
[21]

 Therefore, the purposes of this work were: i) to determine the kinetics of extraction in 

berries with different skin hardness; ii) to study the modification of mechanical characteristics of 

berry skin from veraison to grape overipening and, finally, iii) to evaluate, at harvest, the influence 

of different biotypes on the mechanical characteristics of berry skin. 

MATERIALS AND METHODS 

 



Grapes and sampling 

The study was carried out in 2007 in an experimental vineyard located at Neive (Piedmont region, 

North-West Italy). The mechanical properties of the skin of Nebbiolo CVT 71 clone berries were 

monitored for eight weeks from veraison (29 August) onwards. Four weeks after veraison 

(commercial harvest) grapes of the same clone were harvested to assess anthocyanin profile of berry 

skins, mechanical properties and to monitor anthocyanin extractability during maceration in a 

model solution. In addition, at commercial harvest, grapes from other Nebbiolo clones (CVT141, 

CVT180, CVT185 and CVT 308) were picked to evaluate the influence of biotype on the 

mechanical characteristics of berry skins. For each sample, 400 berries were randomly picked with 

pedicels. 

 

Mechanical parameters of berry skin 

Physical-mechanical parameters of skins were evaluated by the puncture test.
[22]

 A Texture 

Analyzer (TAxT2i) from Stable Micro Systems (Surrey, UK) equipped with a HDP/90 platform, 

SMS P/2N needle probe and 5 kg load cell was used. Speed test was 1 mm s
-1

. All acquisitions were 

performed at 400 Hz; data were evaluated using the Texture Expert Exceed software package (vers. 

2.54 in Windows 2000). The berries were placed on the metal plate of the UTM with the pedicel in 

a horizontal plane in order to be consistently punctured in the lateral face. The penetration of the 

needle probe into the berry was 3 mm.
[22]

 From the force-time curves, three parameters were 

calculated: Fsk (N; Berry skin break force), Wsk (mJ; Berry skin break energy) and Esk (Nmm
-1

; 

Young’s modulus of skin).
[22,23]

 The first variable corresponds to the maximum force opposed by 

the skin at the probe penetration, Wsk represents the area under the force-time curve of the puncture 

test limited between start to Fsk value. Esk or Young’s modulus of elasticity is a parameter that 

permits the stiffness of the material to an applied load to be assessed.
[23] 

To measure Spsk (µm; 

Berry skin thickness), a piece of skin of almost 0.25 cm
2
 was removed at the lateral side of the berry 

with a razor blade. After calibration of the probe position, the skin thickness was calculated as the 

distance between the point corresponding to the probe contact with the berry skin (trigger) and the 

platform base during a compression test.
[23]

 For each test and samples, 30 berries were analyzed.  

Assessment of Extractability 

 



Chemicals - HPLC-grade solvents and all other chemicals were purchased from Sigma (Milan, 

Italy). Solutions were prepared in deionized water produced by a Purelab Classic system (Elga 

Labwater, Marlow, United Kingdom). Anthocyanin standards (Delphinidin 3-O-glucoside chloride, 

Malvidin 3-O-glucoside chloride, Peonidin 3-O-glucoside chloride, Cyanidin 3-O-glucoside 

chloride) were supplied by Extrasynthèse (Genay, France). 

Texture analysis – The skin hardness of each berry used in this experiment was determined by 

puncture test (see above) using Fsk parameters for their classification. To minimize the effect of 

different contents of soluble solids on extractability results,
[4]

 the 400 berries of CVT 71 were 

calibrated according to their density. This was estimated by flotation of berries in ten different salt 

solutions (from 100 to 190 g L
-1 

NaCl) so that the difference in total soluble solids of two 

consecutive batches of berries was about 17 gL
-1 

(i.e., 1 vol % in potential alcohol).
[4]

 Berries 

containing 242 ± 8 gL
-1

 sugars in the pulp juice were used and within them two groups of berries 

with different skin hardness were selected: S, soft (0.26±0.04 N) and H, hard (0.47±0.05 N). This 

sugar content is that at which the Nebbiolo grapes are usually harvested for the production of 

Barolo and Barbaresco Denomination of Origin wines. 

 

Anthocyanin extraction - Sixty skins (20 × 3 replicates) of berries belonging to S and H groups were 

used to study the extractability of anthocyanins. The berry skins, removed manually from the pulp 

and dried with absorbent paper, were quickly immersed in 75 mL of hydro-alcoholic buffer (pH 

3.20), containing 200 mgL
-1

 of Na2S2O5 to limit oxidation of phenolic compounds and 12% of 

ethanol.
[4]

 The skins of other previously weighed berries (20 × 3 replicates), were introduced to the 

same volume (75 mL) of the described extractant solution and homogenised with Ultra-turrax T25 

(IKA Labortechnik, Staufen, Germany).These homogenized solutions were then centrifuged (1126 

g; 5 min; 20 °C) and the supernatant used to calculate the total anthocyanin concentration of the 

skins (TA, mg kg 
-1

 grapes). 

The total contents of anthocyanin of this supernatant, expressed in mgL 
-1

 and defined as solution A, 

were further used to evaluate the rate of skin anthocyanin extractability during maceration. The 

kinetics of extraction were monitored at regular intervals: 10, 20, 30 minutes and 1, 2, 3, 4, 5, 24, 48 

hours and the anthocyanin contents of these extracts (defined as solution Btime) were expressed as 

mgL
-1

. The percentage of anthocyanin extraction at each extraction time was calculated as: (solution 

Btime/solution A)*100.  

 



At the end of the maceration period, the berry skins from each trial were rinsed with a 

hydroalcoholic solution, dried with absorbent paper and introduced to other 75 mL of the same 

buffer solution, homogenised and the extract was centrifuged (see above); the anthocyanin 

concentration in the supernatant (defined as solution C and expressed in mgL
-1

) corresponded to the 

amount of the non-extracted anthocyanins and it was used to estimate the percentage of anthocyanin 

recovered relative to the total content as: ((solution B48h + solution C)/solution A)*100.  

 

Spectrophotometry and HPLC Analysis - Anthocyanin concentrations in all the extracts were 

determined by spectrophotometry.
[24]

 The analysis of individual anthocyanins was performed by 

HPLC after application of the berry skins extract to a SEP-PAK C18 cartridge (Waters Corporation, 

Milford, MA, USA) and elution with methanol.
[24]

 The chromatograph consisted of a P100 pump, 

an AS3000 auto-sampler (Spectra Physics Analytical, Inc, San Jose, CA, USA) and a Reodyne 

injection valve equipped with a 20 µL sample loop. A LiChroCART column (25 cm x 0.4 cm i. d.) 

packed with LiChrosphere 100 RP-18 5-µm particles from Merck (Darmstadt, Germany) was used. 

A Spectra Focus Diode Array Detector (Spectra Physics Analytical, Inc, San Jose, CA, USA) 

operating at 520 nm was employed. The following solvents were used: solvent A = 10 % v/v formic 

acid in water; solvent B = 10 % v/v formic acid with 50 % v/v methyl alcohol in water. All solvents 

were filtered through a 0.20 µm filter. The solvent flow rate was 1 mL/min and the column 

temperature was 20 °C. The injection volume was 20 µL. The solvent gradient used was previously 

reported in the literature.
[24,25]

 Data treatment was carried out using the ChromQuestTM 

chromatography data system (ThermoQuest, Inc, San Jose, CA, USA). The percentages of 

individual anthocyanins were calculated by comparing the area of the individual peak with the sum 

of the peak areas of all separated components.  

 

Statistical analysis – The means of different parameters were studied by one-way analysis of 

variance (ANOVA). Means submitted to analysis of variance were separated with the Duncan test. 

Statistical analysis was performed using STATISTICA for Windows Release 7.1 (StatSoft Inc., 

Tulsa, OK, USA). 

 

RESULTS AND DISCUSSION 

The total amount of anthocyanin and relative profile of Nebbiolo grapes at harvest are reported in 

Table 1. The total concentration of anthocyanins of fresh berries (516 mg kg
-1

), although low, was 

usual for this cultivar.
[8,18]

 Peonidin 3-glucoside derivative forms are the main pigments and 3’-

hydroxylated anthocyanins are present in high percentages (49.78%), although the values observed 



in the CVT 71 clone were lower than those of other clones,
[14,22] 

such as the percentages of 

acetylated and coumaroylated forms.
[8,9]

 The kinetics of dissolution of anthocyanins in model 

hydroalcoholic solution, content (mgL
-1

) and percentage of extraction (%), are reported in Table 2. 

On average, about 96.5 % of the total anthocyanin present in the entire skins were recovered in 

extractant media and residual solids parts, in agreement with literature data. 
[4]

 

The anthocyanin concentrations of the extracts at different times of maceration (solution Btime), 

from 5 hours onwards, were consistently different, depending upon the berry skin hardness (Table 

2). Under our experimental conditions, at the end of the maceration (48 h), hard skins presented an 

extractive capacity of 76.6 % compared to the 67.2 % of soft skins. Thus, the toughest skins 

presented greater capacities for anthocyanin release (+ 9.4 %), confirming the results obtained for 

another variety even though, in the latter situation the model solution contained only 3 % of 

ethanol.
[26] 

These results are also in accordance with the significant inverse correlation between 

break skin force and extractability indexes (EA) found in Cabernet franc grapes.
[27]

 In general, more 

complete dissolution of phenols in the must corresponds to lower values of this index. The cell 

maturity index was found to be a satisfactory measure of the facility with which polyphenols are 

extracted during the first phases of maceration.
[14]

 The chemical composition of the grape skin cell-

walls may determine the mechanical resistance of berry skin to anthocyanin release;
[28]

 

nevertheless, correlation studies between skin physical-mechanical characteristics and chemical 

composition, to our knowledge, are not currently available in the literature. 

Even if the influence of skin hardness on total anthocyanin extraction was observed, significant 

differences between the anthocyanin profile of extracts obtained from the S and H skins at different 

extraction times (Table 3) were only found in the first phases of dissolution. In the extracts of the 

hard skins at 10 minutes, higher percentages of petunidin 3-glucoside (+ 0.8 %), cyanidin 3-

glucoside (+ 3.6 %) and peonidin 3-glucoside derivatives (+ 6.0 %) and lower percentages of 

malvidin 3-glucoside (- 9.6 %) were present in comparison to the soft skins. This aspect is 

particularly important for varieties rich in 3’-hydroxylated anthocyanins, because these pigments, 

extracted preferentially during the initial phase of the maceration, may be easily oxidised by the 

enzyme present in the juice of those cultivars containing an anthocyanin profile made up mainly of 

molecules tri-substituted in the B-ring, and therefore more protected against oxidation.
 [11,18,29]

 In 

fact, during wine-making using Nebbiolo grapes, a remarkable loss of peonidin 3-glucoside and 

cyanidin 3-glucoside was noticed.
[30]

 Therefore, on the basis of these results, knowledge of skin 

hardness could provide interesting information for the oenologist during the planning and 

management of the maceration/fermentation step. Finally, no significant differences in anthocyanin 



profile between hard and soft berry skin extracts at the end of the maceration (solutions B48h) were 

observed (Table 3), even in those of the non–extracted skins (solutions C) (Table 4) when, as 

already mentioned, the total amounts were different. 

The physical and morphological characteristics of the grape’s skin play a critical role during the 

ripening process, regulating gas exchange between the berry and the surrounding environment, 

serving as a protective barrier against fungal disease and protecting the grape from UV light and 

climatic injuries.
[31,32]

 Made possible by the use of a needle probe, the puncture test carried out in 

this study allowed the estimation of the changes in the physical-mechanical properties of the skin of 

Nebbiolo grapes during ripening (Figure 1), minimizing the possible interferences caused by pulp 

firmness on the results. From veraison to ripeness an increase of the skin hardness parameters (+ 

0.052 N, + 17.3 % for Fsk; + 0.09 mJ, + 59.1 % for Wsk), and of the skin thickness Spsk (+ 26 μm, + 

15.2 %) was observed above all in the first weeks. A peak in the value of the Esk parameter was 

observed two weeks after veraison followed by a quick decrease; from the third week onwards no 

further change was detected. Therefore, even if the break skin force (Fsk) can be considered an 

important parameter to assess the total anthocyanins extractability, as already demonstrated on 

Cabernet franc grapes growing in different terroirs of the Loire Valley region
[33]

 and on Barbera 

grapes from several Piedmont areas,
[34]

 the constant value of the Fsk parameter close to harvest 

might indicate its applicability as an indicator of the maturity of grapes. Nevertheless, other studies 

indicated that texture parameters of whole berries can represent a good means to estimate grape 

maturity.
[35,36]

 In fact, during ripening, the berries become softer and softer
[37]

 as a result of 

significant changes in parietal constituent composition notably in pulp cells. Therefore, the 

compression test, which assesses parameters such as firmness, cohesiveness, gumminess, is 

presently favored to monitor ripeness;
[35-37]

. In this type of test, pulp and skin data are aggregated.  

Nevertheless, the skin hardness, defined by Fsk and Wsk parameters, at advanced stages of ripening, 

is an effective tool to discriminate among different vineyards,
[23,33,34]

 although Fsk values can be 

strongly affected by climate trends of the vintages.
[23]

 In particular, in the year 2005, Nebbiolo 

grapes growing in mountainous vineyards, were characterized by a higher berry skin firmness, with 

higher mean values of break skin force (+ 28.7 %) and of break skin energy (+ 47.3 %) compared to 

the grapes of vineyards growing in a hilly area.
[38] 

Nevertheless in the alpine environment, the high 

berry skin resistance to rupture (splitting) is important from the agronomical and phytopathological 

point of view,
[39]

 and it could likewise be the consequence of the higher berry skin thickness (+ 20.4 

%) detected in mountainous Nebbiolo grapes.
[38]

 Furthermore, significant modifications of berry 



skin mechanical characteristics were found in Mondeuse grapes in the phases of over ripeness and 

on-vine drying process, where increases of Fsk, Wsk and Spsk values were observed.
[40]

 

Finally, high variability among studied clones was found in the Wsk parameter (0.048 mJ, 22.3 %) 

(Table 5). CVT 141 clone was characterized by higher skin break force values (Fsk) in comparison 

to CVT 185, with mean differences of 0.044 N (11.9 %). Also the Spsk value showed an about 12 % 

variability among clones with CVT 180 grapes characterized by the thinnest skins (179 µm) and 

CVT 141 characterized by those having the thickest skins (203 µm). However, no correlations were 

found between Fsk and Spsk parameters, in accordance with those already reported.
[21,41]

 Histological 

studies on skin tissues are therefore required to explain these mechanical behaviours. On the base of 

the knowledge already acquired, the physical-mechanical properties of wine grape berry skin appear 

to be influenced by weather conditions, meteorological events during ripening, area of production, 

stage of ripeness and variety. Within each cultivar, the clone also assumes importance in the 

characterization of skin hardness and, consequently, in the anthocyanin extractability. 

CONCLUSION 

Skin textural characterization can be an efficient method to easily assess anthocyanin extractability. 

In this work, extracts from skins of higher hardness did, indeed, show the highest content of total 

anthocyanin (+9.4 %). On the other hand, the anthocyanin profile of extracts obtained at different 

extraction times showed significant differences in the distribution of different anthocyanins only in 

the first phases of dissolution with the extracts of hard skins characterized by higher percentages of 

cyanidin and peonidin derivatives. Therefore, hard skins seem to be characterized by increased 

fragility of the cell walls, which allows easier release of coloured pigments. Thus, although the 

evolution of Fsk values during the grape ripening could represent a limit for the choice of this 

parameter as an indicator of maturity, it can be used as an extractability marker for grapes from 

different vineyards. Break skin force can be considered as a new index of grape quality, applicable 

by winemakers interested in optimizing the anthocyanin extraction process during the maceration 

phase. Further, in comparison to other methods for evaluating the extractability of phenols, the 

texture analysis tests are rapid and inexpensive, showing promise as routine tools in monitoring 

vineyards. However, further studies on different grape varieties will be necessary to confirm the 

observed relationship between skin hardness and anthocyanin extractability. 
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Table 1 Total anthocyanin content (TA) and profile of Nebbiolo CVT 71  berries containing 242 ± 8 g L-1 of sugars (2007 vintage). Means of three replicates 

(average value ± standard deviation). Cinnamoyl-glucosides included both p-coumaroyl and caffeoyl anthocyanin forms. 

TA 

(mg kg-1grapes) 

Free  

Glucosides 

(%) 

Acetyl-

glucosides 

(%) 

Cinnamoyl- 

glucosides 

(%) 

∑ of 

delphinidin 

derivatives 

(%) 

∑ of cyanidin 

derivatives 

(%) 

∑ of petunidin 

derivatives 

(%) 

∑ of peonidin 

derivatives 

(%) 

∑ of malvidin 

derivatives 

(%) 

516 ± 7 82.10±0.52 5.17±0.11 12.73±0.45 5.88±0.31 7.37±0.30 6.61±0.30 42.20±0.65 37.94±0.72 

 

 

 

 

 

 

 

 



Table 2 Kinetic of extraction of anthocyanins, content (mgL-1) and percentage of extraction (%), during maceration in a model solution, from the skins of  the 

two groups of Nebbiolo CVT 71 berries. S = soft skin 0.26±0.04N; H = hard skin 0.47±0.05N). Sign = Significance: ns not significant, *  significant at p ≤ 0.05.  

 
10 min 20 min 30 min 1h 2h 3h 4h 5h 24h 48h 

non-extracted  

skins 

mgL-1 

S 26±2 31±1 51±4 57±2 107±3 134±9 150±7 159±4 174±8 178±8 78±4 

H 29±1 39±1 58±3 67±3 116±3 147±7 167±7 184±4 199±2 203±3 53±6 

Sign ns * ns ns ns ns ns * * * * 

 % 

S 9.7±0.7 11.9±0.5 19.1±1.3 21.6±0.9 40.2±1.2 50.7±3.6 56.6±2.7 60.0±1.6 65.7±2.9 67.2±3.2 29.3±1.7 

H 11.1±0.3 14.7±0.5 21.9±1.1 25.4±1.1 43.9±1.2 55.6±2.6 62.9±2.5 69.2±1.3 75.2±0.9 76.6±1.1 19.9±0.9 

Sign ns * ns ns ns ns ns * * * * 

 

 

 

 



Table 3 Nebbiolo clone CVT 71: anthocyanin profile (expressed in %) of the extracts (solutions Btime) as influenced by different extraction times and skin 

hardness. S = soft skin 0.26±0.04N; H = hard skin 0.47±0.05N. Average value ± standard deviation (n = 3). Sign = Significance: ns not significant, * p ≤ 0.05, ** p ≤  

0.01, *** p≤ 0.001,.nd = not detected. Cinnamoyl-glucosides included both p-coumaroyl and caffeoyl anthocyanin forms. 

 10 min 20 min 30 min 1h 2h 3h 4h 5h 24h 48h 

Free glucosides S 97.21±2.16 97.90±0.60 97.54±0.26 96.98±0.36 91.87±0.28 89.93±1.96 88.13±0.34 88.21±0.45 88.77±2.73 89.39±2.04 
H 97.51±0.50 96.76±0.43 96.84±0.14 96.51±0.47 91.98±1.12 89.81±0.35 89.62±0.53 88.48±0.27 88.63±4.77 87.97±0.31 

Sign  ns ns * ns ns ns ns ns ns ns 

Acetyl-glucosides S 2.79±2.16 1.55±0.21 1.73±0.33 2.32±0.41 3.93±0.26 4.65±0.50 4.87±0.10 4.77±0.07 4.88±0.03 4.48±0.14 

H 1.77±0.22 2.78±0.45 2.26±0.15 2.86±0.28 4.26±0.21 4.82±0.11 4.49±0.18 4.66±0.22 4.77±1.00 4.62±0.22 

Sign  ns * ns ns ns ns ns ns ns ns 

Cinnamoyl- 

glucosides 

S nd 0.55±0.50 0.73±0.24 0.70±0.12 4.20±0.06 5.42±1.45 7.00±0.24 7.02±0.40 6.35±2.74 6.13±2.02 

H 0.72±0.34 0.46±0.02 0.91±0.07 0.63±0.31 4.80±0.53 5.37±0.24 5.89±0.71 6.86±0.16 6.60±0.78 7.20±0.46 

Sign  - ns ns ns ns ns ns ns ns ns 

∑ of delphinidin 

derivatives 

S 5.78±0.67 5.49±0.62 6.47±0.51 7.04±0.62 7.18±0.20 7.43±0.50 6.78±0.36 6.96±0.17 6.97±0.54 6.95±0.19 

H 4.96±0.19 5.29±0.02 5.99±0.29 6.98±0.76 7.07±0.10 7.06±0.01 6.83±0.25 6.68±0.18 7.41±0.48 6.70±0.15 

Sign  ns ns ns ns ns ns ns ns ns ns 

∑ of cyanidin 

derivatives 

S 7.10±0.77 8.46±2.86 9.14±0.42 8.21±0.64 8.00±0.21 7.84±0.38 7.53±0.25 7.73±0.41 7.61±0.16 7.52±0.43 

H 10.77±0.91 8.17±0.52 9.37±0.56 8.83±0.67 8.75±0.46 8.35±0.69 8.46±0.60 8.36±0.45 8.30±0.59 8.05±0.47 

Sign  ** ns ns ns ns ns ns ns ns ns 

∑ of petunidin 

derivatives 

S 3.60±0.20 4.31±1.21 5.17±0.11 5.28±0.79 6.17±0.23 6.50±0.17 6.47±0.17 6.55±0.04 6.52±0.27 6.41±0.16 
H 4.43±0.29 3.70±1.12 4.81±0.43 5.24±0.38 6.26±0.14 6.38±0.08 6.35±0.29 6.20±0.14 5.92±0.49 6.23±0.13 

Sign  * ns ns ns ns ns ns ns ns ns 

∑ of peonidin 

derivatives 

S 46.67±0.48 47.18±0.49 46.28±1.71 42.09±1.69 40.86±1.50 39.05±0.62 40.44±1.65 40.31±1.18 39.55±2.66 39.68±1.63 

H 52.67±0.55 49.29±1.42 48.59±1.14 44.52±1.16 43.65±0.60 42.32±1.03 42.04±0.40 42.28±0.89 40.86±1.14 41.41±0.84 

Sign  *** ns ns ns * ns ns ns ns ns 

∑ of malvidin 

derivatives 

S 36.84±0.68 34.56±5.17 32.94±0.74 37.38±1.06 37.79±1.25 39.19±0.09 38.78±1.25 38.45±1.70 39.35±2.01 39.43±1.72 

H 27.17±1.39 33.54±3.07 31.24±1.74 34.43±1.83 35.33±2.09 35.88±1.82 36.32±0.93 36.47±1.59 37.51±1.66 37.41±1.12 

Sign  *** ns ns ns ns ns ns ns ns ns 

 

 

 



Table 4 Nebbiolo clone CVT 71: anthocyanin profile, expressed in %, of the non-extracted skins (solutions C). S = soft skin 0.26±0.04N; H = hard skin 0.47±0.05N. 

Average value ± standard deviation (n=3); Sign = Significance: ns not significant. Cinnamoyl-glucosides included both p-coumaroyl and caffeoyl anthocyanin 

forms.  

 Free 

glucosides 

 

Acetyl-

glucosides 

 

Cinnamoyl- 

glucosides 

 

∑ of 

delphinidin 

derivatives 

∑ of cyanidin 

derivatives 

∑ of 

petunidin 

derivatives 

∑ of  

peonidin 

derivatives 

∑ of malvidin 

derivatives 

S 84.90±0.54 4.26±0.14 10.84±0.43 5.91±0.60 7.17±0.24 6.09±0.27 41.69±2.49 39.14±1.72 

H 84.42±1.24 4.58±0.70 11.00±0.63 5.74±0.27 7.73±0.59 6.02±0.16 42.95±0.62 37.56±1.45 

Sign ns ns ns ns ns ns ns ns 

 

 

 

 

 

 

 

 

 

 



Table 5 Berry skin mechanical characteristics from different Nebbiolo clone grapes grown in  the same vineyard, at harvest  in 2007. Fsk = Berry skin break force; 

Wsk = Berry skin break energy; Esk = Skin Young’s modulus; Spsk = Berry skin thickness. Average value ± standard deviation (n = 30). Mean values followed by the 

same letter are not significantly different for p ≤ 0.05).  

 Fsk (N) 

 

(N) 

Wsk (mJ) 

 

(mJ) 

Esk (Nmm-1) 

 

(N/mm) 

Spsk (µm) 

 

(µm) 

CVT 71 0.36±0.06 a 0.20±0.07 ab 0.30±0.05 ab 197±26 ab 

CVT 141 0.37±0.09a 0.22±0.09 a 0.29±0.04 b 203±36 a 

CVT 180 0.36±0.08 ab 0.19±0.08 ab 0.31±0.06 a 179±32 c 

CVT 185 0.32±0.08 b 0.17±0.07 b 0.29±0.04 b 186±36 bc 

CVT 308 0.35±0.07 ab 0.18±0.07 ab 0.31±0.04 ab 199±32 ab 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1 Trends in the berry skin mechanical properties of Nebbiolo clone CVT 71 grapes during ripening (vintage 2007). A) Fsk = Berry skin break force; B) Wsk = 

Berry skin break energy; C) Esk = Skin Young’s modulus; D) Spsk = Berry skin thickness. Average values ± standard error (n=30). Mean values followed by the same 

letter are not significantly different for p ≤ 0.05. 
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