Modeling the effect of 3 missense AGXT mutations on dimerization of the AGT enzyme in primary hyperoxaluria type I

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/76969 since

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
This is an author version of the contribution published on:

Questa è la versione dell’autore dell’opera:

[J Nephrol. 2010 Nov-Dec;23(6):667-76.]

The definitive version is available at:

La versione definitiva è disponibile alla URL:

Modeling the effect of 3 missense AGXT mutations on dimerization of the AGT enzyme in primary hyperoxaluria type I

Short Title: modeling AGXT mutations in PH1

Angela Robbiano 1§, Vladimir Frecer 2§, Jan Miertus 3, Cristina Zadro 4, Sheila Ulivi 4, Elena Bevilacqua 4, Giorgia Mandrile 1, Mario De Marchi 1, Stanislav Miertus 5, Antonio Amoroso 6*

1 Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy
2 Cancer Research Institute, Slovak Academy of Sciences, Vlárska, 7, SK-83391 Bratislava, Slovakia
3 Molecular Pathology, International Center for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano, 99, I-34012 Trieste, Italy
4 Institute for Maternal and Child Health – IRCCS “Burlo Garofalo” and Medical Genetics Unit, University of Trieste, Via dell’Istria, 65/1, I-34127 Trieste, Italy
5 International Center for Science and High Technology UNIDO, AREA Science Park, Padriciano, 99 – 34012 Trieste, Italy
6 Department of Genetics, Biology and Biochemistry, University of Turin, Via Santena, 19, 10126 Turin, Italy

§ contributed equally to this work.

* **Corresponding author**

Professor Antonio Amoroso
Department of Genetics, Biology and Biochemistry
University of Turin
Via Santena 19
I-10126 Turin
Italy
Phone: +39-011-633.6760
Fax: +39-011-633.6521
e-mail: antonio.amoroso@unito.it
Disclosures:

Financial support: This study was partly supported by a 40% and 60% projects of MURST and by IRCCS Burlo Garofolo di Trieste "progetto ricerca corrente". The financial support of “Cassa di Risparmio di Torino” and Ricerca Sanitaria Finalizzata Regione Piemonte 2008 is also acknowledged.

Experimental investigation on human subjects: Informed consent for genetic testing was obtained from all patients following institutional rules and in adherence with the Declaration of Helsinki.

Conflict of interest: none
Abstract

Introduction

Mutations of the *AGXT* gene encoding the alanine:glyoxylate aminotransferase liver enzyme (AGT) cause primary hyperoxaluria type 1 (PH1). Here we report a molecular modeling study of selected missense *AGXT* mutations: the common Gly170Arg, the recently described Gly47Arg and Ser81Leu variants, predicted to be pathogenic using standard criteria.

Methods

Taking advantage of the refined 3D structure of AGT, we computed the dimerization energy of the wild type and mutated proteins.

Results

Molecular modeling predicted that Gly47Arg affects dimerization with a similar effect to that shown previously for Gly170Arg through classical biochemical approaches. In contrast, no effect on dimerization was predicted for Ser81Leu. Therefore, this probably demonstrates pathogenic properties via a different mechanism, similar to that described for the adjacent Gly82Glu mutation that affects pyridoxine binding.

Conclusion

This study shows that the molecular modeling approach can contribute to evaluating the pathogenicity of some missense variants that affect dimerization. However, *in silico* studies - aimed to assess the relationship between structural change and biological effects - requires the integrated use of more than one tool.

Key words:

AGXT gene, AGT enzyme, Primary Hyperoxaluria Type 1, molecular modeling
INTRODUCTION

Primary hyperoxaluria type I (PH1) is an autosomal recessive disorder caused by defects of the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT, EC 2.6.1.44) encoded by the AGXT gene (1). The AGT molecule has a homodimeric structure of 2x43 kD/ 392 aminoacid subunits. AGT rapidly dimerizes after synthesis in the cytosol, and is imported into the peroxisomes, where it catalyzes the transamination of glyoxylate to glycine, coupled with the conversion of alanine to pyruvate, with pyridoxal-5-phosphate as a cofactor.

Deficiency of AGT in PH1 patients impairs the hepatic detoxification of glyoxylate and results in increased oxalate and glycolate in plasma and urine. Excess oxalate saturates body fluids and accumulates as insoluble calcium salts in several organs (2, 3). The natural history of untreated PH1 is characterized by progressive decline in renal function, from nephrolithiasis nephrocalcinosis to generalized oxalosis and death (4).

A comprehensive algorithm for the clinical and biochemical diagnosis of hyperoxaluria has been recently proposed (5). AGXT gene testing has become an important diagnostic tool (6-8) and provided that the pathogenicity of mutations is verified, it renders the invasive liver biopsy (for direct assaying of AGT activity) unnecessary in most cases (9). Conversely, when only private variants of unknown pathogenicity are found, molecular diagnosis remains doubtful.

The mutational spectrum of the AGXT gene encompasses almost 100 different mutations so far, including nonsense, splice site, frameshift and missense point mutations, and rarer entire exon deletions (6,8,10). Missense mutations may have various pathogenic effects. The most frequent, Gly170Arg, causes a remarkable trafficking defect, whereby the newly synthesized AGT subunit is diverted away from its normal peroxisomal location, in part degraded, while the remaining in part is diverted to the mitochondria where eventually dimerizes (11). This effect is synergistically
influenced by the common Pro11Leu polymorphism whose Leu allele introduces a mitochondrial signal sequence (12), that targets a fraction of the AGT protein to the mitochondrion (13), and decreases the enzyme activity by 30% (14). Docking of the correctly folded monomers into stable dimers represents a critical step of AGT biosynthesis. Patients carrying Gly170Arg, or other mistargeting mutations synergic with the Leu11, like Phe152Ile (14), are most likely to respond to vitamin B6 (Pyridoxine) (16-18). Other missense mutations are associated with accelerated degradation or intra-peroxisomal aggregation, that probably result from misfolding at later stages of AGT biosynthesis (14). Finally, specific mutations of critical residues in the catalytic- or the cofactor-binding sites can affect the enzymatic activity without altering AGT dimerization or targeting (19).

Determination of the crystal structure of the AGT enzyme has enabled us to improve the understanding of the pathogenic effects of some recurrent missense mutations, in terms of folding, dimerization and stability (20). Such studies may open the way to new therapeutic strategies, based on the structure-based design of small molecules capable of rescuing the defective enzyme, and thus extending the chance of conservative treatment to other more severe, life-threatening and non-Pyridoxine responsive mutations (21).

In this paper we approach the question by using a new in silico molecular modeling method aimed to rationalize the effects of specific missense AGT mutations on dimerization thermodynamics and provide proof of principle evidence of its performance.

SUBJECTS AND METHODS

Patients in whom the modeled mutations were identified belong to the Italian multicenter study of primary Hyperoxaluria, and had given their informed consent to use their genetic and clinical data for research purposes, as already described (17,22). Age at onset, relevant clinical data and
residual liver AGT activity, when available, are shown in Table 1. Screening of AGXT gene mutations was performed on genomic DNA through PCR amplification and direct sequencing, whereas healthy controls were analysed by DHPLC. The refseq NP_000021.1 protein sequence of the human AGT gene was used as reference. Multiple sequence alignment of 22 orthologous species was generated using ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/index.html, Supplementary material, Fig.2). The evolutionary conservation at the mutated positions was evaluated using the SIFT (23), SNPs3D (24) and PMUT (25) algorithms available on line. The “major” or “minor” haplotype were characterized by inspection of the relevant sequence features at codons 11 and 340 (26).

Molecular Modeling. Starting from the crystal structure of the wt AGT homodimer WT:WT (20) we prepared the refined three-dimensional (3D) structure of the wild type (wt) dimer bound to the pyridoxal-5’-phosphate (PLP) cofactor and the aminoxyacetic acid (AOA) inhibitor (Figure 1) available from Protein Data Bank (27) - and from there we prepared the structure of the wt AGT monomer.

In the 3D models of the mutant AGT forms (mt) we replaced the side chains at the mutated sites by the best rotamer of the substituting residue followed by careful conformational search and geometry optimization using the molecular modeling software Insight-II (Accelrys Software Inc., San Diego, CA, release 2000). We computed the conformational and interaction energies of each AGT monomer and dimer by molecular mechanics (MM) using class II consistent force field CFF91 and charge parameters (28).

The dimerization of two mt AGT monomers in aqueous solution to form a homodimer (MT:MT) can be represented by the energy of dimerization: \(\Delta E_{\text{tot}} = E_{\text{tot}}[MT:MT] - 2E_{\text{tot}}[MT] \), composed of contributions from molecular mechanics (MM) potential energy (\(\Delta E_{\text{MM}} \)) and solvent effects
(\(\Delta E_{\text{solv}}\)) as: \(\Delta E_{\text{tot}} = \Delta E_{\text{MM}} + \Delta E_{\text{solv}}\). When computing dimerization energy, we took into account the interaction between monomers in the dimer, the stability and molecular structure of the free monomers and the effect of solvent upon monomers association. We compared the different \(mt\) AGT forms via relative changes in the dimerization energy, \(\Delta \Delta E_{\text{tot}} = \Delta E_{\text{tot}}[MT:MT] - \Delta E_{\text{tot}}[WT:WT]\) with respect to the reference \(wt\) homodimer \(WT:WT\). Relative changes were defined in a similar way for the contributions of both the MM interaction energy and the solvent effect.

When computing the solvation energy, we also incorporated the effects of ionic strength through the solution of nonlinear Poisson-Boltzmann equation (29), using the software package DelPhi (Accelrys Software Inc., San Diego, CA, release 2000).

We calculated the molecular solvent-accessible surface area of the \(wt\) and \(mt\) residues by using the Connolly algorithm (30) implemented in the Insight-II software. Relative changes in the accessible surface area of the studied residues upon dimer formation (\(\Delta \Delta S_{\text{bur}}\)) were calculated as a difference in the solvent accessible surfaces of residues in the dimer and in the free monomers with respect to the corresponding residues in the reference \(wt\) form of AGT: \(\Delta \Delta S_{\text{bur}} = (2S_{\text{Con}}[mt]_{MT} - S_{\text{Con}}[mt,mt]_{MT,MT}) - (2S_{\text{Con}}[wt]_{WT} - S_{\text{Con}}[wt,wt]_{WT,WT})\).

RESULTS

AGXT Mutations. The 3 selected mutations were all absent in 80 healthy ethnically-matched controls (160 chromosomes). Multiple sequence alignment showed evolutionary conservation at residue Gly47 and Gly170 in 22/22 species and at Ser81 in 17/22 (Supplementary material, Fig.2). The SIFT and SNPs3D software tools concordantly predicted Gly47Arg and Ser81Leu to be not tolerated, with similar or stronger scores than the common Gly170Arg mutation (Table 1),
and were considered as pathogenic. In contrast, the PMUT software predicted only Gly47Arg to be pathogenic, and Ser81Leu to be tolerated.

We then implemented a molecular modeling approach to study the effect of the three missense changes on AGT dimerization, using the known Gly170Arg mutation as a positive control. For this, we modeled the homodimeric AGT forms of each of the three changes, as well as the heterodimer expected in the Gly170Arg/Gly47Arg compound heterozygous patient 1. No heterodimer was expected in patient 2 who carried a null mutation on the second allele.

Molecular Modeling. Residue Gly47 is located on the dimerization interface of AGT, close to the C-terminal boundary of the long, irregular N-terminal coil (residues 1-21) that upon dimerization wraps around the cognate monomer (Figure 2). Residue Ser81 is similarly positioned on the dimerization interface, near the cofactor binding site. In contrast, residue Gly170 is located on the exposed surface without direct contact with the cognate monomer. Due to its position at the dimer interface, the substitution of the small Gly47 residue by a bulky cationic Arginine contributes more to the relative surface area buried upon AGT dimerization ($\Delta \Delta S_{\text{bur}}$) than the other mutations that either insert a smaller residue or are located outside of the dimerization interface (Table 2). The Gly47Arg and Gly170Arg substitutions stabilize the AGT homodimers via increased monomer-monomer interaction, $\Delta \Delta E_{\text{MM}}$, more than the Ser81Leu substitution (Table 2).

On the other hand, the attractive MM interactions caused by the non conservative Gly to Arg substitutions are largely compensated for upon AGT dimerization by the effect of the solvent. The *wt* AGT monomer bears a total molecular charge of +1e', while Arg47 and Arg170 increase its charge to +2 e'. In both cases, and especially for Arg47, the free *mt* monomers with the charged Arg residues exposed to the solvent are better stabilized by the interactions with water.
than the dimers, where the corresponding residues are partially buried (Table 2). Thus
the stability of the mutated dimers is significantly diminished by the effect of protein hydration.
In contrast, the Ser81Leu substitution does not change the charge. The overall dimer stability,
which takes into account both the interactions between the residues of the associated monomers
and the solvent effect ($\Delta \Delta E_{\text{sol}}$), is weaker for all the considered mt dimers than the native WT:WT.
Our computational approach predicts a stronger decrease of dimer stability for the mt
$G47R:G47R > G170R:G170R$ dimers compared to the WT:WT reference, while only a minor
change in dimer stability is predicted for the mt $S81L:S81L$ homodimer (Table 2).

DISCUSSION

The pathogenic effect of recurrent AGT mutations has been extensively investigated with
classical biochemical and biological approaches. A series of studies, both *ex vivo* and *in vitro*,
have highlighted the peculiar effect of the recurrent Gly170Arg mutation on AGT biosynthesis
(15). However, no comparable knowledge is available for the remaining missense AGT
mutations, about 30-34% in Caucasians, in which a growing series of rarer or private changes are
identified (10). In these cases, the current criteria of cosegregation of disease in families and lack
of disease in controls does not always allow to discriminate true mutations from rare
polymorphisms. The liver specific expression of AGT further hampers to evaluate the effect of
promoter and splice-control mutations on mRNA biosynthesis. For missense mutations,
determination of the crystal structure of AGT has opened the way to rationalize the pathogenic
mechanisms in terms of folding, dimerization and stability of the enzyme (20). Here we describe
the application of molecular modeling techniques as a means to explore the pathogenic potential
of AGT missense mutations. Similar approaches was previously employed by Burnett et al (31)

10
for hemoglobin and Kobayashi et al. (32) for lipoprotein lipases, but to our knowledge their use for AGT mutations is novel.

We assumed the working hypothesis that some mutations, in particular the Gly47Arg situated on the dimerization interface, affect the formation of AGT dimers and may exert effects similar to those demonstrated for Gly170Arg. Indeed, when we rationalized the stability of the mutated Gly170Arg and Gly47Arg dimers in terms of net charge and size of the replacing Arg residue and its location on the molecular surface with respect to the dimerization region, solvation resulted to exert a dominant effect and stabilize the free monomers more than the corresponding dimers. In our molecular modeling both mutations change the $\Delta \Delta E_{\text{tot}}$ by an order of tenth kcal-mol$^{-1}$, i.e. shift the equilibrium constant of the mt molecules from dimer to free monomeric mt. In other words, dimers with either mutation are predicted to be less thermodynamically stable at physiological conditions than the wild type AGT dimer.

Decreased stability of the mutated AGT dimers has been previously considered as a possible cause of the peroxisomes-to-mitochondria mistargeting (15) and accelerated AGT degradation or aggregation that have been associated with the Gly170Arg mutation (14). According to our modeling study, Gly47Arg destabilizes the AGT dimer even more than Gly170Arg. Interestingly, a similar destabilizing effect is predicted for both the Gly170Arg:Gly170Arg and Gly47Arg:Gly47Arg mutated homodimers and for the Gly47Arg:Gly170Arg heterodimer, whose corresponding in vivo situation is represented by the compound heterozygous patient 1. On overall, these data support the pathogenicity of Gly47Arg, although its clinical severity cannot be established in the presence of the mild Gly170Arg mutation, as in general true for new described mutations when found in compound heterozygosity with mild ones.
The effect of the Ser81Leu mutation predicted from molecular modeling is much less pronounced, with a minimal change of the $\Delta \Delta E_{\text{tot}}$, suggesting that secondary structures and dimers formation are not affected. This is in agreement with the PMUT results, based also on the profile of secondary structure and solvent accessibility. On the other hand, Ser81Leu should be considered pathogenic on the basis of absence in ethnically matched controls and high degree of evolutionary conservation. Its proximity to the cofactor and substrate binding sites suggests that it may affect the catalytic function of the enzyme. Indeed, the adjacent Gly82Glu mutation was previously described to affect pyridoxine binding (14).

The wide mutational spectrum of primary hyperoxaluria and the consequent variety of the AGT enzyme defects makes the use of multiple approaches to characterize novel mutations highly recommended. Since dimerization represents a critical step in AGT biosynthesis, the presented approach can significantly contribute to assess the pathogenicity of missense mutations, clarifying their contribution to the phenotype and providing some insight into the structural and functional changes of AGT responsible of the PH1 phenotype.

Acknowledgement

Nephrologists who referred patients are gratefully acknowledged: Licia Peruzzi (OIRM-S.Anna Hospital, Torino, Italy), Martino Marangella (Mauriziano Hospital, Torino, Italy).
REFERENCES

15. Leiper JM, Oatey PB, Danpure CJ. Inhibition of alanine:glyoxylate aminotransferase 1 dimerization is a prerequisite for its peroxisome-to-
14

Legends for figures

Figure 1
Dimerization site/active site view of the relaxed wt AGT monomer in a ribbon rendering. The co-factor pyridoxal-5’-phosphate (PLP) and the substrate aminooxyacetic acid (AOA) are shown in Corey-Pauling-Kultun (CPK) representation in cyan and brown. The locations of the Leu11 and Met340 residues of the minor polymorphic form are indicated by horizontal and vertical arrows respectively. The mutated residues are highlighted: Gly47 in yellow, Ser81 in green and Gly170 in white.

Figure 2
(A) Front view and (B) side view of the AGT dimer WT:WT in Corey-Pauling-Kultun (CPK) representation, with monomer A shown in red and monomer B in blue. Positions of the mutated residues GlyA47 and GlyB47 are shown in yellow, residues GlyA170 and GlyB170 in white. Residues SerA81 and SerB81 located at the dimerization interface are not visible. The long N-terminal extensions (coils of residues 1 – 21) wrap around the N-terminal segment of the opposing monomer.
TABLES

Table 1. Clinical, biochemical and molecular findings of PH1 patients.

<table>
<thead>
<tr>
<th>Patient ID gender (origin)</th>
<th>Age at onset (yrs)</th>
<th>AGT enzyme activity</th>
<th>cDNA</th>
<th>Protein</th>
<th>AGXT haplotype*</th>
<th>Evolutionary conservation</th>
<th>Pathogenicity score§</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 male (Sicily)</td>
<td>35</td>
<td>2%</td>
<td>c.139G>A</td>
<td>G47R</td>
<td>minor</td>
<td>22/22</td>
<td>0.00 non toler.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c.508G>A</td>
<td>G170R</td>
<td>minor</td>
<td>22/22</td>
<td>0.00 non toler.</td>
</tr>
<tr>
<td>2 female (Serbia)</td>
<td>1</td>
<td>Not done</td>
<td>c.242C>T</td>
<td>S81L</td>
<td>maior</td>
<td>17/22</td>
<td>0.01 non toler.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>c.614C>A</td>
<td>S205X</td>
<td>maior</td>
<td></td>
<td>0.31 tolerated</td>
</tr>
</tbody>
</table>

* minor haplotype is defined by P11L + 74bp-duplication in intron 1 + I340M.

§ non tolerated: SIFT < 0.05 (23), SNPs3D < 0 (24) PMut > 0.5 (25).
Table 2. Buried surface and relative energies of dimerization of wild type (wt) and mutated (mt) human AGT monomers.

<table>
<thead>
<tr>
<th>AGT dimer</th>
<th>Interacting monomers</th>
<th>Relative buried surface $[\text{Å}^2]$</th>
<th>Relative energy of dimerization $[\text{kcalmol}^{-1}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monomer MT_i</td>
<td>Monomer MT_j</td>
<td>$\Delta \Delta S_{\text{bur}}^a$</td>
</tr>
<tr>
<td>wt:wt</td>
<td>wt AGT $Q_{wt}=+1$</td>
<td>wt AGT $Q_{wt}=+1$</td>
<td>0</td>
</tr>
<tr>
<td>WT:WT homodimer</td>
<td>$G47R:G47R$</td>
<td>mt AGT Gly47Arg $Q_{mt}=+2$</td>
<td>158</td>
</tr>
<tr>
<td></td>
<td>$G170R:G170R$</td>
<td>mt AGT Gly170Arg $Q_{mt}=+2$</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>$S81L:S81L$</td>
<td>mt AGT Ser81Leu $Q_{mt}=+1$</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>$G47R:G170R$</td>
<td>mt AGT Gly47Arg $Q_{mt}=+2$</td>
<td>110</td>
</tr>
</tbody>
</table>

a $\Delta \Delta S_{\text{bur}}$ – relative contribution of mutated residue to the buried surface upon dimer formation was calculated as the difference in Connolly surfaces (30) of the
concerned residues in the dimer $MT:MT$ and in free monomer MT with respect to the
native residues in the homodimer $WT:WT$ \(\Delta S_{\text{bur}} = (2S_{\text{Con}}[mt]_{MT} - S_{\text{Con}}[mt,mt]_{MT:MT}) - (2S_{\text{Con}}[wt]_{WT} - S_{\text{Con}}[wt,wt]_{WT:WT}), \) in [Å²];

\[\Delta \Delta E_{\text{MM}} = (E_{\text{MM}}[MT:MT] - 2E_{\text{MM}}[MT]) - (E_{\text{MM}}[WT:WT] - 2E_{\text{MM}}[WT]) \]
is the relative molecular mechanics interaction energy contribution to the $MT:MT$ AGT dimer formation with respect to the wt homodimer $WT:WT$;

\[\Delta \Delta E_{\text{solv}} = (E_{\text{solv}}[MT:MT] - 2E_{\text{solv}}[MT]) - (E_{\text{solv}}[WT:WT] - 2E_{\text{solv}}[WT]) \]
is the relative solvation energy contribution to the $MT:MT$ AGT dimer formation with respect to the wt homodimer $WT:WT$;

\[\Delta \Delta E_{\text{tot}} = \Delta \Delta E_{\text{MM}} + \Delta \Delta E_{\text{solv}} \]
is the relative total energy change connected with the $MT:MT$ AGT dimer formation with respect to the wt homodimer $WT:WT$;

a change of $\Delta \Delta E_{\text{tot}}$ by 10 kcal·mol$^{-1}$ corresponds to about 3.2% change in the energy of dimerization the $WT:WT$ dimer. For comparison, an increase of Gibbs free of a dimerization reaction by 10 kcal·mol$^{-1}$ will cause a shift of the equilibrium constant of this reaction by a factor of $5\cdot10^8$ towards dissociated monomers;

\[Q_{\text{wt}}, Q_{\text{mt}} \]
are the molecular charges of wt or mt AGT monomers including the co-factor PLP and substrate AOA.
Supplementary Material

Supplementary Material 1: Legend to Figure 1

Electropherograms of the three missense mutations studied

Supplementary Material 2.

Multiple sequence alignment of AGT orthologous sequences of 22 different species.

The four mutated residues are highlighted with boxes, and the substituting residue is indicated above the top line. The degree of evolutionary conservation of each residue is indicated below the bottom line, according to Clustal rules: * identity, : conservative substitution, . semi-conservative substitution

Multiple sequence alignment of AGT orthologs using CLUSTAL 2.0.2.

H.sapiens

M.mulatta

Pongo_pygmaeus

C.jacchus

Canis_familiaris

Felis_catus

Equus_caballus

Bos_taurus

O.cuniculus

O.anatinus

Rattus_norvegicus

Mus_musculus

Xenopus_laeviis

Danio_reio

D.melanogaster

Aedes_aegypti

N.vitripennisis

Apis_mellifera

C.elegans

------------------------- MFQALAKASAALGP 14
------------------------- MFQLARASVAGLP 14
------------------------- MFRAIASATAGLP 14
------------------------- MPQSRASVPAASLCA 15
------------------------- MFRMLAKASVTLS 14
------------------------- MQGSRVSISLLCA 15
------------------------- MISTRFLRP 9
<table>
<thead>
<tr>
<th>Organism</th>
<th>Sequence</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr. coccus marinus</td>
<td>RHRTNAKLWNSLENIGLHELHVK-EELRLPTLTVKIPEGLDGKAFTKHLNFGVEIGG</td>
<td>373</td>
</tr>
<tr>
<td>H. sapiens</td>
<td>GLGPSTGKVLRLGGLCGNATRENVDRVTEALRAALQHQCPKKL--------------------------</td>
<td>392</td>
</tr>
<tr>
<td>M. mulatta</td>
<td>GLGPAGKVLRLGGLCGNATRENVDRVTEALGAALQHQCPKKL--------------------------</td>
<td>392</td>
</tr>
<tr>
<td>Pongo pygmaeus</td>
<td>GLGPCTGKVLRLGGLCGNATRENVDRVTEALRAALQHQCPKKL--------------------------</td>
<td>392</td>
</tr>
<tr>
<td>C. jacchus</td>
<td>GLGPSTGKVLRLGGLCGNATRENVDRVTEALREALQHQCPKKL--------------------------</td>
<td>414</td>
</tr>
<tr>
<td>Canis familiaris</td>
<td>GLGPSVGKVLRLGGLCGNATRENVDRVTHALQRHELRCPRKFKL--------------------------</td>
<td>411</td>
</tr>
<tr>
<td>Felis catus</td>
<td>GLPSMKIVKVLRLGGLCGNATRENVDRVQALQHELQRCPRKFKL--------------------------</td>
<td>414</td>
</tr>
<tr>
<td>Equus caballus</td>
<td>GLPSMKIVKVLRLGGLCGNATRENVDRVIEALREALQRCPRKFKL--------------------------</td>
<td>460</td>
</tr>
<tr>
<td>Bos taurus</td>
<td>GLPSAKVLRLGGLCGNATRENVDRVTRALREALQRCPRKFKL--------------------------</td>
<td>414</td>
</tr>
<tr>
<td>O. anatinus</td>
<td>GLPSGVIKVLRLGGLCGNATRENVDRVQALQHELQRCPRKFKL--------------------------</td>
<td>392</td>
</tr>
<tr>
<td>Rattus norvegicus</td>
<td>GLPSVDKVLRLGGLCGNATRENVDRVQALQHELQRCPRKFKL--------------------------</td>
<td>392</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>GLPTVRLGLGGLCGNATRENVDRVQALQHELQRCPRKFKL--------------------------</td>
<td>414</td>
</tr>
<tr>
<td>Xenopus laevis</td>
<td>GLPSGKVLRLGGTYSTQLNDRVIEALREALQPCPKKM--------------------------</td>
<td>415</td>
</tr>
<tr>
<td>Danio rerio</td>
<td>GLPSAGMVLRLGGCNNSNKANVDKVIEALALKHCPSRV--------------------------</td>
<td>391</td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>GLPTVEHFRGMLGENATVERVMDVSLINEAIQSSKLGIKTDLSKI--------------------------</td>
<td>394</td>
</tr>
<tr>
<td>Aedes aegypti</td>
<td>GLPTAQVFRLGMQNATTERVMDVQFQEEAAVKFQVQMK--------------------------</td>
<td>393</td>
</tr>
<tr>
<td>N. vitripennis</td>
<td>GLPTAQVFRLGMQNATTERVMDVQFQEEAAVKFQVQMK--------------------------</td>
<td>393</td>
</tr>
<tr>
<td>Apis mellifera</td>
<td>GLPTVAKFRGMLNATSGHADLVRLGLDDAVKYSKQCL--------------------------</td>
<td>397</td>
</tr>
<tr>
<td>C. elegans</td>
<td>GLATVKRIFGMSNSYKSNASEYPDFQQEK--------------------------</td>
<td>405</td>
</tr>
<tr>
<td>S. purpuratus</td>
<td>GLPSGKVRGMLGQNYQDNQKVRKVLEGLNHSRTSR--------------------------</td>
<td>394</td>
</tr>
<tr>
<td>Cyanobacteria</td>
<td>GLGELAGKWRGMLGNYQSPENVLLEALRKPVL--------------------------</td>
<td>372</td>
</tr>
<tr>
<td>Pr. coccus marinus</td>
<td>GLDIAKVRGMLGNYQNPQENKPLLLEALRKPFR--------------------------</td>
<td>412</td>
</tr>
</tbody>
</table>
c.508G>A leading to p.Giy170Arg in patient 1

c.139G>A leading to p.Giy47Arg in patient 1

c.242C>T leading to p.Ser81Leu in patient 2