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Generalized probabilistic flooding in
unstructured peer-to-peer networks

Rossano Gaeta, Matteo Sereno

Abstract —In this paper we propose a generalization of the basic flooding search strategy for decentralized unstructured peer-to-peer
(P2P) networks. In our algorithm a peer forwards a query to one of its neighbors using a probability that is a function of the number of
connections in the overlay network of both. Moreover, this probability may also depend on the distance from the query originator. To
analyze the performance of the proposed search strategy in heterogeneous decentralized unstructured P2P networks we develop a
generalized random graph (GRG) based model that takes into account the high variability in the number of application level connections
that each peer establishes, and the non-uniform distribution of resources among peers. Furthermore, the model includes an analysis of
peer availability, i.e., the capability of relaying queries of other peers, as a function of the query generation rate of each peer. Validation
of the proposed model is carried out comparing the model predictions with simulations conducted on real overlay topologies obtained
from crawling the popular file sharing application Gnutella. Performance of the proposed strategy is investigated in a few example
scenarios.

✦

1 INTRODUCTION

Peer-to-peer (P2P) paradigm has emerged as new model
for distributed networked services and applications. P2P
applications have been deployed in many different ar-
eas, such as distributed grid computing [1], storage [2],
web cache [3], Internet telephony [4], streaming [5], [6],
conferencing [7], content distribution [8], [9], and so
on. But file sharing applications are perhaps the most
popular P2P applications: many different file sharing
systems, such as Gnutella, Kazaa, Edonkey, Emule, Bit-
Torrent, exist and collect million of users. These type
of applications are characterizing a great fraction of the
Internet traffic nowadays and several statistics on IP
traffic have recently put in evidence that P2P traffic is
starting to dominate the bandwidth in certain segments
of the Internet.
In a P2P-based application participants are termed

as peers and play the dual role of both provider and
requester of a service. Services are the location and
transfer of (part of) a resource that can be owned by
several peers thus defining the resource popularity. Peers
organize themselves in an overlay (logical) network
on top of the physical network. Each peer establishes
application level connections only to a subset of known
peers (its neighbors). Management of the overlay network
is done at the application level: different management
schemes define different classes of P2P networks.
In this paper we consider searching in heterogeneous

decentralized unstructured P2P networks [10]: peers join
and leave the application at their own will in an uncoor-
dinated fashion and a central index for resource location
is absent. Each peer is only responsible for maintaining
a local index of the resources it owns and it is willing to
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provide to others. When a peer needs to locate a resource
it sends out request messages (queries) to its neighbors.
There are two main approaches for locating a resource in
unstructured decentralized P2P networks: flooding and
random walk. In random walk based search strategies
peers forward a query message (termed as walker) to
one randomly chosen neighbor at each step although
several walkers can be employed in parallel to increase
the probability of successfully locating a resource (hit
probability). In flooding based search strategies, when a
peer requests a resource it sends queries to all its neigh-
bors. This collection of neighbors may then forward
the query to their neighbors (excluding, of course, the
neighbor that sent the original request). These neighbors
may then propagate the query to their neighbors and so
on up to a certain predefined maximum level. Hence,
resource location is performed by flooding the network
with resource-location request packets.
Heterogeneity of Internet users (different hardware,

operating systems, application software, connection
bandwidth and availability, activity time, etc) reflects on
P2P networks as well. It has been found out by several
authors [11], [12], [13], [14], [15] that the distribution of
peer session times in P2P-based file-sharing applications
follows a power-law, i.e., it exhibits high variability.
It follows that the number of direct application-level
connections to other peers (the degree of a peer) of par-
ticipants show high variability [16], [17], [13], [14], [15].
Furthermore, it has also been found out that resource
distribution among peers varies greatly [12], [13], [18],
[15]. It follows that taking heterogeneity of P2P-based
applications into account is crucial for system design
and evaluation. In this paper we develop a mathematical
model to analyze the effect of these sources of hetero-
geneity in P2P networks on the number of messages
required to discover a resource and on the hit probability.
We also propose and analyze a generalization of the
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flooding search strategies that exploits the advantages
of heterogeneity to decrease the average amount of
overhead traffic while increasing the hit probability for
a resource.
We consider the problem of analyzing searching tech-

niques in heterogeneous decentralized unstructured P2P
networks very important for two reasons:

1) despite the growing popularity of BitTorrent-like
P2P protocols unstructured P2P networks, e.g., the
current version of Gnutella [19],remain extremely
popular these days as witnessed by recent mea-
surements reporting that the number of different
participants in snapshots taken in a 7-10 minutes
period is in the order of 2, 000, 000 peers (cor-
responding to both ultra-peers and leaves) [17],
[15]. Therefore we believe that applicability of the
results we obtain is not limited.

2) although most of the traffic generated by P2P ap-
plications is for data transfer, search still represents
a non-negligible communication and processing
burden on peers.

In the model we develop the overlay network is
represented by means of Generalized Random Graphs
(GRG) [20], [21], [22]. This choice is motivated by the
observation that at any point in time a snapshot of the
overlay network can be represented by a finite graph of
size N where a vertex represents a peer and application-
level connections among peers are modeled as edges.
Although P2P networks are highly dynamic and result
in a constantly and randomly changing topology, if we
assume that the time scale of search operations is much
shorter than the time scale of the P2P network topology
evolution, we can reasonably assume that at any instant
in time the snapshot of the P2P network topology can
be viewed as an instance of a finite graph of size N .
Furthermore, the GRGs allow the degree distribution of
a randomly chosen node to be described by any arbitrary
probability distribution thus allowing the inclusion of
high variability in the number of application level con-
nections.
Furthermore, we assume a resource is characterized by

a popularity defined as the probability that a randomly
chosen peer owns a copy of the resource. Again, we
define a degree-dependent probability observing that
highly connected peers are often attractors to other peers
because they are the repository of a large number of
resources.
The model also describes the availability of peers, i.e.,

the probability a peer is not overloaded and it is able to
relay queries to (subset of) its neighbors. To this end
we represent a peer by a simple finite buffer queue
whose loss probability is used to compute availability
as a function of the number of connections.
To the best of our knowledge, this is the first paper

on analytical models of P2P networks that includes all
these heterogeneity issues in the model derivation and
analysis as well as the limited processing capacities of
peers that result in possible overloading.

Thanks to the model we developed we also propose
and analyze in a few scenarios a generalization of
the flooding search strategies that we call generalized
probabilistic flooding. As pointed out by several authors
[23], [24], [25], the straightforward flooding strategy
suffers from poor granularity, i.e., the amount of message
overhead exponentially increases as a function of only
one message parameter, named time-to-live (TTL). We
propose a probabilistic flooding strategy where a peer
decides to forward a query to its neighbors using a prob-
ability pf that is a function of its degree. Furthermore,
a peer accepts an incoming query with a probability pr

that is a function of its degree. To reduce the message
overhead both probabilities may depend on the distance
from the query originator, as well. In this setting a query
from a kf degree peer to one of its kr degree neighbor is
forwarded with probability pf (kf , d) ·pr(kr , d+1) where
d < TTL is the distance (in terms of number of hops) of
the forwarding peer from the query originator.
The model analysis is carried out by deriving the

generating function of the distribution of the number
of query messages sent throughout the network start-
ing from a query originator. The generating function
is successively refined to account for the probability
of successfully finding a resource whose popularity is
known. The solution is developed with the simplifying
assumption that the number of newly visited peers
at each step of the flooding process are described by
independent random variables. Equivalently, we assume
that the clustering coefficient1 of the graph representing
the overlay network tends to 0 as the size of the overlay
network tends to ∞. We test the validity of the inde-
pendence assumption in Section 4.1 where the model
predictions are thoroughly validated against simulations
conducted on real snapshots of Gnutella that we gath-
ered by developing a distributed crawler [15] inspired
by the work in [17].
This paper differs from our previous work on this

subject [27], [28]; the new results of this paper are:

• the definition of a general flooding algorithm that
can be parametrized by the distance of the query
message from the originator and by the degree of
both forwarding and receiving nodes;

• the model exploitation to evaluate in a few scenarios
the quantitative impact of heterogeneity of peer
characteristics on the performance of flooding based
search strategies. The finding is that heterogene-
ity must be included in models of P2P networks:
Section 4.2 shows that the assumption of uniform
resource distribution results in an underestimation
of the hit probability that is more marked in the low
variance degree distributions;

• modeling of the limited processing capacities of
peers that results in the possibility for a peer to be

1. There are several mathematical definitions of what the clustering
coefficient of a graph is. Intuitively, it expresses the average probability
that two neighbors of a node are neighbors themselves. The interested
reader may refer to [26] for a detailed discussion on this topic.
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overloaded and thus not able to forward other peers
queries;

• the analysis of an example of generalized probabilis-
tic flooding in heterogeneous scenarios.

The paper is organized as follows: Section 2 summa-
rizes previous work on this subject, Section 3 contains
the technical part of the paper where the generating
functions describing the probability distribution of the
performance indexes we consider are derived. Section
4 presents results obtained from the model solution:
the validity of the proposed model is discussed by
extensively comparing its predictions against simulation
on real overlay networks topologies in Section 4.1, some
results showing the impact of heterogeneity on the hit
probability as well as on the number of messages are pre-
sented in Section 4.2, characteristics of the generalized
probabilistic flooding in a few scenarios are analyzed in
Section 4.3. Section 5 summarizes the paper content and
outlines future developments.

2 RELATED WORK

Until today, the development of analytical models to
gain insight of the behavior of P2P-based applications
has mainly focused on homogeneous assumptions on
the behavior and characteristics of the application partic-
ipants. Two noticeable exceptions are the works in [29]
and [30] that take into account the bandwidth diver-
sity problem in BitTorrent-like file-sharing applications.
These studies deeply differs from ours since in the type
of systems they consider there is no need to locate a
resource (the location of a tracker process suffices to be
able to start downloading a file). Furthermore, none of
the following papers has dealt with the limited process-
ing capacities of peers that results in the possibility for
a peer to be overloaded and thus not able to forward
other peers queries.
Several papers have analyzed the behavior of P2P-

based applications by means of analytical models. The
paper in [24] explores alternatives (expanding rings and
random walks) to the classical flooding search strategies.
The authors also evaluate different network topologies
and resource replication strategies as to provide better
performance. This paper differs from ours since one of its
objectives was the analysis of the replica distributions to
minimize query load. When alternatives to the classical
flooding are analyzed uniform resource distribution is
considered and peers availability is neglected. Further-
more, the evaluation of search strategies has been carried
out by means of simulation.
The work in [27] exploits generalized random graphs

to represent overlay networks but only focuses on simple
homogeneous scenarios where peers are always avail-
able, resources are uniformly distributed among peers,
and flooding-based search strategies are probabilistic but
uniform across peers. Furthermore, validation of the
model predictions is only done by simulations. This
work has been extended in [28] that contains the design

and exploitation of a Gnutella crawler as well as an
analysis of the measurements obtained with this tool.
The paper also develops a simple model of probabilistic
flooding that is validated on the snapshots obtained from
the crawler.
The analysis of probabilistic flooding to disseminate

information in unstructured P2P networks so that global
outreach and reduced message overhead are achieved
has been the subject of several papers. In [31] and [32]
random graph theory is exploited to bound and compute
values of the network-wide forwarding probability that
ensures global outreach with high probability. In [33]
a probabilistic heuristic to disseminate information is
defined and analyzed on Poisson and Power-law ran-
dom graphs. The proposed algorithm is also compared
to probabilistic flooding.
The work in [34] exploits the theory of random graphs

to prove properties of a generalization of the search
that combines flooding and random walks. The authors
discuss the properties of normalized flooding on classes
of random graphs and evaluate the more general hybrid
strategy by simulation on several types of topologies.
The authors of [25] focus on the analysis of resource

replication strategies and analyze them under the as-
sumption that flooding stops as soon as a node holding
a copy is found. They also analyze replication strategies
where replicas are uniformly distributed among peers. In
[35], [36] they generalize their results to investigate the
relations between the number of replicas of each resource
and the query request rate for that resource.
The idea of exploiting peer heterogeneity to achieve

better performance is not new, see for instance [37]
and [38]. For random walk based strategies the work
in [39] introduces a number of local search strategies
that utilize high degree nodes in power-law graphs and
that have costs scaling sub-linearly with the size of
the graph. The authors use GRGs and the generating
function analysis technique to demonstrate the utility of
these strategies on the Gnutella peer-to-peer network.
This paper differs from ours since it is based on the use
of random walk; furthermore, it only exploits degree
properties of the query receiver and assumes uniform
resource distribution.
The work in [23] quantifies the effectiveness of random

walks for searching and construction of unstructured
P2P networks. It also compares flooding and random
walk by simulations on different network topologies
where resource are uniformly distributed and peer avail-
ability is not considered.
The authors of [40] introduce a scalable searching

protocol for locating contents in random networks with
heavy-tailed degree distributions. The algorithm is able
to find any content in the network with probability
one with a time complexity O(log N) (N is the network
size), and a number of messages that scales sub-linearly
with respect to N . The analysis of the size of the giant
connected component of a random graph with heavy
tailed degree distributions under bond percolation is at
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the heart of their main results.
The paper [41] proposes a search algorithm that ex-

ploits k random walkers for resource discovery. Nodes
keep information on each query they process per neigh-
bor. This information is then used to probabilistically
select a neighbor to forward a walker for a specific
object. The procedure continues until all k walkers have
terminated. A walker terminates with a success if a node
holds a copy of the resource while it ends with a failure
if the walker TTL has expired.
The work in [42] proposes a query routing mechanism

for unstructured P2P networks where the participant
peers build probabilistic routing tables, constructed and
maintained through an exchange of updates among im-
mediate neighbors in the overlay. The proposed routing
mechanism uses the information of these routing tables
to forward search queries. Availability of peers is not
included in the analysis and the topology considered for
the analysis is a regular random graph.

3 THE MODEL

In this section we describe the behavior of peers in the
network and we derive the generating function of the
probability distribution of the number of queries sent
throughout the network starting from a peer that does
not have a copy of a resource and that issues a request for
it. From this generating function we obtain the average
number of query messages as well as the hit probability
for a query. Finally, we derive the availability distribu-
tion, i.e., the probability that a peer is not overloaded by
query traffic.

3.1 Peers’ behavior

Queries are originated by peers that set the time-to-live
attribute to an integer value denoted as TTL. A peer that
receives a query decreases the TTL by one. If the TTL
reaches the value zero then the query is not forwarded.
Each peer manages a query buffer (whose size we denote
as B) that is used to store incoming queries that have to
be processed. Queries in the buffer are processed at a rate
that we denote as µ. Processing a query involves decreas-
ing its TTL, searching through the peer resources to look
for a match, and forwarding the query (depending on
the TTL) to its neighbors according to a particular search
algorithm. A query is not forwarded back to the peer that
sent it. A peer that finds a match for a query forwards
it anyway to increase the hit probability. Queries are
enqueued as long as the buffer is not full. Arrival of
queries to be forwarded that find the buffer full are
discarded (and hence not forwarded). Peers generate
their own queries at a given rate λ. Queries originated
by a peer always preempt waiting queries in the query
buffer and are always forwarded no matter how full the
query buffer is. According to this system description,
peers may not be able to store an incoming query in
their query buffer. The probability that a query can be
inserted in the query buffer is called availability and it

is denoted as ak for a peer with k connections in the
overlay.
When a peer has to forward a query to one of its

neighbors it does so with a probability that is a func-
tion of the degrees (the number of connections in the
overlay) of both and of their distances from the query
originator. Distances are expressed in number of hops
and for the forwarding peer it must be less than TTL.
We assume that the distance of the query originator
from itself is equal to 0. It follows that the strategy
we propose requires neighbors to periodically exchange
only the information on the number of application level
connections they established. Therefore our strategies
employ an extremely limited form of lookahead that sig-
nificantly reduces the message overhead in lookahead-
based search strategies [43], [44].
The popularity of a resource is expressed as the proba-

bility that a randomly chosen peer owns a copy of it. This
probability is a function of the peer degree so to model
a scenario where resources are non-uniformly allocated.
We denote the probability that a copy of the resource is
owned by a peer with k connections in the overlay as
γk.

3.2 Generalized random graphs

We represent the overlay network by means of Gen-
eralized Random Graphs (GRG) [20], [21], [22]. GRGs
are defined by the degree probability distribution {pk},
i.e. the probability that a randomly chosen node has
exactly k undirected edges emanating from it. Edges are
selected independently and uniformly over the space of
possible edges, constrained by the degree distribution. It
can be shown that starting from the following two basic
generating functions

G0(x) =

∞∑

k=0

pkxk, G1(x) =
G′

0(x)

G′
0(1)

(1)

it is possible to derive the generating functions for
the probability distribution of the number of neighbors
at any distance from a randomly chosen node (G′

0(x)
denotes the first derivative of G0(x) with respect to x).
Generating function G0(x) describes the distribution of
the number of neighbors (the degree distribution) of a
randomly chosen node while G1(x) describes the degree
distribution of the node reached by following one end of
a randomly chosen edge (with the edge one is following
excluded). It is possible to show that the generating
function for the number of neighbors two hops away
from a randomly chosen node is given by G0(G1(x)), the
number of neighbors three hops away from a randomly
chosen vertex is given by G0(G1(G1(x))), and so on.
Furthermore, if we consider a randomly chosen node
whose degree is equal to k and if we assume that
edges are independently marked with probability pf

then the probability that y out of k edges are marked is
distributed according to a binomial distribution B(k, pf ).
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The generating function of the distribution of the num-
ber of marked edges is then obtained as

∞∑

y=0

∞∑

k=y

pk

(
k

y

)
py

f (1 − pf)(k−y)xy =

∞∑

k=0

pk

k∑

y=0

(
k

y

)
(xpf )y(1 − pf )(k−y) =

∞∑

k=0

pk(1 − pf + xpf )k =

G0(1 + (x − 1)pf ).

Please note that the generating functions characteriza-
tion of the topological properties of GRGs is correct only
asymptotically as the size of the network increases (see
[20], [21], [22] for details).

3.3 The basic model

The scenario we consider is then characterized by the
following probability sets:

• {pk} is the probability distribution describing the
degree of a randomly chosen node;

• {ak} is the set of probabilities that represent the
availability of peers, i.e., ak is the probability that a
k degree node is not overloaded by query messages;

• {γk} is the set of probabilities that describe the
resource allocation, i.e., γk is the probability that a
k degree node owns a copy of the resource;

• {pf(kf , d)} where 0 ≤ d < TTL represents the
probability that a kf degree node whose distance
from the query originator is d forwards the query
message to its neighbors (whose distance from the
query originator is d + 1).

• {pr(kr, d)} where 0 < d ≤ TTL is the probability
that a kr degree node whose distance from the query
originator is d agrees to receive an incoming query
message (that could be successively discarded if its
query buffer is full upon arrival).

Please note that only {pk} is a probability distribution for
which it holds that

∑∞
k=0 pk = 1; all the other probability

sets are not probability distributions.
From the degree distribution {pk} we obtain the aver-

age degree of a randomly chosen node as k =
∑∞

k=0 kpk.
Assume we choose a random edge: such an edge arrives
at a node with probability proportional to the degree
of that node, and the node therefore has a probability
distribution of degree proportional to kpk. In particular,
we denote as ek = kpk∑

∞

k=0
kpk

the probability that a

randomly chosen edge leads to a k degree node.
The fraction of nodes that are potential query origi-

nators is given by qo =
∑∞

k=0 pk(1 − γk). We also need
to define the probability that a node that is reached by
following one end of a randomly chosen edge and that is
d hops away from the query originator agrees to receive
a query message (that could be successively discarded

if its query buffer is full upon arrival). It is defined as
pr(d) =

∑∞
k=0 ekpr(k, d).

We define the generating function of the number of
messages that a randomly chosen peer that originates a
query would send if information about the degree of its
neighbors is not exploited as

M(x) =

∞∑

k=0

pk(1 − γk)

qo

(1 + (x − 1)pf(k, 0))k. (2)

A similar quantity is required for a node that is reached
by following one end of a randomly chosen edge and
that is d > 0 hops away from the query originator. This
generating function is given by

N(x, d) =

∞∑

k=0

ek{1+[(1+(x−1)pf(k, d))k−1−1]pr(k, d)ak}

(3)
where the product pr(k, d)ak represents the condition
that a node forwards queries only if it agrees to receive it
(defined by probabilities pr(k, d)) and its query buffer is
not full (described by probabilities ak). This node would
send a query to its neighbors with probability pf(k, d)
without exploiting information on their degree. It would
do so to all its neighbors except the one connected to
the edge we chose (this is accounted for by the k − 1
exponent for the power of x in Equation (3)): along this
edge the query reached the node and we assume a query
is never returned back. Please note that the algorithm in
Section 3.1 can be easily adapted not to forward a query
if a peer holds a copy of the requested resource. In this
case, Equations (2) and (3) should be properly redefined
to account for the different search protocol.
By properly combining Equations (2) and (3) we can

derive the generating function of the probability distri-
bution of the number of messages sent by a randomly
chosen query originator to its neighbors as

QM1(x) = M(1 + (x − 1)pr(1)).

The generating function of the probability distribution
of the number of messages received by nodes two hops
away from the query originator is obtained as

QM2(x) = M(N(1 + (x − 1)pr(2), 1))

and, in general, for nodes t hops away from the query
originator we obtain

QMt(x) = M(N(N . . . N(1+(x−1)pr(t), t−1) . . . , 2), 1)).

Assuming that the random variables representing the
number of peers that receive a query to forward at each
step of the query diffusion process are independent we
write the generating function for the total number of
nodes that have received a copy of the query out to
distance TTL as2

Q(x, TTL) =

TTL∏

t=1

QMt(x), (4)

2. the generating function of the sum of independent random vari-
ables is given by the product of the single generating functions.
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Starting from Equation (4) it is possible to compute the
probability distribution of the total number of messages
required to perform a query. It would require the com-
putation of the probabilities ms = 1

s!Q
(s)(0, TTL) where

Q(s) denotes the sth derivative of function Q with respect
to x. In this paper we only focus on the average number
of messages sent throughout the P2P network that we
define as

m = Q′(1, TTL). (5)

Queries are processed only by nodes that are not
overloaded. In this case, the resource might be owned
by a k degree node with probability γk. We compute
the average probability that a node that is reached by
following one end of a randomly chosen edge and that
is d hops away from the query originator, agrees to
receive a query, is not overloaded, and owns a copy
of the resource as pown(d) =

∑∞
k=0 ekakpr(k, d)γk. We

can derive the generating function of the probability
distribution of the number of available neighbors that
received the query issued by a query originator and that
own a copy of the resource as

H1(x) = M(1 + (x − 1)pown(1)),

and, in general, for nodes t hops away from the query
originator we obtain

Ht(x) = M(N(N . . . N(1+(x−1)pown(t), t−1) . . . , 2), 1)).

We define the hit probability for locating a resource
among nodes that are d hops away from the query
originator as

phit(d) = 1 − Hd(0)

and the overall hit probability as

phit = 1 −
TTL∏

d=1

(1 − phit(d)). (6)

3.4 The complete model

In Section 3.3 we assumed that the set {ak} describing
the probability that a k degree node is not overloaded are
known. Obviously, this probability depends on several
factors such as the query buffer parameters, the query
generation and processing rates, the topological fea-
tures of the overlay networks, and the search algorithm.
Therefore we observe that the set {ak} depends on the
number of queries that in turn depend on {ak} through
Equations (2) and (3). This observation naturally leads
to devise a fixed point iteration algorithm for the com-
putation of the set {ak} starting from the other system
parameters. The iteration is represented by Algorithm 1
where all dependencies on the probability set {ak} have
been highlighted.
The key observation is that the higher the number

of connections a peer maintains in the overlay network
the higher the average number of queries it is asked
to relay and the higher the probability these queries
will overload it. Therefore we need to compute the

Algorithm 1 Fixed point algorithm to compute the prob-
ability set {ak} and all performance indexes.

Initialize {pk}, {γk} and TTL
for d = 1 to TTL do
Initialize {pf(k, d)}, {pr(k, d)}

end for
Initialize ak = 1 for all k
repeat
for d = 1 to TTL do
Compute pown(d, {ak}), pr(d)

end for
Compute phit({ak}), m({ak}), ploss({ak})
for all k do

Λk = 0
for d = 1 to TTL do

Λk = Λk + s(d, k, {ak})(1 − ploss({ak}))
d−1

end for
Λk = Λkλ
a′

k = 1 − loss(Λk, µ, B)

ǫk =
|ak−a′

k|
ak

ak = a′
k

end for
until max{ǫk} < ǫ
print phit({ak}), m({ak}), ploss({ak})

average rate of arrival of queries for a k degree node
p. Clearly this depends on the rate of query generation
of a single peer (i.e., the parameter λ) and on the number
of sources that generate queries whose distance from
p is less than or equal to TTL. In turn, this number
depends on the search algorithm, i.e., probability sets
{pf(k, d)} and {pr(k, d)}. Assuming an initial value for
the probability set {ak} we can compute the average
probability of discarding queries throughout the entire
overlay network as

ploss =

∞∑

k=0

pk(1 − ak). (7)

We assume homogeneity of peers and therefore we
consider ploss as the query discarding probability for any
peer of the overlay network.

The second step is to characterize the number of query
originators that, due to the particular search algorithm,
could involve a k degree peer in the query diffusion
process. Consider a randomly chosen k degree node p
and the queries originated by its direct neighbors. If a
direct neighbor p′ of p issues a request for a resource then
p agrees to accept the query (that could be successively
discarded if the query buffer of p is full upon arrival)
with probability pr(k, 1). If a peer p′′ whose distance
from p is equal to two hops generates a query then p
agrees to accept the query (relayed by an intermediate
peer) with probability pr(k, 2) and so on. In general, the
generating function for the number of nodes at distance
d that originate queries that could be accepted by p is
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given by

R(x, d, k) = (1 + (x − 1)pr(k, d))k. (8)

We need a generating function to represent the number
of sources for which a node that is reached by following
one end of a randomly chosen edge agrees to accept
their queries. This generating function is similar to that
of Equation (3). In fact, it is given by

S(x, d) =

∞∑

k=0

ek{1+[(1+(x−1)pr(k, d))k−1−1]pf(k, d)ak}

(9)
where the product pf (k, d)ak represents the fact that the
node is not overloaded and has forwarded the queries
along the edge we randomly chose. It agrees to receive
queries originated by peers that are d hops away with
probability pr(k, d). It would do so to all its neighbors
except that connected to the edge we chose (this is
accounted for by the k − 1 exponent for the power of
x in Equation (9)).
To derive the generating function for the number of

query originators that could involve a k degree peer in
the query diffusion process we must take into account
the probabilities that query originators use to decide
whether to send a query to their neighbors. In particular,
we derive the generating function of the probability dis-
tribution of the number of messages actually received by
a randomly chosen degree k node from query originator
among its direct neighbors as

QR1(x, k) = R(1 + (x − 1)pf (0), 1, k).

The generating function of the probability distribution of
the number of messages actually received by a randomly
chosen degree k node from query originator among
nodes two hops away is given by

QR2(x, k) = R(S(1 + (x − 1)pf (0), 1), 2, k)

and, in general, for nodes t hops away we obtain

QRt(x, k) = R(S(S . . . S(1 + (x − 1)pf (0), 1) . . . ,

. . . t − 2), t − 1), t, k).

It follows that the average number of sources at distance
d for a k degree peer is given by s(d, k) = QR′

d(1, k). Each
source generates queries at rate λ. Queries originated at
distance d from a k degree node must travel along d− 1
intermediate nodes; all these nodes discard queries with
probability ploss therefore the arrival rate of queries as
seen by a k degree node is equal to λs(d, k)(1−ploss)

d−1.
Since all query originators up to distance TTL provide
query arrivals the overall aggregated query arrival rate
is given by

Λk = λ

TTL∑

d=1

s(d, k)(1 − ploss)
d−1. (10)

The last step involves the computation of the new ak

(the availability of a k degree peer) under a query

arrival process whose average rate is equal to Λk. We
assume that a peer can be represented as a M/M/1/B
queue. This choice is motivated by the possibility of
using a closed form formula for the loss probability thus
making the fixed point iteration extremely efficient. On
the other hand, the query arrival process to a k degree
peer is actually the composition of a large number of
independent query generation processes whose limiting
behavior can be approximated by a Poisson process as in
a M/M/1/B queue. It follows that the new value for the
peer availability is given by a′

k = 1−loss(Λk, µ, B) where
loss(Λk, µ, B) denotes the loss probability of a M/M/1/B
queue that is obtained as

loss(Λk, µ, B) =





(1 − ρk)ρB
k

1 − ρB+1
k

, if ρk < 1,

1.0, otherwise

where ρk = Λk

µ
.

Once a new set of values for the peers availability
is computed the iteration repeats and stops when the
maximum relative error between successive iterations
falls below a predefined accuracy threshold ǫ.

4 RESULTS

In this section we present validation results to evaluate
the accuracy of Equations (5) and (6). We compare their
outcomes with results obtained from simulations on
real overlay topologies captured by crawling the highly
popular P2P-based file sharing applications Gnutella. We
also exploit the model to assess the impact of the search
algorithm on network congestions as well as the effect
of heterogeneity on the performance of flooding-based
search strategies.

4.1 Model validation

We compared the predictions based on the numerical so-
lution of Equations (5) and (6) with those obtained from
simulations. To keep the complexity of simulation ex-
periments low we do not simulate the message exchange
dynamics; rather we assume all peers are not overloaded
and always relay query messages to neighbors according
to the chosen search algorithm.
The simulator employs standard statistical procedures

to estimate 95% confidence intervals for m̂sg and p̂hit, the
simulated average number of queries and hit probabil-
ities, respectively. We consider Nexp overlay topologies:
each topology is used to obtain one realization of m̂sg
and p̂hit. The ith realization is obtained in the following
way:

• in the initialization phase, the ith overlay topology
(a graph instance) comprising Ni nodes is read from
an input file.

• For each k-degree node probability γk is used to ran-
domly set the hold resource flag to true. We denote
as Nq the subset of nodes that do not have a copy
of the resource and let Nq denote its cardinality.
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Fig. 1. Comparison of Equations (5) (left graph) and (6) (middle graph refers so s1 and right graph refers to s2) against
simulations on the Gnutella ultra-peer overlay networks.

• each node r ∈ Nq is considered as the root of a
modified breadth-first visit whose depth is equal
to TTL. During the graph visit a kr-degree node
connected to a kf -degree available node is visited
with a probability given by pf(kf , d) · pr(kr, d + 1)
where d < TTL is the distance from r. If we denote
as msgr(d) the number of nodes visited that are d
hops away from r and let msgr =

∑TTL

d=1 msgr(d)
denote the overall number of nodes visited starting

from r then we compute m̂sg(i) = 1
Nq

∑
r∈Nq

msgr.

• we also compute p̂
(i)
hit as the average fraction of

the msgr nodes that own a copy of the requested
resource.

Inspired by [17], we designed and implemented a dis-
tributed crawler of the Gnutella overlay network to
gather snapshots of a real system to use to validate
our model [15]. The average time for the crawler to
collect one snapshot is about ten minutes. For our
model validation we considered Nexp = 30 snapshots
whose size ranged from 253,625 to 339,822 ultra-peers.
All results have been computed for TTL = 4 to limit
the exponential growth of the CPU time required to
obtain estimates from the simulator. In fact, simulations
required about an hour to complete while the numerical
model solution is almost instantaneous. Simulations with
TTL > 4 require considerably more CPU time while the
model solution complexity is practically constant.

All results that we present for the model validations
have been obtained by classifying peers as low, aver-
age, and high degree peers. The possible degree-based
partitions are countless but we decided to adopt the fol-
lowing: we were inspired by the Gnutella protocol spec-
ification [19] that suggests that each ultra-peer should
connect to 5−30 other ultra-peers therefore we consider
as low degree peers those whose degree is less than 5,
average peers those that keep from 5 to 30 connections,
and high degree peers all the remaining. We considered
uniform resource distributions ranging from γ = 10−5

parameter value
Nexp 30
TTL 4

γ [10−5, 10−2]

TABLE 1
System parameters for the simulations.

to γ = 10−2. Table 1 summarizes the main simulation
parameters for the model validation.
We consider two search algorithms that exploit both

peers degree and distance from the query originator: the
first strategy (s1) is defined by

pf (k, d) =





0.5d, if 0 < k < 5,
0.75d, if 5 ≤ k ≤ 30
1.0d, otherwise

and

pr(k, d) =





0.2d, if 0 < k < 5,
0.35d, if 5 ≤ k ≤ 30
0.5d, otherwise

while the second strategy (s2) is defined as

pf (k, d) =





1.0d, if 0 < k < 5,
0.75d, if 5 ≤ k ≤ 30
0.5d, otherwise

and

pr(k, d) =





0.4d, if 0 < k < 5,
0.6d, if 5 ≤ k ≤ 30
0.8d, otherwise

To test the accuracy of the model we developed we
considered both the case of a strategy where the proba-
bility of forwarding queries increases as the node degree
increases (s1) and a strategy that corresponds to the case
where this probability decreases for highly connected
nodes (s2).
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Fig. 2. Degree distributions {pk} for the model exploita-
tion.

For the validation on snapshots of Gnutella we com-
puted the empirical degree distribution by averaging
the degree distribution of the single snapshots, i.e.,

1
Nexp

∑Nexp

i=1 p
(i)
k where p

(i)
k is the fraction of nodes of the

ith snapshot whose degree is equal to k. We denote as
{pgnu

k } the empirical degree distribution for the Gnutella
ultra-peer overlay network whose average is equal to
15.79. We then used {pgnu

k } as input to the model we
developed and we computed the values of Equations
(5) and (6).
Figure 1 depicts the comparison between the model

prediction and the simulation outcome. We can observe
that the accuracy of the model predictions is high if com-
pared to simulation of search strategies on topologies
obtained from measurements of the Gnutella ultra-peer
overlay network. The model seems to slightly overesti-
mate the number of messages for TTL = 4 in the case
of strategy s2. The reason is that the model is accurate
under the assumption of N → ∞ we believe that consid-
ering large values for TTL makes the model predictions
less accurate with respect to simulation estimates due
to the finite size of the snapshots we use. Nevertheless,
we believe the validation results we obtained are very
important and confirm the accuracy of the model predic-
tions even in this very tough setting for any analytical
model.
Varying the resource distribution would only change

the values of phit: we performed several experiments
using the two strategies we considered and obtained
very close matching for the hit probabilities. We also
obtained very good agreement for several other search
strategies, i.e., functions pf (k, d) and pr(k, d). Also in
some of these cases, the model slightly overestimates the
total number of messages for large values of TTL.

4.2 Model exploitation

In this section we evaluate the impact of heterogeneity of
the number of connections and the resource distribution

among peers on the performance of simple probabilistic
flooding (pf(k, d) = pf = 0.5, pr(k, d) = 1). We set B =
100 and µ = 1 for the query buffer management.
To this end we consider the topology we used for

validation that we obtained from crawling the Gnutella
network (degree distribution {pgnu

k }) and a topology
characterized by a Poisson degree distribution whose
average is equal to the average of {pgnu

k }. Figure 2 shows
the two distributions we considered.
We analyze a particular probability set describing the

distribution of resources among peers {γk} and compute
the value of phit, m, and ploss in the case of non-uniform
distribution and in the case of uniform distribution
whose average probability value is γ =

∑∞
k=1 γkpk. In

particular, we consider

γk =





10−5, if 0 < k < 5,
10−4, if 5 ≤ k ≤ 20
10−3, otherwise

We denote this resource distributions as rd1 and we
obtain γPoisson = 0.000098 and γgnu = 0.000100.
Figure 3 depicts the hit probability (Equation (6), left

graph), the average number of messages (Equation (5),
middle graph), and the average query discard proba-
bility (Equation (7), right graph) for increasing query
generation rates λ. First of all we observe that the overlay
network reaches a congestion point for a particular value
of λ. This is highlighted by the value of phit that drops
to very small values after the query generation rate of
each peer exceeds the critical value λ = 0.0001. This
phenomenon can be explained by observing that when
λ increases the overall query arrival rate for k degree
peer Λk increases until the query buffer load factor ρk

reaches the value 1. This is the symptom that the peer
is overloaded and all queries are discarded (hence not
forwarded). High degree peers are the first to become
overloaded and this makes the hit probability decrease
because in rd1 the higher the degree the higher the value
of γk. Furthermore, when peers with a large number of
connections stop functioning as query forwarder the hit
probability decreases since a large number of peers is
not probed.
The second observation is that the average number of

messages in the Gnutella case is higher than the Poisson
case before congestion occurs. This is due to the different
variance of the two degree distributions despite the same
average value. In fact, the Gnutella distribution shows a
tail that extends up to the value k = 98 while the Poisson
distribution actually is cut at k = 44. On the other
hand, when congestion has set in the Gnutella network is
less resilient to the overloading of the mostly connected
nodes that reduces the average number of circulating
queries. This also reflects on the hit probability: before
congestion occurs the hit probability in Gnutella network
is greater than the hit probability in the Poisson case (0.76
vs 0.51 in the heterogeneous case and 0.40 vs 0.34 in the
homogeneous case) but during congestion the opposite
is true.
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Fig. 3. Values of phit (left graph), m (middle graph), and ploss (right graph) for TTL = 4 and increasing query
generation rates.

The third point is the behavior of ploss; as λ increases
also the average query discarding probability increases.
From Equation (10) we observe that Λk increases because
λ increases. In this regime the network reduces to a set of
un-cooperating peers; most of them cannot relay others
queries but do generate their own queries that are not
able to spread throughout the network that is mostly
populated by overloaded nodes.
The last observation is for model developers: assum-

ing a homogeneous distribution model for the resource
replication leads to an underestimation of the hit prob-
ability with respect to the heterogeneous case before
congestion occurs (at least in the case of rd1). This is an
important issue that must be taken into account when
developing models of a real system.
As a final remark, a similar behavior has been ob-

served for other values of TTL (we tried 1 ≤ TTL ≤ 6)
and for other resource distributions where the higher the
degree of the peer the higher the probability of storing
a replica of the resource. When we consider values of
TTL > 4 than congestion shows up for much lesser
values of λ.

4.3 An example of generalized probabilistic flooding

In Section 4.2 we made several interesting observations
on the behavior of the network as the query generation
rate increases. In this section we provide an evaluation of
a particular search algorithm in case of heterogeneous re-
source allocation and the Gnutella topology. A complete
characterization of the search algorithms would require
a sensitivity analysis where a wide spectrum of possi-
bilities for all the probability distributions is considered.
Here we limit our analysis to a few scenarios and we
leave a thorough investigation for future developments.
The scenario we consider is the same analyzed in Section
4.2. Here we consider a search algorithm defined as

pf (k, d) =

{
1.0, if d = 0,

min(1,
kf

k
), otherwise

and

pr(k, d) =

{
1, if d ≤ 1,

min(1, kr

k
), otherwise

The rationale behind this definition is the following:
it must not be possible that a query originator ends up
with no query messages sent to its direct neighbors, i.e.,
pf (k, d) = 1 for any k and for d = 0. On the other hand,
it must be assured that the direct neighbors of a query
originator agree to receive the query, i.e., pr(k, d) = 1 for
any k and for d ≤ 1. This constraint is necessary since
otherwise there is a nonzero probability that a query
originator does not spread a query for the requested
resource. The values of kf and kr define the average
number of queries forwarded (agreed to receive) by a
k degree peer. This search algorithm aims at limiting
the number of queries forwarded and received by high
degree peers while guaranteeing the low degree ones a
high utilization of their relaying capacity.
Figure 4 depicts the hit probability (Equation (6), left
graph), the average number of messages (Equation (5),
middle graph), and the average query discard proba-
bility (Equation (7), right graph) for increasing query
generation rates λ and for kr = 15 that is less than
the average degree of the Gnutella topology, i.e., 15.79.
It can be observed that the network reaches congestion
for all the values of kf we considered. As kf increases
the critical value for λ decreases thus accelerating the
onset of congestion. If the algorithm must be designed to
sustain a maximum value for the query generation rate
then the choice of the maximum kf can be carried out
by exploiting the model we developed. The modeling
framework we defined could also be used to design a
search algorithm that meets constraints on the maximum
average number of messages (mmax) and on the mini-
mum hit probability pmin. In our example, it could be
used to derive the set {(kf , kr, TTL) : phit ≥ pmin ∧m ≤
mmax}. The choice of the optimal values can be done
based on the maximum value of λ before congestion
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kicks in.

5 CONCLUSIONS AND FUTURE DEVELOP-
MENTS

In this paper we analyzed the impact of heterogeneity
in P2P-based applications on the number of queries sent
throughout the network by peers that request a resource
and on the hit probability for the search process. We
also analyzed the congestion of the network when the
search algorithm is able to overload peers with limited
processing capacities. To this end, we developed an an-
alytical model exploiting generalized random graphs to
represent the overlay network and incorporating the de-
pendence of peers availability and non-uniform resource
distribution by considering probabilities that depend on
the nodes degree. We also exploited a simple queuing
model to compute the peers availability as a function
of the search algorithm. We thoroughly validated the
model that showed good agreement with the predictions
obtained by simulations on real overlay networks ob-
tained from crawling a popular P2P-based file-sharing
applications. To this end, we developed a distributed
crawler inspired to previous work on this subject that
is able to gather Gnutella 2 snapshot in a few minutes.
We observed interesting behavior of a simple prob-

abilistic flooding algorithm that leads the network to
congestion. We also showed that neglecting heterogene-
ity leads to rather different results even in this simple
settings. Furthermore, we provided an example of defi-
nition of a complex search algorithm that could be easily
analyzed by means of our techniques to find optimal
parameters setting.
Future developments of the current work are currently

underway: first of all we are working to obtain a com-
plete characterization of the strategy. It requires a sensi-
tivity analysis where a wide spectrum of possibilities for
all the probability distributions must be considered. We
are also working to extend the model to avoid nodes

that have the requested resource to continue flooding
the query. Another natural step of the current research
is to conduct a delay analysis of generalized probabilistic
flooding. To this end, the M/M/1/B queuing model we
defined can be easily exploited. Furthermore, we want
to extend the model to include different classes of nodes,
e.g., to represent the different ISPs the peers belong to
in order to quantify the search traffic through an ISP
peering point, and to model the correlations structure
among nodes degree, i.e., the fraction of edges that
connect degree k nodes to degree k′ nodes.
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