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Abstract

Meshless collocation methods based on radial basis functions lead to structured linear
systems which, for equispaced grid points, have almost a multilevel Toeplitz structure. In
particular, if we consider partial differential equations (PDEs) in two dimensions then we
find almost (up to a “low-rank” correction given by the boundary conditions) two-level
Toeplitz matrices, i.e., block Toeplitz with Toeplitz blocks structures, where both the num-
ber of blocks and the block-size grow with the number of collocation points. In [D. Bini,
A. De Rossi, B. Gabutti, Linear Algebra Appl., 428 (2008), 508–519] upper bounds for the
condition numbers of the Toeplitz matrices approximating a one-dimensional model prob-
lem were proved. Here we refine the one-dimensional results, by explaining some numerics
reported in the previous paper, and we show a preliminary analysis concerning conditioning,
extremal spectral behavior, and global spectral results in the two-dimensional case for the
structured part. By exploiting recent tools in the literature, a global distribution theorem
in the sense of Weyl is proved also for the complete matrix-sequence, where the low-rank
correction due to the boundary conditions is taken into consideration. The provided spectral
analysis is then applied to design effective preconditioning techniques in order to overcome
the ill–conditioning of the matrices. A wide numerical experimentation, both in the one and
two-dimensional case, confirms our analysis and the robustness of the proposed precondi-
tioners.

Keywords: radial basis functions, collocation methods, Toeplitz matrices, preconditioning.

1 Introduction

The aim of this paper is to provide a spectral analysis and effective preconditioners for the
linear systems arising from radial basis function (RBF) approximations [21, 46] of partial dif-
ferential equations (PDEs). The attention for radial basis functions started in the 80’s in
two specific directions: the fast and accurate solution of interpolation problems and the high
order approximation of PDEs by employing collocation techniques. For references on analyti-
cal/approximation results see e.g. [5, 18, 21, 46], while fast and effective evaluation algorithms
for RBFs can be found in [3, 31]. Informally, a radial function φ(x) : Rn → R is a function
of the Euclidean norm ||x|| of x, i.e., φ(x) = η(||x||), for η(t) : R → R. Examples of special
applicative interest are functions of the following form

√
t2 + c2 multiquadric (MQ),

1/
√
t2 + c2 inverse multiquadric (IMQ),

exp−
t2

c2 Gaussian.

(1)

In this context c is the shape parameter, whose value plays a role in modeling problems with
various specific features. At least numerically, it is evident that the precision of the approxima-
tion procedures based on RBFs is very high. In fact, if h denotes the maximal step size, then
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the approximation error behaves like O(λc/h) for the MQ based scheme and like O(λ
√
c/h), when

IMQ and Gaussian RBFs are considered. Here λ is a positive parameter, strictly less than one,
and independent of h. The price that has to be paid concerns the increasing ill-conditioning of
the related linear systems in which a growth of the order of expθc/h is observed at least for large
values of c/h, with θ being a positive constant independent of the finesse parameter h and also
of the shape parameter c. For simplicity, we consider a Cartesian n × n grid with n2 internal
points, but the generalization to a generic n1×n2 grid with n1 6= n2 is possible. Hence the real
collocation matrix is the sum of a quadrantally symmetric two-level Toeplitz matrix of size n2

and a matrix of rank 2n, which collects the boundary conditions. We are interested in fast solu-
tion methods, in the spectral behavior of the resulting matrices, and especially in the extremal
behavior (conditioning) and in the global distribution results. For the latter we need to think
not to a single linear system but to a sequence of linear systems of increasing dimensions, where
the dimension n2 is related to a finesse parameter, as usually occurs in the approximation of
PDEs. Such kind of spectral knowledge is then employed for suggesting appropriate O(n2 log n)
preconditioners for Krylov methods. We should mention a first important step in understand-
ing the spectral behavior of the considered matrices was done in [9], where the remarkable link
with Toeplitz sequences generated by a symbol was exploited. Related results concerning the
analysis of spectral properties of Toeplitz matrices encountered in the interpolation with radial
functions and the design of preconditioners can be found in [1, 2].

More in detail, concerning the one-dimensional setting, we give a more precise analysis than
in [9], by showing that for some choices of RBF, e.g. IMQ and Gaussian, and for some values of
the parameter c/h, the conditioning is not exponential, but grows mildly as n2. A preliminary
study concerning the spectral features of such matrices is concisely carried out in [12]. Here
the spectral analysis is extended from the Toeplitz component to the whole matrix-sequence
by including the boundary conditions term and some insights on the multidimensional setting
are given. The spectral analysis represents a precious guide for the design and/or the choice
of efficient preconditioning strategies. Therefore we propose some effective preconditioning
strategies depending on the estimated condition number of the associated Toeplitz matrix. As
a conclusion, we report a wide numerical experimentation for validating our analysis and our
preconditioning strategy.

Finally, we remark that, although our analysis is performed only for equally spaced grid, it is
our opinion that this is a first step to obtain results for quite general grids, represented by some
“sufficiently regular” function of the equispaced grid. We recall that for scattered grids {xi} for
which there exists a function β(t) smooth enough, such that xi = β(ih), i = 0, 1, . . . , n+1 where
β(0) = 0, β(1) = 1, the asymptotic spectral properties of the finite difference discretization of
differential operators are preserved to a certain extent even though their Toeplitz structure is
lost (see [38] for more details). We believe that the techniques introduced in this paper may be
combined with the approach of [38] to obtain more general results (see also [40]): indeed, for
large dimensions the meshfree case could behave in practice as the sufficiently regular case (see
the last numerical experiments in [32] and Subsection 6.1.4).

The paper is organized as follows. In Section 2 we recall the main tools used to prove
our result, more specifically, general spectral properties of Toeplitz matrix-sequences generated
by a symbol. In Section 3 we state in some detail the one-dimensional and two-dimensional
problems, respectively, by emphasizing the linear algebra viewpoint and by reporting the known
results. In Section 4 we analyze both the one-level and the two-level case giving a rigorous
explanation of some numerics reported in [9] and we study the problem from the point of view
of extremal spectral values (conditioning). In Section 5 we study the global spectral distribution
of the complete matrix-sequence where also the boundary conditions are considered. Section 6 is
devoted to the analysis of preconditioning techniques and to report the results of some numerical
experiments, which confirm the effectiveness of the proposed choices. Finally Section 7 deals
with conclusions and future work.
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2 Toeplitz matrices

We start by recalling the main results concerning the spectral properties of Toeplitz matrices
used to prove the asymptotic bounds. We give a compact definition of Toeplitz matrix-sequences
generated by a given d-variate Lebesgue integrable symbol. Let s be a Lebesgue integrable
function defined on Qd, Q = (0, 1), d positive integer, and taking values in C. Then, for d-
indices r = (r1, . . . , rd), j = (j1, . . . , jd), n = (n1, . . . , nd), e = (1, . . . , 1), 0 = (0, . . . , 0), the
Toeplitz matrix Tn(s) of size n̂× n̂, n̂ = n1 ·n2 · · ·nd, is defined as Tn(s) = [cr−j ]

n−e
r,j=0, where ck

are the Fourier coefficients of s defined by equation

cj = c(j1,...,jd)(s) =

∫

Qd

s(t1, . . . , td) exp
−i2π(j1t1+···+jdtd) dt1 · · · dtd, i2 = −1, (2)

for integers jℓ such that −∞ < jℓ < ∞ for 1 ≤ ℓ ≤ d. The function s(x) is called symbol. If
s(x) is real valued then c−k is the conjugate of ck so that Tn is Hermitian; if, in addition, s(x)
is even around 1/2 with respect to every variable (i.e. s(e/2 + y) = s(e/2 + z), y ∈ (0, 1/2]d,
|zj | = yj, j = 1, . . . , d), then Tn is globally real symmetric and symmetric also at every level.

2.1 Extremal spectral properties

The symbol (if well defined) associated with a given Toeplitz matrix-sequence is essential for
understanding in depth the spectral features, and the conditioning in the nonnegative case, of
the sequence. We recall the following properties (see also [11] and references therein).

Theorem 2.1. [33, 10] If s(x) ≥ 0 almost everywhere and not identically constant over
Qd, d positive integer, then Tn is positive definite for any n and its eigenvalues belong to
(inf s(x), sup s(x)), where inf and sup are intended up to zero Lebesgue measure sets. Moreover,

λ
(n)
min is a decreasing sequence converging to inf s(x), and λ

(n)
max is an increasing sequence converg-

ing to sup s(x), where λ
(n)
min and λ

(n)
max are the minimal and the maximal eigenvalues of Tn, respec-

tively. Furthermore, if s(x) is locally twice differentiable around its infimum points with positive

second derivative in at least one of them, then λ
(n)
min− inf s(x) ∼ c

∑d
i=1 n

−2
i , with c positive con-

stant independent of n. Analogously, if s(x) is locally twice differentiable around its supremum

points with negative second derivative in at least one of them, then sup s(x)−λ(n)max ∼ c
∑d

i=1 n
−2
i .

Therefore the spectral condition number µ(Tn) = λ
(n)
max/λ

(n)
min is an increasing sequence converging

to sup s(x)/ inf s(x).

2.2 Distribution spectral properties

Concerning the case of matrix-sequences an important notion is that of spectral distribution
in the eigenvalue or singular value sense, linking the collective behavior of the eigenvalues or
singular values of all the matrices in the sequence to a given function (or to a measure). The
notion goes back to Weyl and has been investigated by many authors in the Toeplitz and Locally
Toeplitz context (see the book by Böttcher and Silbermann [11] where many classical results
by the authors, Szegö, Avram, Parter, Widom, Tyrtyshnikov, and many others can be found,
and more recent results in [23, 40, 45, 43]). A noteworthy application of the considered spectral
distribution theory concerns finer estimates of the convergence rate of Krylov methods (see [4]).
Here we report the definition of spectral distribution only in the eigenvalue sense, since our
analysis is devoted to eigenvalues. The case of singular values represents a plain variation on
the theme. For any function F defined on C and for any complex valued m×m matrix A, the
symbol Σλ(F,A) stands for the mean Σλ(F,A) :=

1
m

∑m
j=1 F (λj(A)), with λj(A), j = 1, . . . ,m,

denoting the eigenvalues of A.
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Definition 2.1. Let C0(C) be the set of continuous functions with bounded support defined over
the complex numbers C, d a positive integer, and θ be a complex valued measurable function
defined on a set G ⊂ R

d of finite and positive Lebesgue measure µ(G). Here G will be often

equal to Qd, Q = (0, 1), so that expi2πG = Td with T denoting the complex unit circle. A matrix
sequence {Ak} is said to be distributed (in the sense of the eigenvalues) as the pair (θ,G), or
to have the distribution function θ, which is denoted by {Ak} ∼λ (θ,G), if, ∀F ∈ C0(C), the
following limit relation holds

lim
k→∞

Σλ(F,Ak) =
1

µ(G)

∫

G
F (θ(t)) dt, t = (t1, . . . , td). (3)

Finally we say that two sequences {Ak} and {Bk} are equally distributed in the sense of eigen-
values if, ∀F ∈ C0(C), we have

lim
k→∞

[Σλ(F,Bk)− Σλ(F,Ak)] = 0.

For multilevel Toeplitz sequences {Tn(s)} generated by an integrable d variate symbol s the
eigenvalues are not explicitly known, but we know the distribution in the sense of Definition 2.1
at least when s is real valued implying that every Tn(s) is Hermitian; see [43]. More precisely
we have

{Tn(s)} ∼λ (s,Qd), Q = (0, 1). (4)

2.3 Approximating class of sequences

In Subsection 2.2 we already reported the definition of spectral distribution. Here we are
interested in operative results and especially in tools for deducing the spectral distribution
of a difficult matrix-sequence under perturbations or when approximated by more elementary
matrix-sequences. We will employ these results for finding the spectral distribution of the
complete collocation matrix-sequence, Toeplitz plus the low-rank correction due to the boundary
conditions, starting from its Toeplitz counterpart. We introduce the notion of approximating
class of sequences (a.c.s.) and then we give a theorem for dealing with this concept (see [36, 23,
37]).

Definition 2.2. [36] Suppose a sequence of matrices {Ak} of increasing size dk is given. We
say that {{Bk,m} : m ∈ N

+}, Bk,m of size dk, is an approximating class of sequences (a.c.s.)
for {Ak} if, for all sufficiently large m ∈ N, the following splitting can be written

Ak = Bk,m +Rk,m +Nk,m for all k > km, (5)

with
rank Rk,m ≤ dk c(m), ‖Nk,m‖ ≤ ω(m), (6)

where ‖ · ‖ is the spectral norm (maximal singular value), km, c(m) and ω(m) depend only on
m and, moreover,

lim
m→∞

ω(m) = 0, lim
m→∞

c(m) = 0. (7)

Theorem 2.2. [37] Let {{Bk,m},m ∈ N
+} be an a.c.s. for {Ak} (Ak ∈ Mdk(C)) such that

Ek,m = Nk,m +Rn,m, Bk,m are Hermitian, dk is increasing with k, and

{Bk,m} ∼λ (θm, G), 0 < µ(G) <∞,

lim
m→∞

θm = θ in measure on G. (8)

We assume
sup
m

sup
k

‖Bk,m‖ = C̃, sup
m

sup
k

‖Ek,m‖ = Ĉ, (9)

4



where C̃, Ĉ are positive constants. Moreover, let ‖Ek,m‖1 ≤ c(m)dk with c(m) −−−−→
m→∞

0 (‖ · ‖1
being the trace norm, i.e., Schatten 1 norm or equivalently the l1 norm of the vector of singular
values; see [6]). Then θ is real valued and

{Ak} ∼λ (θ,G). (10)

It is worth mentioning that if the perturbation is also Hermitian then the result in (10) is
valid without any norm assumption in (9) (see [42, 36]).

3 The Poisson problem with radial basis functions

This section is devoted to present the structure of the matrices coming from the one-dimensional
and two-dimensional radial function approximated Poisson problem. Regarding the one-dimensional
setting, we also report the estimates of the conditioning derived in [9].

3.1 The one-dimensional case

In [9] the authors provided explicit asymptotic estimates, as function of c/h, c being the shape
parameter, h being the step size, to the condition number µ(Tn) of the Toeplitz matrix Tn
related to the approximated one-dimensional model problem

{
u′′(x) = f(x), x ∈ (0, 1),

u(0) = u0, u(1) = u1,
(11)

with the collocation technique over a grid of equally spaced points and based on the MQ, IMQ,
and Gaussian radial functions, respectively.

For n positive integer, let x0 = 0 < x1 < · · · < xn < xn+1 = 1 and define φ(x) = η(|x|)
where η(t) is any function in the class (1). We are looking for an approximation to the solution
u(x) of (11) in the vector space spanned by the functions φ(x − xi), i = 0, 1, . . . , n + 1. Set
v =

∑n+1
j=0 vjφ(x − xj), replace u with v in (11) and get

∑n+1
j=0 vjφ

′′(x − xj) = f(x), x ∈ (0, 1),
with v(0) = u0, v(1) = u1. Setting x = xi in the latter equation for i = 1, 2, . . . , n yields the
linear system 




∑n+1
j=0 φ(x0 − xj)vj = u0,

∑n+1
j=0 φ

′′(xi − xj)vj = f(xi), i = 1, 2, . . . , n,
∑n+1

j=0 φ(xn+1 − xj)vj = u1,

(12)

whose matrix An+2 = (ai,j)i,j=0,n+1 ∈ R
(n+2)×(n+2) is such that a0,j = φ(x0 − xj), an+1,j =

φ(xn+1−xj) for j = 0, . . . , n+1 and ai,j = φ′′(xi−xj) for i = 1, . . . , n, j = 0, . . . , n+1. Let us
denote by Tn = (φ′′(xi − xj))i,j=1,n the submatrix of An+2 obtained by removing its first and
last row and column. In the case where the set xi = ih, i = 0, . . . , n+1, for h = 1/(n+1), forms
a grid of equally spaced points in the interval Q the matrix Tn = (φ′′((i− j)h)) is a symmetric
Toeplitz matrix, i.e., its entries are function of i − j. Moreover An+2 is a rank-2 correction to
a symmetric Toeplitz matrix.

Let us define g = c/h. A direct inspection shows that the Toeplitz matrix Tn is associated
with the continuous symbol

s(x) = c0 + 2

+∞∑

k=1

ck cos(2πkx) (13)

which, up to a multiplicative term dependent on h, is formally defined by the sequence {ck}
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with

ck =





g2

(g2 + k2)3/2
for the MQ,

g2 − 2k2

(g2 + k2)5/2
for the IMQ,

exp
− k2

g2 (g2 − 2k2)/g4 for the Gaussian.

According to [9], there exists a function ρ(g) of g such that for any n we observe µ(Tn) < ρ(g),
where equality is reached only for n → ∞. Furthermore, an interesting asymptotical estimate
γ(g) of ρ(g), for g → ∞, was proved:

ρ(g) ≈ γ(g) =





(expπ)g/(π
√
2g) for the MQ,

(exp2π)g/(2 exp2 π3/2g3/2) for the IMQ,

(expπ
2
)g

2
/(2eπ2g2) for the Gaussian.

(14)

Here φ(x) ≈ ψ(x) if limx→∞ φ(x)/ψ(x) = 1, while φ(x) ∼ ψ(x) means asymptotical equivalence
that is the existence of two positive constants r and R independent of x, such that rφ(x) ≤
ψ(x) ≤ Rφ(x) for every x large enough.

The proof of these bounds is based on classical spectral properties of Toeplitz matrices and
on some tools of the theory of special functions like the modified Bessel functions of the first
kind of order 0 and 1. The key step relies in the explicit expression of the symbol associated
with the matrix Tn, so that the well-known asymptotic spectral properties of symmetric Toeplitz
matrices are used for giving an upper-bound to the condition number of Tn.

From the numerical experiments performed in [9], the above asymptotic bounds are very
strict even for small values of g when ρ(g) is small, while the quantity ρ(g) becomes an extremely
pessimistic upper-bound when ρ(g) is moderate (say e.g. g = 3, 4). For larger values of g the
picture changes again since the conditioning becomes exponential in g, but almost independent
of n. Moreover there does not seem to be a large difference between the condition number
of Tn and of An. However in [9], an important question was not answered: in which cases
the quantity ρ(g) is a good approximation (and not only a mere upperbound) of the condition
number µ(Tn)? In which case, if not numerically, ρ(g) captures at least the asymptotic order
of the conditioning? A rigorous explanation of some of these phenomena is given in Section 4
which extends the preliminary analysis in [12].

3.2 The two-dimensional case

In our setting, we consider the Poisson equation
{

∂2

∂x2u+ ∂2

∂y2
u = f(x, y), for (x, y) ∈ Ω = (0, 1)2,

u(x, y) = g(x, y), for (x, y) ∈ ∂Ω.

We endow the square Ω with a grid of knots zi,j = (xi, yj) = (hi, hj), i, j = 0, . . . , n + 1,
h = 1/(n + 1), and, by imposing the collocation conditions

(
∂2

∂x2
φ(x, y) +

∂2

∂y2
φ(x, y)

)

x=xi,y=yj

= f(xi, yj),

one arrives at a system of linear equations where the structured part of the matrix is a two-level
Toeplitz matrix defined (in the Szegö sense [25]) by the symbol

s(x, y) = c0,0 + 2
∑∞

k=1(ck,0 cos(2πkx) + c0,k cos(2πky))+

4
∑∞

k=1

∑∞
j=1 ck,j cos(2πkx) cos(2πjy).

(15)

6



It is important to point out that the collocation matrix is the sum of a symmetric two-level
Toeplitz matrix (block Toeplitz with Toeplitz blocks) with coefficients ci,j and a matrix of rank
2n which collects the boundary conditions.

The values of the coefficients ci,j are determined by the radial function φ(x, y) used to
approximate the solution. In particular, setting g = c/h we find

ci,j =





1
(i2+j2+g2)1/2

+ g2

(i2+j2+g2)3/2
for the MQ,

i2+j2−2g2

(i2+j2+g2)5/2
for the IMQ,

4
g4
(i2 + j2 − g2) exp

− i2+j2

g2 for the Gaussian,

up to a multiplicative term dependent of h.
Unlike in the one-dimensional case, the symbol s(x, y) is not defined for the MQ: in fact,

the series (15) is not convergent for x = 0 or y = 0. It can be easily verified that the series
associated with the IMQ and the Gaussian functions are convergent so that the Toeplitz matrix
machinery can be in principle applied for these two classes of radial functions, by taking into
consideration the associated continuous symbol. The challenge concerns the case of MQ radial
functions where the symbol s(x, y) is discontinuous at x = 0, y = 0 (it diverges to +∞), but it
seems to be a smooth function in the rest of the domain. However, the asymptotical spectral
behavior of Toeplitz sequences is well understood far beyond the continuous setting, since the
symbol is required to be simply Lebesgue integrable.

4 Analysis of the conditioning and of the extremal spectrum

With reference to Subsection 3.1 and in particular to equation (13), we observe that s(x) is a
smooth positive function (see [9]). Therefore, when applying Theorem 2.1, instead of inf and
sup we can use min and max. More in detail, in [9] the ratio ρ(g) = max s(x)/min s(x) and its
asymptotic estimate γ(g) have been computed (see (14)), in the case of MQ, IMQ, and Gaussian
function, respectively. We observe that the asymptotic estimates are very precise even for small
values of g. However the main interest relies in the evaluation of the actual condition number
of Tn = Tn(s).

In Table 1 we compare the values of γ(g) with the actual condition numbers of the Toeplitz
matrices Tn, for several values of n in the case g = 1, g = 2, respectively. It is interesting to
point out that for IMQ and for the Gaussian with g = 2 the values of µ(Tn) are far from the
asymptotic estimate γ(g), even for moderately large values of n.

The explanation relies completely in Theorem 2.1. Indeed the conditioning is given by

max s(x)− c1/n
2

min s(x) + c2/n2
, (16)

with c1 and c2 positive constants independent of n. Hence the approximation max s(x)/min s(x)
is numerically accurate when min s(x) is far away from zero, but it is not correct when, for larger
values of g, the minimum of s(x) exponentially approaches zero. In that case a more reasonable
approximation is given by

n2 ·max s(x)/c2, (17)

i.e., by approximating min s(x) with zero and by neglecting the term c1/n
2 since max s(x)

is positive and dominating. In reality the columns labeled by g = 2 in Table 1, for IMQ
and Gaussian, show exactly the predicted growth: when the size n doubles, the value of the
conditioning grows by a factor 4, which is coherent with the given guess of an asymptotic growth
proportional to n2.

The previous analysis has shown that for g = 2 and IMQ or Gaussian symbols the growth of
the conditioning do depend on n by the formula n2 ·max s(x)/c2 (see (16) and its approximation
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Table 1: Values of the spectral condition number µ(Tn) for different values of n and g. The last
line reports the asymptotic estimate γ(g) provided in [9].

MQ IMQ Gaussian

n g=1 g=2 g=1 g=2 g=1 g=2

50 4.7 78.8 7.5 19.0 217 337
100 4.7 80.1 8.1 52.3 338 400
200 4.7 80.4 8.3 147 395 1543
400 4.7 81.0 8.3 375 413 6069

γ(g) 5.21 85 6.5 1200 360 6.5× 1014

0 0,1 0,2 0,3 0,4 0,5
0

0,5

1,0

1,5

2,0

0 0,1 0,2 0,3 0,4 0,5
0

0,2

0,4

0,6

0,8

1,0

1,2

0 0,1 0,2 0,3 0,4 0,5
0

0,5

1,0

1,5

(a) MQ (b) IMQ (c) Gaussian

Figure 1: Case 1D – Graph of s(x) for g = 1, 2, 3, 4.

(17)). However, when g becomes larger than 2, the surprise is that we observe another change
in the picture. The conditioning becomes extreme: we really appreciate the exponential growth
of max s(x)

min s(x) , but there is no longer dependency on n. How to explain this phenomenon? The

reason relies again in formula (16). In fact for larger g since the point of minimum is unique we
recall that Kac, Murdoch, and Szegö [27] gave the expression of c2 as the second derivative of
s in the minimum point which has to be positive by local convexity. Therefore the explanation
of the latter phenomenon could be given in terms of c2 = c2(g): if c2(g) is positive but rapidly

converging to zero as a function of g, then the quantity max s(x)
min s(x) really captures the conditioning

of Tn. In other words, the observed behavior can be explained again by formula (16), but we need
to show that at the minimum point, which is 0.5 for MQ and the origin for IMQ and Gaussian,
not only the first derivative is zero but the second derivative is a very small positive number.
Unfortunately, the latter statement is completely false in the IMQ and Gaussian setting, while
the desired behavior is observed for the MQ radial basis functions (see also Figure 1 (a)).
However, concerning IMQ and Gaussian RBFs, for g ≥ 3 it becomes clear from Figures 1 (b)
and 1 (c) that x = 0 is not the only minimal point, at least numerically. A further minimal
point shows up at x = 0.5 and the function has locally the expected behavior. In fact, around
x = 0.5, the graph of the function becomes flatter and flatter as g increases. This visual evidence
is supported by the following data: s′(0.5) is equal to 0 and the numerical values of s(0.5)−s(0)
and s′′(0.5) reported in Tables 2 tend to zero very fast with g (look at the values for g ≥ 2).
Hence it becomes evident that x = 0.5 is a further point of local minimum (numerically global)
with the desired features.

In reality, the value of the second derivative at x = 0.5 in our setting shows that c2(g), as a
function of g, rapidly collapses to zero exponentially and therefore for larger g, the expression in
the denominator min s(x)+ c2/n

2 can be approximated by min s(x) since c2 collapses to zero as
min s(x) but the division by n2 makes it negligible. Furthermore, the quantity max s(x)−c1/n2

8



Table 2: Case 1D – Values of s(x), and s′′(x) for IMQ and Gaussian functions.

g = 2 g = 3 g = 4

IMQ: s(0.5) − s(0) 3.6406 × 10−2 1.4040 × 10−3 7.2263 × 10−5

s′′(0.5) 3.0658 × 10+0 3.1383 × 10−1 2.3285 × 10−2

Gaussian: s(0.5) − s(0) 1.8096 × 10−3 1.1907 × 10−8 5.0081 × 10−16

s′′(0.5) 2.1205 × 10+0 8.3464 × 10−5 1.1702 × 10−11

Table 3: Case 1D – Condition numbers, smallest and largest eigenvalues for MQ by varying
g = 1, 2, 3, 4.

n g = 1 g = 2 g = 3 g = 4

λmin 4.2761× 10−1 2.4848× 10−2 1.2952× 10−3 6.4264× 10−5

100 λmax 2.0215× 10+0 1.9892× 10+0 1.9790× 10+0 1.9671× 10+0

µ 4.7273× 10+0 8.0055× 10+1 1.5280× 10+3 3.0610× 10+4

λmin 4.2750× 10−1 2.4816× 10−2 1.2912× 10−3 6.3900× 10−5

200 λmax 2.0238× 10+0 1.9967× 10+0 1.9932× 10+0 1.9891× 10+0

µ 4.7341× 10+0 8.0457× 10+1 1.5437× 10+3 3.1128× 10+4

λmin 4.2747× 10−1 2.4809× 10−2 1.2902× 10−3 6.3811× 10−5

400 λmax 2.0246× 10+0 1.9990× 10+0 1.9979× 10+0 1.9966× 10+0

µ 4.7361× 10+0 8.0578× 10+1 1.5485× 10+3 3.1289× 10+4

can be approximated as usual by max s(x), since this maximum is always well separated from
zero. In conclusion in the present setting, for g ≥ 3, the true approximation of the conditioning
is given by max s(x)/min s(x) which is extremely high with respect to g, but essentially constant
with respect to n.

The analysis given so far is confirmed also numerically (see Tables 3–5 for the 1D case;
similar results are obtained in the 2D case as well). More in detail, the tables report spectral
conditioning (µ), the minimal eigenvalue (λmin), and the maximal eigenvalue (λmax) of the
Toeplitz matrix. We note that for g = 2 and IMQ or Gaussian functions, µ = µ(Tn) grows
about quadratically with respect to the size n of the linear system. In the other cases, the same
quantity grows exponentially with respect to g but is practically constant as a function of n.
Clearly, for g = 3 and IMQ or Gaussian functions, we have again a small growing of µ with
respect to n since the eigenvalues of Tn vary continuously in g.

Remark 4.1. As n tends to infinity, the values of minimal and maximal eigenvalues tend to
given values. These quantities can be considered an accurate approximation of the extremal
values (infimum and supremum) of the symbol. The only exception is observed in the 2D case
for MQ radial basis functions where, as n doubles also the value of the maximal eigenvalue
approximately doubles. This exceptional behavior is not a surprise since the symbol defined in
the present case is unbounded at x = 0 or y = 0 (see the end of Subsection 3.2). Indeed for
n = m and setting the real size of the matrix Tn is N = n2, λmax(Tn) grows as N

0.52. The latter
fully agrees with the Riemann-Lebegue lemma (see [7]) for which we expect λmax(Tn) = o(N).
Therefore we have an indication that the related symbol s is Lebesgue integrable in Q2 and that
the singularity at (0, 0) is of the type

1

[x2 + y2]α

9



Table 4: Case 1D – Condition numbers, smallest and largest eigenvalues for IMQ by varying
g = 1, 2, 3, 4.

n g = 1 g = 2 g = 3 g = 4

λmin 1.5136× 10−1 4.6028× 10−3 1.2882× 10−3 4.8509× 10−5

100 λmax 1.2283× 10+0 2.4086× 10−1 1.0672× 10−1 5.9915× 10−2

µ 8.1149× 10+0 5.2330× 10+1 8.2843× 10+1 1.2351× 10+3

λmin 1.4733× 10−1 1.6392× 10−3 1.2370× 10−3 4.8285× 10−5

200 λmax 1.2284× 10+0 2.4108× 10−1 1.0693× 10−1 6.0116× 10−2

µ 8.3378× 10+0 1.4707× 10+2 8.6439× 10+1 1.2450×10+3

λmin 1.4606× 10−1 6.4213× 10−4 3.9723× 10−4 4.8230× 10−5

400 λmax 1.2284× 10+0 2.4113× 10−1 1.0698× 10−1 6.0170× 10−2

µ 8.4104× 10+0 3.7552× 10+2 2.6932× 10+2 1.2476× 10+3

Table 5: Case 1D – Condition numbers, smallest and largest eigenvalues for Gaussian by varying
g = 1, 2, 3, 4.

n g = 1 g = 2 g = 3 g = 4

λmin 4.4831× 10−3 1.6285× 10−3 1.3234× 10−8 8.0507× 10−16

100 λmax 1.5174× 10+0 6.5085× 10−1 4.3294× 10−1 3.2375× 10−1

µ 3.3846× 10+2 3.9966× 10+2 3.2713× 10+7 4.0213× 10+14

λmin 3.8382× 10−3 4.2218× 10−4 1.2199× 10−8 5.4847× 10−16

200 λmax 1.5175× 10+0 6.5174× 10−1 4.3424× 10−1 3.2542× 10−1

µ 3.9537× 10+2 1.5437× 10+3 3.5597× 10+7 5.9333× 10+14

λmin 3.6744× 10−3 1.0743× 10−4 1.1975× 10−8 5.0898× 10−16

400 λmax 1.5176× 10+0 6.5197× 10−1 4.3458× 10−1 3.2587× 10−1

µ 4.1301× 10+2 6.0690× 10+3 3.6289× 10+7 6.4023× 10+14
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Figure 2: Case 2D – Graph of s(x, y) for g = 2

with α close to 0.52 (see also Figure 2 (a)).

5 Spectral distribution of the complete matrix-sequence

In Section 4 we have studied in some detail the matrices Tn = Tn(s) However the real collocation
matrix is a rank 2 correction of Tn in the case of d = 1 and is a rank 2m correction when d = 2 and
m = n1 = n2. Moreover by the Szegö distribution result in (4) we know that {Tn(s)} ∼λ (s,Qd)
with Q = (0, 1) and d = 1, 2. Now by exploiting Theorem 2.2 we would like to deduce the same
distribution result for the real sequences {An} arising in dD RBF collocation when d = 1, 2.
The latter amounts in proving that the trace norm of the correction divided by the size of the
matrix tends to zero as n tends to infinity (in the 2D case we assume just for simplicity that
n1 = n2).

We start by considering the one-dimensional setting. Denoting by Bn the rank 2 correction
matrix associated with the boundary conditioning and c the shape parameter, we fix s1 =

√
λ1

and s2 =
√
λ2 the only nonzero singular values of Bn, where λ1 and λ2 are the only nonzero

eigenvalues of BnB
T
n . We recall that in our setting ‖Bn‖1 = s1 + s2 with h = 1/(n + 1) and

c = g/(n + 1), where ‖ · ‖1 is the Schatten 1 norm given by the sum of all singular values (see
Theorem 2.2). Indeed the only nontrivial block of BnB

T
n is a 2-by-2 circulant matrix

C =

[
a b
b a

]

with a, b > 0. Therefore λ1 = a + b, λ2 = a − b, and ‖Bn‖1 =
√
a+ b +

√
a− b. We consider

now in detail the three basis separately.

MQ: We find

a =
(n+ 2)g2

(n+ 1)4
+

(n+ 2)(2n + 3)

6(n+ 1)3
= O

(
n−1

)

b =
1

(n+ 1)4

n+1∑

j=0

√
(j2 + g2)((n + 1)− j)2 + g2 = O

(
n−1

)
,

thus ‖Bn‖1 = O
(
n−

1
2

)
.

IMQ: Using the second order accurate trapezoidal rule with mesh width 1 for the integral
∫ n

0

1

x2 + g2
dx = O

(
n−1

)
,

11



we have that

a =
1

(n+ 1)4

n+1∑

j=0

1

j2 + g2
= O

(
n−4

) ∫ n

0

1

x2 + g2
dx+O

(
n−6

)
= O

(
n−5

)
.

Similarly, we observe

b =
1

(n+ 1)4

n+1∑

j=0

1√
(j2 + g2)((n + 1)− j)2 + g2

= O
(
n−5

)

and thus ‖Bn‖1 = O
(
n−

5
2

)
.

Gaussian: By the error function, we have that
∫ n

0
exp

− 2x2

g2 dx = O(n)

and using again the trapezoidal rule with mesh width 1, we obtain

a =
1

4(n+ 1)4

n+1∑

j=0

exp
− 2j2

g2 = O
(
n−3

)
.

Similarly, it holds

b =
1

4(n + 1)4

n+1∑

j=0

exp
− j2

g2 exp
− ((n+1)−j)2

g2 = O
(
n−3

)

and thus ‖Bn‖1 = O
(
n−

3
2

)
.

Without repeating the details, we just observe that the very same calculations give the
desired bounds also for d = 2.

Finally, a plain application of Theorem 2.2 leads to {An} ∼λ (s,Qd), for d = 1, 2, that is the
same spectral distribution of the Toeplitz counterpart, i.e. {Tn(s)}. Furthermore, by invoking
Lemma 3.2 and Theorem 3.5 in [23], the complex set given by the open ball centered in the
range of s with radius ǫn = ‖Bn‖ ≤ ‖Bn‖1 ≤ 2‖Bn‖ contains all the eigenvalues of Tn(s) for
every n.

6 Preconditioning and numerical experiments

We propose several preconditioning strategies and we will show how to use in a practical sense
the spectral estimates proposed so far for the choice of the best techniques. Indeed, we will
show that the choice of the preconditioner depends on the condition number of Tn that can be
estimated by employing the theoretical tools developed in the previous sections.

Firstly, we apply the preconditioned conjugate gradient (PCG) to solve the linear system
where the coefficient matrix is the Toeplitz matrix Tn generated by the symbols associated to
the considered choices MQ, IMQ, and Gaussian. We consider only the Toeplitz part of the
coefficient matrix because the low-rank correction induced by the boundary conditions can be
ignored since the spectral feature are decided by the Toeplitz component, as proved in Section
5. Finally, we provide some results for the complete case where also the boundary conditions
are imposed. In such case the preconditioned GMRES or the CG for the preconditioned least
square problem is used instead of the PCG, since the coefficient matrix is not longer symmetric
and, in some cases, numerically singular.

The reported tables furnish the iteration count for reaching the preassigned accuracy. The
symbol # indicates that the requested accuracy is not obtained. The desired tolerance is 10−7

in all the numerics. The data vector is the vector of all ones.
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Table 6: Algebra preconditioners for MQ, number of PCG iterations for c = 10−2.
n µ(Tn) No prec. τopt τnat Copt Cnat R. Chan Super

200 8.045 × 101 50 5 5 6 6 6 7
400 3.129 × 104 584 7 6 17 17 6 199
600 1.381 × 107 # 29 50 173 196 71 #
800 6.434 × 109 # 250 600 1680 # 1257 #
1000 3.090 × 1012 # 2473 # # # # #

6.1 Numerical experiments in 1D

We fix 3000 iterations as the maximum number of PCG steps and test several classes of pre-
conditioners.

6.1.1 Algebra preconditioners

For each of the considered functions (MQ, IMQ, and Gaussian), in Tables 6-8 we provide the
number of iterations requested by the PCG method with preconditioner chosen in the given
algebra: we emphasize the dependency on the matrix size n when the shape parameter c is
fixed. We also report the spectral condition number µ(Tn) and the iteration count for the pure
CG without any preconditioning. For the Gaussian case the values of c are chosen smaller due
to the higher ill-conditioning of the involved matrices.

With “opt” and “nat” we denote the optimal and the natural preconditioner, respectively
[20]. Let M = {QnDnQ

H
n | Dn is a diagonal matrix} be the matrix algebra diagonalized by

the unitary transform Qn. A noteworthy example is that of the circulant algebra where Qn

is the Fourier transform, in such case we denote M by C. The optimal preconditioner of a
matrix A is defined as the unique minimizer of the functional B → FA(B) ≡ ‖B −A‖F , where
‖ · ‖F is the Frobenius norm (Schatten 2 norm or equivalently the l2 norm of the vector of
singular values; see [6]) and where B ranges in the vector space M, having the structure of
algebra. When A = Tn(s), the diagonal matrix Dn can be seen as the sampling of a linear
positive operator approximating s. Furthermore, the natural preconditioner of Tn(s) is defined
case by case, depending on the given algebra, and usually the matrix Dn can be regarded as a
sampling of (a slight variation of) the Fourier approximation of s. In the circulant context, the
optimal preconditioner was explicitly defined by Tony Chan in [17], while the natural one was
introduced by Gilbert Strang in [41] and we refer to these papers for the explicit construction.
In the case of a real symbol s, a further algebra of interest is the τ algebra [8], also known as
DST-I. It is the algebra of matrices diagonalized by the orthogonal discrete sine transform of

the first kind Q = [qij] ∈ R
n×n such that qi,j =

√
2

n+1 sin(
ijπ
n+1), i, j = 1, . . . , n.

Such preconditioners are quite effective, especially when the conditioning is not too bad. As
expected from the analysis in [34], the best results are observed when using the τ algebra with
special reference to the natural preconditioner. Moreover, it is worth mentioning that each step
of the PCG with τ preconditioning is less expensive than with circulant preconditioning since
we can use only real arithmetic. Concerning the circulant preconditioning, the Raymond Chan
preconditioner [13] is very effective while the superoptimal [44] could be even worse than no
preconditioning (this is not a real surprise due to recent results in the literature, see [19] and
references therein).

6.1.2 Band Toeplitz preconditioners

We now consider the band Toeplitz preconditioning obtained using the Fourier series of degree
r or the Cesaro sum again of degree r [7]. The preconditioner shows the form Tn(pr) with
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Table 7: Algebra preconditioners for IMQ, number of PCG iterations for c = 10−2.
n µ(Tn) No prec. τopt τnat Copt Cnat R. Chan Super

200 1.470 × 102 29 7 6 9 7 7 38
400 1.247 × 103 211 9 7 11 9 10 879
600 3.625 × 105 2399 14 11 64 47 11 #
800 1.258 × 108 # 89 166 645 # 63 #
1000 4.818 × 1010 # 811 # # # 847 #

Table 8: Algebra preconditioners for Gaussian, number of PCG iterations for c = 4× 10−3.
n µ(Tn) No prec. τopt τnat Copt Cnat R. Chan Super

200 2.847 × 101 42 4 3 6 4 4 15
400 9.435 × 103 102 6 5 15 8 8 85
600 1.922 × 104 796 8 6 30 13 13 652
800 6.827 × 108 # 167 10 1682 30 30 #
1000 6.903 × 1014 # # 33 # 83 82 #

pr(x) = α0 + 2
∑r

k=1 αk cos(kx), and αk = ck in the Fourier case and αk = r−k
r ck in the case of

Cesaro averaging.
The solution of a band linear system with bandwidth 2r + 1 has a computational cost of

O(r2n) with standard Gaussian elimination; under mild assumptions, such a cost can be reduced
when using multigrid to O(rn) or even more by using sophisticated cyclic reduction schemes. In
any case, choosing r = O(log(n)) the cost of a single PCG step amounts to O(n log2(n)). In the
numerics in Tables 9-11, we report the numerical results for two choices of the band-parameter
r. More specifically we set r = 6 in the first case and r = ⌈2 log2(n)⌉ in the second case. We
observe that, thanks to the positivity of f , Tn(pr) is always positive definite when the Cesaro
averaging is employed, while the positivity (and even the nonsingularity) is not guaranteed
when using the Fourier partial sum.

The Cesaro approximation is quite effective for any choice of the RBFs, even if better results
are obtained by the algebra preconditioning. The Fourier approximation is sometimes not a
good choice due to potential singularity of non definiteness. For the Gaussian case, if the band
is large enough, then the results are excellent since the Fourier coefficients have a fast decay
(see the analysis in [34, 30]). Indeed, while for MQ and IMQ the logarithmic growth does not
imply substantial advantages, for the Gaussian basis we observe that the number of iterations
is equal to 2 independently of n (see Table 11).

6.1.3 Mixed preconditioners

In general, when the condition number is larger than 105, the previous techniques start to suffer.
However, by combining band and algebra matrices (see [14, 35, 28]) we are able to propose

Table 9: Band Toeplitz preconditioners for MQ, number of PCG iterations for c = 10−2.
Fourier Cesaro

n r = 6 r = ⌈2 log2(n)⌉ r = 6 r = ⌈2 log2(n)⌉
200 9 4 13 9
400 1483 474 115 61
600 # # 1329 651
800 # # # #
1000 # # # #
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Table 10: Band Toeplitz preconditioners for IMQ, number of PCG iterations for c = 10−2.
Fourier Cesaro

n r = 6 r = ⌈2 log2(n)⌉ r = 6 r = ⌈2 log2(n)⌉
200 12 7 17 13
400 444 142 48 29
600 # # 442 257
800 # # # 2666
1000 # # # #

Table 11: Band Toeplitz preconditioners for Gaussian: number of PCG iterations for c =
4× 10−3.

Fourier Cesaro

n r = 6 r = ⌈2 log2(n)⌉ r = 6 r = ⌈2 log2(n)⌉
200 2 2 14 10
400 3 2 48 32
600 92 2 220 119
800 # 2 # #
1000 # 348 # #

effective preconditioners. Moreover such mixed techniques have good performances especially
in the case of high ill-conditioning. We define a preconditioner of the form Cn(h)Tn(pr)Cn(h)
where Cn(h) is the natural (Strang) circulant preconditioner associated to h =

√
f/pr and where

pr is chosen as in Subsection 6.1.2, see [28]. The related results are reported in Tables 12-14. In
that setting, quite surprisingly, the circulant approach seems more effective than that associated
with the τ algebra. With regard to the implementation, since the Fourier coefficients of h cannot
be given in general in close form, we employed a trapezoidal rule and FFT computations. For
avoiding breakdown due to division by zero, we have set any value to v = 2.2204× 10−16 if the
value at hand is less in modulus than v.

Mixed preconditioner shows very good performances especially when the conditioning is
high. On the other hand, the choice of the band part (Fourier or Cesaro, r fixed or growing
as log(n)) does not seem important for the convergence speed. Again the only exception, due
to the fast decay of the Fourier coefficients, is the case of the Gaussian basis. In Table 14, we
notice that the use of the Fourier series with logarithmic growing degree is especially effective
from a numerical viewpoint.

As a conclusion, we can propose an algorithmic strategy. The first step is to estimate the-
oretically the conditioning of the involved matrices using the tools introduced in the previous
sections. If its value is less than 105, then it is convenient to choose a pure natural τ precondi-
tioner. Otherwise the mixed preconditioner with the Fourier series for the band part and the
natural circulant choice for the algebra part could be advocated.

Table 12: Mixed preconditioners for MQ, number of PCG iterations for c = 10−2.
Fourier Cesaro

n r = 6 r = ⌈2 log2(n)⌉ r = 6 r = ⌈2 log2(n)⌉
200 # 9 # #
400 59 88 469 923
600 28 28 24 25
800 32 23 33 31
1000 30 21 33 32
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Table 13: Mixed preconditioners for IMQ, number of PCG iterations for c = 10−2.
Fourier Cesaro

n r = 6 r = ⌈2 log2(n)⌉ r = 6 r = ⌈2 log2(n)⌉
200 48 51 48 48
400 38 38 38 38
600 33 34 34 34
800 25 22 29 29
1000 26 21 27 26

Table 14: Mixed preconditioners for Gaussian: number of PCG iterations for c = 5× 10−3.
Fourier Cesaro

n r = 6 r = ⌈2 log2(n)⌉ r = 6 r = ⌈2 log2(n)⌉
200 2 2 56 57
400 47 2 38 38
600 32 2 32 31
800 20 16 19 18
1000 17 15 17 16

6.1.4 Scattered data

The analysis proposed in the previous sections is devoted to the equi-spaced setting. However,
as already discussed in the introduction, we believe that the same approach can be extended to
non uniform griddings (obtained from the uniform gridding via sufficiently smooth mappings)
or even for scattered data, which is of special interest for collocation methods. The subsequent
set of numerical tests supports our indication.

Let us consider the Halton points generated in [0,1], which are pseudorandom data points
uniformly distributed (see [21]). In this case a direct inspection shows that the elements ai,j =
φ′′(xi − xj), for i, j = 1, . . . , n, of the Toeplitz matrix Tn = (ai,j)i,j=1,n, are given by

ai,j =





c2

(c2 + (xi − xj)2)3/2
for the MQ,

c2 − 2(xi − xj)
2

(c2 + (xi − xj)2)5/2
for the IMQ,

e−
(xi−xj )

2

c2 (c2 − 2(xi − xj)
2)/c4 for the Gaussian.

We point out that for grid data the elements of Toeplitz matrices were given up to a multi-
plicative term dependent on the constant value of h. Therefore, results obtained for grid and
scattered points are not completely comparable, but we highlight that the scope here is to test
performance of preconditioners.

We report the numerical results only for algebra preconditioners since the band precondi-
tioners are not competitive in this setting and the mixed preconditioners can be numerically
singular in same cases. In Tables 15–17, we note that the natural preconditioners (both in the
τ and circulant algebras) and the Raymond Chan preconditioner give the best results and the
related PCG converges within a reasonable number of iterations for every considered RBF.

6.2 Numerical experiments in 2D

In the two-dimensional setting, we consider optimal and natural preconditioners in the circulant
algebra. In such case the natural preconditioner is known in literature as Strang preconditioner.

16



Table 15: Halton points: Algebra preconditioners for MQ, number of PCG iterations for c =
10−2.

n µ(Tn) No prec. τopt τnat Copt Cnat R. Chan Super

200 1.876 × 104 185 7 7 14 8 8 23
400 1.171 × 104 927 12 9 16 9 9 20
600 5.015 × 104 2707 13 10 18 10 10 29
800 3.068 × 105 # 32 15 41 17 17 77
1000 1.070 × 108 # # 108 864 73 67 1826

Table 16: Halton points: Algebra preconditioners for IMQ, number of PCG iterations for
c = 10−2.

n µ(Tn) No prec. τopt τnat Copt Cnat R. Chan Super

200 2.222 × 101 33 7 7 8 7 7 9
400 2.892 × 104 911 13 11 30 11 11 30
600 2.136 × 103 608 12 11 13 11 11 18
800 1.645 × 105 1902 18 13 23 13 13 25
1000 7.629 × 106 # # 73 1094 94 79 1528

Table 17: Halton points: Algebra preconditioners for Gaussian, number of PCG iterations for
c = 4× 10−3.

n µ(Tn) No prec. τopt τnat Copt Cnat R. Chan Super

200 5.665 × 102 68 5 4 13 5 5 16
400 4.112 × 102 128 6 6 14 7 7 17
600 1.003 × 103 222 9 7 10 7 7 11
800 1.931 × 104 1390 17 10 20 9 9 24
1000 4.266 × 1015 # # 156 # 87 87 #
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Table 18: 2D preconditioning for MQ, number of PCG iterations for c = 0.1.
n1 × n2 No BC BC BCCB Rank 1 Rank1 + Rank1 +

prec. Opt. Strang Opt. BCCB Opt. BC Strang

10× 10 16 9 11 9 14 7 8
20× 20 107 12 41 15 42 36 63
30× 30 763 50 248 54 112 194 260
40× 40 # 193 # 239 294 306 379
50× 50 # 745 # 969 767 579 752

Table 19: 2D preconditioning for IMQ, number of PCG iterations for c = 0.1.
n1 × n2 No BC BC BCCB Rank 1 Rank1 + Rank1 +

prec. Opt. Strang Opt. BCCB Opt. BC Strang

10× 10 9 6 6 7 6 6 6
20× 20 37 9 9 10 10 6 7
30× 30 216 11 18 16 18 7 10
40× 40 # 49 151 65 36 10 22
50× 50 # 180 # 277 80 323 #

We compare block circulant (BC) and block circulant with circulant blocks (BCCB) precondi-
tioners (see [16, 15]). The computational cost for solving a linear system with BCCB amounts
to O(N log(N)), with N = n1n2, that is the cost of the two-level FFT for the first and the
third preconditioner. For BC the situation is different since the blocks are considered without
structure so that the cost is O(Nn1 log(n2)). However, more sophisticated techniques could be
used in this case to invert Toeplitz blocks.

In principle two-level band preconditioners are not as easy to handle as in the one-level
setting. When using block Gaussian Elimination the cost grows as Nn22 and the same holds
while using the standard Gaussian Elimination for band structures. On the other hand, the
use of specialized multigrid techniques amounting in a linear cost of O(n1 + n2) can make
these preconditioners especially appealing: the drawback is that multigrid procedures are never
straightforward to implement. Alternatively, one may consider a rank 1 approximation obtained
from the real stencil via TSVD: this idea very popular in the image restoration setting leads to
the best Frobenius norm approximation of given preassigned rank [26]. More precisely, we have
to deal with a preconditioner in tensor form i.e. of the form C ⊗R: the related linear systems
can be plainly solved by decoupling. In other words we have to solve n2 one-level Toeplitz linear
systems of size n1 and n1 one-level Toeplitz linear systems of size n2. In conclusion the cost will
be O(N(n1+n2)), which is competitive with that needed for treating BC systems. In addition, if
we solve the one-level Toeplitz systems by exploiting the techniques emphasized in the previous
section, then we obtain PCG methods sharing the same asymptotic cost. Furthermore, a mixed
technique can be obtained by combining the rank 1 approximation with one of matrix algebra
preconditioners.

In Tables 18-20 we show the iteration count when increasing the matrix dimensions and by
considering all the basic RBFs discussed so far. The maximal allowed number of iterations is
fixed as 1000. The results for BCCB Strang preconditioner are not reported since they are not
competitive with those related to the BCCB optimal preconditioner.

The results are not as good as in the one-level case. A reason relies in a structural difficulty
emphasized in a series of negative results (e.g. spectral equivalence and strong clustering are
impossible to achieve, see [39, 29] and references therein). Moreover, the MQ case is the most
difficult to treat because we observe simultaneously very small eigenvalues and large eigenvalues
since the function goes from zero to infinity (refer to Remark 4.1 where it is noted that the

18



Table 20: 2D preconditioning for Gaussian, number of PCG iterations for c = 0.05.
n1 × n2 No BC BC BCCB Rank 1 Rank1 + Rank1 +

prec. Opt. Strang Opt. BCCB Opt. BC Strang

10× 10 8 5 5 6 5 4 4
20× 20 17 11 9 11 19 11 10
30× 30 85 12 11 16 20 11 11
40× 40 # 41 25 103 22 13 13
50× 50 # 381 162 # 24 30 30

symbol is unbounded at x = 0 or y = 0). However, as in the 1D case, if the estimated
condition number is small, then the BCCB preconditioning should be used, otherwise the BC
preconditioning or the rank 1 approximation have to be preferred. Indeed, when solving the
preconditioned linear system, even if the latter strategies require a slightly higher computational
cost with respect to those based on BCCB approximations, they are more robust when varying
the condition number. In particular, the rank 1 preconditioning seems to be very effective, at
least in the case of IMQ and Gaussian RBF also for large condition numbers. Moreover, the
two independent one-level Toeplitz linear systems have symbols with a spectral behavior similar
to a 1D collocation problem in the same class (MQ, IMQ or Gaussian). Therefore, they could
be solved by PCG using the preconditioners proposed in Subsection 6.1 for the 1D case.

6.3 The complete case with boundary conditions

When imposing boundary conditions the coefficient matrix An is not longer symmetric, thus we
can solve the linear system with the preconditioned GMRES or by the standard CG for normal
equations (CGLS) applied to the preconditioned system: the latter has to be definitely preferred
whenever the global matrix is (numerically) rank deficient. We also observe that {Tn} indicates
the global spectral behavior of {An} except for few outliers, whose number depends linearly on
the rank of the correction term. We recall that the global distribution is not sensitive to the
behavior of few extreme eigenvalues, so the spectral distribution of two sequences could be the
same while the conditioning could be very different. In our context, we can claim that {Tn}
establishes the essential conditioning of {An}, whose extreme eigenvalues could behave in a wild,
irregular way. In that sense the analysis of the Toeplitz part is very instructive for designing
good methods, working also for the complete linear systems. Indeed, in Table 21, we see that for
the 1D case and the IMQ basis µ(An) ≈ 1015 independently of n. Similar results hold also for the
MQ and Gaussian basis. In particular, for the Gaussian basis An is singular and the eigenvalue
zero has multiplicity two. More in detail, in the 1D case An is a rank two modification of Tn
and the rank two correction affects only the behavior of the 2 extremal eigenvalues/singular
values for all the considered bases. Moreover, this implies that using Tn as preconditioner for
An the preconditioned GMRES or the preconditioned CGLS converges in about two iterations.
It should be noted that the use of the Sherman-Morrison-Woodbury formula [24] could be also
be considered: given A ∈ C

m×m and U, V ∈ C
m×k, the Sherman-Morrison-Woodbury formula

reads as
(A+ UV H)−1 = A−1 −A−1U(I + V HA−1U)−1V HA−1. (18)

In our case A = Tn is the Toeplitz part and k = 2, m = n for d = 1, and 4n, m = n2 for d = 2.
However, for the sake of completeness, in Table 22 we apply the preconditioners that give

the best results in Tables 6 and 7 for MQ and IMQ directly to An (in both cases we have
numerical singularity of the coefficient matrix due to the boundary conditions). From Table 22,
if the estimated µ(Tn) is not large then An can be preconditioned directly with the optimal or
natural τ algebra preconditioner. On the other hand, if µ(Tn) is large, then it is better using Tn
as preconditioner and solving the linear system with Tn as in Subsection 6.1. For the Gaussian
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Table 21: 1D case and IMQ basis: condition number, extremal eigenvalues and extremal singular
values of TN and AN for c = 10−2.

n 200 400 600 800 1000

µ(Tn) 1.4707e+002 1.2476e+003 3.6250e+005 1.2588e+008 4.8186e+010
µ(An) 1.6200e+016 2.0548e+015 4.1116e+015 8.7834e+015 9.8260e+015

|λ1(Tn)| 2.4108e-001 6.0170e-002 2.6742e-002 1.5043e-002 9.6272e-003
|λ2(Tn)| 2.4108e-001 6.0170e-002 2.6742e-002 1.5042e-002 9.6272e-003

|λn−1(Tn)| 5.2231e-003 4.8284e-005 7.3864e-008 1.1966e-010 2.0006e-013
|λn(Tn)| 1.6392e-003 4.8230e-005 7.3771e-008 1.1950e-010 1.9979e-013

|λ1(An)| 2.4108e-001 1.6379e-001 1.3886e-001 1.2141e-001 1.0900e-001
|λ2(An)| 2.4108e-001 6.0170e-002 2.6742e-002 1.5043e-002 9.6272e-003

|λn−1(An)| 5.2781e-003 4.8230e-005 7.3771e-008 1.1950e-010 1.9981e-013
|λn(An)| 3.1672e-016 3.7535e-017 -8.5606e-017 -5.2246e-016 1.0601e-014

σ1(Tn) 2.4108e-001 6.0170e-002 2.6742e-002 1.5043e-002 9.6272e-003
σ2(Tn) 2.4108e-001 6.0170e-002 2.6742e-002 1.5042e-002 9.6272e-003
σn−1(Tn) 5.2231e-003 4.8284e-005 7.3864e-008 1.1966e-010 2.0006e-013
σn(Tn) 1.6392e-003 4.8230e-005 7.3771e-008 1.1950e-010 1.9979e-013

σ1(An) 2.4465e+000 2.4480e+000 2.4485e+000 2.4487e+000 2.4489e+000
σ2(An) 2.4108e-001 6.0170e-002 2.6742e-002 1.5043e-002 9.6272e-003
σn−1(An) 1.6398e-003 3.7294e-005 7.3772e-008 1.1950e-010 1.9979e-013
σn(An) 1.5102e-016 1.1913e-015 5.9550e-016 2.7879e-016 2.4922e-016

Table 22: Preconditioned CGLS for An (1D case with boundary conditions) for MQ and IMQ:
number of iterations for c = 10−2.

MQ IMQ

n No prec. Tn τopt τnat R. Chan No prec. Tn τopt τnat R. Chan

200 341 3 7 6 7 91 4 13 10 13
400 # 4 17 14 13 # 4 20 16 22
600 # 5 381 463 1901 # 4 80 46 65
800 # 6 # # # # 5 # # 1891
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Table 23: Preconditioned CGLS for An (2D case with boundary conditions) for Gaussian,
number of iterations for c = 5× 10−2.

n1 × n2 No Tn BC BCCB rank1
prec. Opt. Opt.

10× 10 81 39 54 58 56
20× 20 267 91 129 137 287
30× 30 1167 66 79 98 101
40× 40 # 204 2307 # 490

basis we have similar results and also the mixed preconditioners of Subsection 6.1.3 should be
considered since they are especially effective, in analogy with the Toeplitz case in Table 14, if
the band is large enough.

In the 2D case the coefficient matrix An is a rank 2n1 modification of its Toeplitz part Tn,
for n1 = n2. This implies that using Tn as preconditioner for An the GMRES or the CGLS
converge in about 2n1 iterations. Therefore, in Table 23 we apply the preconditioners discussed
in Subsection 6.2 directly to the complete matrix An for the Gaussian basis. According to the
previous observation, the number of iterations grows like O(n1). For small values of µ(Tn) the
BCCB preconditioner has to be preferred, while if µ(Tn) is large, then the rank 1 preconditioner
is more effective.

7 Conclusions

In the first part of this paper we have recalled the main tools used to prove our result, more
specifically, general spectral properties of Toeplitz matrix-sequences generated by a symbol. By
using these known facts, we have given a theoretical explanation of some numerics reported in [9]
and we have proposed and discussed a more complete picture as g increases and as n increases.
More precisely, we have analyzed both the one-level and the two-level case and we have studied
the problem from the point of view of extremal spectral values (conditioning) and from the
viewpoint of global distribution results. Such analysis gives useful information for the choice of
the preconditioner. In this way, we have considered several classical and new preconditioning
techniques, giving also practical indications for the more effective choice of the preconditioner
according to the current setting (choice of RBF and of the shape parameter, conditioning and
matrix size, 1D or 2D). The numerical results have confirmed the effectiveness of some of the
proposed choices.

There are several theoretical points to be completed, like the smoothness of the symbols in a
multidimensional setting. Moreover, the numerics give some important indications to be proved
theoretically, while the analysis presented in this paper could be extended to other applications
of the theory of radial functions, like interpolation or other kind of PDEs.

Moreover, our spectral analysis and preconditioning strategies are considered only for equally
spaced grid, but we believe that this is a first step to reach more general results for almost any
kind of discretization grids.

A further observation concerns some similarities observed between the present type of ma-
trices and that arising in the solution of fist kind Fredholm equations. Indeed, the collective
behavior of the symbols s(x) = sg(x) as a function of the parameter g is very interesting and
gives indications on the ill-posed nature of the linear systems arising from the RBF approxi-
mation. In reality, while the RBF interpolation is well-posed, finding the expansion coefficients
{vj}n+1

j=0 in (12) in the RBF interpolation is ill-posed, see p. 133 in [21]. Indeed as g grows
the function flattens to zero in most of the domain with the exception of a smaller and smaller
interval close to x = 0. This means that the high and middle frequency eigenvectors are related
to extremely small eigenvalues and that the size of the degenerating eigenspace is very large.
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This is exactly what happens in the case of deconvolution problems: in that case the presence
of high frequency noise makes the problem very difficult so that it is necessary resorting to a
regularizing process. Here we are in the PDE world and therefore the problem given by the
noise may result less important. Moreover we can give at this point a quantitative statement
concerning the size of the degenerating eigenspace. The first observation is that sg(x) > 0 and
for any positive δ

lim
g→∞

µ{x ∈ Qd : sg(x) > δ} = 0, Q = (0, 1).

Hence, as a consequence of the Szegö distribution results, not only an extreme ill-conditioning
arises (exponential as a function of g independent of n), but this ill-conditioning is associated
with a subspace of increasing dimension. In fact, by looking at Figures 1 and 2 we observe

lim
n→∞

#{λ > δ}
nd

= µ{x ∈ Qd : sg(x) > δ} →g→∞ 0,

at least for d = 1, 2. We think that the behavior described so far is confirmed as for a generic
value of d, but this will be the subject of future investigations.
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[27] M. Kac, W.L. Murdoch, G. Szegö, On the eigenvalues of certain Hermitian forms, J.
Rational Mech. Anal., 2(1953), 767–800.

[28] D. Noutsos, P. Vassalos, Superlinear convergence for PCG using band plus algebra precon-
ditioners for Toeplitz systems, Comput. Math. Appl., 56 (2008), 1255–1270.

23



[29] D. Noutsos, S. Serra-Capizzano, P. Vassalos, Matrix algebra preconditioners for multilevel
Toeplitz systems do not insure optimal convergence rate, Theoret. Computer Science, 315
(2004), 557–579.

[30] D. Noutsos, S. Serra-Capizzano, P. Vassalos, Block band Toeplitz preconditioners derived
from generating function approximations: analysis and applications, Numer. Math., 104 -3
(2006), 339–376.

[31] D. Potts, G. Steidl, A. Nielsony, Fast convolution with radial kernels at nonequispaced
knots, Numer. Math., 98 (2004), 329–351.

[32] A. Russo, C. Tablino-Possio, Preconditioned HSS method for finite element approximations
of convection-diffusion equations, SIAM J. Matrix Anal. Appl., 58 (2010), –.

[33] S. Serra-Capizzano, On the extreme eigenvalues of Hermitian (block) Toeplitz matrices,
Linear Algebra Appl., 270 (1998), 109–129.

[34] S. Serra-Capizzano, Toeplitz preconditioners constructed from linear approximation pro-
cesses, SIAM J. Matrix Anal. Appl., 20-2 (1998), 446–465.

[35] S. Serra-Capizzano, Superlinear PCG methods for symmetric Toeplitz systems, Math.
Comp. 68-226 (1999), 793–803.

[36] S. Serra-Capizzano, Distribution results on the algebra generated by Toeplitz sequences: a
finite dimensional approach, Linear Algebra Appl., 28 (2001), 121–130.

[37] S. Serra-Capizzano, D. Sesana, Tools for the eigenvalue distribution in a non-Hermitian
setting, Linear Algebra Appl., 430 (2009), 423–437.

[38] S. Serra-Capizzano, C. Tablino-Possio, Analysis of preconditioning strategies for collocation
linear systems, Linear Algebra Appl., 369 (2003), 41–75.

[39] S. Serra-Capizzano, E. Tyrtyshnikov, How to prove that a preconditioner can not be super-
linear, Math. Comput., 72 (2003), 1305–1316.

[40] B. Silbermann, O. Zabroda, Asymptotic behavior of generalized convolutions: an algebraic
approach, J. Integral Equ. Appl., 18-2 (2006), 169–196.

[41] G. Strang, A proposal for Toeplitz matrix calculations, Stud. Appl. Math., 74 (1986) 171–
176.

[42] P. Tilli, Locally Toeplitz matrices: spectral theory and applications, Linear Algebra Appl.,
278 (1998), 91–120.

[43] P. Tilli, A note on the spectral distribution of Toeplitz matrices, Linear Multilin. Algebra,
45 (1998), 147–159.

[44] E. Tyrtyshnikov, Optimal and Superoptinal Circulant Precondtioners, SIAM J. Matrix
Anal. Appl., 13 (1992), 459–473.

[45] E. Tyrtyshnikov, N. Zamarashkin, Spectra of multilevel Toeplitz matrices: advanced theory
via simple matrix relationships, Linear Algebra Appl., 270 (1998), 15–27.

[46] H. Wendland, Scattered data approximation, Cambridge Monogr. Appl. Comput. Math.,
vol. 17, Cambridge Univ. Press, Cambridge, 2005.

24


	1 Introduction
	2 Toeplitz matrices
	2.1 Extremal spectral properties
	2.2 Distribution spectral properties
	2.3 Approximating class of sequences

	3 The Poisson problem with radial basis functions
	3.1 The one-dimensional case
	3.2 The two-dimensional case

	4 Analysis of the conditioning and of the extremal spectrum
	5 Spectral distribution of the complete matrix-sequence
	6 Preconditioning and numerical experiments
	6.1 Numerical experiments in 1D 
	6.1.1 Algebra preconditioners
	6.1.2 Band Toeplitz preconditioners
	6.1.3 Mixed preconditioners
	6.1.4 Scattered data

	6.2 Numerical experiments in 2D
	6.3 The complete case with boundary conditions

	7 Conclusions

