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Abstract:  Using data from a unique pricing experiment, we investigate Vickrey’s conjecture 

that responsive pricing can be used to smooth both predictable and unpredictable demand 

shocks. Our evidence shows that increasing the responsiveness of price to demand conditions 

reduces the magnitude of deviations in capacity utilization rates from a pre-determined target 

level. A 10 percent increase in price variability leads to a decrease in the variability of capacity 

utilization rates between 2 and 6 percent. We discuss implications for the use of demand-side 

incentives to deal with congestible resources.    
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1 Introduction    

In a seminal contribution, Vickrey (1971) introduced the concept of responsive pricing to 

advocate that the access price to a congestible resource should be directly linked to congestion 

levels. This paper presents the first evidence on responsive pricing from a unique pricing 

experiment by easyEverything, a chain of cafés offering public Internet access.  We investigate 

whether consumers respond to responsive pricing and whether responsive pricing smoothes 

demand shocks as conjectured by Vickrey. 

easyEverything updates prices every 5 minutes as a function of the level of store 

occupancy.  The price per minute when q percent of computer terminals are used is p(q)=P0+β(q-

Q0), where P0 is a base level of price corresponding to a target level of utilization q=Q0, and β 

measures how much price responds to deviations from Q0.  According to Vickrey, the target level 

of occupancy Q0 is set to ‘maintain the quality of service at a “satisfactory” level’ (p. 339). The 

parameter P0 captures Vickrey’s proposal to set the ‘base rate on average level of activity’ (p. 

339), while the responsiveness parameter β captures the principle that ‘rates go up as capacity 

becomes inadequate’ (p. 340), that is as q increases above Q0, and down when q<Q0.  The pricing 

function p(q) offers discounts when utilization is below Q0 and raises prices when it is above Q0.   

A given pricing function, characterized by (Q0,P0,β), generates a distribution of capacity 

utilization rates.  If responsive pricing works, as Vickrey conjectured, the percentiles of the 

distribution of occupancy rates should cluster around Q0 for more responsive schemes (with a 

higher β holding Q0 and P0 constant ).  In other words, occupancy should become more 

predictable and the distribution of occupancy should be more concentrated around Q0.
3
 

Figure 1 shows two pricing schemes p(q) in our sample.  The curves specify a price for 

each level of store occupancy q.  Consider the flatter of the two curves. The price 

increases/decreases by 1.4FF/hour when occupancy is 10 percent above/below the target level of 

                                                      
3
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consumption. The more responsive curve implies a price change of 4.2FF/hour for the same 

deviation in occupancy. Figure 2 plots the cumulative distribution of occupancy rates observed for 

these two pricing functions.  The curve corresponding to the less responsive regime dominates the 

more responsive curve for low occupancy levels, and the reverse holds true for high levels.  We 

cannot reject the hypothesis that the two distributions are equal at Q0, but we do reject it for 

occupancy levels that are further away from Q0.  This finding is consistent with the hypothesis 

that increasing the responsiveness parameter smoothes demand shocks. This paper generalizes this 

finding by aggregating information from many pricing functions and controlling for a variety of 

other factors.  

This study contributes to the empirical literature assessing the impact of pricing schemes 

that vary prices in real time. We are aware of no other study that investigates whether responsive 

pricing smoothes demand shocks.  Ample literature on electricity markets shows that users, both 

business and household, respond to schemes that announce future prices in advance, such as those 

announcing prices for each hour of the following day (e.g. Herriges et al., 1993, Aubin et al., 

1995, Taylor and Schwarz, 2000, Patrick and Wolak, 2001, Schwarz et al., 2002, Barbose et al., 

2004, Taylor et al 2005).  Our work differs from these previous studies in important ways.   

Firstly, previous empirical research has analyzed situations where prices are typically 

computed (on the basis of demand forecast, supply costs and other considerations) and set a day in 

advance.
4
  There are some significant differences between responsive pricing and day-in-advance 

pricing.  Day-in-advance pricing does not introduce the immediate feedback loop between current 

congestion conditions and prices proposed by Vickrey. Consequently, day-in-advance pricing 

cannot respond to within-day demand shocks, since they become known only after the price 

schedule has been announced.  We will return to the issue of unpredictable demand shocks in our 

empirical analysis. In addition, in the day-in-advance schemes used in previous empirical works, 

                                                                                                                                                                             
price responsiveness, β, is a more efficient solution because it influences the variance (not the mean) of the 

distribution of occupancy. 
4
 An exception is Brownstone et al. (2003) who study responsive pricing in traffic congestion but who estimate 

willingness to pay rather than the impact of responsive pricing on congestion. 
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prices may vary for reasons unrelated to congestion.  This could happen, for example, if an 

imperfect model is used to estimate future demand.  If this were the case, then the central 

hypothesis of this work, that demand should be more predictable when prices vary more, would 

possibly not hold.   

A second point distinguishing this from previous studies is its novel empirical focus. 

While previous studies focus on estimating price and substitution elasticities, we directly study 

whether it is possible to reduce occupancy variability by considering the impact of responsiveness 

on the overall distribution of occupancy.  This is in line with Vickrey’s conjecture, which is not 

couched in terms of unobservable parameters, but in terms of observable outcomes (distribution of 

occupancy). Another significant difference between this and previous research is in the results, 

which differ greatly from previous studies. For example, we find much larger responses than those 

reported in the literature.
5
 

The remainder of the paper is organized as follows. The next section provides some 

background information on our case study and a description of the data. Section 3 discusses the 

empirical framework and Section 4 presents the results. Section 5 discusses policy implications 

and Section 6 concludes.  

 

2 The Internet Café and Dataset 

Our dataset consists of the pricing policies and the average hourly occupancy for one of 

easyEverything’s Paris stores (Paris Sebastopole) from February 22, 2001, to July 23, 2001. 

During this period, store capacity remained fixed at 373 terminals, and the store’s competitive 

environment did not change.  In our sample, the store has experimented with 12 consecutive 

pricing regimes (displayed in Figure 3), each lasting 13 days on average.  Prices are updated 

                                                      
5
 Taylor et al. found a net benefit to consumers of only 4% of the customer bill (p. 255).  Barbose et al. (2004) also 

reported a limited response in their survey of 70 real-time pricing programs, concluding that ‘most RTP programs 

have generated modest load reductions in terms of their magnitudes’ (p. ES-6).  Obviously, caution must be exercised 

in drawing such comparisons, since our application differs from others in many respects. 



 4 

every 5 minutes as a function of the current occupancy level. Consumers are charged in real 

time the minimum of the current price and their logon price. 

After responsive pricing is introduced in a new store, the company typically 

experiments with different pricing functions to learn about local demand before attempting to 

optimise the pricing scheme (Courty and Pagliero, 2001).  Figure 3 shows that the firm has 

changed both the slope and the intercept of the pricing functions. Changes to the pricing 

functions provide the exogenous variability in the degree of responsiveness that is used in the 

estimation.  In fact, Table 1 shows that there is no predictable pattern in the timing of change of 

regimes or in the length of the regimes.  Given the strong cyclical patterns in demand in our 

sample (depending on time of day and day of the week), one would have expected to find clear 

patterns (such as daily or weekly regime changes) if the introduction of responsive pricing had 

indeed responded to demand fluctuations.
6
  The responsiveness of the pricing functions tends to 

increase over time, but there are also many variations, and our results are robust after 

controlling for a time trend. 

The occupancy data consists of hourly average occupancy rates for 152 days. Although 

the store was open 24 hours a day, we restricted our analysis to the period between 8 a.m. and 

12 midnight because the store never used responsive pricing during night hours. Overall, our 

dataset consists of 2,312 hourly observations. Table 1 reports summary statistics. The average 

occupancy rate in the sample is 0.53, with a standard deviation of 0.16.  The average price is 

14FF/hour, with a standard deviation of 3.8 FF/hour.  There is a pronounced day cycle.  Prices 

vary from 2 FF per hour in the early morning to over 10 FF per hour in the afternoon, when the 

store is typically more crowded. One feature of our data that will play an important role in the 

empirical analysis is that the occupancy rate never reaches capacity in our sample.  Therefore, 

quantity demanded equals quantity consumed, and we do not have to take into account demand 

                                                      
6
 Consistent with the experimentation view, the company decided shortly after the end of our sampling period to 

change its pricing strategy and store layout, because it could not maintain high levels of occupancy while also holding 

prices above a level that would cover average costs. The managers report that this decision was deliberately taken 

after the end of the experimentation period, based on the information collected during this first phase. 
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rationing in estimating the impact on responsive pricing of the distribution of occupancy rates. 

In addition, there is no evidence that service quality degrades as occupancy increases. 

Table 1 also reports the responsiveness parameter (the slope) for each pricing curve.  

The average slope, corresponding to β, is 17.1, meaning that the price decreases by 1.71 FF 

each time the occupancy rate decreases by 0.1 (or 37 computers). Table 1 shows that prices 

vary within and across regimes. The changes in the pricing curves generated significant 

differences in the level of price variability. Overall, the magnitude of price variability in our 

sample is in line with other studies.
7
  

The standard deviation presented in the last column corresponds to the variability in 

price that a consumer would face when entering the store at a random time in a given regime. 

These standard deviations capture the fact that prices vary systematically over the day cycle 

and also that they are to some extent unpredictable at any given hour. These two sources of 

price variation should give consumers an incentive to adjust their consumption decisions 

through two different channels. First, consumers can plan in advance, that is, they can choose 

when to enter the store and how much to consume, on the basis of the expected daily price 

cycle and other predictable demand shifters. For example, consumers have an incentive to 

switch to cheaper hours and consume more during those hours if there is a price differential 

between peak and off-peak hours. One may argue that announcing hourly prices a day in 

advance could offer the same incentives. Only responsive pricing, however, can smooth 

demand shocks that take place after the daily prices have been set, leading to the second 

response channel. Consumers have an incentive to adjust their length of stay once they arrive in 

the store and learn the actual price. Price may also change in unexpected ways while in the 

                                                      
7
 The expected absolute price difference for two hours selected at random in our sample is 30 percent of the average 

price, which is comparable to what Borenstein and Rose (1994) found in their study of airline fares.   
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store, and consumers have an incentive to increase their length of stay in the event of a decrease 

in price.
8
  

 

3 Empirical Framework  

A given pricing function, characterized by (Q0,P0,β), generates the empirical 

distribution of occupancy rates F(q|Q0,P0,β). Let  

qj(Q0,P0,β) = Inf (q s.t. F(q|Q0,P0,β)≥j)    (1) 

represent the j
th

 percentile of the distribution of occupancy under pricing scheme (Q0,P0,β).  

Vickrey’s conjecture can be expressed as follows. Holding (Q0,P0) constant, the percentile k 

such that 0Qqk =  should not depend on β. In fact, the price is independent of β when capacity 

utilization is equal to the reference level Q0, (p(Q0)=P0). The other percentiles are expected to 

depend on β. As β increases, while (Q0,P0) are held constant, all percentiles qj should move 

toward the reference level Q0. Stated formally, Vickrey’s hypothesis becomes  

0),,(
00 ,000 <−

PQj QPQq
d

d
β

β
    for any (Q0,P0,β)   (H0) 

To understand H0, it is useful to consider two benchmark demand systems that can be 

interpreted as simplified versions of the channel one and two responses introduced above. 

Assume that consumers either consume one hour or nothing and that they have heterogeneous 

valuation for consumption. To illustrate the channel one response, assume that there are nh 

potential users in hour h=1..H. For the sake of simplicity, we abstract from substitution across 

time of day, but the example could easily be extended. Under this simple scenario, the demand 

for Internet access depends only on the hour of day and on the price per hour: for hour h, the 

subset of nh who values consumption more than the posted price actually consumes.  

Equilibrium occupancy at hour h takes place at the point where the downward sloping hour h 

                                                      
8
 The price cap mitigates the incentive for incumbent consumers to reduce their length of stay when the price 

increases. This may introduce a delay in response. Our results can be interpreted as a lower bound of the potential 

impact of responsive pricing on occupancy variability. 
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demand meets the upward sloping pricing curve. As β increases, the intersection point moves 

closer to Q0 and H0 holds. Hourly prices are perfectly predictable and only those consumers 

who value consumption more than the equilibrium price in hour h join the store at that time.   

To illustrate the channel two response, assume that a random number of consumers join 

the store every hour. The resulting demand depends only on the price per hour and on some 

random state of nature ω. Equilibrium occupancy in state ω takes place at the point where the 

(downward sloping) state ω demand meets the (upward sloping) pricing curve. As β increases, 

the intersection point moves closer to Q0 and H0 follows (Courty and Pagliero, 2008). Again, 

only those consumers who value consumption more than the price decide to consume. In this 

simple illustration, the price makes discrete jumps every hour, as new generations of consumers 

replace current ones. More generally, consumers could arrive continuously, and responsive 

pricing would still smooth demand shocks. 

Despite these two benchmark cases, H0 does not generalize to any demand system. In 

fact, one can easily construct counterexamples with substitution across times of day where H0 is 

violated. In addition, there are more fundamental reasons to doubt that H0 should hold in 

practice. Under responsive pricing, prices are set endogenously as a function of realized 

occupancy. Realized occupancy is itself a function of consumer decisions. Therefore, 

consumers have to form expectations about how prices vary over the day cycle. Expectations 

about future prices could play an important role to the extent that there is much demand 

uncertainty. One can construct counterexamples, where there are multiple equilibria or where 

consumers have heterogeneous beliefs, which violate H0.   

It is now clear that H0 is not a test of downward sloping demand. Rejecting H0 could 

happen either because demand is not downward sloping, or because substitution patterns, 

equilibrium selection, or consumer expectations are peculiar (Courty and Pagliero, 2008). 

Ultimately, whether H0 holds or not is an empirical issue. 
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4 Estimation and Results 

We provide both non-parametric and parametric evidence supporting hypothesis H0.  

Depending on the test under consideration, we only report evidence for a subset of 5 or 6 

percentiles to balance conciseness and completeness. The results generalize when we consider 

more quantiles or alternative specifications (Section 4.4).
9
  

 

4.1 Non-Parametric Test of H0 for Pairs of Pricing Rules 

In the introduction, we compared the cumulative distribution functions of regimes 8 and 

12 (Figure 2). In this section, we develop this analysis in two directions: (a) we generalize this 

result to a larger set of pairs of pricing functions; and (b) we present a formal test of H0.  

The non-parametric approach proceeds in three steps. First, select a pair of regimes, x 

and y, where regime x is more responsive than regime y (βx>βy), and set Q0 and P0 equal to the 

coordinates of the intersection point of the two pricing functions. Second, compute the 

percentiles of the occupancy distribution under the two regimes q'j(P0, Q0, βx) and q'j(P0, Q0, 

βy). Finally, using the definition of percentile k ( 0Qqk = ), test whether the differences in 

estimated percentiles have the predicted sign under H0, 





>>

<<

kj  if  ),Q,(Pq'),Q,(Pq'

kj  if  ),Q,(Pq'),Q,(Pq'

x'00jy00j

x'00jy00j

ββ

ββ
    (H

np
0) 

and whether they are statistically significant.  

There are many pairs of curves in our sample, and for some pairs the difference in 

responsiveness is small. Comparing pricing functions with similar slopes produces tests of low 

power, with the risk of failing to reject the null when it is false. To obtain conclusive results on 

whether the slope affects the distribution of occupancy, we only compare pairs of pricing 

functions for which the difference in slope is higher than 22. This singles out 11 pairs: regimes 

1 to 9 crossed with regime 12, and regimes 10 and 11 crossed with regime 1. The threshold we 
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use is such that each pricing function in our sample occurs at least once. These pairs of pricing 

functions cross at between 8 percent and 33 percent of capacity. The average crossing point is 

20 percent. Increasing the threshold would reduce the number of tests, but would not affect the 

results of the statistical tests. Decreasing the threshold would increase the number of tests, but 

would add tests with relatively low power.  

The 10 panels in Figure 4 complement the evidence in Figure 2. For example, Panel 1 

reports the cdfs of regime 1 and 12. In each panel, the vertical red line corresponds to the point 

where the two pricing functions cross (Q0). Each panel also reports the two-sample 

(Kolmogorov-Smirnov) tests of the equality of distributions. The null hypothesis is that the two 

samples come from the same population. The statistic is computed as D=sup|F(q|Q0,P0,β) - 

F(q|Q0,P0,β')|, for β≠β' and any 0 ≤ q ≤ 1.
10

 

The P-values reported in Figures 2 and 4 show that the maximum distance between the 

two empirical cumulative distributions is significantly different from zero. This is consistent with 

the effect of responsive pricing. However, Vickrey's conjecture makes stronger predictions on 

the relative ordering of the quantiles of the occupancy distributions. Under H
np

0, the cdf 

corresponding to the more responsive pricing function should lie above the less responsive cdf 

for q>Q0, and the opposite should hold for q<Q0. In the event Q0 lies outside the support of the 

two cdfs, as in Panel 1, we do not expect the two cdf to cross, but only that the more responsive 

cdf dominates (or is dominated by) the less responsive one if Q0 lies to the left (or right) of the 

support. Vickrey’s conjecture still holds - the more responsive regime is more concentrated 

around Q0 - but this can be observed only on one side of Q0. In Panel 1, for example, the 

distribution corresponding to regime 12 lies closer to Q0 than that corresponding to regime 1.  

                                                                                                                                                                             
9
 We also sometimes refer to further robustness checks, which can be consulted in the separate Additional 

Materials section available on the authors’ web pages. 
10

 The P-values for the D statistic are computed using the first five terms of the asymptotic distribution 

=≤+
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,
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∑

∞

=
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1
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i

i
ai , where n and m denote the size of the two 

samples. 
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Figure 2 and 4 show that the differences in occupancy percentiles across regimes are 

broadly consistent with Vickrey’s conjecture. In Figure 4, Panel 1, for example, Q0 lies to the left 

of the support of the two cdfs, and the cdf of regime 12 (the more responsive regime) dominates 

the cdf of regime 1. For some pairs, Q0 lies within the support of the cdfs. This is the case, for 

example, in Figure 4 Panel 7 displaying pairs (7, 12). The two cdfs cross around Q0 and the cdf 

corresponding to the more responsive regime is dominated by (dominates) the cdf corresponding 

to the less responsive regime on the left (right) of Q0.  

To test whether the patterns displayed in Figure 4 are statistically different, we jointly 

estimate the percentiles of the occupancy distribution for each regime. Define the j
th

 percentile 

of the occupancy distribution in regime r as  

q'j(r) = b0,j + d(r) br,j ,      (r = 1,…,11)      (2) 

where d(r) is a dummy variable for regime r (regime 1 is excluded) and b0,j  and br,j are 

coefficients to be estimated. We jointly estimate (2) for the 5
th

 percentile and the nine deciles 

using the standard Least Absolute Deviations (LAD) method (Koenker and Basset 1978 and 

Koenker 2005). We test hypothesis H
np

0 by testing linear restrictions on the estimated 

coefficients br,j. For a pair of regimes x and y define ),(0 yxQ  as the point where the two 

cumulative distributions intersect and k(x,y) such that ),(0),( yxQq yxk = .
11

  If regime x is more 

responsive than y, H
np

0 implies that  

by,j < bx,j if  j<k(x,y)  and  bx,j < by,j  if j>k(x,y).
12

 

Table 2 reports the estimated coefficients b0,j and br,j in (2). The F-tests for the equality of the 

deciles across regimes are reported in Table 3.  

Tables 2 and 3 should be read together with Figure 4. As an illustration, consider Panel 

2 in Figure 4, which plots regimes 2 and 12. Then select a level on the vertical axis at which the 

two empirical cdfs will be compared, for example 0.3. In other words, we want to compare the 

                                                      
11

 The two cumulative distributions should intersect only once and at the same point where the two corresponding 

pricing curves cross. We test and cannot reject these hypotheses in our sample. 
12

 If x=1, then the relevant hypothesis to test is by,j<0 if j<k and by,j>0 if j>k. 
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3rd deciles of the two occupancy distributions. Table 2 indicates that the estimated 3rd decile of 

the occupancy distribution in regime 2 is 55.89 percent (61.58-5.69), while the same decile for 

regime 12 is 40.14 percent (61.58-21.44). This is consistent with Figure 4, since 55.89>40.14.  

Are these two deciles significantly different from each other? Table 3 (third row and first 

column) reports the F-test using the estimates of the quantile regression. They are indeed 

different at a 1 percent confidence level.   

In general, for deciles sufficiently far away from Q0, the differences displayed in 

Figures 2 and 4 are statistically significant. Since Q0 is relatively small in our sample, we also 

provide the results for the 5th percentile. This allows testing of the effect of changes in slope on 

the left tail of the occupancy distribution. For the pairs of regimes (7, 12) and (8,12), where Q0 

is highest, the difference between the 5th percentiles of the two regimes has the predicted sign 

(Figure 4, Panels 7 and 8) and is significantly different from zero (Table 3).  

 

4.2 Parametric Test Based on Quantile Regressions  

A pricing function can be written as p(q)=(P0-βQ0)+βq and therefore varies in only two 

dimensions: its level (P0-βQ0) and its responsiveness (β). For estimation purposes, we can 

arbitrarily fix Q0 in (1) and rewrite qj as 

q’’j(P0,β|Q0).       (3) 

Relation (3) describes how percentile j depends on the reference price P0 (corresponding to the 

price level at Q0) and on the responsiveness parameter β. Therefore, H0 simplifies to  

0)|,(''
0

000 <−
P

j QQPq
d

d
β

β
. 

Taking a linear approximation, we obtain  

q’’j(P0,β|Q0)=a0,j+a1,jP0+a2,jβ.      (4) 

We estimate the parameters a0,j , a1,j and a2,j for the 10th, 30th, 50th, 70th and 90th percentiles 

using data on occupancy rates and the pricing policies for the 12 regimes in the sample. The 
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choice of Q0 is arbitrary. In the core of the analysis, we set the reference occupancy point at 

Q0=0.28 and show in the next section that our results are robust to this choice.   

The estimated coefficients a0,j , a1,j and a2,j of (4) are reported in Table 4. To provide a 

visual display of the impact of β on occupancy distribution, Figure 5 plots the simulated 10th, 

30th, 50th, 70th and 90th percentiles, using the estimated parameters from Table 4. The 

horizontal axis measures the level of price responsiveness β and the vertical axis measures the 

level of store occupancy. The four curves trace the four different percentiles simulated. A 

vertical slice measured at β gives the location of the percentiles of the distribution of occupancy 

that corresponds to a responsiveness parameter equal to β. As the level of responsiveness 

increases, the distribution of occupancy becomes more compressed around the target level of 

occupancy (the four curves are closer to one another and closer to Q0). As anticipated, an 

increase in the responsiveness of the pricing function reduces the variability of occupancy. 

 Having obtained the estimated coefficients a2,j, we can proceed with testing Vickrey’s 

hypothesis. Using the percentile k previously defined, ( 000 )|,( QQPqk =β ), H0 further 

simplifies to  

a2,j>0 if   j<k and a2,j<0 if   j>k       (H
p

0) 

for any percentile j.  To test H
p

0 one first has to compute k. If we could estimate relation (3) 

without error we would compute k as the solution to 000 )|,( QQPqk =β . In practice, the quantiles 

are estimated with error. Therefore, a range of quantiles [k
-
, k

+
] may satisfy the above equation. In 

our application (see Figure 5), only the first decile meets this condition. We set k=0.1, keeping in 

mind that our conclusions would hold for any quantiles within [k
-
, k

+
].

13
   

Consistently with Vickrey's conjecture, the impact of responsiveness (a2,0.1) is not 

significantly different from zero (Table 4, column 1). On the contrary, the coefficient a2,0.9, in 

                                                      
13

 An additional complication arises with the determination of k. In theory, k should be independent of β. Given our 

linear approximation, k solves Q0= a0,k+a1,kP0+a2,kβ, and it obviously depends on β (because the non-linear terms in P0 

and β are missing). This poses no problem because k=0.1 falls within the range of k that solves 

000 )|,( QQPqk =β  for any slope within the range observed in our sample. 



 13

column 5, is negative and significant. To illustrate, an increase in the responsiveness parameter 

from 16 to 34, corresponding to a change from regime 6 to regime 10, implies a decrease of 3 

percentage points for the 9th decile. The difference in the estimated parameters is significantly 

different from zero.
14

 

 

4.3 Conditional Responses  

One may argue that the responses measured so far capture to a large extent a reduction 

in consumption variability over the day cycle. But does consumption also vary less in a given 

hour? To answer this question, we consider the distribution of occupancy conditional on the 

hour of the day. Denoting q’j(Q0,P0,β|h,X) the j
th

 percentile of the distribution of occupancy 

conditional on hour h and other demand shifters summarized by X (such as day of the week and 

holiday), hypothesis H0 generalizes to 

0),|,,('
00 ,000 <−

PQ
j QXhQPq

d

d
β

β
.    (H0,h) 

By focusing on conditional distributions, one eliminates the reduction in day cycle variation 

(channel one response), allowing a focus on the reduction in occupancy variations that are 

driven by channel two response.  We estimate a modified version of (4), 

q’j(P0,β|Q0,h)=a0,j+a1,j,hP0+a2,j,hβ+Xa3,j     (5) 

where the matrix of regressors X includes time-of-day fixed effects, day-of-week fixed effects, 

holiday effects, and weekend-cycle effects (time dummies for Saturday and Sunday) which are 

proxies for predictable demand changes. We also allow for hour-specific responsiveness and 

price level effects.  

The results are illustrated in Figure 6, which reproduces Figure 5 for a subset of hours. 

Table 5 reports the coefficients a2,j,h capturing the effect of increasing the responsiveness 

                                                      
14

 We estimate the full variance covariance matrix of the estimators; it is therefore possible to test restrictions on 

coefficients across different quantiles. In this case, β0.9-β 0.1 = -0.229,  F(1,2309)=7.90 with a P-value equal to 

0.005. 
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parameter on a given percentile (columns) at a given hour of day (lines).  We investigate H
p

0,h 

separately for h=8 a.m.,…11 p.m. 

Figure 6, Panel 1 displays the results for 8 a.m., while the corresponding coefficients are 

reported in line one of Table 5. Q0 is located around the 9
th

 decile of the occupancy distribution. 

Therefore, an increase in β gives discounts in most deciles. As expected, in Figure 6, the 9
th

 

decile does not respond to a change in β, while all others increase. Inspection of Table 5 

confirms that all deciles lower than the 9
th

 increase and that this increase is significant for the 

3
rd

 and 5
th

 deciles. Increasing the responsiveness parameter from 16 to 34, corresponding to a 

change from regime 6 to 10, implies a significant 1-percentage point reduction in the distance 

between the 1st and the 9th decile. 

The distribution of occupancy at 9 a.m. reveals a slightly different story (Figure 6, Panel 

2), because demand at 9 a.m. is on average higher (occupancy typically increases in the store 

throughout the morning and consumption reaches its peak in the afternoon). Q0 now lies within 

the support of the distribution of occupancy, not far from the median. An increase in the 

responsiveness parameter offers discounts in the 1
st
 and 3

rd
 deciles and increases prices in the 

7
th

 and 9
th

 deciles. As expected, the 1
st
 and 3

rd
 deciles increase while the 7

th
 and 9

th
 deciles 

decrease, and the change is significant in the latter. Coefficients in Table 5 can be used to 

compute the magnitude of a change in responsiveness. Increasing the responsiveness parameter 

from 16 to 34 decreases the distance between the 1st and the 9th decile by 3 percentage points. 

From 10 a.m. onwards, demand increases even further, and Q0 lies to the left of the 

support of the distribution of occupancy. An increase in the responsiveness parameter increases 

prices in all states of the world and the quantiles of the occupancy distribution decrease as 

predicted. The decrease is significant for most deciles and times of day.  

Hypothesis H
p

0,h implies that any two deciles located on different sides of Q0 should 

move closer to one another as the responsiveness parameter increases, and the evidence is 

consistent with this prediction. However, H
p

0,h does not say anything about the case of two 
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deciles that lie on the same side of Q0. Interestingly, Figure 6 shows that they often move closer 

to one another. An increase in the responsiveness parameter narrows the distance between 

deciles as well as moving all deciles closer to Q0. Both effects imply that the distribution of 

occupancy tends to become more compressed. 

To summarize, conditioning on time and other variables eliminates the impact of type 

one responses. Nonetheless, we find that the conditional distribution of demand becomes more 

compressed as responsiveness increases, and the magnitude of the response is large. This 

implies that consumers respond to price changes that cannot be predicted by the 

econometrician, and that are likely to be discovered by consumers only at the last minute.   

 

4.4 Robustness 

We discuss two robustness checks and for the sake of conciseness we report the results 

only in the Additional Materials section.  We first show that the results presented in Section 4.2 

do not depend on the choice of the reference point Q0. We select reference occupancy rates Q0 

that fall within the range in which the pricing functions in our sample intersect. As discussed 

earlier, the 11 pairs of pricing functions with the highest difference in slope cross between 8 

and 33 percent of capacity, with only two points of intersection below 12 and above 28 percent. 

The analysis presented in section 4.2 assumed Q0=0.28. In this section, we estimate (4) using 

Q0=0.20, which corresponds to the mean crossing point, and Q0=0.12. As before, we illustrate 

our results by simulating the quantiles of the distribution as the responsiveness of the pricing 

function changes. Again, these choices are somewhat arbitrary, but the conclusions would not 

change so long as (Q0, P0) falls within the range of crossing points in our sample. Using these 

new reference occupancy levels, all deciles of the occupancy distribution are above Q0. 

Consistent with Vickrey's conjecture, we find that increasing the responsiveness of the pricing 

function has a negative impact on all deciles. 
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We also replicate the analysis for the conditional occupancy distribution and find that 

the results are robust to the choice of Q0 and P0. In addition, we repeat our analysis including in 

(4) and (5) a linear and quadratic time trend. The overall results are not affected. The impact of 

changes in responsiveness is significant for quantiles sufficiently far away from Q0 and a 

significant compression effect occurs.  

 

 5 Economic Implications 

Various metrics demonstrate that responsive pricing reduces inefficiencies. Define the 

average level of congestion as D
q,+

(β)=∫0
100

 (qi(Q0,P0,β)-Q0)
+
di, where x

+
=Max(x,0). This 

concept of congestion is purely hypothetical since excess demand never takes place in our case 

study. What we mean to capture is the average excess demand that would take place under the 

assumption that Q0 was the target occupancy level. Similarly, define the average level of 

wasted capacity as D
q,-

(β)=∫0
100

 (qi(Q0,P0,β)-Q0)
-
di where x

- 
=Min(x,0). D

q,+
 measures the 

importance of inefficiencies due to excess demand, while D
q,-

 focuses on inefficiencies due to 

unused capacity.  D
q
(β)=D

q,+
(β)+ D

q,-
(β) corresponds to the average deviation from the preset 

target Q0 that would be observed by someone who randomly entered the store, and is 

interpreted as an overall measure of inefficiency. Empirically, we use the estimates reported in 

Table 2 to compute D
q
(β) = (1/10)Σj|qj(Q0,P0,β)-Q0|. To construct a measure of the impact of 

responsiveness, consider a change in the responsiveness from β to β’ 








 +

−
=∆

2

)()'(
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ββ

ββ
qq
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q
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DD
D . 

∆D
q
 measures the percentage change in inefficiencies and captures the compression effect 

hypothesized by Vickrey.
15

  Consider again the pairs of pricing functions compared in Figure 4. 
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 Since the responsiveness parameter β is measured in a unit that is difficult to interpret economically 

(FF/%occupancy), we do not report elasticities. 



 17

The compression effect (∆D
q
) implied by these pair-wise comparisons ranges between 24 and 

38 percent. The magnitude of the overall reduction in inefficiencies is large.   

∆D
q,-

 and ∆D
q,+

 are defined similarly as ∆D
q
.  Referring to Figure 4, it is clear that the 

effect of changes in responsiveness comes from a reduction in congestion (∆D
q,+

) for most pair-

wise comparisons. However, for the pairs (8, 12) and (7, 12), (Figures 2 and 4, panel 7), there is 

also a significant decrease in unused capacity (∆D
q,-

). For these pairs of regimes, we can 

compute ∆D
q,-

 and ∆D
q,+

 separately. The magnitude of the impact of the increase in 

responsiveness on unused capacity ∆D
q,-

 is 51 and 44 percent for these two pair-wise 

comparisons. The reduction in average congestion is 23 and 30 percent respectively. 

While the benefits from responsive pricing derive from a reduction in the variability of 

capacity utilization, an important drawback of responsive pricing is that it increases price 

variability. This drawback has received much attention both in the theoretical and applied 

literature.  For example, extensive literature has argued that fairness norms influence consumer 

decisions and has conjectured that prices should not respond to demand shocks because this 

would alienate or antagonize consumers (e.g. Okun 1981, Kahneman et al 1986).  Similarly, 

studies in transportation, electricity and other applications have pointed out that the 

introduction of price variations, and the magnitude of such variations, is a central reason for the 

resistance to congestion pricing (e.g. Lindsey and Verhoef (2000), Barbose et al. (2004)).
16

   

Our case study contributes to this debate by quantifying the trade-off between efficiency 

gain (reduced congestion and idle capacity) and increases in price variability. Define the arc 

elasticity of reduction in occupancy deviation to increases in price variability as 

2
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−
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 According to Vickrey (1971, p. 346), “the main difficulty with responsive pricing is likely to be not mechanical or 

economic, but political. The medieval notion of the just price as an ethical norm, with its implication that the price of 
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where )(βpD  is a measure of absolute price deviation: D
p
(β)=∫0

100
 |p(qi(Q0,P0,β),β) - 

p(Q0,β)|di, with p(q,β)= (P0-βQ0)+βq. The larger εq,p
, the more likely that there will be 

resistance to the introduction of congestion pricing. Given that we have estimates for 10 

quantiles (Section 4.1, Table 2), we compute D
p
(β)=(1/10)Σι|p(qi(Q0,P0,β),β) - p(Q0, β)|. We 

then obtain εq,p
 for the 11 pair-wise comparisons between regimes discussed above. The 

resulting elasticities range between 0.2 and 0.6. This implies that, on average, a 10 percent 

increase in price variability leads to a reduction of between 2 and 6 percent in occupancy 

variability. Similar results are obtained with D
p
(β) and with D

q
(β) obtained using the results of 

Section 4.2.  

To illustrate the magnitude of the absolute variability in both occupancy and price, we 

compare regimes 1 and 12. The average absolute deviation of occupancy rate from Q0 is 47% 

and 31% respectively for regimes 1 and 12 (see also Figure 4, panel 1), or 175 and 115 

computer terminals respectively. The average absolute deviation of price from P0 is 5 FF and 

13 FF respectively. The resulting arc elasticity εq,p
 is 0.4. 

To put this figure into perspective, note that the magnitude of the amount of price 

variations is large but not extraordinarily so. In fact, recall that the amount of price variations in 

our case study is of the same order of magnitude as the amount of price variation observed in 

the airline industry (Borenstein and Rose 1994) or presented in the survey scenarios used to 

assess consumer fairness attitudes (Kahneman et al., 1986). To conclude, these figures indicate 

that, in our case study, large efficiency gains could be captured by price variation within a 

range of magnitude already applied in some industries.  

 

6 Concluding Remarks 

                                                                                                                                                                             
a commodity or service that is nominally in some sense the same should not vary according to circumstances of the 

moment, has a strong appeal even today.” 
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This paper contributes to the empirical literature studying whether congestion pricing 

can smooth demand shocks.
17

 We find that the distribution of occupancy is more compressed 

for more responsive pricing regimes. We interpret this as the result of consumers reacting to 

responsive pricing and conclude that responsive pricing can indeed smooth demand, as 

conjectured by Vickrey. 

This research is not without limitations. To start, our study of responsive pricing focuses 

on a specific environment. Our evidence suggests that it should be possible to design a scheme 

that maintains an occupancy level close to a given level in our case study, but it is not clear 

whether responsive pricing would also smooth demand in different contexts. A second concern 

with our results is that there could be other responses to responsive pricing that do not appear 

when one considers only compression of the distribution of occupancy as we do in this study. 

For example, the use of responsive pricing may deter some consumers from returning to a store 

and the overall distribution of occupancy may shift to the left. We investigate this issue in a 

separate line of research (Courty and Pagliero, 2007). 

Finally, our study does not address welfare issues. In order to compute the welfare gains 

from responsive pricing, one needs to model consumer behavior in the presence of congestion 

externalities. In principle, the welfare gain from demand smoothing could be high, since unused 

capacity and rationing are likely to take place under fixed pricing. The contribution of this work 

is to show that demand smoothing, the mechanism behind Vickrey’s proposal, does work in 

practice. The next step is to incorporate welfare calculations in order to investigate, for 

example, how welfare depends on the responsiveness parameter.  

                                                      
17

 Congestion pricing could be implemented in a variety of industries. For example, de Marin de Montmarin (2007) 

and Laih et al. (2007) discuss applications to port access and computer network pricing. 
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Figure 1: Examples of Pricing Functions (regime 8 and 12) 
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Note: The figure reports the pricing curves for regime 8 and 12 (see Table 1). The price is 

measured in French Francs / hour. The occupancy rate is the hourly average number of 

computers used divided by the total number of computers in the store. 

 

 
Figure 2. Empirical Cumulative Distribution Functions (regimes 8 and 12) 
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Note: The figure reports the empirical cumulative distribution function of the occupancy 

rate for regimes 8 and 12. The occupancy rate is the hourly average number of computers 

used divided by the total number of computers in the store. D is the maximum vertical 

distance between the two empirical distributions (Kolmogorov-Smirnov statistic). 
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Figure 3. Pricing Curves  
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Note: The figure reports the pricing curves (see Table 1). The price is measured in 

French Francs / hour. The occupancy rate is the hourly average number of 

computers used divided by the total number of computers in the store. 

 
 

 

 

Figure 5. Simulated Quantiles (Q0 = 0.28) 
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Note: The occupancy rate is the hourly average number of computers used divided by 

the total number of computers in the store. Responsiveness is the slope of the pricing 

function. 
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Figure 4.  Empirical Cumulative Distribution Functions 
Panel 1 

 

0 

.2 

.4 

.6 

.8 

1 

.2 .4 .6 .8 
Occupancy rate 

Regime 1 Regime12 

D = 0.58 

P-value = 0.00 

 

Panel 2 

 

0 

.2 

.4 

.6 

.8 

1 

.2 .4 .6 .8 
Occupancy rate 

Regime 2 Regime 12 

D = 0.48 

P-value = 0.00 

 
Panel 3 

 

0 

.2 

.4 

.6 

.8 

1 

.2 .4 .6 .8 
Occupancy rate 

Regime 3 Regime 12 

D = 0.48 

P-value = 0.00 

 

Panel 4 
 

0 

.2 

.4 

.6 

.8 

1 

.2 .4 .6 .8 
Occupancy rate 

Regime 4 Regime 12 

D = 0.38 

P-value = 0.00 

 
Panel 5 

 

0 

.2 

.4 

.6 

.8 

1 

.2 .4 .6 .8 
Occupancy rate 

Regime 5 Regime 12 

D = 0.31 

P-value = 0.00 

 

Panel 6 
 

0 

.2 

.4 

.6 

.8 

1 

.2 .4 .6 .8 
Occupancy rate 

Regime 6 Regime 12 

D = 0.31 

P-value = 0.00 

 
Panel 7 

 

0 

.2 

.4 

.6 

.8 

1 

0 .2 .4 .6 .8 
Occupancy rate 

Regime 7 Regime 12 

D = 0.20 

P-value = 0.00 

 

Panel 8 
 

0 

.2 

.4 

.6 

.8 

1 

0 .2 .4 .6 .8 
Occupancy rate 

Regime 9 Regime 12 

D = 0.29 

P-value = 0.00 

 
Panel 9 

 

0 

.2 

.4 

.6 

.8 

1 

.2 .4 .6 .8 
Occupancy rate 
Regime 10 Regime 1 

D = 0.42 

P-value = 0.00 

 

Panel 10 
 

0 

.2 

.4 

.6 

.8 

1 

.2 .4 .6 .8 
Occupancy rate 
Regime 11 Regime 1 

D = 0.42 

P-value = 0.00 

 
Note: The figure compares pairs of regimes for which the difference in responsiveness is larger than 22. This singles out 11 

pairs: regimes 1 to 9 crossed with regime 12, and regimes 10 and 11 crossed with regime 1. The comparison of regimes 8 and 

12 is reported in Figure 2. Each pricing function in our sample is represented at least once. The vertical axis denotes the fraction 

of hourly observations for which the occupancy rate is below the corresponding level reported on the horizontal axis. The 

occupancy rate is the hourly average number of computers used divided by the total number of computers in the store. D is the 

maximum vertical distance between the two empirical distributions (Kolmogorov-Smirnov statistic). 
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Figure 6. Simulated Quantiles (Hour of Day Interactions and Q0 = 0.28) 
Panel 1 
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Note: The occupancy rate is the hourly average number of computers used divided by the total number of computers in the store. 

Responsiveness is the slope of the pricing function. The predicted quantile corresponds to Thursday, with no national holiday.  
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Table 1. Summary Statistics 

Regime 
Number of  

observations 

Length of the 

 regime (days) 

Responsiveness 

 

Mean 
occupancy 

rate 

S.d. 
occupancy 

rate 

Mean 

Price  

 
S.d. 

Price 

 (1) (2) (3) (4) (5) (6) (7) 

1 85 6 10.733 0.618 0.160 9.616 1.757 

2 110 7 12.235 0.596 0.149 10.773 1.794 

3 221 15 15.098 0.600 0.150 12.085 2.320 

4 208 15 15.141 0.578 0.159 12.344 2.518 

5 183 11 16.090 0.550 0.171 12.906 2.747 

6 224 16 15.536 0.539 0.159 13.642 2.463 

7 444 28 12.670 0.492 0.161 14.477 2.887 

8 342 22 14.082 0.501 0.165 15.419 3.010 

9 196 13 17.272 0.516 0.148 15.176 3.168 

10 94 6 33.722 0.513 0.152 17.519 5.151 

11 112 7 32.782 0.509 0.154 18.306 5.189 

12 93 6 41.879 0.461 0.131 18.714 5.492 

All Regimes 

 

2,312 

 

12.667 

 

17.112 

 

0.533 

 

0.163 

 

14.174 

 

3.808 

 
Note: The responsiveness of each pricing regime is measured by the slope of the pricing curve. “S.d. occupancy rate” and 

“s.d. price” are the standard deviation of the occupancy rate and the price. The table includes observations for hours 

between 8 a.m. and 12 midnight.  

 
Table 2. The Impact of Regimes on Quantiles of the Occupancy Distribution 

 Occupancy Rate (%) 

 Quantile 0.05 Quantile 0.10 Quantile 0.30 Quantile 0.50 Quantile 0.70 Quantile 0.90 

Regime 2 2.610 2.340 -5.690 -5.530 -2.330 -0.220 

 (6.652) (10.023) (4.710) (2.559)** (1.279)* (1.801) 

Regime 3 3.300 4.620 -6.250 -5.720 -3.280 1.670 

 (5.424) (9.318) (3.449)* (1.710)*** (1.697)* (1.372) 

Regime 4 1.610 -1.720 -9.830 -8.610 -3.190 1.920 

 (4.980) (9.145) (2.707)*** (1.823)*** (1.458)** (1.105)* 

Regime 5 -3.060 -5.770 -13.020 -10.170 -5.500 0.140 

 (4.855) (8.002) (2.524)*** (2.188)*** (1.439)*** (1.708) 

Regime 6 -0.560 -3.750 -14.000 -11.390 -7.970 -1.390 

 (5.257) (9.072) (3.185)*** (1.802)*** (1.384)*** (2.114) 

Regime 7 -9.110 -10.860 -17.330 -15.470 -12.580 -8.360 

 (5.100)* (8.355) (2.616)*** (1.573)*** (0.961)*** (1.333)*** 

Regime 8 -8.060 -11.160 -18.020 -13.970 -11.190 -6.890 

 (5.570) (8.313) (3.181)*** (1.652)*** (1.365)*** (1.315)*** 

Regime 9 -3.890 -7.000 -14.910 -12.050 -10.640 -7.280 

 (5.286) (8.621) (3.100)*** (2.328)*** (1.698)*** (1.418)*** 

Regime 10 -4.340 -5.770 -16.550 -14.830 -10.530 -6.750 

 (5.950) (8.032) (3.079)*** (2.586)*** (1.984)*** (2.365)*** 

Regime 11 -4.480 -6.440 -17.770 -14.750 -9.910 -6.720 

 (5.285) (8.387) (3.615)*** (3.373)*** (1.662)*** (1.731)*** 

Regime 12 -2.200 -6.660 -21.440 -20.640 -16.780 -12.610 

 (5.733) (8.708) (3.700)*** (2.549)*** (1.238)*** (1.587)*** 

constant 24.920 32.440 61.580 67.860 71.720 75.470 

 (5.090)*** (8.459)*** (2.447)*** (1.488)*** (0.750)*** (1.207)*** 

Note: The table reports the LAD quantile regression coefficients of model (2), for the 5th, 10th, 30th, 50th, 70th and 90th 

percentiles of the occupancy distribution. The independent variables are regime specific indicator variables (regime 1 

omitted). Bootstrap standard errors (with 20 replications) are reported in parentheses. The number of observations is 2,312. 

The results for the other deciles of the distribution are reported in the Additional Materials section. * Significant at the 10 

percent level.  ** Significant at the 5 percent level.  *** Significant at the 1 percent level. 
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 Table 3. Test of Equality of Quantiles between Pairs of Regimes with the Highest Differences in 
Responsiveness  

 Pairs of regimes to be compared 

 2 and 12 3 and 13 4 and 12 5 and 12 6 and 12 7 and 12 8 and 12 9 and 12 

Quantile 0.05 

 F(  1,  2300) = 2.41 3.41 1.66 0.07 0.24 6.50 4.25 0.38 

P-value  (0.12) (0.06) (0.20) (0.80) (0.63) (0.01) (0.04) (0.54) 

Quantile 0.10 

 F(  1,  2300) = 2.30 3.53 2.24 0.37 0.92 0.18 0.07 0.26 

P-value (0.13) (0.06) (0.13) (0.54) (0.34) (0.67) (0.80) (0.61) 

Quantile 0.30 

 F(  1,  2300) = 39.62 30.39 19.90 12.32 16.84 6.22 7.02 13.53 

P-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00) 

Quantile 0.50 

 F(  1,  2300) = 50.45 37.04 22.13 12.94 18.37 7.04 7.12 16.07 

P-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00) 

Quantile 0.70 

 F(  1,  2300) = 28.49 24.81 16.02 8.54 12.20 3.24 3.42 9.36 

P-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.07) (0.06) (0.00) 

Quantile 0.90 

 F(  1,  2300) = 17.79 17.01 10.65 4.55 7.15 0.74 0.98 4.48 

P-value (0.00) (0.00) (0.00) (0.03) (0.01) (0.39) (0.32) (0.03) 
Note: the table reports the F-test and P-value for the equality of the 5th, 10th, 30th, 50th, 70th and 90th percentiles of the 

occupancy distribution for pairs of regimes. The tests are based on the estimates in Table 2. The table does not report the 

F-tests for the pairs of regimes (1, 12) and (1, 11) because such a comparison can be made using the results in Table 2. 

The results for the other deciles of the distribution are reported in the Additional Materials section on our website.  

 

 

Table 4. The Impact of the Responsiveness of the Pricing Function on Occupancy Distribution  

 Quantile 0.1 Quantile 0.3 Quantile 0.5 Quantile 0.7 Quantile 0.9 

 (1) (2) (3) (4) (5) 

Responsiveness β 0.037 -0.223 -0.249 -0.185 -0.192 

 (0.075) (0.055)*** (0.050)*** (0.049)*** (0.048)*** 

P0 -2.317 -2.216 -1.903 -1.896 -1.902 

 (0.519)*** (0.338)*** (0.204)*** (0.177)*** (0.167)*** 

Constant 49.379 73.729 79.426 85.319 93.711 

(5.135)*** (3.560)*** (2.529)*** (2.163)*** (1.656)*** 

NOTE: The dependent variable is the quantile qy of the occupancy rate distribution (%), y=0.1, 0.3, 0.5, 

0.7, 0.9. Responsiveness is the slope of the pricing curve in each regime; Q0=0.28. The number of 

observations in the sample is 2,312. Bootstrap standard errors (with 20 replications) are reported in 

parentheses. * Significant at the 10 percent level. ** Significant at the 5 percent level. *** Significant at 

the 1 percent level. 
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Table 5. The Impact of Responsiveness of the Pricing Function on the Quantiles of the Conditional Occupancy 
Distribution 

 Occupancy Distribution 

 Quantile 0.1 Quantile 0.3 Quantile 0.5 Quantile 0.7 Quantile 0.9 

Responsiveness * h8 0.074 0.086 0.041 0.045 0.005 

 (0.062) (0.036)** (0.021)** (0.074) (0.083) 

Responsiveness  * h9 0.073 0.084 0.064 -0.025 -0.082 

 (0.065) (0.085) (0.048) (0.029) (0.030)*** 

Responsiveness * h10 -0.117 -0.034 -0.059 -0.143 -0.187 

 (0.091) (0.056) (0.039) (0.032)*** (0.035)*** 

Responsiveness * h11 -0.049 -0.138 -0.227 -0.260 -0.346 

 (0.070) (0.032)*** (0.045)*** (0.056)*** (0.068)*** 

Responsiveness * h12 -0.165 -0.187 -0.264 -0.320 -0.394 

 (0.055)*** (0.042)*** (0.058)*** (0.053)*** (0.102)*** 

Responsiveness * h13 -0.200 -0.232 -0.265 -0.379 -0.393 

 (0.085)** (0.049)*** (0.042)*** (0.050)*** (0.139)*** 

Responsiveness * h14 -0.206 -0.278 -0.367 -0.366 -0.437 

 (0.070)*** (0.063)*** (0.072)*** (0.049)*** (0.054)*** 

Responsiveness * h15 -0.218 -0.293 -0.335 -0.292 -0.359 

 (0.083)*** (0.067)*** (0.062)*** (0.083)*** (0.054)*** 

Responsiveness * h16 -0.233 -0.134 -0.189 -0.201 -0.119 

 (0.116)** (0.071)* (0.043)*** (0.056)*** (0.100) 

Responsiveness * h17 0.006 -0.162 -0.172 -0.167 -0.197 

 (0.073) (0.047)*** (0.040)*** (0.070)** (0.038)*** 

Responsiveness * h18 -0.032 -0.042 -0.123 -0.121 -0.135 

 (0.085) (0.020)** (0.054)** (0.083) (0.051)*** 

Responsiveness * h19 -0.125 -0.159 -0.075 -0.084 -0.164 

 (0.050)** (0.087)* (0.074) (0.060) (0.173) 

Responsiveness * h20 -0.069 -0.038 -0.066 -0.090 -0.070 

 (0.114) (0.041) (0.047) (0.046)** (0.080) 

Responsiveness * h21 -0.130 -0.156 -0.161 -0.116 -0.080 

 (0.057)** (0.050)*** (0.083)* (0.064)* (0.085) 

Responsiveness * h22 -0.097 -0.167 -0.225 -0.230 -0.221 

 (0.064) (0.044)*** (0.055)*** (0.073)*** (0.096)** 

Responsiveness * h23 -0.164 -0.168 -0.237 -0.318 -0.482 

 (0.104) (0.057)*** (0.033)*** (0.035)*** (0.053)*** 

P0 * hour interactions? Yes Yes Yes Yes Yes 

Hour fixed effects? Yes Yes Yes Yes Yes 

Day fixed effects? Yes Yes Yes Yes Yes 

Weekend cycle? Yes Yes Yes Yes Yes 

Holiday fixed effects? Yes Yes Yes Yes Yes 
Note: The dependent variable is the quantile qy of the occupancy rate distribution (%), y=0.1, 0.3, 0.5, 0.7, 0.9. 

Responsiveness is the slope of the pricing curve in each regime. The coefficients for the level of the pricing function 

(with hour interactions), hour of day, day of the week, holiday periods, and weekend cycle are not reported in the table. 

The number of observations is 2,312. Bootstrap standard errors (with 20 replications) are reported in parentheses. * 

Significant at the 10 percent level. ** Significant at the 5 percent level. *** Significant at the 1 percent level. 


