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Abstract

A Leslie-Gower Holling type-II model is modified to introduce a
contagious disease in the predator population, assuming that disease
cannot propagate to the prey. All the system’s equilibria are deter-
mined and the behaviour of the system near them is investigated.
The main mathematical issues are global stability and bifurcations
for some of them, together with sufficient conditions for persistence
of the ecosystem. Counterintuitive results on the role played by the
intraspecific competition are highlighted.
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1 Introduction

Ecoepidemiology merges two important fields in biomathematics, namely de-
mographic systems, in which two populations interact either by competition
or associate for mutual benefit, and models in which the spread of diseases
is studied. In ecoepidemiology namely at least one disease affects one of two
or more interacting populations. Since diseases insurge commonly among
human and animal populations, to assess the role they play in the evolution
of ecosystems becomes a relevant issue. Furthermore, to fight and eradicate
diseases, instruments such as vaccination and prevention policies are com-
monly used. But among wild animals these can hardly be implemented, [11].
However, it may be possible to try to contain a disease affecting a population
by introducing in the environment another population which is a predator
of the former. Whether this constitutes a feasible policy is another one of
the possible questions that ecoepidemiology tries to answer. Some of these
issues are illustrated in the first part of [16].

In the past decade research on what is now known as ecoepidemiology
has progressed quite a lot. An increasing number of papers are devoted to
the study of the relationships between demographic processes among differ-
ent populations and diseases. Among the first papers that considered this
problem the following ones are to be cited: [3, 5, 7]. In [18] the situation is
considered in which the underlying demographic model is represented by a
simple Lotka-Volterra system, with the shortcomings of presenting neutral
type oscillations also in the ecoepidemic system. In [19, 21] this negative
feature has been eliminated by considering quadratic intraspecific interac-
tions. In these models however, persistent oscillations have not been found,
while instead for competing species limit cycles have been shown to arise,
[20]. A shortcoming of some of these oscillations is that they indicate that
the ecosystem may be fragile, although the deterministic model prescribes
that all the subpopulation survive. They may indeed attain very low levels,
so that in practical situations where the environment could be subject to
unforeseable fluctuations, for instance due to climatic changes, they may be
completely wiped out, maybe causing irreversible damages to the ecosystem.

Since the literature on interacting populations is very rich, and more so-
phisticated models have been studied, also in the context of ecoepidemiology
these have been considered, see for instance [1, 4], in which Holling type
II and ratio-dependent models have been introduced. Ecoepidemic systems
with the latter types of nonlinearities have been considered more recently,

3



[8, 9, 10]. Among the most interesting models related to food chains is the
fairly recently proposed system (1), [2, 13]. Since it is claimed to provide a
realistic description of ecological situations, it appears to be a viable starting
point also for a more elaborated ecoepidemiological investigation. In fact the
assumptions on which Holling type II models rest, is the fact that a return
function cannot grow to infinity, but is bounded above. This corresponds to
the fact that an individual can for instance feed up to a saturation value in
spite of the abundant resources available.

In this paper therefore we introduce a contagious disease among the
predators y in a predator-prey ecosystem, modelled via the following equa-
tions

dx

dt
= a1x − b1x

2 −
c1xy

x + k1

,
dy

dt
= a2y −

c2y
2

x + k2

. (1)

This model incorporates a Holling type-II functional response and a modified
version of the Leslie-Gower one, which as mentioned was introduced in the
context of tritrophic food webs, [2, 13, 14, 17]. The global stability issue of
a simpler predator-prey model with Leslie-Gower dynamics has been investi-
gated in [12]. Note that in absence of prey, the predators still thrive at level
a2k2c

−1
2 , indicating the presence of other food sources.

In the growing ecoepidemic literature, from the early papers [5, 7], dis-
eases mainly spreading in the prey are examined, [4, 19], but in [8, 10, 21]
the epidemics is assumed to affect the predators. Here we reconsider this
problem, looking at a more complicated model. In fact in [21] only quadratic
interaction terms are considered, both of demographic as well as epidemics
significance. With respect to [8] and [10] the main difference lies in introduc-
ing here intraspecific competition terms involving also the infected predators.
These terms appear in the numerators of the predators’ equations terms. The
closest of the models is probably [8], but the predators interaction terms with
prey differ, furthermore here we allow other food sources for the predators.

One of the main findings of this research is the conditions under which
the coexistence equilibrium is globally asymptotically stable, i.e. it is the
sole possible equilibrium to which from any initial condition the system will
certainly evolve. In it the disease is of course endemic, so if the aim of let
us say an ecologist or an administrator of a park is the disease eradication,
then such conditions should be avoided. Conditions for the local asymptotic
stability of boundary equilibria are established as well. In these, at least
one subpopulation vanishes, so that if the aim instead is to remove either
an obnoxious pest, via a disease, or another population, these other condi-
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tions should instead be satisfied. The role of a intraspecific competition is
highlighted: among sound predators it seems to lead to a disease-free envi-
ronment, while for infected predators it may wipe out both prey and sound
predators, leaving only the disease endemic in the predators, which seems to
be a counterintuitive and interesting result.

The paper is organized as follows. We describe the ecoepidemic model
in the next Section, then proceed to the difficult analysis of the coexistence
equilibrium. Section 4 contains the stability and bifurcation analysis of the
boundary equilibria. The persistence issue is next dealt with and we conclude
the paper with a discussion of the results and comparison with former related
findings.

2 The ecoepidemic model

We assume that the disease spreads only among the predators, and let y
denote the susceptible predators and z the infected ones. The total predator
population is n(t) = y(t) + z(t). The disease transmission follows a simple
mass action law with the disease incidence λ > 0. In the absence predators
the prey population x grows logistically with intrinsic growth rate a1 > 0 and
carrying capacity a1b

−1
1 . In contrast to [8], we also introduce intraspecific

competition among the predators’ sound and infected subpopulations, with
parameters c2 and c3, for which c2 > c3.

The model reduces to the following set of autonomous nonlinear differen-
tial equations with nonnegative parameters

dx

dt
= a1x − b1x

2 −
c1xy

x + k1

−
pc1xz

x + k1

, (2)

dy

dt
= a2y −

c2y(y + z)

x + k2

− λyz,

dz

dt
= λyz + a3z −

c3z(y + z)

x + k2

,

where a2, a3, a2 ≥ a3, are the per capita growth rates of each predator
subpopulation. Thus from sick parents the disease can be transmitted to their
offsprings. The parameters k1, k2 respectively represent the half saturation
constants of the prey and predator populations. The Jacobian matrix of
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system (2) is J = (αij) ∈ R3×3, with entries

α11 = a1 − 2b1x −
c1k1(y + pz)

(x + k1)2
, α12 = −

c1x

(x + k1)
, α13 = −

c1px

(x + k1)
,

α21 =
c2y(y + z)

(x + k2)2
, α22 = a2 − λz −

c2(2y + z)

(x + k2)
, α23 = −

c2y

(x + k2)
− λy,

α31 =
c3z(y + z)

(x + k2)2
, α32 = λz −

c3z

(x + k2)
, α33 = a3 −

c3(y + 2z)

(x + k2)
+ λy.

By introducing the total environment population χ = x+y +z, summing
the equations (2) and bounding the right hand side from above, following
the steps of [8], boundedness of the solution trajectories of this model is
established. In particular,

lim sup
t→+∞

x(t) ≤
a1

b1

≡ W1, lim sup
t→+∞

(
y(t) + z(t)

)
≤

a2(W1 + k2)

c3

≡ W2. (3)

In what follows, the system’s equilibria are Ek and we denote by Jk and
α

[k]
ij the Jacobian and its entries evaluated at Ek, i = 1, 2, 3, j = 1, 2, 3,

k = 1, 2, 3, 4, 5, 6, 7.

3 The coexistence equilibrium

The ecosystem thrives at the point E5 ≡ (x5, y5, z5), where

y5 =
−λ(x5 + k2)a3 + (a2c3 − a3c2)

λ2(x5 + k2) + λ(c2 − c3)
, z5 =

λ(x5 + k2)a2 − (a2c3 − a3c2)

λ2(x5 + k2) + λ(c2 − c3)

and x5 is a the root of the following cubic

A0x
3 + 3A1x

2 + 3A2x + A3 = 0, (4)

where

A0 = λ2b1, 3A1 = λ
(
b1(λk2 + c2 − c3) − λ(a1 − b1k1)

)
,

A2 = λ
(
(b1k1 − a1)(λk2 + c2 − c3) − a1k1λ + c1(pa2 − a3)

)
,

A3 = a1k1λ(c3 − λk2 − c2) − c1λk2(a3 − pa2) + c1(1 − p)(a2c3 − a3c2).
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We consider only the case in which the equation (4) possesses exactly one real

positive root. This occurs if Ĝ2 +4Ĥ3 > 0 with Ĝ = A2
0A3 − 3A0A1A2 +2A3

1

and Ĥ = A0A2 − A2
1. Denoting by n∗ one of the cubic roots of 1

2
[−Ĝ +√

Ĝ2 + 4Ĥ3], Cardano’s method gives then the root as 1
A0

[n∗ −A1 − Ĥ/n∗].
For feasibility of E5, we need to ensure either one of the two sets of conditions

a2c3

a3

≥ λ(x5 + k2) + c2, λ(x5 + k2) + max

{
a3c2

a2

, c2

}
> c3; (5)

a2c3

a3

≤ λ(x5 + k2) + c2, λ(x5 + k2) + max

{
a3c2

a2

, c2

}
< c3. (6)

which give then restrictions on the root x5.

Proposition 1. E5 is locally asymptotically stable if

(a) λz5 + b1x5 +
c2(y5 + z5)

(x5 + k2)
>

c1x5(y5 + pz5)

(x5 + k1)2
+

pc1z5

(x5 + k1)
,

(b)
c3(y5 + z5)

(x5 + k2)
+ b1x5 +

c1y5

(x5 + k1)
> λy5 +

c1x5(y5 + pz5)

(x5 + k1)2
,

(c) λ(c2 − c3)x5(y5 + z5) < (a2c3 − a3c2)(x5 + k2),

(d)
(x5 + k2)

(
c1(y5 + pz5) − b1(x5 + k1)

2
)(

λ(x5 + k2) + c2 − c3

)

c1(c3 − pc2)(x5 + k1)(y5 + z5)
< −1.

Proof. We use the method of first approximation. We then have to show
that the second compound matrix J [2](E5) of J5 is stable and det(J5) < 0.

Some of the entries of the Jacobian of (2) simplify at E5 as follows:

α
[5]
11 = −x5

(
b1 −

c1(y5 + pz5)

(x5 + k1)2

)
, α

[5]
22 = −

c2y5

(x5 + k2)
, α

[5]
33 = −

c3z5

(x5 + k2)
.

Let us introduce the diagonal matrix D = diag(z5, y5, x5). The matrix
J [2](E5) is similar to DJ [2](E5)D

−1 = (βij)3×3, and therefore J [2](E5) is stable

if and only if DJ [2](E5)D
−1 is stable. We have

β11 = α
[5]
11 + α

[5]
22 , β12 = α

[5]
23

z5

y5

, β13 = −α
[5]
13

z5

x5

,

β21 = α
[5]
32

y5

z5

, β22 = α
[5]
11 + α

[5]
33 , β23 = α

[5]
12

y5

x5

,

β31 = −α
[5]
31

x5

z5

, β32 = α
[5]
21

x5

y5

, β33 = α
[5]
33 + α

[5]
22 .
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Since the diagonal elements of DJ [2](E5)D
−1 are negative, using Gersh-

gorin’s theorem the matrix is stable if it is row diagonally dominant. Let
G∗ = max {R1, R2, R3}, where

R1 = β11 + β12 + β13 = −b1x5 +
c1x5(y5 + pz5)

(x5 + k1)2
−

c2y5

(x5 + k2)

−

(
λ +

c2

(x5 + k2)

)
z5 +

pc1z5

(x5 + k1)
,

R2 = β21 + β22 + β23 = λy5 +
c1x5(y5 + pz5)

(x5 + k1)2
−

c3(y5 + z5)

(x5 + k2)
−

c1y5

(x5 + k1)
− b1x5,

R3 = β31 + β32 + β33 =
(c2 − c3)x5(y5 + z5)

(x5 + k2)2
−

(c2y5 + c3z5)

(x5 + k2)
.

Now conditions (a), (b) and (c) imply indeed G∗ < 0, i.e. diagonal domi-
nance, which thus verifies stability. Further

det(J5) = α
[5]
11(α

[5]
22α

[5]
33 − α

[5]
23α

[5]
32) − α

[5]
12(α

[5]
21b

[5]
33 − α

[5]
31α

[5]
23) + α

[5]
13(α

[5]
21α

[5]
32 − α

[5]
31α

[5]
22)

= −λx5y5z5

[(
b1 −

c1(y5 + pz5)

(x5 + k1)2

)(
λ +

c2 − c3

(x5 + k2)

)
+

c1(pc2 − c3)(y5 + z5)

(x5 + k2)2(x5 + k1)

]
.

Condition (d) implies that det(J5) < 0, thus completing the proof.

Proposition 2. A sufficient condition for the equilibrium E5 to be unstable
is

x5

(
b1 −

c1(y5 + pz5)

(x5 + k1)2

)
+

(a2c3 − a3c2)

λ(x5 + k2)
< 0.

Proof. Since c2y5 + c3z5 = λ−1(a2c3 − a3c2), we have now

tr(J5) = α
[5]
11 + α

[5]
22 + α

[5]
33 = −x5

(
b1 −

c1(y5 + pz5)

(x5 + k1)2

)
−

(c2y5 + c3z5)

(x5 + k2)

= −
[
x5

(
b1 −

c1(y5 + pz5)

(x5 + k1)2

)
+

(a2c3 − a3c2)

λ(x5 + k2)

]

and the assumption implies tr(J5) > 0 and therefore instability of E5.

We now show the first main result of the paper.
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Theorem 3.1. The interior equilibrium E5 is globally asymptotically stable
if, recalling (3),

b1k1(x5 + k1) > c1(y5 + pz5), (7)

c3 > pc2, (8)

4b1c2

(a1 + b1k1)

[
b1 −

c1(y5 + pz5)

k1(x5 + k1)

]
>

[ c1

k1

+
c2(y5 + z5)

k2(x5 + k2)

]2

, (9)

[ pc1

(W1 + k1)
−

c2(y5 + z5)

(x5 + k2)k2

]2

>
4c2

k2

[
b1 −

c1(y5 + pz5)

(x5 + k1)(W1 + k1)

]
, (10)

pc1

(W1 + k1)
>

c3(y5 + z5)

k2(x5 + k2)
. (11)

Proof. Define the function L(x, y, z) = L1(x, y, z) + L2(x, y, z) + L3(x, y, z),

L1 = x − x5 − x5 ln
x

x5

, L2 = y − y5 − y5 ln
y

y5

, L3 = z − z5 − z5 ln
z

z5

.

We will show that L is a Lyapunov function. Easily, L(x, y, z) vanishes at E5

and it is positive for all x, y, z > 0. Hence E5 represents its global minimum.
Since the solutions of system (2) are bounded and ultimately enter a

compact the set Σ, we can restrict the study of L to Σ. The time derivative
of L1 along the solutions of the system (2) can be determined using the linear
algebraic system that defines E5, to find

dL1

dt
= (x − x5)

(
a1 − b1x −

c1y

(x + k1)
−

pc1z

(x + k1)

)

= (x − x5)
[
b1x5 +

c1y5

(x5 + k1)
+

pc1z5

(x5 + k1)
− b1x −

c1y

(x + k1)
−

pc1z

(x + k1)

]

= (x − x5)
[c1(y5 + pz5)(x − x5)

(x5 + k1)(x + k1)
− b1(x − x5) −

c1(y − y5)

(x + k1)
−

pc1(z − z5)

(x + k1)

]
.
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Similarly,

dL2

dt
= (y − y5)

(
a2 −

c2(y + z)

(x + k2)
− λz

)

= (y − y5)
[
λz5 +

c2(y5 + z5)

(x5 + k2)
−

c2(y + z)

(x + k2)
− λz

]

= (y − y5)
[
−λ(z − z5) +

c2(y5 + z5)(x − x5)

(x5 + k2)(x + k2)
−

c2

(
(y − y5) + (z − z5)

)

(x + k2)

]
;

dL3

dt
= (z − z5)

(
a3 −

c3(y + z)

(x + k2)
+ λy

)

= (z − z5)
[
−λy5 +

c3(y5 + z5)

(x5 + k2)
−

c3(y + z)

(x + k2)
+ λy

]

= (z − z5)
[
λ(y − y5) +

c3(y5 + z5)(x − x5)

(x5 + k2)(x + k2)
−

c3

(
(y − y5) + (z − z5)

)

(x + k2)

]
.

Adding these contributions, for v =
(
(x − x5), (y − y5), (z − z5)

)T

we find

dL

dt
= A(x − x5)

2 + B(y − y5)
2 + C(z − z5)

2 + 2H(x − x5)(y − y5)

+2F (y − y5)(z − z5) + 2G(z − z5)(x − x5) = −vT Qv. (12)

Here Q is the symmetric quadratic form given by

Q =




A H G
H B F
G F C



 ,

with entries that are functions only of the variable x,

A = b1 −
c1(y5 + pz5)

(x5 + k1)(x + k1)
, B =

c2

x + k2

, C =
c3

x + k2

, F =
1

2

c2 + c3

x + k2

,

H =
1

2

[ c1

x + k1

−
c2(y5 + z5)

(x5 + k2)(x + k2)

]
, G =

1

2

[ pc1

x + k1

−
c3(y5 + z5)

(x5 + k2)(x + k2)

]
.
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Thus if the matrix Q is positive definite then dL
dt

< 0. We need all of the
principal minors of Q namely P1 ≡ A, P2 ≡ AB−H2, P3 ≡ ABC +2FGH−
AF 2 − BG2 − CH2, to be positive, i.e.

P1 = b1 −
c1(y5 + pz5)

(x5 + k1)(x + k1)
> 0,

P2 =
[
b1 −

c1(y5 + pz5)

(x5 + k1)(x + k1)

] c2

x + k2

−
1

4

[ c1

x + k1

−
c2(y5 + z5)

(x5 + k2)(x + k2)

]2

> 0,

P3 = C(AB − H2) + G(FH − BG) + F (GH − AF ) > 0.

Now for P1, differentiating A with respect to x,

dA

dx
=

c1(y5 + pz5)

(x5 + k1)(x + k1)2
> 0,

we find that it is a monotonic increasing function, hence by (7),

A(x) > A(0) = b1 −
c1(y5 + pz5)

(x5 + k1)k1

> 0.

Using this result and (9), for P2 we find

P2 =
[
b1 −

c1(y5 + pz5)

(x5 + k1)(x + k1)

] c2

x + k2

−
1

4

[ c1

x + k1

+
c2(y5 + z5)

(x5 + k2)(x + k2)

]2

>
[
b1 −

c1(y5 + pz5)

(x5 + k1)k1

] c2
a1

b1
+ k2

−
1

4

[ c1

k1

+
c2(y5 + z5)

(x5 + k2)k2

]2

> 0.

For P3 we have by (8)

FH − BG =
1

2(x + k2)

{(c2 + c3)

2

[ c1

(x + k1)
−

c2(y5 + z5)

(x5 + k2)(x + k2)

]

−c2

[ pc1

(x + k1)
−

c3(y5 + z5)

(x5 + k2)(x + k2)

]}
>

c1(c3 − pc2)

2(x + k1)(x + k2)
> 0.

Now G > 0, entailing G(FH − BG) > 0, since, recalling the upper bounds
(3), and (11)

G >
1

2

[ pc1

(W1 + k1)
−

c3(y5 + z5)

(x5 + k2)k2

]
.
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For P3 using (10) we have,

GH − AF =
1

4

[ pc1

(x + k1)
−

c3(y5 + z5)

(x5 + k2)(x + k2)

][ c1

(x + k1)
−

c2(y5 + z5)

(x5 + k2)(x + k2)

]

−
c2 + c3

2(x + k2)

[
b1 −

c1(y5 + pz5)

(x5 + k1)(x + k1)

]

>
1

4

[ pc1

(x + k1)
−

c2(y5 + z5)

(x5 + k2)(x + k2)

]2

−
c2 + c3

2(x + k2)

[
b1 −

c1(y5 + pz5)

(x5 + k1)(x + k1)

]

>
1

4

[ pc1

(W1 + k1)
−

c2(y5 + z5)

(x5 + k2)k2

]2

−
c2

k2

[
b1 −

c1(y5 + pz5)

(x5 + k1)(W1 + k1)

]
> 0.

Combining these results it follows that P3 > 0. Hence the symmetric matrix
Q is positive definite, implying dL

dt
< 0 along the trajectories. Thus L is a

Lyapunov function, and global stability for E5 follows.

4 The boundary equilibria

The system’s equilibria in which at least one subpopulation vanishes are the
origin E0 and the points Ei ≡ (xi, yi, zi), i = 1, . . . , 4, 6, 7. In particular

E1 ≡

(
a1

b1

, 0, 0

)
, E6 ≡

(
0,

a2k2

c2

, 0

)
, E7 ≡

(
0, 0,

a3k2

c3

)

E4 ≡

(
0,

(a2c3 − a3c2) − λk2a3

λ(λk2 + c2 − c3)
,
λk2a2 − (a2c3 − a3c2)

λ(λk2 + c2 − c3)

)

while z2 = 0 and y3 = 0 characterize the remaining equilibria.
Since the algebraic system from (2) with z2 = 0 reduces to the quadratic

b1c2x
2
2 + (c2b1k1 − c2a1 + c1a2)x2 + c1a2k2 − c2a1k1 = 0,

by Descarte’s rule there is one positive root if

a1 >
c1a2k2

k1c2

≡ a[6] (13)

Letting Γ = c2b1k1 − c2a1 + c1a2 the equilibrium E2 is given by

x2 =
−Γ +

√
Γ2 − 4b1c2(c1a2k2 − c2a1k1)

2b1c2

; y2 =
a2(x2 + k2)

c2

.
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Proceeding similarly for E3 setting Θ = b1c3k1 + pc1a3 − c3a1, we have

x3 =
−Θ +

√
Θ2 − 4b1c3(pc1a3k2 − c3a1k1)

2b1c3

; z3 =
a3(x3 + k2)

c3

.

The prey-free equilibrium E4 is feasible if

(a2c3 − a3c2)

a2k2

< λ <
(a2c3 − a3c2)

a3k2

. (14)

The equilibrium E2 is feasible if (13) holds and E3 is feasible for

a1 >
pc1a3k2

k1c3

≡ a[7] (15)

4.1 Stability

The equilibria E0 and E1 are both unstable, since their eigenvalues are a1,
a2 and a3 and −a1, a2 and a3 respectively.

The equilibrium E6 is locally asymptotically stable for

a1 < a[6], λ <
(a2c3 − a3c2)

a2k2

≡ λ[6], (16)

since the eigenvalues of the Jacobian in this case are a1 − a[6], −a2 and
c−1
2 [λa2k2 − (a2c3 − a3c2)].

Similarly, E7 is locally asymptotically stable if

a1 < a[7], λ >
(a2c3 − a3c2)

a3k2

≡ λ[7]. (17)

At E2 the Jacobian factors giving the quadratic

η2 − η
(
α

[2]
11 + α

[2]
22

)
+ α

[2]
11α

[2]
22 − α

[2]
12α

[2]
21 = 0,

and one explicit eigenvalue, α
[2]
33 = λy2−c−1

2 (a2c3−a3c2), with α
[2]
22 = −a2 < 0,

α
[2]
11 = x2

(c1a2(x2 + k2)

c2(x2 + k1)2
− b1

)
, α

[2]
12 = −

c1x2

x2 + k1

< 0, α
[2]
21 =

a2
2

c2

> 0.

Therefore the conditions for stability are

λ <
a2c3 − a3c2

a2(x2 + k2)
= λ[2] < 0,

c1a2(x2 + k2)

b1c2(x2 + k1)2
< 1. (18)
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In a similar way we find at E3 another quadratic is obtained,

η2 − η
(
α

[3]
11 + α

[3]
33

)
+ α

[3]
11α

[3]
33 − α

[3]
13α

[3]
31 = 0,

and one eigenvalue is explicitly α
[3]
22 with α

[3]
33 = −a3, α

[3]
31 = c−1

3 a2
3 and

α
[3]
22 =

a2c3 − a3c2

c3

−λz3, α
[3]
11 = x3

[pc1a3(x3 + k2)

c3(x3 + k1)2
−b1

]
, α

[3]
13 =

−pc1x3

x3 + k1

< 0.

Hence E3 is locally asymptotically stable if

λ >
a2c3 − a3c2

a3(x3 + k2)
= λ[3],

pc1a3(x3 + k2)

b1c3(x3 + k1)2
< 1. (19)

In a similar way at E4 the eigenvalue α
[4]
11 = a1 − k−1

1 c1(y4 + pz4) is easily

obtained from the factorization of the Jacobian. Also α
[4]
22 = −k−1

2 c2y4 < 0,

α
[4]
33 = −k−1

2 c3z4 < 0 and

α
[4]
23 = −y4

(
λ +

c2

k2

)
< 0, α

[4]
32 = z4

(
λ −

c3

k2

)
.

The Routh-Hurwitz criterion on the resulting quadratic provides the remain-
ing stability condition α

[4]
32 > 0, i.e.

λ >
c3

k2

, y4 + pz4 >
a1k1

c1

. (20)

4.2 Bifurcations

In view of the structure of the Jacobian which factors at the three equilibria
E2, E3, E4, in order to obtain complex conjugate pairs of eigenvalues at
these equilibria it is enough to annihilate the linear term in η, thus to require
respectively

α
[2]
11 + α

[2]
22 = 0, α

[3]
11 + α

[3]
33 = 0, α

[4]
22 + α

[4]
33 = 0.

But in the latter case α
[4]
22 + α

[4]
33 < 0 so that it is not possible to satisfy the

condition. Thus at E4 no Hopf bifurcation can arise. The Hopf bifurcations
are instead also shown graphically by numerical simulations, Figures 2, 4.
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5 Persistence

If a compact set D ⊂ Ω = {(x, y, z); x > 0, y > 0, z > 0} exists such that
all solutions of (2) eventually enter and remain in D, the system is called
persistent.

Proposition 3. The system (2) is persistent if

(i) c3z3 <
a2c3 − a3c2

λ
< c2y2, (ii) y4 + pz4 <

a1k1

c1

,

(iii) a1 > a[6], λ > λ[6], (iv) a1 > a[7], λ < λ[7].

Proof. We use the method of average Lyapunov function, see [6], considering
a function of the form

V (x, y, z) = xγ1yγ2zγ3 ,

where γi, i = 1, 2, 3 are positive constants to be determined. We define

Π(x, y, z) =
V̇

V

= γ1

(
a1 − b1x −

c1y

(x + k1)
−

pc1z

(x + k1)

)
+ γ2

(
a2 −

c2(y + z)

(x + k2)
− λz

)

+γ3

(
a3 −

c3(y + z)

(x + k2)
+ λy

)
.

We now prove that this function is positive at each boundary equilibrium.
In fact at E0 and E1 we have Π(0, 0, 0) = γ1a1 + γ2a2 + γ3a3 > 0 and
Π(x1, 0, 0) = γ2a2 + γ3a3 > 0 respectively. Moreover, from condition (i), we
find

Π(x2, y2, 0) = γ3(λy2 −
a2c3 − a3c2

c2

) > 0,

Π(x3, 0, z3) = γ2(
a2c3 − a3c2

c2

− λz3) > 0.

From condition (ii) instead we have

Π(0, y4, z4) =
γ1c1

k1

(a1k1

c1

−
y4 + pz4

k1

)
> 0,

while condition (iii) entails

Π(0, y6, 0) = γ1

(
a1 −

c1a2k2

c2k1

)
+ γ3

(λa2k2

c2

−
(a2c3 − a3c2)

c2

)
> 0.
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Finally

Π(0, 0, z7) = γ1

(
a1 −

pc1a3k2

c3k1

)
+ γ2

((a2c3 − a3c2)

c3

−
λa3k2

c3

)
> 0

follows by condition (iv). Hence γ1, γ2, γ3 can be chosen to ensure Π > 0 at
the boundary equilibria. Hence V is an average Lyapunov function and thus
the system (2) is persistent.

6 Discussion

Our numerical simulations illustrate the theoretical findings. The equilibrium
E2 is in fact attained, Figure 1 and the bifurcation in the two-dimensional
prey susceptible-predator phase plane x−y is pictorially described by Figure
2. The stable behavior at equilibrium E3 is shown in Figure 3. The limit
cycle after bifurcation appears instead in Figure 4. Figure 5 shows instead the
system’s trajectories settling to equilibrium E4. The coexistence equilibrium
point E5 has indeed been found via numerical simulations, see Figure 6, and
its global asymptotical stability is depicted in Figure 7.
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Figure 1: Stable equilibrium E2 for the parameter values: a1 = 2.46, b1 =
0.0005, a2 = 0.5, c1 = 0.6, c2 = 0.1, c3 = 0.5, a3 = 0.1, λ = 0.0002, p = 0.05,
k1 = 1000, k2 = 600.

16



0

2000

4000

6000

0

5000

10000

15000
−20

0

20

40

60

x(t)y(t)

z
(t

)

0 100 200 300 400 500
−2000

0

2000

4000

6000

8000

10000

12000

14000

Time

P
o

p
u

la
ti
o

n
s

 

 
Prey
Sound predator
Infected predator

Figure 2: Hopf bifurcation at E2 for the parameter values: a1 = 2.749694,
b1 = 0.0005, a2 = 0.60, c1 = 0.6, c2 = 0.12, c3 = 0.8, a3 = 0.1, λ = 0.0002,
p = 0.05, k1 = 1000, k2 = 600.

Interpreting our results, we find that the ecosystem cannot collapse, nor
can the prey alone survive, in view of the instability of E0 and E1. The
predators-only equilibria can be attained, since other food sources are allowed
in the underlying model (1), with a low enough prey reproduction rate, and
respectively either a low enough disease incidence, (16) for the disease-free
E6, or a high one, (17) for the pandemic equilibrium E7. Note also that E2

and E6 are incompatible, i.e. if E2 is feasible, E6 must be unstable, and vice
versa, compare (13) and (16). Similarly behaves the pair E3 and E7, from
(15) and (17). The prey-free equilibrium E4 has the disease endemic in the
predators, and can be attained for a reasonably high disease incidence, (20).
It is not possible to find limit cycles around it.

Comparison with [8] shows that here more equilibria are found, namely
E3, E5, E6, and E7. While here E1 is inconditionally unstable, in [8] it can
be stabilized under suitable conditions and becomes even globally asymp-
totically stable. The Hopf bifurcation at E2 is common in both models, as
it pertains to the demographic model upon which the ecoepidemics is built.
The predators-only endemic equilibrium exists and is stable in both cases.
The coexistence equilibrium in [8] is shown only to be locally asymptotically
stable.

In [10] note that E5, E6, and E7 are absent. Again in [10] E1, E2, E3
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Figure 3: Stable equilibrium E3 for the parameter values: a1 = 4.0, b1 =
0.0005, a2 = 0.3, c1 = 2.1, c2 = 0.1, c3 = 1.0, a3 = 1.5, λ = 0.0217, p = 0.93,
k1 = 500, k2 = 600.

and E4 could be stabilized, by suitable parameter combinations; this is to
be compared to similar results holding for (2), but in contrast with the in-
stability of E1 of this model. In [10] also sufficient conditions are identified
for which the ecosystem does not collapse, while here the unconditional in-
stability of the origin prevents it always. The global asymptotic stability of
the coexistence equilibrium holds in [10] and here as well, but the proofs use
different techniques.

Thus the results compared to former findings are quite close, but in gen-
eral, the conditions ensuring these properties are more strict in the present
model, since they intrinsically contain the intraspecific competition param-
eters. The main conclusion of this study enlightens the role that the in-
traspecific competition plays in fighting the disease, which is a relevant issue
in epidemiology, [15]. Note in fact that a large c2 renders the disease-free
equilibrium E2 feasible, (13), while at the same time making λ[2] < 0, and
the second condition (18) verified, thus rendering E2 also stable. Similarly,
it makes λ[7] < 0, thus to prevent E7 to be stable, so that the epidemics
spreads to the whole predators, and the prey are wiped out, we need a very
small value of c3, (17). Therefore a high competition among sound preda-
tors seems to lead to a disease-free environment, while a high competition
among infected predators may have the consequence of wiping out both prey
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Figure 4: Hopf bifurcation at E3 for the parameter values: a1 = 3.6, b1 =
0.0005, a2 = 0.3, c1 = 2.1, c2 = 0.1, c3 = 1.0, a3 = 1.5, λ = 0.0217, p = 0.93,
k1 = 500, k2 = 600; and initial condition (14, 10, 70).

and sound predators, leaving only the infected predators as survivors in the
ecosystem. This appears to be quite a counterintuitive and interesting result.
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