UHWERSITA
| DEGLI STUDI

[T1S AperTO

DI TORINO
AperTO - Archivio Istituzionale Open Access dell'Universita di Torino
Safe Recursion on Notation into a Light Logic by Levels
This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/131262 since 2020-08-19T09:43:59Z

Published version:
DOI:10.4204/EPTCS.23
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

09 May 2024

Safe Recursion on Notation into a Light Logic by Levels

Luca Roversi Luca Vercelli
Dipartimento di Informatica - Universita di Torino Dipartimento di Matematica - Universita di Torino
roversi@di.unito.it luca.vercelli@unito.it

We embed Safe Recursion on Notati@R(N) into Light Affine Logic by Levels LALL), derived
from the logicML 4. LALL is an intuitionistic deductive system, with a polynomiahé cut elimi-
nation strategy. The embedding allows to represent everyttef SRN as a family of netg[t]')cx

in LALL . Every net[t]" in the family simulate$ on arguments whose bit length is bounded by the
integerl. The embedding is based on two crucial features. One is thegige type inLALL that
encodes Scott binary numerai®. Scott words, as nets. Scott words represent the arguments of
in place of the more standard Church binary numerals. Als®.eimbedding exploits the “fuzzy”
borders of paragraph boxes tha&LL inherits fromML # to “freely” duplicate the arguments, es-
pecially the safe ones, ¢f Finally, the type offt]' depends on the number of composition and
recursion schemes used to defineamely the structural complexity bf Moreover, the size oft]'

is a polynomial inl, whose degree depends on the structural complexity 8D, this work makes
closer both the predicative recursive theoretic prinGg@BN relies on, and the proof theoretic one,
calledstratification at the base of Light Linear Logic.

1 Introduction

Slightly rephrasing théncipit of [6], comparing implicit characterizations of computetal complexity
classes may provide insights into their nature, while affprconcepts and methods for generalizing
computational complexity to computing over arbitrary stawes and to higher type functions. Here, we
relate two implicit characterizations of polynomial timettions PTIME). One is Safe Recursion on
Notation SRN) [4], that we take as representative of the characterizataf PTIME that restrict the
primitive recursion. The other one is Light Affine Linear Liodpy Levels LALL), a proof theoretical
system we derive from Light Linear Logic by Levelsi %) [3] and from Intuitionistic Light Affine
Logic (ILAL) [2]. We recall,ML 4 andILAL are twoLight Logics i.e. restrictions of Linear Logic that
characterize some complexity class, in this ”AFEME , under the proofs-as-programs analogy. These
two logics control the complexity of the algorithms they eapress by the technical noti@tratification
which expresses specific structural restrictions on thvatésns ofML 4 andILAL . SRN, of which we
recall some more aspects in Secfibn 4, provide®dicative analysisf primitive recursion. Itis the least
set that contains theero0 (considered as a 0-ary function), theccessorsg(;x) = 2x,s1(;X) = 2x+1,

the predecessop(;2x+ i) = X, the projection n{j;s(?;y) =X if 1 <k<n, andy if 1 <k <s, the
conditional B(;y,y1,y2) = y1 if y is odd, andy, otherwise, and which is closed undsafe composition
andpredicative recursion on notatioff2) and [(3) in Figuréll). The work][8] is the first one relatiig
two different traditions: it defines a map from terms of acstitagmentBC~ of SRNinto nets ofiLAL .
The main obstacle to a full representationSiRN into ILAL is that the duplication of nets il.AL ,
hence of the safe arguments, is far from being free, as edjimstead by (3). In fact, [8] also shows
that an extensioBC™*, polynomial time complete, can be represented inHid¢ . However, since the
primitives added t®C™* are not inSRN, we cannot seBC* as relevant to the goal of understanding the

*Partially supported by MIUR PRIN CONCERTO — protocol numgén7BHXCFH

P. Baillot (Ed.): Workshop on Developments in © L. Roversi & L. Vercelli
Implicit Computational complExity (DICE 2010). This work is licensed under the
EPTCS 23, 2010, pp. 68377, d0i:10.4204/EPTCS|23.5 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.23.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

64 Safe Recursion on Notation into a Light Logic

possible relation between fRN and the above stratification principle, basidMba # andILAL . Since

[8], no extension of the relation betwe&RN andILAL has been produced, to our knowledge. Here,
we show to which extent we can avoid that obstacle inkileL . LALL , that will be formally defined

in Section 2, is an intuitionistic system of nets endowechw({i) edges labelled by indices, or levels,
(ii) unconstrained weakening, to make programming witmiss somewhat more comfortable, (iii) a
language of formulae quotiented by the recursive equivaleric=Va.(a — (B — .¥ — a) — a),
whereB is the type of booleans, and’ the data type oScott wordgq1], and (iv) a polynomial time
sound cut elimination procedure (Sectidn 3) which does apedd on the types that label the edges of a
given net.

SRN embeds intd ALL by means of the map]| (Sectiond b anfll6.) The mdp|" has the same
natural and inductive structure as the one of the map n [8] frdBRN to ILAL . However, [] takes
two arguments: (i) any termof SRN™*, with normal arityn, the number of arguments to the left of the
semicolon, and safe arity the number of those ones to the right, and (ii) an intégelO that bounds
the size of every argument of Then,[t]' yields a net that simulatet(;?; 7) whenever every element
in X,y is at most as long as(Propositior IR). This suggests to summarize the situatiemove in

by:

LALL B PTIME -uniform Boolean Circuits
SRN PTIME Problems

(1)

We remark, however, that such an analogy should be read hsaut not as a formal correspondence.
l.e., we are not at all assuming any classical complexity theopetrspective like the one in[12], which
shows a proofs-as-programs correspondence between Bddiaits and nets of Multiplicative Linear
Logic.

Instead, what we do reads as follows.

Lett be a term ofSRN™s. We write d¢(t) and dg(t) for the number of composition and recursion
schemes, respectively, that are used to buil@hat way,cmplx(t) = d:(t) + dr(t) is a naive measure
of the static complexity oft. Also, let p; be the characteristic polynomial fwhose values bound the
length of the output of. Letd(p) be its degree. Then,is represented ibALL by a family ([t]");cx
of nets such that:

1. The size of every ndt]' is O(12(P)™™*) 'namely polynomial in;

2. If | is at least as great as every bit leng®|, ..., X/, |yal,.-.,|ys| of the arguments, then the
application of[t]' to [x1]',..., [1", [y1]',..., [¥s]' equals[t(x1, ..., Xu;Y1,...,¥s)] ;
3. Every[t]' is a map from(®".%) ® (®°(8.7)) to §.7, wherek depends ormp1x(t).

The first two points suggest the analofy (1). Specifically,fitst point expresses a uniformity condition
on the nets in the family, since it states that their dimemsice bounded only by the length of the
inputs. The second point says tHat' soundly simulate$ on everyinput of lengthsmaller or equal

to l. Finally, the third point is a natural property we can expestsoon as we try to compaositionally
and naturally represent first order algebraic terms, thataip on a given domain, into a higher order
language. It is a static description of the behaviof iof terms of types of ALL , a kind of information
we cannot have by, for example, represen@RN as circuit families.

We see the use of as a first fundamental choice to writg". The reason is twofold. One reason
is a kind of obvious, since” supports the representation of successors, predecess@ctipn and
conditional as constant time operations, unfike=Va.l(a — a) — !(a — a) — §(a — a), which
is generally used to represe@hurch wordsn Light Logics. The other reason, instead, brings a certain

L. Roversi & L. Vercelli 65

oft'Up...Uyvy.. v/](Y,V) zt/(ul(Y;),. .,un/(Y;);vl(Y;V),. ,vS/(Y;V)) (2)
[Ue, Uo, Ug] (0, X: ¥) = g (X; ¥))
r[Ug, Up, U] (22 +1, 7,7) = (Z,Y;V,r[u&uo7u1](zj;7)) i €{0,1}

Figure 1:SRN: predicative recursion on notation and safe composition.

IA
0 i ()
IA A®B A

A A 1A
h
Axiom Cut Weakening Deemon Contractlon TensorL Tensor R Paradrdph

/a va.A B AoB A 3 6
6 ‘ i O O ®

VCr A A—Bf Bf A A 18A

ForallL For aII R ImplicationL ImplicationR BangL BangR RagraphlL

Figure 2: The nodes in the proof netslaALL .

degree of novelty with it because we exploit a crucial propef LALL , and of Light Logicswhich
had hardly been used so fafhe crucial property is that the polynomial time cut eliation of LALL
depends only on the structure of any givenIfetvhile the logical complexity of the formulee i does
not affect it. So, we are free to add fixpoints formulee, likeis, which adds a huge expressivity to the
logic.

A second step to gét |, for everyl, we exploit what we like to call thtuzzyborders of paragraph
boxes of_LALL to write the netdsf. The net(sk duplicates a Scott word at most as lond astarting
from a premise of type*&” and concluding with the typek&” @ 8.7, for anyk. We remark that in
ILAL , where the border of paragraph boxes is “rigid”, we couldyomtite a net, analogous tais,
concluding with type §.% ®.#) which would generally impede to get the right type fot'. By the
way, this is why/[[8] shows how to emb&C~ but notSRNinto ILAL . Indeed, irBC—, composition and
safe recursion schemes alltiwear safe arguments only, i.e. the safe arguments are nevecdteali

To conclude, we recall whatratificationmeans. It is a structural property underpinning fiéME -
sound cut elimination of Girard's Light Linear Logitl(L) [5], and its variant$LAL , ML 4, andLALL .
A netll is stratifiedif the number of boxes around every node keeps being corigtamery net we reach
from I by cut elimination. This work should be a step further tovgastiidying how thetratificationis
compatible with the predicative analysis®TIME -sound computations th&RN embodies.

Acknowledgments. We want to thank the anonymous referees whose questionechalpto better
address the points subject of this work.

66 Safe Recursion on Notation into a Light Logic

T

fi+1 i

Figure 3: Constraints on the indexing. The nodes we omit tlawesame index on all of their incident
edges.

2 Light Affine Logic by Levels (LALL)

The language of formulee.First, for any fixed countable set of propositional variables, the sét of
formulee is generated by the following grammar:

Fi:=%|a|F®F|F —F|Va.F|!F|8F aecV
where.¥ is a propositional constant. Second, we define the quafientof .% by assuming:
S =Va.(a—-(B—o—oa)—aq) (4)

among the elements oF. Namely, [4) says that” represents Scott words|[1]. The formulae we shall
effectively use are the equivalence classe&in. Every time we label an edge of a netldiLL by .7,

we can also label that edge by any “unfolding”.@f that obeys[(4) A [B/a] is the substitution of every
free occurrence aff in A with B.

Proof structures and nets. LALL is a language of nets. Nets will be defined as particular proof
structures. Given the nodes in Figlide 2, we say #rmatAxiom node and a Deemon nodes are proof
structures Moreover, given two proof structurés and:

denoted afl>Aq,..., A, - CandXZ>B,,...,B| F D, respectively, with,| > 0, then all the graphs induc-
tively built from N andZ by the rule schemes in Figuré 4 are proof structures.

If M-I A, we say thafl provesthe sequenk + A. Theinputs(resp.outputg of 1 are the edges
labelledl” (resp. A). The set of the nodes &1 is Vi, andEp is the set of edges. Thaze|| of I is
the cardinality ofVn. Thedepthd(x) of a node or edge € Vq UER is the number of nested !-boxes
containingx. Thedepthd (M) of M is the greatest depth among the nodekl of

Every !-box simultaneously introduces one Bang R node andost one Bang L node, recording
this by the box border as in Figuré 4.

Definition 1 (Indexing and Nets, adapted from [3]) Let be a proof structure.

1. Anindexingfor M is a function | from the edges bf to Z that satisfies the constraints in Figure 3
and such that(e) = | (¢), for every pair e€ of inputs and output dfl.

2. Anetis a proof structure that admits an indexing.

3. Anindexing | of1 is canonicalif M has an edge e such thate) = 0, and I(¢/) > 0 for all edges
€ of M.

L. Roversi & L. Vercelli 67

Figure 4: Inductive rule schemes to build proof structurétALL . (*) a does not occur free in
Ag, ..., Ar. (*) Al-box, which hasat mosta single assumption.

As in [3], we can state that every netloALL admits a unigue canonical indexing.

The indexing tells that the nodeg land 8, are notderelictionnodes. Remember that the dereliction
rule of Linear Logic is inherently not stratified, because tit-elimination is presence of a dereliction
node may also “open” boxes. Instead, these nodes can belewtsias auxiliary ports of 8-boxes whose
border is somewhdtizzy We mean that a 8-box need not be contained in or disjoint &ioother box.
Instead, it can “overlap” a !-box, and it can have more tham conclusion §. To distinguish 8§-boxes
from the ! ones we adopt a dotted border.

Let Ip be the canonical indexing &1 ande € En. Thelevel of eis | (e). It is defined ado(e). The
level of 1 is (). Itis defined as the greatest value assumethloy the edges dfl. We denote aB
the set of the !-boxes ifl, and it is naturally in bijection with the set of thg hodes inll. Finally, for
every netll, and for te {!,8}, t"IN denotes nested t-boxes arourfidl

Cut elimination. We just recall its steps, which are standard. Tihear cut elimination steps anni-
hilate in the natural way a pair of linear nodes (IdentitWiCtr o /| — %, ® ¢ /R%, 82 /8%, V.2 /Y %).
The exponentialcut elimination steps are of two kindsi !/ !4 is reduced merging the two involved
boxes which can be !-boxes as well as §8-boxes with fuzzy erdasteadcontractiori! 5, duplicates
the whole !-box cut with the contraction, aslinAL . Thegarbage collectiorcut elimination steps in-
volve the weakening or the deemon nodes, cut with any othes.ribi$ always possible to reduce such a
cut with the help of some more weakening and deemon nodesnasmhAL [2]. The set of cut nodes
of M is cutgn).

Proposition 2 (Cut-elimination) EveryLALL net reduces to a cut-free net.

A direct proof would be very long; anyway, such a proof dikedollows from the proof of the
namesake propositions IbAL andML 4. Please notice that the presence of fixpoints (i.e. the seeur
type.¥’) does not affect the proof in any way, because the cut-eéitian independently by the formulee

68 Safe Recursion on Notation into a Light Logic

labelling the edges of a net. This is not true in full Lineagio

3 Polynomial time soundness of LALL

We adaptl[3] to prove the cut eliminatidTIME -soundness in presence of unconstrained Weakening,
which we introduce for easy of programming since it is harwgrase nets structure. Let us fix a proof
netl to reduce. We define an ordering over ¢tsthat determines which cuts to reduce first.

A graph theoretic path in any proof nidtis exponentialf it contains a, possibly empty, sequence of
consecutive contractions and stops agzanode.

LetB,C €Bp. LetB <'i C if the roots ofB andC lie at the same level, and the root®fs in cut with
an exponential path that enters an auxiliary por€of<" is the reflexive and transitive closure @f;.
One can show that' is a partial orderupward arborescentfor everyC there is at most onB such that
B<iC.

Let c,c’ € cutgd). We writec < ¢’ iff one of the following conditions holds. (i§ is connected
to a weakening or a deemon, ands not. (ii) The condition (i) is false but(c) < I(c’) holds. (iii)
The conditions (i) and (ii) are false, $¢c) =1(c/). In this casegc < c iff: (a) eitherc’ is connected
to a contraction, and is not, or (b)c,c’ are connected to a contraction on one side, to the bBxg's
respectively, on the other, ami<- B'.

Definition 3 (Canonical normalization) A sequence of normalization steps that starts from a given
proof netll is canonicalWwhenever smaller cuts relatively to are eliminated before higher ones.

Theorem 4 (Polynomial bound for LALL) Letl be anLALL proof net of size s, level |, and depth d.
Then, every canonical reduction is at mést- 1)s%2" steps long.

The proof strategy coincides with the one fin [3], with theldaling adaptation: the reduction of the
garbage collection steps is always delayed till the end.

4 Preliminary notions about SRN

We recall from Sectiofll1 tha&8RN"* is the subset 08RN whose terms have normal arity and safe
arity s. If not otherwise statedT>m =13,...,tn will always denote sequences mf> 0 terms ofSRN.

Moreover, we Writh)m] <1, for somel > 0, meaning that the size of every tetns not greater thah
Now, from [4], we recall that, for everyyin SRN™S, andX = X1,...,%., Y = V1,...,Vs:

[tV < Pl [%al) +max{lyal,...lys)} (%)

wherep is thecharacteristic polynomial ofwhich is non-decreasing and dependg.diWe notice that if
uis a subterm of, thend(py) < d(pt). Atlast, we define theomposition degreé:(t) and therecursion
degreedg (1) of t, as the functions that count resp. the number of safe cotmosind recursion schemes
insidet.

Definition 5 (The Term Bounding Functiontb.(-)) Lett in SRN™* and | > 0. We define tl§-), that
takes t and | as arguments, as) = pc(1,...,1) +1.

Fact 6 (b.(-) Bounds the Output Length oft € SRN) For every t inSRN"®, | > 0, and sequences
X,V suchthatX|,| Y| <, we havelt(X;y)| < th(l).

L. Roversi & L. Vercelli 69

eV = xeA)
m>1 MeAS,xi e, xme NP = Al XN M) e
c /\\A/\;L@...@AmwA (6)
MeA]ANeNLUUWCVUNW=0 = (MN)ecAd
m>2 (1<i#j<m=NeAy,

WNAW =0W CV) = (@MN)eAGo-“An @)
MeA) = AaMeNA (8)

A//]

a

A
MeAfA = M{A’}e/\v[9)

Figure 5: Typed Il order affind-terms.

Definition 7 (The Net Bounding Functionnb.(-)) Lett in SRN™ and | > 0. We define nlf-), that
takes t and | as arguments, as; (1B = th (th(...th(I)...)), with dx(t) + d¢(t) occurrences of #f-).

Fact 8 (nb.(-) is a Polynomial) For every fixed t ilSRN™*, nly (1) is a polynomial in the free variable
|, whose degree ig(pr) 2+,

5 Preliminary useful nets in LALL

We introduce a first set of nets useful to define the embeddimg ERNto LALL . However, whenever
neither boxes, nor contractions are used in a givemingthose conclusion has type to save space, we
representl by means of a -term. The term belongs to the 3§} of polymorphic typedaffineA -terms
with variables inv, patterns, tuples, and typec .7 . Figure® defined§. () introduces\ -abstractions
on a tuple pattern, whilé]7) introduces tuples. The apptiaas left-associative. We shall drop useless
parenthesis to avoid cluttering the terms. For agndV, the terms in\{} rewrite under the standard
B-reduction, extended with the following two rules: () @™, %.M)(®",N)) =g M [N/ ---Nm/f T,
whereM [N/ --.Nm/] stands for the simultaneous substitutionNpffor x;, with 1 <i < m, and (ii)
(Aa.M){B} =g M [B/a].

Booleans.The type of booleans iB = Vy.y — y — y whose representative nets are:

F=AyAxXY x> B (True)
T=AyAxY.yo B (False)
OBb] =b{B®B}(T®T)(F®F) bBFBB (Duplication)

The netB[b] duplicates any boolean we may plug ifitby a Cut node.

Church words or, simply, words. The type of words i =Va.l(a —a) — (o —a) — §(a —o
a). Figure[6(d) introduces the successaecCo[w]|, wherew identifies the lowermost dangling edge.
It should be trivial to recoveguccCq[w] from SuccCo[w]. Figure[6(c) introducesC. If wis a natural
number in binary notatiorw is its usual representation by a net. Figures|6(b)[and 6(cydoce nets
that invert the bits inside ary, plugged by Cut into the dangling input B&vC[w].

Scott words. Intuitively, the type.# of Scott words describes a tuple of booleans. On Scott words

70 Safe Recursion on Notation into a Light Logic

7
S

\ZJ
f1(a—a)
(@) SuccColw (b) RevC[w] (d) Step; withi € {0,1}
Figure 6: (Church) Words.
we have the following nets:

= Aa AXOyE=T 0 x| (Empty Scott word)
SuccSols = Aa.AXAYE=T = yFsp .S . (Successor zero)
SuccSi[s = Aa.AXAYE=T 0 yTsp .7 | . (Successor one)
Preds[s = s{.7}eS(AbPW” W) >.7 - . (Predecessor)

CondS|[s,X,y] = PrepS[d {7} eS(ALE.b{S}yX) b.7,.7, S .7 (Conditional)

PrepS|s| = s{.7} SuccSy[eS] (A bPAW” b{.s — .7}

(Ax” .SuccSo[x]) (Ax” .SuccSi[X))W) &7 .7 (Preprocessing)

We remark thauccSg[] adds tosthe least significant bi, which stands for the digit O, arghccS;]s]
addsF, instead, which stands for Preds|s shiftssto its right deleting théeast significanbit. So:

Remark 9 A Scott word is in fact a stack of bits, the least significabbking on the top of the stack.

Moreover, CondS|[s, x,y] branches a computation, depending on the valug df yields x if the least
significant bit ofsis 0, or if s= &8, while it yieldsy if the least significant bit o$is 1. The preprocessing
avoids to returres: if s= €8, thens becomessuccSy[eS]. Also, the three assumptions of typé in
.7, . specify the type 08, x, andy, respectively.

L. Roversi & L. Vercelli 71

()= g roes

Figure 7: The generalized duplicatiﬁisr[s] of Scott words.

Fact 10 (Relation between naturals, Scott words, and wordas-terms) Every sequencgs, ..., d;) with
di,...,d € {0,1} and | > 0, identifies uniquely a number-a2'~1.d, 4---- +2°.d; € N. So, both the
term of SRNsq (;...s4,(;0)...) and the Scott wor¢h| identify n, too. We say that the sequence, as well
as the Scott number and tIsRN term, represent.
We underline that an infinite number of sequences, and ofstampresent the same

Scott words to words.For anyl > 0, StoC[s|> . I ¢ is inductively defined of:

StoCopls|
StoC[g

C

=&

=s{€} eC(AXBy” x(Az% .SuccCo[Z]) (A 2% .SuccCy[Z]) StoCi_1[s])

The netStoC [normalizes to the word, for any Scott worcat most as long as |
Duplicating Scott words. For anyl > 0, the netds)[g] is inductively defined o

OSolg = eS® €S
0S8 = s{-# ® 7} (eS®@&S) (Ab®s” .b{.#? — 72} (Ax” @y~ .SuccSo[X| ® SuccSoly])
(Ax” @y~ .Succsi[X ® SuccS:1[y]) 0S|_1[9))

such thatds)[s]> .7 - .72, where.#? = . ® .. The nets|[g builds two copies of any Scott word
at most as long as IThe generalizationls{[s|> 8.7 I- 8.7 @ 8.7 of (3, [g duplicates a given Scott
word at most as long aswhich lies insidek > 0 paragraph boxes. Specificallyslo[s] is [0S [g], while
DSHS] is in Figure Y, withk > 0, which is the only net that exploits tiiezzy border®f paragraph boxes.
By induction onk, |0SK[s]| = 19+ 89 + 3k € O(l).

Coercing Scott words. For anyk,| > 0, we defineCoersf[s|> .7 I- 8.7 by cases ork, and by
induction onl. If k=0, thenCoerSIO[s] is the node Axiom. Otherwise, the netis in Figure 8, whene, 0
{0,1}, As.8(Succsj[g)> - 8.7 — 8.7 denoteshe net that we build by: (i) enclosirgnccs;[g into
k paragraph boxes to gef(§uccs;[s)) > 8.7 I- 8.7, and (i) adding an Implication R td*8uccs;[s))
so to close it and get its type&'.&” —o 8. The netCoersK[g reconstructs a given Scott woad most
as long as linto an identical Scott word inside paragraph boxes. We can show th@sersk(s| =
43 + 3kl € O(I).

- =N 08 _
Lifting. LetN .7 8.7 I 8. for somen,s k> 0. For everyk’ > 0 we can buildLift (] >
n o /S . . .) B)
3’) K. 1 4K o by: (i) enclosingM into k' paragraph boxes, gettif@’, and (i) plugging the

72 Safe Recursion on Notation into a Light Logic

g ’ By o8
k7
(B—o. —o§¢.7)—o8§¢ .7 =
g7 8.7
D R N I I P
ON])\S§k(SuccSo[S]) |/\S§k(Succsl[s] | 1 Coers 9
Sp Hansdnoaal N ASTBrecBols) 1199 (Buects] 1oe e

gk o
&
L ‘o
K% FFs §7
- S __
|
| CoersK | | CoerS\ | gtk gtk
B ___/1___J

Figure 9: TheLifting Lifty] of a proof net.

conclusion ot:oerslw 9], using Cut, into every of the premises with type'§# of I". The netLift/[M]

is M deepened inside€ paragraph boxes. The final net is in Figule 9.
Notice that|Lifty [[]| = M|+ K (n+s+ 1)+ n|CoerSk'[gl € O(|ﬂ| +1).

Contracting the premises of a netLet[> A 87 &7 A’ Afor somel,k > 0. We can build
oK) > A 8.7, AEA by: (i) writing M’ which isM with a new Tensor L between the two outlined
premises of type'87, and (i) plugging the conclusion @isks > 8.7 - 8.7 8., by a Cut, into

the premise of the new Tensor Liit{. Notice thatO[1]| = || + |OSK[g]| +2 € O(1).

6 The embedding|-]" from SRN to LALL

The goal is to compositionally emb&RN into LALL , with a map as much analogous as possible to the
natural, and inductively defined one frdBC~ into ILAL [8]. For any fixedn ands, the map]-| takes

—s
a termt of SRN™s as first and > 0 as second argument, and yields a [t > ?n,§k5’ - 8.7, for

somek. We define the map inductively on the first argument.
The base cases df-]". Some of them are straightforward:

[0]' =esp .7 [si]' = Succsi[g > S .7 (ie{0,1})
[p]' =Preds[s .7 F.# [B]' =CondS[s,x,y]>.7,.7,.7 .7

L. Roversi & L. Vercelli 73

! 1
iCoerSlk:
SA

Figure 10: The (partial) translation oft’, u;, v, v»] with missing contractions.

where, s, x,y denote the inputs of the nets they appear into. Concerniag)rtbjection,[rq“;s}' is an
Axiom that connects théth input to the conclusion, erasing all the other inputs bgya®éning. An
example with 1I<i < n, and, noticek =0 is:

WL s oW QW ... gW

N A N

The case of{-]" on the composition.We now focus ort = o[t’,u, ..., Un,V1,...,V,] such that’ be

in SRN™". Without loss of generality, we show how to built' by assumingn =n=s=1, andr = 2.
By induction we have:

"t/‘|tb[“>|>y’§k’y’§k/y - §k/y "ul‘|| .7 §kuy
vil's 7,857+ 8.7 (ie{12})

By letting k = max{K', k,, ki, k> }, we get:

Lift i) [[t']0]> .7 87 87 - 87 Lifty g [[ui]']>.7 F 87
Lifty i)[[vi]']> .7, 87 F 87 (ief{1,2})

Next, if we buildM’ in Figure[I0, therjt]' is O[0°[0°[M"]]]. The two occurrences ai° contract
three “normal” inputs. One is froru;]'. The other two are fronfiv1]', [v2]'. The occurrence dfi
contracts the single “safe” input ¢f;]' and[v»]'. We insist remarking the existence [af' for any
m,n,r,s. One can COUﬂth-lI | < ‘Lift(k_k/)”t/-ltb‘(l)” —l—zlm ‘Lift(k_kj)HUi-ll] ’ —l—z; ’Lift(k_kj) ”Uj—‘l] |+
k(1+n+sn+s's)+s'n|Coersf[s]|. So, itfollows|[t]'| € O (|[t1™*D |+ 5™ [Tul'|+ 5 [v;1'|+ the (1) +1).

The case off-]" on the recursion. Lett = r[ug, Up, 1] with u; € SRN™® ug,u; € SRN' s+ As
for composition, we set =s = 1 which is general enough to show the key point of the embegddim
the course of the iteration unfolding thiad' carries out, the safe argument gets duplicated, so we must
contract it. By induction:

[Ug]'> .7, 8.7 | Ge.r Uy 7 7 847 867 |- g7 (i€{0,1})
By letting k = max{k,ko,ki }, and usingLift.[-] in analogy to the translation of the composition,
[t]" is in Figure[I1. The Scott word that drives the recursion ldirig, becomes a word, and, then, it

is necessary to reverse it BgvC[w|. Otherwise we would unfold the iteration according to a varbit
order, as implied by Remafk 9. Moreover, [[)projects the rightmost + s + 1-th element of typd\ it

74 Safe Recursion on Notation into a Light Logic

gty where
Z N A= ®.0 S8 S0..08 7
:l M .; 1+n s+1
L __ : A :
:RevC[W] (G —ArL : andStepj, withi € 0,1, is:
I A :
: SN oy g7 : !
N I /|‘l'| g : 1,
1 :] | e :
.Stoc|[si : Les P Liftgi[ue]] | ..
Ao G o
(‘5//)2 §k§;)2
Cut Cut
I__k__l
Os([s] 1
I____J

S?b[u [s]l ,DSO [s]l | tb[(|)[s]|

gty

Figure 11: Safe recursion.

gets in input and which contains the result, and (ii) the twts,@ are obvious trees of Tensor
R and L nodes. Finally, we can proyg]'| € O (|[ug]'| + |[uo] M| + |[u 1™ O + thy (1)).

Definition 11 (Representing a term by a net)Let t be inSRN™*, | € N, and > ?“ (8.7) 8.7,
for some ke N. Then,IM k-simulateg with |-bounded input#, for every pair of vectors of natural num-
bers X", ¥, such that X"|,| y$| <, the net we get by pluggingxi1',..., % 1", 811", ..., 8[ys]'
into the inputs of1, in the natural way, normalizes & [z]', whenever z is the result ofX"; V®).

Proposition 12 (SRN embeds into LALL) Let | > 0, and t€ SRN™*, Then [t]" k-simulates t with I-
bounded inputs. Moreover, (i)% dx(t) - 2%®) and (ii) |[t]'| is O(I" (40RO) namely a polynomial
inl.

The statement holds by induction grusing the definition of-]", the size of every net that] generates,
the definitions ohh(-), andth; (-), together with Facts| 8] 6, ahd]10.

7 Conclusions and further works

We have shown that the compatibility betweenphedicative analysisver recursive functions th&RN
encodes, and the proof theoretis#tatification that regulates the complexity of some Light Logic that
characterizd® TIME , can be improved, provided that (i) the stratification we fimdlight Linear Logic
andILAL relaxes to boxes with “fuzzy” border, ashfiL # or LALL , and (ii) we move to a representation
of wordsalternative to the standard opable both to represent the basic functionsS&fN in constant
time, and to exploit the independence of the cut eliminatomplexity from the logical complexity of
the formulee in a net.

L. Roversi & L. Vercelli 75

As a consequence, every tetnof SRN maps to a family([t]')cy of nets inLALL , where[t]'
simulatest with inputs at most as long as.| The number of paragraph modalities in the type of the
conclusion of{t]' depends on the structural complexitytofThe size offt]' is a polynomial i whose
degree depends on the degree of the characteristic polghoftiand on the structural complexity tf

As an example, the following program, which retusng w = 0 contains a digit ‘0’ that is not the
lowermost digit, and otherwise, is irSRN but not inBC~:

{g(o:y,Z) =z (%)
aswy,z) =h(wy,zg(wy,2)) ,

whereh(w;y,zt) = cond(;w,y,t). The embedding we propose gives the family of nets that imetg
itin LALL , while, it is worth remarking, it is unknown how to represef\y;y, z) insidelLAL .

Admittedly, the representation of a term 8RN by a family of nets, rather than as a unique net, is
not standard. For example, one might be tempted to obseatestlery function with finite domain is
the initial fragment of some polynomial time function, kALL represent®very function with finite
domain Beware, however, thatot every algorithms in LALL . For example, in analogy with[[7], we
show an algorithnexp that cannot exist as a netloALL because it calculates a non-polytime function.
exp Will be defined using the traditionalon-predicativerecursive schemes, so that it is not a program of
SRN. exp is defined as follows. We know that the two prograteacat(x;y), which concatenates two
strings of bits, andouble(X;) = concat(X; nfo(x;)) belong toSRN. Then, we can define the recursive
function exp:

exp(0;) =s1(; nj’o(o;) exp(si(;X);) = double(exp(X;);) (ie{0,1})
The programexp is notin SRN because of the position of the argument that drives the dimigl This
reflects intoLALL , where[concat]' :.#,8.% I- 8.7 and [double]' : .7 I- 8.7 exist, but[double]'
cannot be iterated because of the form of its type.[S8gp|' cannot be defined as a netloALL using
the constructions of this paper.
We conclude by an example about how the appro&RN as family-of-proofs” we present here can
be rewarding. We consider the following program:

gt(0,y) = False
gt(six,y) = if (y=0) then True else gt(X,pred(y)).

The progranmgt is such thagt(x,y) = True iff [x| > |y|. It has a recursive definition more liberal than
the primitive recursion scheme, as the recursive cadltcdipplies a function on the parametethat does
not drive the unfolding. Namelgt incorporates @ouble iteration Certainly,gt cannot exist irSRN

in the form here above. InsteddALL admits to represengt as follows:

gt 7B AxC Ay . (X{.¥ @ B} (step) (YR F))
step” “BE=7%B _ \s” @b b{./ 9 B}(0®T) (s(om)(/\xﬁ./\yfy@g F))
whereB, T,F are at page 69. The existencegafin LALL implies the existence of a familiprd,)y

of nets. Everyrd, takes two Scott words witht most | bits and gives them back sorted according to
their length. The definition of everyrd, is a net ofLALL that we compactly write as/&-term:

ord/ #7797 = Ax” @y’ (Ax{ @%5 .Ay; ®Y;5 BtoB(gt (StoCi[x1])y1) (Y2 @ X)) (08 x)(0Sy)
BtoB" B = Ax® x{B}(Ay AW @ 2. w® 2)(Ay AW @ 2.z w)

76 Safe Recursion on Notation into a Light Logic

LX) =Va.!(X —oa—oa)—§a-—oa) is the type of lists
O-) = A!X—a—a) x4 Z
sortlL(y>w§L(y) = M) H{L(.#)} (insert)) O-)
insertiyﬂl‘(y)ﬂl‘(y) =AnZ AMHT)) (T ea—a) j
(Ax” @y®.cxy)((tputTop [c],)(Coersi[n ®z))
putTop[c];” 7 ¥* 72 = xa” Ab” @t".(Ai” @A |7 .i®c|t)(ord a®b)

Figure 12: Insertion sort for Scott Words no longer than

whereB = Vy.(y®y) — (y®Y) is a linear version of the boolearsa;ociy“’% is at pagé 71, and treafe
duplications;” ~”® is at pag& 7.

Givenord,, we can write a family of insertion sorts that sort lists ob8aVords as much long as
|. Figure[12 describes one element of the family. We warn thdeeabout the syntax we use. It does
not perfectly adhere to the one in Figlite 5, but nets wouldeo®e too much space. The effort to move
from the terms in Figure_12 to the netsloALL they represent should be a reasonably simple exercise.
We observe thaputTop, is a linear algorithm that manipulates only theadof a given list. Instead,
insert| takes a number and a sorted list, and puts the number at thextposition of the list, so to
preserve the sorting. While performing an iteratibnsert; doesnotadd any paragraph § in front of the
type of the output. The reason is that it exploits the gersmiaéme that allows to write a perfectly linear
predecessoon Church numerals in the-calculus([9]. Finallysort,, iteratesinsert; in the usual way,
thus adding a § in front of its output type.

Future lines of research. We must say that the representationS®tN as a family of nets of ALL

that we present in this work has been an alternative apprimsitte standard one, which would explore
the relations betweeS8RN and stratification by mapping a single term3RN into a single net. That
standard approach has been developed in[[11, 10, 13]. Thades wake some progress as compared
to [8]. This means that they identify a Light Logic that stiiccontainsILAL , and which allows to
represent a strict extensionBC~. However, the whol&RN still escapes any full representation inside
a Light Logic. So, it has been natural to look for an alterr@thpproach; and this brought us to this
work.

Naturally enough, future work is about “integrating” bdik level technologynd multimodality
Multimodality is in the frameworkVS developed in the previously cited works [11] 10} 13]. The-con
jecture is that the two technologies together may lead to 1@ medined proof theoretical representation
of the principles underpinning the definition 8RN, and of the predicative analysis it encodes, possibly
increasing the set of algorithms that we can representearisight Logics.

References

[1] Martin Abadi, Luca Cardelli & Gordon D. Plotkin (1993)ypes for Scott numeralgvailable at
http://lucacardelli.name/Papers/Notes/scott2.pdf.

L. Roversi & L. Vercelli 77

[2] Andrea Asperti & Luca Roversi (2002)ntuitionistic Light Affine Logic ACM Trans. Comput. Log3(1),
pp. 137-175. Available atttp: //doi.acm.org/10.1145/504077 .504081.

[3] Patrick Baillot & Damiano Mazza (2010):inear Logic by Levels and Bounded Time Complexitheor.
Comp. Sci411(2), pp. 470-503.

[4] Stephen Bellantoni & Stephen A. Cook (1992)New Recursion-Theoretic Characterization of the Polgtim
Functions Computational Complexit2, pp. 97-110.

[5] J.-Y. Girard (1998)Light Linear Logic Inf. Comput.143(2), pp. 175-204.

[6] D. Leivant (1994):A Foundational Delineation of Poly-timé.&C. 110(2), pp. 391-420.

[7] Daniel Leivant (1993)Stratified Functional Programs and Computational Compiexin: POPL pp. 325—
333.

[8] Andrzej S. Murawski & C.-H. Luke Ong (2004Dn an interpretation of safe recursion in light affine logic
Theor. Comput. ScB18(1-2), pp. 197-223.

[9] L. Roversi (1999):A P-Time Completeness Proof for Light Logick: Ninth Annual Conference of the
EACSL (CSL'99) LNCS 1683, Springer-Verlag, Madrid (Spain), pp. 469 — 483.
[10] L. Roversi & L. Vercelli (2009): A structural and local criterion for polynomial time compu-
tations Available athttp://www.di.unito.it/~rover/RESEARCH/PUBLICATIONS/2009-FOPARA/

RoversiVercelli2009FOPARA.pdf. Accepted for the publication in the post-proceedings ef\tfork-
shop FOPARAOQ9 (FM2009 affiliated).

[11] L. Roversi & L. Vercelli (2009):Some Complexity and Expressiveness Results on Multimoda&@@atified

Proof Nets In: Proceedings of TYPES'Q®p. 306 — 322. Available &tttp://dx.doi.org/10.1007/
978-3-642-02444-3_19.

[12] Kazushige Terui (2004 Proof Nets and Boolean Circuit$n: Proceedings of LICS’04p. 182-191.

[13] Luca Vercelli: On the Complexity of Stratified Logic®h.D. thesis, Scuola di Dottorato in Scienze e Alta
Tecnologia — Universita di Torino — Italy. Available attp://arxiv.org/abs/1002.3453v1.

http://doi.acm.org/10.1145/504077.504081
http://www.di.unito.it/~rover/RESEARCH/PUBLICATIONS/2009-FOPARA/RoversiVercelli2009FOPARA.pdf
http://www.di.unito.it/~rover/RESEARCH/PUBLICATIONS/2009-FOPARA/RoversiVercelli2009FOPARA.pdf
http://dx.doi.org/10.1007/978-3-642-02444-3_19
http://dx.doi.org/10.1007/978-3-642-02444-3_19
http://arxiv.org/abs/1002.3453v1

	1 Introduction
	2 Light Affine Logic by Levels (LALL)
	3 Polynomial time soundness of LALL
	4 Preliminary notions about SRN
	5 Preliminary useful nets in LALL
	6 The embedding from SRN to LALL
	7 Conclusions and further works

