UHWERSITA
| DEGLI STUDI
DI TORINO

[T1S AperTO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Differentiation Based on Optimal Local Spline Quasi-Interpolants with Applications

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/75931 since
Publisher:
American Institute of Physics (AIP)
Published version:
DOI:10.1063/1.3498341
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use

of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

21 December 2024



UNIVERSITA DEGLI STUDI DI TORINO

This is an author version of the contribution published on:

Catterina Dagnino and Sara Remogna. Differentiation Based on Optimal
Local Spline Quasi-Interpolants with Applications. AIP Conference
Proceedings, 1281, 2010, DOI 10.1063/1.3498341.

The definitive version is available at:

http://scitation.aip.org/content /aip /proceeding/aipcp/10.1063/1.3498341



Differentiation Based on Optimal Local Spline
Quasi-Interpolants with Applications

Catterina Dagnino and Sara Remogna
Department of Mathematics, University of Torino, via C.ekto, 10 — 10123 Torino, ltaly

Abstract. In this paper we propose a method for the approximation of the desvafia functionf based on discrete
local optimal spline quasi-interpolan of degreek = 3,4,5. By differentiatingQy f, we construct the approximation of
the derivative at the quasi-interpolation nodes and the corresponiffagedtiation matrices. Some numerical results and
applications to univariate boundary-value problems are given.

Keywords: Spline quasi-interpolants, Numerical differentiation|isgcollocation methods
PACS: 02.60.-x, 02.60.Jh, 02.70.Jn

INTRODUCTION

Local spline quasi-interpolation has been widely analysexpproximation theory (see e.g. [1, 3, 5, 7] and references
therein), but only recently some studies have been devotitsl applications in the numerical differentiation [2, 4., 6

In particular, in [2], the authors focus on approximatiofdiist and second derivatives by those of local quadratic
spline quasi-interpolants and their applications to aatmn methods. The proposed formulas are very accurate
at some points, thanks to the superconvergence propeftidose operators and they give rise to good global
approximations of derivatives on the whole domain of definitin this paper, we propose differentiation formulas
still based on discrete local spline quasi-interpolanis b higher degree. We get differentiation matrices, thause

in collocation methods for the solution of some univariadeitdary-value problems. We propose the same numerical
tests of [2] and we show that spline quasi-interpolants glér degree and smoothness provide very accurate results.
Indeed, the results obtained with cubic splines are conpaita those given in [2] for quadratic case, as we expect
from the theory, instead we obtain higher performances quitirtic and quintic splines.

APPROXIMATION OF FIRST DERIVATIVES AND DIFFERENTIATION MATRICES

Let | = [a,b] be a bounded interval endowed with a uniform knot partithon= {x = a+ih, 0 <i < n}, with
h= (b—a)/n andk a non-negative integer. We define the spline spﬂéél(An) ={seC¥YI):s % x11) € Pol =
0,1,...,n— 1} wherePy denotes the space of polynomials<iof degreek.

We denote by{N}((x) Tj{ the basis of normalized B-splines defined on the extendet gamtition {x_yx = ... =
Xa1=X=a X, 1<i<n—1 b=X;=Xt1="... =Xk} and spanningykkfl(An) [1]. With our notations the
support of the B-splin&l is [x; k1, ).

We define the following two sets of quasi-interpolation rede

« Zl={t,i=1,...,n+2}, wheret; = a, tj = %(xi,erxi,l), fori=2,...,n+1,th,2 = b, in casek even;
« FZ2={t,i=1,....n+1}, wheret; =a,t; =x_1, fori =2,...,n,th,1 = b, in casek odd.
Let f be a smooth function, we sét= f(t;) and we consider the spline quasi-interpolants (QI)

nk {z?ﬁf,ﬂ}((x) k even

_ . Kiy) —
f(x) = JZlmj(f)NJ (x) = zTﬁ fJN}‘(x) k odd, @

with

«mi(f)=3;Aijf(t), Aij € R, local linear functionals defined as combinations of discvalues off at the points
t; lying in the support (or near the support)M}f, given in [6] fork = 2,....5 and constructed so th@ is exact



onPy, i.e.Qcp = p, p € Px. Consequentlyj f — Qf||,, = O(hk+?), for f € Ck+1(1);

- N¥ the so-called fundamental functions associated @ithgiven by linear combinations of B-spline\ﬁ( and
oétained, after some algebra, from the expression of thetifuralsm;.

We approximate the derivative dfby the derivative of), f. We denote it b)Q;(f and we remark that it belongs to
Ykkjlz(An), the spline space of degr&e- 1 defined or\,. From (1), we obtain

/ n+k ! ”th Nk/ ’
Qfe) = (Z mj(f)N}‘(x)> _ ) 25 (NJ)/O() even o
- 5735 (NE) (0 kodd.

If we approximatef” at the quasi-interpolation nodes we have to evaluate (Heapoints of 7! if k is even and
J72if kis odd. The value(sNJk)'(ti), computed using the differentiation formula for the B—apt’sN}( (see [1]), can be

stored in the differentiation matri®y, whereDy € R(’”Z)X(?*Z) for k even andy € ]R(”“)X('j*l) for k odd.
Settingy for the vector with componentg = f(tj) andy for the vector with componentg = Q, f (tj), we get:

y = Dyy, 3)
where the matriDy has elementd;j = (N}()'(ti) and the following structure:
DY _ .
. (k+D)x(n+2) jf k RN—=20)x(N+2) jf Kk
—1 (2) 1 p® R if keven &) if k even
o B'(‘s) - Wi BB { RO-DX(D) if kodd K R(-26+3)x(0+1) if Kk odld

k
and
#0 1<i<k+1 1<j<i+k, if k even
«DW = (dj){ #0 i=1 1<j<i+k 2<i<k-1, 1<j<i+k—1, if kodd
=0 otherwise
#0 k+2<i<n—k+1, i—k<j<i+k, j#i if k even
-D@ = (dj){ #0 k<i<n—k+2, i—k+1<j<i+k—1, j#i ifkodd
=0 otherwise

3 =—Ohit3n-j+3 N—K+2<i<n+2, i—k<j<n+42, if keven
«DP = (dj){ =—dnison j2 N—k+3<i<n i—k+1<j<n+1;i=n+l i—k<j<n+l, if kodd
=0 otherwise.

Now we report the nonzero elements of the differentiationtrizes for quartic and quintic splines, ile= 4 and
k =5, respectively:

e Dy

_ Dgl) c R5x (n+2) :
di; = —352/105 dip =35/8, diz = —35/24, dig = 21/40, di5 = —5/56,
dp1 = —13871/1512Q0  dpp = 357/2048 dp3 = 4561/4608 dpg = —1489/5120Q dps = 155/3584
dye = 47/55296
d3; = 3767/1512Q d3p = —23887/27648 d33= —641/55296 d34 =261193456Q dss = —27317/193536
dzg = 101/9216 d37 = 47/55296
dqp = —841/1512Q dgp = 1417/6912 dg3 = —7133/9216 dgq =1513/9216Q dys = 3541948384
dge = —3751/27648  ds7 =101/9216 dgg = 47/55296

ds; = —47/15120Q dsp = —209/27648  dsz = 463/3456 dsy = —101521/138240  ds5 = —47/387072
dsg = 2032327648  ds; = —3751/27648  dsg = 101/9216 dsg = 47/55296

_ Dgz) c R(n—S)x(n+2)

dij 4= —dij 4= —47/55296 dij 3= —dij;3=-101/9216 d;j > = —dij;2=3751/27648
di,ifl = —di,i+1 = —2032?/27648 di.i = 0, i = 6, o,N—= 3,

— DY € R%("2), defined by the elements B,".



« Dg
_ Dél) c R4><(n+l):

diy = —137/60, dho=5, diz= -5, dia = 10/3, dis = —5/4, dig = 1/5,

oy = —1/5, Upp=—13/12,  dpz=2, s = —1, Ops = 1/3, tog = —1/20,

Oa; = 301/576Q  d3p = —493/960, O3z = —115/384 dgs=275/288 a5 = —83/384, dag = 19/960,

da7 = 13/576Q

dag=—1/60,  dgp=877/576Q daz=—733/960, dag=13/384  ds5=203/288 dsg= —223/1920Q
da7 = 1/320, dag = 13/576Q

_ DéZ) c R(=7)x(n+1).

d| i—4=—0 i+4 = —13/576Q d| i-3=—di A+3 = —1/32Q d| i—2=—di i+2 = 341/288Q
d|| 1—_d| |+1—_2069/2880 d||— 5 |—5 n 3

_ Dés) e R* (1) defined by the elements Dél)-

For the cubic cask = 3 see [6], where the matriRs is given.
In order to analyse the errdif — Qkf)' at the quasi-interpolation nodgs we consider (3) and we compute the
Taylor expansion of at these nodes. With the help of a computer algebra systemetibe following results.

Proposition 1 For sufficiently smooth functions f, the error at the quaserpolation nodes is given by:
« fork=3
“i+omh), i=1n+1, - f|=BIEY+omn), i=2n,

/ / 3
ly; — fi :hﬂfi
Gl Lomd), i=3,...,n—1;

/ / 4
|Yi—fi|=%)|fi

. fork=4

|y;_f{|—128h4|f |+O(h5 i=1n+2, |y—f]= Glfffoh4|f5|+0(h5) i=2,n+1,

/ ! . / / 5 .

Iyi—fil—ﬁé%ﬁ‘lf |+Oh5),l—3n ly; — f\—lgfglzdﬂ“lf \+Oh5) i=4n-1,

Y — | = i1V |+ 0(h%), i=5.n—2, |yl — | = shech®| V| + O(h®), i =6,....n—3.
. fork=5

|%—ﬂr-3f\+om%A:Ln+L i — /1= BI£®+oh®), i=2,n,

y— 1= 20905£®| L oh8), i=3n—1, |y —f| =251 +0(h8), i=4n-2,
1 1 5760 I 1 5760

ly — /| = 4032h6\f )|+0(h8), i =5,...,n—3.

Since the global approximation errg¢f — Qkf)' is O(h¥) [3], there appears a superconvergence phenomenon for the
odd cases k= 3,5 at the inner quasi-interpolation nodes.

Now we propose the following two examples of approximatidrderivatives by the above formulas, in case
k = 3,4,5 and we compare them with the results obtained in [2] by wiffdation formulas based on quadratic
quasi-interpolating splines. The test functions dre- ¢, j = 1,2 on| = [-1,1], with @ (x) = %,r(l—xz)2 and

@(X) = sin(mx) + sin(57x). We compute n\w/a}d’(v) — Q f(v)|, whereV = 71 for k even andv = .72 for k odd.
ve

These maximum absolute errors are reported in Table 1 foedasing values ofi and they confirm the results of

Proposition 1. As expected, we can notice t@;ﬂs exactly reproduced using quartic and quintic splines.

COLLOCATION METHODS FOR UNIVARIATE BOUNDARY-VALUE PROBLEMS

We consider the following boundary-value problem

r(xu(x) = f(x), forxel,

& (b0 ,
{3(():u(>) @



TABLE 1. Maximum absolute errors.

| n | | k=221 k=3 k=4 k=5 || |k=2[2] k=3 k=4 k=5 |
8 6.5(-3) 2.3(-2) b5.6(-17) 5.5(-17 30.8 309 197 589
16 8.1(-4) 2.9(-3) 1.4(-16) 1.4(-16 13.9 14.0 6.6 28.7
32 || @ | 10(-4) 3.7(-4) 3.1(-16) 1.7(-16) @ 3.1 3.1 1.9(1) 1.7
64 1.3(-5) 4.6(-5) 7.8(-16) 6.7(-16 25(-1) 25(-1) 3.8(-2) 6.2(-2
128 1.6(-6) 5.7(-6) 1.6(-15) 1.8(-15 1.7(:2)  17(-2) 2.9(-3) 1.2(-3

wherep € CY(1), r € C(I) and f is a piecewise continuous function bnWe can use the QIs previously considered
and their differentiation matrices to solve this problem.

Let u be the vector of unknown values of at the points{tj,i € #}, # = {2,...,n+ 1} if k is even and
 ={2,...,n} if kis odd, and lefi be the augmented vector with 0 as first and last elements.i@wirgy Di{
we obtain an approximation of at the guasi-interpolation nodes. Then, we multiply thistee by the diagonal
matrix P, with P(i,i) = p(t;) (t € Z;L if kis event; € .72 if kis odd) and we multiply again bpy. Denoting byR the
diagonal matrix defined biR(i,i) =r(t;) (t € Zl if kis eventj € 72 if kis odd), we see that the left-hand side of the
differential equation (4) is approximated by the vector

Al := (—D¢PDx+R) .

Let A be the matrix deduced fros by deleting the first and last rows and columns, it is wellsknd[8] Chap.7) that
the problem is equivalent to solve the linear systam= f, wheref is the vector of componentt;), i € .#.
We propose the following two test problems:

Test 1:

" (X) +u(x) = (1+ 1) sin(7x), u(—1) = u(1) = 0, whereu(x) = sin(7x).
Test 2: +u(x

—u
—u'(x) ) = exp(%) ((100r + 3) sin(107x) — 10mcog 107x) ) + (9772 + 1) sin(371x),
u(—1) = u(1) = 0, whereu(x) = exp(3) sin(107x) + sin(37x).

We compute rr}apu(ti) —u(i)|, reporting our results in Table 2, far= 3,4, 5. If we compare them with those obtained
les

in [2], in casek = 2 (also reported in Table 2), we can remark the good perfocemof the formulas based on high
degree Qls.
TABLE 2. Maximum absolute errors.

| n | | k=2[2] k=3 k=4 k=5 | | k=2[2] k=3 k=4 k=5 |
8 1.8(-2) 2.3(-2) 5.4(3) 3.6(-3) 39 41 34 38
16 1.2(-3)  1.3(-3) 2.1(-4) 1.0(-4) 22 22 16 19
32 || Test1| 7.6(-5) 8.2(-5) 7.6(-6) 1.6(-6)| Test2| 2.9 3.4 1.5 2.8
64 48(-6) 53(-6) 3.3(-7) 2.2(-8) 1.2(-1)  2.4(-1) 2.3(2) 5.3(-2
128 3.0(-7) 3.4(7) 1.7(-8) 3.2(-10 6.3(-3) 1.4(-2) 1.2(-3) 9.7(-4
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