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Abstract  

Depletion of skeletal muscle protein mainly results from enhanced protein breakdown, caused by activation of 

proteolytic systems such as the Ca2+-dependent and the ATP-ubiquitin-dependent ones. In the last few years, enhanced 

expression and bioactivity of myostatin have been reported in several pathologies characterized by marked skeletal 

muscle depletion. More recently, high myostatin levels have been associated to glucocorticoid-induced 

hypercatabolism.  

The search for therapeutical strategies aimed at preventing/correcting protein hypercatabolism has been 

directed to inhibit humoral mediators known for their pro-catabolic action, such as TNF.  

The present study has been aimed to investigate the involvement of TNF in the regulation of both myostatin 

expression and intracellular protein catabolism, and the possibility to interfere with such modulations by means of 

amino acid supplementation. For this purpose, C2C12 myotubes exposed to TNF in the presence or in the absence of 

amino acid (glutamine or leucine) supplementation have been used. 

Myotube treatment with TNF leads to both hyperexpression of the muscle specific ubiquitin ligase atrogin-1, 

and enhanced activity of the Ca
2+

-dependent proteolytic system. These changes are associated with increased myostatin 

expression. Glutamine supplementation effectively prevents TNF-induced muscle protein loss and restores normal 

myostatin levels. 

The results shown in the present study indicate a direct involvement of TNF in the onset of myotube protein 

loss and in the perturbation of myostatin-dependent signaling. In addition, the protective effect exerted by glutamine 

suggests that amino acid supplementation could represent a possible strategy to improve muscle mass. 
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Introduction 

Skeletal muscle is the most abundant tissue and the major protein reservoir in the human body. Muscle mass 

usually results from a dynamic balance between protein synthesis and degradation (Goll et al., 1989; Sandri et al., 

2008). Indeed, alterations between anabolic and catabolic pathways may lead to either muscle hypertrophy or atrophy, 

respectively (Guttridge, 2004; Ventadour and Attaix, 2006). The latter, in particular, is peculiar to conditions such as 

disuse (e.g. immobilization, muscle unloading, denervation), aging, starvation, and disease states (among which muscle 

dystrophies, diabetes, and cancer) usually characterized by the occurrence of ‘cachexia’ (reviewed in Jackman and 

Kandarian, 2004; Sandri, 2008). 

Depletion of skeletal muscle protein may result from reduced rates of protein synthesis, enhanced rates of 

proteolysis, or both, although increased protein breakdown, mainly caused by activation of proteolytic systems such as 

the Ca
2+

-dependent and the ATP-ubiquitin-dependent ones is believed to play a crucial role (reviewed in Ventadour and 

Attaix, 2006). In this regard, a subset of genes, known as ‘atrogenes’, have been found up-regulated
 
in different models 

of muscle atrophy. These include two muscle-specific
 
ubiquitin ligases, namely atrogin-1 and MuRF-1, which are 

associated with protein degradation through the ubiquitin-proteasome
 
system (Bodine et al., 2001; Gomes et al., 2001). 

Recently, a role for the acidic vacuolar proteolysis has emerged (Capel et al., 2009). 

The search for strategies aimed at preventing/correcting protein hypercatabolism has  significantly increased in 

the last years. In this regard, previous studies have shown that amino acid supplementation counteracts muscle wasting, 

although the underlying mechanisms remain unclear. Indeed, glutamine administration has been reported to prevent 

muscle protein breakdown in septic rats (Hickson et al., 1995). Similarly, leucine supplementation to both animals and 

humans has been shown to stimulate muscle protein synthesis and to modulate the activity of proteins involved in the 

control of mRNA translation, thus resulting in suppressed skeletal muscle proteolysis (Nair et al., 1992; Louard et al., 

1995; Sugawara et al., 2008). Finally, glucocorticoid-induced muscle wasting is prevented in dexamethasone-treated 

rats fed a glutamine-enriched diet (Ma et al., 2003; Salehian et al., 2006).  

Most of the therapeutical strategies proposed in the literature have been directed to inhibit humoral mediators 

known for their pro-catabolic action, such as TNF. Indeed, increased nitrogen and amino acid efflux from skeletal 

muscle and loss of body protein have been shown in mice administered TNF (Hoshino et al., 1991; Buck and 

Chojkier, 1996; Lang et al., 2002), in animals expressing a TNF transgene, as well as in conditions characterized by 

elevated endogenous TNF, i.e. experimental sepsis (Ahmad et al., 1994) or cancer (Costelli et al., 1993). Most of these 

effects can be counteracted by treatment with anti-TNF antibodies, or by either knocking-down the cytokine receptors 

or overexpressing soluble receptor isoforms (reviewed in Argilés and Lopez-Soriano, 1999).  
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In the last few years, significant progress has been made in identifying signaling pathways potentially 

contributing to muscle atrophy, with particular reference to that activated by a TGF family member known as 

myostatin. This is synthesized as an inactive precursor protein, that, after proteolytic cleavage, can dimerize to give the 

active peptide (McPherron et al., 1997; Lee and McPherron, 2001). Once secreted, myostatin circulates as an inactive 

latent and highly conserved dimer bound to the propeptide or to other myostatin-binding proteins, such as follistatin 

(Lee and McPherron, 2001).  

Following activation myostatin binds with high affinity the activin type IIB receptor (ActRIIB), that in turn 

recruits a type I receptor (ALK-4 or ALK-5),  to form a heteromeric complex (Lee and McPherron, 2001; 

Rebbapragada et al., 2003). Subsequently, recruitment and phosphorylation of signal transducers Smads 2 and 3, and 

their interaction with co-Smad 4, result in the translocation of this complex to the nucleus, where it regulates the 

transcription of myostatin target genes (Zhu et al., 2004). 

Myostatin is hyperexpressed in several conditions associated with muscle atrophy (Gonzalez-Cadavid et al., 

1998; Zimmers et al., 2005; Holzbaur et al., 2006). In particular, we have recently reported that muscle myostatin 

signaling is enhanced in two different experimental models of cancer cachexia (Costelli et al., 2008; Bonetto et al., 

2009). This up-regulation seems to depend, partially at least, on TNF. Indeed, administration of pentoxifylline, an 

inhibitor of TNF synthesis, improves skeletal muscle wasting in tumor bearers and restores the myostatin/follistatin 

ratio (Costelli et al., 2008).  

The present study has been aimed to investigate whether TNF could be directly involved in the regulation of 

myostatin expression and whether amino acid supplementation could both prevent TNF-induced hypercatabolism and 

myostatin up-regulation. For this purpose, C2C12 myotubes exposed to TNF in the presence or in the absence of an 

excess of amino acid (glutamine or leucine) have been used as an in vitro model system. Both the state of activation of 

the myostatin signaling pathway and the modulations of protein hypercatabolism have been assessed.  
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Materials and Methods 

 

Cell culture 

Murine C2C12 skeletal myoblasts (ATCC, Manassas, VA, USA) were grown in high glucose Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% FBS, 100 U/ml penicillin, 100 mg/ml streptomycin, 100 

mg/ml sodium pyruvate, 2 mM L-glutamine (all reagents were supplied by Sigma-Aldrich, Milan, Italy), and 

maintained at 37°C  in a humidified atmosphere of 5% CO2 in air. Cultures were regularly checked for mycoplasma 

contamination by staining with the DNA specific fluorochrome 4’-6-diamidine-2-phenylindole dihydrochloride (DAPI; 

Boehringer, Mannheim, Germany). For the experiments, cells were seeded at 35000/cm
2
 to obtain full confluence 24 h 

later. Differentiation to myotubes was induced by shifting confluent cultures to DMEM supplemented with 2% horse 

serum (DM). The medium was changed every 2nd day, and within 5 days most of the cells were fused to form 

myotubes. On day 6, the cultures were exposed to 100 ng/ml TNF (Immunological Sciences, Rome, Italy), and cells 

collected after 24 h. Both TNF-treated and untreated cultures were photographed under phase contrast microscopy, 

and monolayers were stored at -80°C for further analysis. 

In a different set of experiments, C2C12 cells were induced to differentiate to myotubes (see above) in DM 

enriched in either glutamine (8 mM; Salehian et al., 2006) or leucine (2 mM; Du et al., 2007). The medium was 

changed every 2nd day, maintaining glutamine or leucine excess. At day 6 of differentiation, myotubes were treated 

with TNF (100 ng/ml) for 24h (if not otherwise specified). These experimental conditions allowed to evaluate whether 

excess amino acid could affect both TNFα-induced protein hypercatabolism and myostatin bioactivity.  

 

 

Morphological analyses 

To evaluate nuclear morphology, cells were grown on chamber slides (Nalge Nunc International, Naperville, 

IL, USA) and treated as described above. Monolayers were then washed with PBS, fixed in 95% ethanol, stained with 

the DAPI fluorochrome (10 ng/ml, dissolved in methanol), mounted in Mowiol (Calbiochem, La Jolla, Ca, USA), and 

viewed in an epiilluminated fluorescence microscope (Dialux 20, Leitz, Germany).  

Alternatively, in order to assess myosin heavy-chain expression and localization, after complete differentiation 

myotubes were washed in PBS, fixed in acetone-methanol solution (1:1) for 20 minutes at -20°C and then probed with 

the primary mouse monoclonal antibody (Clone MY32; Sigma-Aldrich, Milan, Italy). Detection was performed using a 

Cy3-conjugated mouse IgG secondary antibody (GE Healthcare, Milano, Italy). Nuclei were stained with the DAPI 

fluorochrome and the images captured in an epiilluminated fluorescence microscope (Axiovert 35, Zeiss, Germany). 
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Calpain enzymatic activity 

Calpain activity in C2C12 myotubes was determined by evaluating the cleavage of a specific fluorogenic 

substrate (see Beyette et al., 1998; Ruiz-Vela et al., 1999). Fresh cells were lised in 50 mM TRIS-HCl pH 7.6, 150 mM 

NaCl, 10 mM NaH2PO4, 10mM Na2HPO4, 1% (v/v) Nonidet P-40, 0.4 mM Na3VO4, and then centrifuged at 13000 g 

for 15 min at 4 °C. The supernatant was collected and protein concentration determined by the method of Lowry et al. 

(1951).  

Aliquots of 50 g protein were then incubated for 60 min at 37 °C in the presence of the a specific fluorogenic 

substrate (Suc-Leu-Tyr-AMC, Calbiochem, La Jolla, CA, USA). The incubation buffer for the evaluation of calpain 

activity was 25 mM HEPES pH 7.5, 0.1% CHAPS, 10% sucrose, 10 mM dithiothreitol, 0.1 mg/ml ovalbumin.  

Fluorescence was read with a spectrofluorometer (380 nm excitation-460 nm emission; Perkin-Elmer, 

Norwalk, CT, USA). The activity, expressed as nkatal/mg protein (1 katal = 1 mol substrate hydrolyzed/sec) was 

calculated by using free AMC as working standard.  

 

Reverse transcription-PCR 

Total RNA was obtained using the TriPure reagent (Roche, Indianapolis, IN, USA) following the instructions 

provided by the manufacturer. RNA concentration was determined spectrophotometrically (SmartSpec 3000, Bio-Rad, 

Hercules, CA, USA) and its purity ensured by evaluating the 260/280 nm ratio.  RNA integrity was checked by 

electrophoresis on 1.2% agarose gel, containing morpholino propane-sulfonic acid (MOPS) 0.02 M and 18% 

formaldehyde.  

Atrogin-1 mRNA levels were determined by semiquantitative reverse-transcription polymerase chain reaction 

using the kit ‘Ready-to-Go RT-PCR Beads’ (GE Healthcare, Milano, Italy). Following manufacturer’s protocol, 0.5 g 

total RNA and  400 nM mixture of each couple of primers were added to a RT-PCR reaction mixture containing ~2.0 

units Taq DNA-polymerase, 10 mM Tris-HCl pH 9.0, 60 mM KCl, 1.5 mM MgCl2, 200 M dNTP, Moloney Murine 

Leukemia Virus (M-MuLV) Reverse Transcriptase, ribonuclease inhibitor and stabilizers to reach a final volume of 

50l in each reaction tube. Table 1 shows primers sequences and accession numbers for mouse atrogin-1 and 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), that were obtained according to published sequences 

(Invitrogen, Milano, Italy). 

Retrotranscription was performed at 42°C for 30 min, and before entering the cycling protocol the samples 

were denatured (2 min, 95°C). Amplification conditions are reported in Table 1. Both positive and negative controls 

were performed. PCR products (atrogin-1: 75 bp; GAPDH: 177 bp) were electrophoresed on 2% agarose gels and 
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visualized with ethidium bromide. A 100 bp-standard DNA ladder (Fermentas, Burlington, ON, Canada) was used to 

estimate the length of each PCR product. Quantification was performed by densitometric analysis. The results were 

normalized according to GAPDH gene expression. Comparisons among groups were made in the linear phase of 

amplification.  

 

Western blotting 

C2C12 myotubes (~1.5x10
6
 cells) were homogenized in 80 mM TRIS-HCl, pH 6.8 (containing 1 mM DTT, 70 

mM SDS, and 1 mM glycerol), kept on ice for 30 min, centrifuged at 15000 x g for 10 min at 4°C, and the supernatant 

collected. Protein concentration was assayed according to Lowry et al. (1951) using BSA as working standard. Equal 

amounts of protein (30 µg) were heat-denaturated in sample-loading buffer (50 mM TRIS-HCl, pH 6.8, 100 mM DTT, 

2% SDS, 0.1% bromophenol blue, 10% glycerol), resolved on a SDS-PAGE (12% polyacrilamide, 0.1% SDS) and 

transferred for 2h to nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). Protein transfer was checked by 

Ponceau S staining. The filters were then blocked with TRIS-buffered saline (TBS) containing 0.05% Tween and 5% 

non-fat dry milk and incubated overnight with a polyclonal anti-myostatin antibody (1:1000; Società Italiana Chimici, 

Roma, Italy), specific for the 30 kDa processed myostatin, raised against a synthetic peptide (aa 133-148) representing  

a portion of human GDF-8 encoded within exon 3 (LocusLink ID 2660); a goat polyclonal anti-follistatin antibody 

(1:200, Santa Cruz Biotechnology, Santa Cruz, CA, USA) raised against a peptide mapping within an internal region of 

follistatin of human origin (36 kDa); a mouse monoclonal anti-calpain-1 antibody (1:1000; VWR International, Milan, 

Italy), recognizing the ~80 kDa active form of calpain-1. Antibody against atrogin-1 (41 kDa) and MyHC (220 kDa) 

were from ECMbiosciences (Versailles, KY, USA), and Sigma (St. Louis, MO, USA), respectively.  

Goat anti-rabbit, goat anti-mouse (Bio-Rad, Hercules, CA, USA) or rabbit-anti-goat (Millipore, Vimodrone, 

MI, Italy) peroxidase-conjugated IgG were used as secondary antibodies.  

The filters were then stripped by incubation in 62.5 mM Tris-HCl, pH 6.7, containing 100 mM 2-

mercaptoethanol and 2% SDS for 30 min at 50° C, and reprobed with a mouse polyclonal antibody directed against 

tubulin (50 kDa; Sigma, St. Louis, MO, USA) to normalize sample loading. The membrane-bound immune complexes 

were detected by enhanced chemiluminescence (Santa Cruz Biotechnology, USA) on a photon-sensitive film 

(Hyperfilm ECL; GE Healthcare, Milano, Italy). Band quantification was performed by densitometric analysis with a 

specific software (TotalLab, NonLinear Dynamics, Newcastle upon Tyne, UK).  

 

Electrophoretic-mobility-shift-assay (EMSA) 
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To prepare nuclear extracts (Blough et al., 1999) C2C12 myotubes (~1.5x10
6
 cells) were homogenized in ice 

cold 10 mM HEPES, pH 7.5, containing 10 mM MgCl2, 5mM KCl, 0.1 mM EDTA pH 8.0, 0.1% Triton X-100, 0.1 mM 

phenylmethanesulfonyl fluoride (PMSF), 1 mM DTT, 2 µg/ml aprotinin, 2 µg/ml leupeptin. Samples were then 

centrifuged (5 min, 3000g), pellets resuspended in ice cold 20 mM HEPES, pH 7.9, containing 25% glycerol, 500 mM 

NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, pH 8.0, 0.2 mM PMSF, 0.5 mM DTT, 2 µg/ml aprotinin, 2 µg/ml leupeptin, and 

incubated on ice for 30 min. Cell debris were removed by centrifugation (5 min, 3000g) and the supernatant collected 

and stored at -80°C. SMAD and NF-B oligonucleotides were purchased from Santa Cruz Biotechnology (Santa Cruz, 

CA, USA) and Promega (Milan, Italy), respectively (Table 2). Oligonucleotide labeling and binding reactions were 

performed by using the reagent supplied in the Gel Shift Assay System (Promega, Milano, Italy). Binding reaction 

mixtures, containing nuclear proteins (10 µg) and Gel Shift Binding Buffer (10 mM Tris-HCl, pH 7.5, containing 1 mM 

MgCl2, 0.5 mM EDTA, 0.5 mM DTT, 50 mM NaCl, 0.05 g/l poly(dI-dC)poly(dI-dC), 4% glycerol), were incubated 

at room temperature for 10 min in the presence of  0.035 pmol 
32

P-ATP end-labeled double-stranded oligonucleotide. 

At the end of the incubation, samples were electrophoresed in 0.5x Tris-borate-EDTA (TBE) buffer at 350 V for 40 min 

on a 4% nondenaturing acrylamide gel. The gel was dried for 45 min and exposed overnight or longer to a film for 

autoradiography (GE Healthcare, Milano, Italy) at -80°C with intensifying screens. Specificity of the bands was 

confirmed by adding an excess amount of aspecific oligonucleotide (1.75 pmol) to a control sample. HeLa cell nuclear 

extract was used as positive control (Promega, Milano, Italy). 

 

Data analysis and presentation 

All results were expressed as mean ± SD. Significance of the differences was evaluated by analysis of variance 

(ANOVA) followed by Tukey’s test. 

 

 

 

 

 

 

 

 

 

 



 10 

 

Results   

During differentiation, C2C12 murine myoblasts shift from a fusiform or star-shaped morphology to elongated 

confluent cells, eventually originating long, multinucleated myotubes (Burattini et al., 2004). Treatment with TNF 

exerted a cyotoxic effect (Fig. 1A, Fig. S), and reduced the expression of fast-type myosin heavy-chain in differentiated 

myotubes (Li et al., 1998; Li and Reid, 2000; Fig. 1A). As expected, the DNA-binding activity of NF-B, a well-known 

mediator of TNF action, also significantly increased following TNF challenge (Fernandez-Celemin et al., 2002; Fig. 

1B). Confirming previous observations (Li et al., 2005), TNF significantly increased the mRNA levels of the muscle-

specific ubiquitin ligase atrogin-1 after 2, 4, and 6h (Fig. 1C), but not after 24h treatment (C = 0.59±0.067, TNF = 

0.65±0.016; data expressed as arbitrary densitometric units, n =3 for each group). The Ca
2+

-dependent proteolytic 

system also appeared activated, as suggested by increased levels of the ~80 kDa calpain subunit (active calpain) in 

myotubes after exposure to TNF for 2, 4, 6, and 24h (Fig. 2). 

In order to understand if TNF may interfere with myostatin expression and activity in muscle cells, myostatin 

signaling was investigated in C2C12 myotubes exposed to the cytokine for 24h. While follistatin was not modified by 

TNF, myostatin abundance was significantly increased (Fig. 3A). Consistently, the DNA-binding activity of SMAD 

was increased compared to controls (Fig. 3B).  

To assess whether amino acid supplementation of C2C12 myotubes could both reduce the hypercatabolic state 

and prevent muscle myostatin up-regulation induced by TNF, C2C12 myoblasts have been completely differentiated 

in glutamine or leucine enriched medium. No difference in cell morphology could be observed once differentiation was 

completed in the presence of glutamine or leucine excess. When TNF is added to glutamine supplemented cultures, 

myotube reduction in size appears less marked than in the absence of glutamine (data not shown).  

The increase of calpain enzymatic activity after 24h TNF treatment was significantly reversed by glutamine 

(Fig. 4), though not by leucine supplementation (TNF = 1.02x10
-3

 ± 1.03x10
-4

, TNF+Gln = 6.94x10
-4

 ± 1.73x10
-4

, 

data expressed as nkatal/mg, n=3 for each group). The conspicuous  hyperexpression of atrogin-1 mRNA observed after 

6h TNF treatment (see Fig. 1C) was paralleled by a modestly increased protein abundance, that was reduced, although 

without reaching significance, by glutamine supplementation (Fig. 5). By contrast, atrogin-1 expression was not 

modified by leucine treatment (TNF = 2.45±0.04, TNF+Leu = 2.00±0.29, data expressed as arbitrary densitometric 

units, n = 3 for each group). Finally, glutamine supplementation also appeared to prevent the reduction of myosin-heavy 

chain induced by 6h TNF treatment (Fig. 5). 
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Previous studies showed that both glucocorticoid-induced muscle wasting and myostatin up-regulation 

decreased when dexamethasone-treated rats were fed a glutamine-enriched diet (Ma et al., 2003; Salehian et al., 2006). 

In this regard, we investigated whether TNF-induced hyperexpression of myostatin could be counteracted by 

glutamine supplementation. The data reported in Fig. 6 show that TNF-dependent myostatin up-regulation was 

significantly reduced in excess glutamine-differentiated myotubes, while high glutamine alone did not significantly 

affect myostatin basal levels (C = 0.67 ± 0.31, Gln = 0.87 ± 0.32, data expressed as arbitrary densitometric units, n = 3 

for each group).  
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Discussion 

The present study shows that hyperactivation of both the myostatin-dependent signaling and the intracellular 

proteolytic machinery induced in C2C12 myotubes by TNF exposure can be reversed by glutamine supplementation. 

The occurrence of enhanced protein breakdown in TNF-treated C2C12 myotubes is demonstrated by the 

increased calpain enzymatic activity and is suggested by the early overexpression of atrogin-1. This is conceivable also 

in view of both the reduced myosin heavy-chain levels and the increased NF-B DNA-binding activity (see Li et al., 

1998; Li and Reid, 2000; Fernandez-Celemin et al., 2002; Cai et al., 2004). The enhancement of atrogin-1 expression 

induced by TNF, both in myocyte cultures and in the skeletal muscle, has been already reported by previous studies 

(Li et al., 2003, 2005; Frost et al., 2007). In the last few years, evidence has been provided that atrogin-1 expression is 

regulated by the IGF-1/Akt/FoxO axis. However, although TNF  treatment of C2C12 myotubes results in significantly 

decreased expression of IGF-1 mRNA (C=0.54±0.06, TNF 24h=0.37±0.02, p=0.016, n=3, arbitrary densitometric 

units), the levels of phosphorylated (active) Akt remain comparable to control values (C=1.55±0.51, TNF 

24h=1.27±0.32, n=3, arbitrary densitometric units). These results suggest that, at least in the model system used in the 

present study, atrogin-1 hyperexpression does not rely on down-regulation of the Akt/FoxO signaling. This is in line 

with a previous report showing that IGF-1 supplementation of TNF-treated myotubes is unable to restore normal 

atrogin-1 levels (Moylan et al., 2008), and also with the observation that muscle wasting and atrogin-1 hyperexpression 

in experimental cancer cachexia are not associated with down-regulation of the IGF-1 signaling pathway, despite 

reduced IGF-1 levels (Costelli et al., 2006; Penna et al., 2010). By contrast, the MAPK/ERK pathway seems to play a 

role in the hyperexpression of atrogin-1, both in TNF-treated C2C12 myotubes and in the skeletal muscle of tumor-

bearing rats (Penna et al., submitted for publication).    

As far as we know, this is the first study reporting that the Ca
2+

-dependent proteolytic system is activated by 

TNF in C2C12 myotubes. This result is consistent with a previous report showing that the increased calpain enzymatic 

activity in the skeletal muscle of tumor-bearing rats can be effectively prevented by treatment with pentoxifylline, an 

inhibitor of TNF synthesis (Costelli et al., 2002). Quite recently calpain inhibition has been reported to reduce TNF-

induced neutrophil recruitment and activation (Wiemer et al., 2010).  Consistently, LPS-induced myocardial alterations 

can be prevented by over-expression of calpastatin, the physiological inhibitor of calpain, by transfection of calpain-1 

siRNA, or by various pharmacological calpain inhibitors (Li et al., 2009). On the whole, these observations suggest that 

inhibition of calpain may be used as an approach to limit TNF-induced inflammatory responses.  
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While the involvement of cytokines in the onset of muscle protein hypercatabolism is largely recognized 

(reviewed in Costelli and Baccino, 2003; Argilés et al., 2009), little is known about the specific targets on which these 

mediators impinge to activate the intracellular proteolytic systems.  

In the last few years myostatin/GDF-8 has been proposed as a negative regulator of skeletal muscle mass. Loss 

of function mutations of myostatin have been detected in sheeps and cattles characterized by the so-called ‘double-

muscle’ phenotype, and adult mice in which the myostatin gene has been disrupted showed a marked muscle 

hypertrophy compared to control littermates (McPherron et al., 1997; Clop et al., 2006). Myostatin has been found 

overexpressed in various conditions characterized by muscle atrophy, such as ageing, disuse, sepsis, amyotrophic lateral 

sclerosis, dystrophy and cancer (Lecker et al., 1999; Bogdanovich et al., 2002; Zimmers et al., 2002; Holzbaur et al., 

2006; Costelli et al., 2008; Liu et al., 2008; Bonetto et al., 2009).  

We demonstrated that in rats bearing the AH-130 hepatoma muscle wasting and perturbations of the myostatin 

signaling pathway are both partially prevented by pharmacological inhibition of TNF synthesis (Costelli et al., 2002, 

2008). The present study shows that TNF treatment of C2C12 myotubes causes changes in the myostatin pathway 

comparable to those observed in the AH-130 hosts: both myostatin expression and bioactivity are increased by exposure 

to the cytokine. Enhanced myostatin expression in TNF-treated myotubes has also been recently reported (Lenk et al., 

2009). The role played by TNF in mediating myotube atrophy, likely through enhancement of myostatin expression, is 

further supported by the observation that follistatin hyperexpressing myotubes are resistant to the catabolic effects of 

the cytokine (Penna et al., submitted for publication).  

The occurrence of a direct correlation between myostatin and protein metabolism has not yet been 

demonstrated. McFarlane et al. (2006) show that muscle depletion induced in mice by myostatin hyperexpression is 

associated with upregulation of atrogin-1. On the other side, glucocorticoid administration to mice knocked-out for 

myostatin does not result in increased levels of both atrogin-1 or MuRF1 (Gilson et al., 2007). Consistenly with these 

reports, the results shown in the present study further support the hypothesis that a link likely occurs between protein 

degradation machinery and myostatin-dependent signaling pathway.  

Muscle protein wasting represents a prominent complication in the management of patients affected by chronic 

pathologies, often resulting in increased morbidity and mortality rates, less benefit from therapies, and worsening of the 

quality of life. From this point of view the search for appropriate therapeutical strategies should be given a high priority.  

In this regard, amino acid supplementation is long known for its effectiveness in both improving muscle mass and 

preventing protein depletion (Dillon et al., 2009). Indeed, a group of amino acids in the diet, normally considered as 

non-essential, has been suggested to become essential in several disease states. This is the case of glutamine, glutamate, 
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arginine, ornithine, citrulline and proline, that are metabolically related and fall within a common biosynthetic family 

tree derived from -ketoglutarate (Robinson et al., 1999; Baracos, 2001). 

Prolonged amino acid supplementation has been reported to decrease skeletal muscle protein breakdown via 

selective inhibition of both lysosomal and Ca
2+

-dependent proteolysis in young rats, as well as proteasome activities in 

adult rats (Capel et al., 2008). Moreover, administration of an amino acid mixture (containing, among others, leucine, 

valine, methionine and cysteine; 8 g/day for 16 months) effectively reduces circulating TNF levels and increases 

plasmatic IGF-1, contributing to significantly improve muscle mass in geriatric patients with sarcopenia (Solerte et al., 

2008). Quite recently, glutamine administration to LPS-treated mice has been demonstrated to preserve muscle force 

without modifying circulating TNF, suggesting that glutamine target(s) is/are downstream of cytokine production 

(Meador and Huey, 2009). Finally, Salehian et al. (2006) reported that in glucocorticoid-treated animals both muscle 

wasting and myostatin hyperexpression can be prevented by administration of glutamine. Consistently, enrichment of 

culture medium with this amino acid results in restoration of normal myostatin expression in dexamethasone-treated 

C2C12 myotubes (Salehian et al., 2006).  

The present study shows that glutamine supplementation restores physiological levels of myostatin expression 

in TNF-treated C2C12 myotubes. Of interest, myostatin modulations are associated with normalization of both Ca
2+

-

dependent proteolysis and atrogin-1 expression, further supporting the occurrence of a relationship between myostatin 

and intracellular proteolysis. The mechanism by which glutamine can exert such effecs, however, remains to be 

elucidated.  

Our results show that leucine supplementation does not interfere with the modulations of proteolytic systems 

induced by TNF. This is in contrast with recent works reporting that branched-chain amino acids, and especially 

leucine, suppress atrogin-1 mRNA expression via mTOR pathway in C2C12 myocytes (Talvas et al., 2006; Du et al., 

2007; Herningtyas et al., 2008). The different experimental design can account for the discrepancy with the data 

reported in the present study. Indeed, in the studies reported above, myotubes were initially deprived of amino acids, 

thus likely inducing a complex form of cell death with hallmarks of both apoptosis and autophagy, and soon later 

exposed to a medium containing leucine, which is a well known inhibitor of the autophagic process (Martinet et al., 

2005).  

In conclusion, the present study indicates that TNF plays a role in increasing both myostatin expression and 

bioactivity, thus supporting the hypothesis that this cytokine could exert its pro-catabolic action via this pathway as 

well. This view, however, is questioned by previous observations performed on rats bearing the AH-130 hepatoma, 

where prevention of muscle wasting and myostatin up-regulation by pentoxifylline is not associated with restoration of 

normal atrogin-1 mRNA levels (Costelli et al., 2008). In this regard, further studies are needed to clarify whether 
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TNF-induced modulations of the myostatin pathway follow rather than precede the activation of muscle protein 

breakdown. In addition, the results shown in the present study improve the knowledge about the mechanisms involved 

in the beneficial effect exerted by glutamine on muscle wasting, suggesting the myostatin signaling pathway as a 

possible target of nutritional interventions based on amino acid supplementation.  
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Figure Captions 

 

Figure 1 Effects of TNF- treatment (24h) on C2C12 myotubes.  

(A) Morphological analysis. Phase contrast microscopy (panels a, e) and DAPI staining 

(panels b, f); MyHC expression (panels c, g). Merged pictures are represented in 

panels d and h. Bars= 100µm. 

(B) State of activation of NF-B in C2C12 myotubes exposed to TNF for 24h. EMSA 

analysis (representative pattern) indicating the DNA-binding activity of NF-B; § 

positive control (HeLa cells), *control sample incubated with excess cold 

oligonucleotide (specific competition). 

(C) RT-PCR representative pattern for atrogin-1 gene expression in C2C12 myotubes, 

controls (C) and treated with TNF- for 2, 4, and 6h. 

 

Figure 2          Calpain expression in TNF--treated C2C12 myotubes.  

Calpain (~80kDa active subunit) protein levels and representative western blotting in 

C2C12 myotubes exposed to TNF- for 2, 4, 6, 24h. Data (means ± SD; n=3) are 

expressed as percentage of controls (100%). Significance of the differences: *p<0.05, 

**p<0.01 vs. controls. 

 

Figure 3 Myostatin and follistatin expression (A), and SMAD DNA-binding activity (B) in C2C12 

myotubes treated with TNF-  for 24h.  

Representative western blotting for myostatin and follistatin levels, and EMSA for SMAD 

DNA-binding activity. Data (means ± SD; n=3, from 3 independent experiments) 

expressed as percentage of controls; § positive control (HeLa cells), *control sample 

incubated in the presence of an excess cold oligonucleotide (specific competition). 

Significance of the differences: *p<0.05 vs. controls. 

 

Figure 4 Calpain enzymatic activity in C2C12 cells differentiated in the presence of excess 

glutamine (Gln), treated or not with TNF- for 24h.  
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Data (means ± SD; n=3, from 3 independent experiments) are expressed as percentage of 

controls (100%). Significance of the differences: *p<0.05, **p<0.01 vs. controls; 
§
p<0.05 

vs. TNF 

 

Figure 5 Atrogin-1 and MyHC protein levels in C2C12 cells differentiated in the presence of 

glutamine supplementation, treated or not with TNF- for 6 to 24h.  

Data (means ± SD; n=3, from 3 independent experiments) are expressed as percentage of 

controls (100%).  

 

Figure 6 Myostatin protein levels in C2C12 cells differentiated in the presence of excess glutamine 

(Gln), treated or untreated with TNF- for 24h.  

Data (means ± SD; n=3, from 3 independent experiments) are expressed as percentage of 

controls (100%). Significance of the differences: *p<0.05 vs. controls; 
§
p<0.05 vs. TNF-. 

 

Supplementary figure (S) Representative pattern of annexin V-positive C2C12 myoblasts and myotubes exposed to 

TNF (100 ng/ml, 24 h). 

The occurrence of cell death was determined by analysing phosphatidylserine exposure on 

the cell membrane. Binding to Annexin V-FITC in non-fixed cells indicates the amount of 

accessible phosphatidylserine. Being both necrotic and apoptotic cells annexin V-positive, 

they must be discriminated by simultaneously evaluating the exclusion of a vital dye, in 

this case propidium iodide (PI). A commercially available kit was used for the analysis 

(Medical System, Bender). Double fluorescence (green for annexin V, red for PI) was 

acquired and analysed by the CELLQUEST software (Becton & Dickinson, Mountain 

View, CA, USA). For each cytogram: low-right panel indicates apoptotic (annexin-V 

positive, PI negative) cells, up-right panel shows necrotic (annexin-V and PI positive) 

cells. 
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