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Abstract. We prove the so-called generalized Haff’s law yielding the optimal algebraic cooling
rate of the temperature of a granular gas described by the homogeneous Boltzmann equation for
inelastic interactions with nonconstant restitution coefficient. Our analysis is carried through a careful
study of the infinite system of moments of the solution to the Boltzmann equation for granular gases
and precise Lp estimates in the self-similar variables. In the process, we generalize several results on
the Boltzmann collision operator obtained recently for homogeneous granular gases with constant
restitution coefficient to a broader class of physical restitution coefficients that depend on the collision
impact velocity. This generalization leads to the so-called L1-exponential tails theorem for this model.
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1. Introduction.

1.1. General setting. Rapid granular flows can be successfully described by
the Boltzmann equation conveniently modified to account for the energy dissipation
due to the inelasticity of collisions. For such a description, one usually considers
the collective dynamics of inelastic hard spheres interacting through binary collisions
[12, 27, 30]. The loss of mechanical energy due to collisions is characterized by the
so-called normal restitution coefficient which quantifies the loss of relative normal
velocity of a pair of colliding particles after the collision with respect to the impact
velocity. Namely, if v and v� denote the velocities of two particles before they collide,
their respective velocities v′ and v′� after collisions are such that

(1.1) (u′ · n̂) = −(u · n̂) e,

where the restitution coefficient e is such that 0 � e � 1 and n̂ ∈ S2 determines
the impact direction; i.e., n̂ stands for the unit vector that points from the v-particle
center to the v�-particle center at the instant of impact. Hereafter

u = v − v�, u′ = v′ − v′�,

denote, respectively, the relative velocity before and after collision. The major part of
the investigation, at the physical as well as the mathematical levels, has been devoted
to the particular case of a constant normal restitution. However, as described in the
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monograph [12], it appears that a more relevant description of granular gases should
deal with a variable restitution coefficient e(·) depending on the impact velocity; i.e.,

e := e(|u · n̂|).

The most common model is the one corresponding to viscoelastic hard spheres for
which the restitution coefficient has been derived by Schwager and Pöschel in [27]. For
this peculiar model, e(·) admits the following representation as an infinite expansion
series:

(1.2) e(|u · n̂|) = 1 +

∞∑
k=1

(−1)kak|u · n̂|k/5, u ∈ R
3, n̂ ∈ S

2,

where ak � 0 for any k ∈ N. We refer the reader to [12, 27] for the physical consider-
ations leading to the above expression (see also Appendix A for several properties of
e(·) in the case of viscoelastic hard spheres). This is the principal example we have in
mind for most of the results in the paper, though, as we shall see, our approach will
cover more general cases including the one of constant restitution coefficient.

In a kinetic framework, behavior of the granular flows is described, in the spatially
homogeneous situation we shall consider here, by the so-called velocity distribution
f(v, t) which represents the probability density of particles with velocity v ∈ R3 at
time t � 0. The time-evolution of the one-particle distribution function f(t, v), v ∈ R

3,
t > 0, satisfies the following:

(1.3) ∂tf(t, v) = Qe(f, f)(t, v), f(t = 0, v) = f0(v),

where Qe(f, f) is the inelastic Boltzmann collision operator, expressing the effect of
binary collisions of particles. The collision operator Qe shares a common structure
with the classical Boltzmann operator for elastic collision [16, 29] but is conveniently
modified in order to take into account the inelastic character of the collision mecha-
nism. In particular, Qe depends in a very strong and explicit way on the restitution
coefficient e. Of course, for e ≡ 1, one recovers the classical Boltzmann operator. We
postpone to section 2.1 the precise expression of Qe. Due to the dissipation of kinetic
energy during collisions, in the absence of external forces, the granular temperature

E(t) =
∫
R3

f(t, v)|v|2 dv

is continuously decreasing and is expected to go to zero as time goes to infinity,
expressing the cooling of the granular gases.

Determining the precise rate of decay to zero for the granular temperature is the
main goal of the present work. The asymptotic behavior for the granular temperature
was first explained in [18] by Haff at the beginning of the ’80s for the case of constant
restitution coefficient; thus, it has become standard to refer to this behavior simply
as Haff’s law.

The mathematical study of Boltzmann models for granular flows was first
restricted to the so-called inelastic Maxwell molecules where the collision rate is in-
dependent of the relative velocity [5, 6, 9, 10, 13, 15]. Later, the mathematical inves-
tigation of hard-sphere interactions was initiated in [17] for diffusively heated gases
and continued in a series of papers [22, 23] where the first rigorous proof of Haff’s
law was presented in the case of constant restitution coefficient. Additional relevant
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HAFF’S LAW FOR VISCOELASTIC HARD SPHERES 2501

work in the existence and stability of the homogeneous cooling state can be found
in [24, 25]. We refer to [30] for a mathematical overview of the relevant questions
addressed by the kinetic theory of granular gases and a complete bibliography on the
topic.

From the mathematical viewpoint the literature on granular gases with vari-
able restitution coefficient is rather limited. However, the Cauchy problem for the
homogeneous inelastic Boltzmann equation has been studied in great detail and full
generality in [22], including the class of restitution coefficients that we are dealing with
in this paper. For the inhomogeneous inelastic Boltzmann equation the literature is
more scarce; in this respect we mention the work by one of the authors [1] that treats
the Cauchy problem in the case of near-vacuum data. It is worthwhile mentioning
that the scarcity of results regarding existence of solutions for the inhomogeneous
case is explained by the lack of entropy estimates for the inelastic Boltzmann equa-
tion; thus, well-known theories like the DiPerna–Lions renormalized solutions are no
longer available. More complex behaviors that involve boundaries, for instance, clus-
ters and Maxwell demons, are well beyond of the present techniques. Notice, however,
that staying somehow at a formal level and resorting to hydrodynamic closures at the
Euler or Navier–Stokes accuracy, it is possible to recover an algebraic decay rate of
the granular temperature for variable restitution coefficient in some peculiar quasi-
elastic regime in spatially inhomogeneous situations [28, 7] (we also refer to [14] for
a macroscopic description of granular gases with constant resitution coefficient and a
justification of Haff’s law in this case).

1.2. Main results and methodology. Physical considerations and careful di-
mensional analysis led Haff [18] to predict that, for constant restitution coefficient, the
temperature E(t) of a granular gas should cool down at a quadratic rate as follows:

E(t) = O
(
t−2

)
as t→ ∞.

Similar considerations led Schwager and Pöschel [27] to conclude that, for the resti-
tution coefficient associated with the viscoelastic hard spheres (1.2), the decay should
be slower than the one predicted by Haff, namely, at an algebraic rate proportional to
t−5/3. These considerations are precisely described in the main result of this paper,
where the key intuitive fact is that the decay rate of E(t) is completely determined by
the behavior of the restitution coefficient e(|u · n̂|) for small impact velocity (see As-
sumption 3.1(1)). Precisely, our result is valid for restitution coefficient such that there
exist some constants α > 0 and γ � 0 such that

e(|u · n̂|) � 1− α|u · n̂|γ for |u · n̂| � 0,

and it reads as follows.
Theorem 1.1. For any initial distribution velocity f0 � 0 satisfying the condi-

tions given by (2.8) with f0 ∈ Lp0(R3) for some 1 < p0 <∞, the solution f(t, v) to the
associated Boltzmann equation (2.7) satisfies the generalized Haff’s law for variable
restitution coefficient e(·) fulfilling Assumptions 3.1 and 4.10,

(1.4) c(1 + t)−
2

1+γ � E(t) � C(1 + t)−
2

1+γ , t � 0,

where E(t) =
∫
R3 f(t, v)|v|2 dv and c and C are positive constants.

We recover with Theorem 1.1 the optimal decay for constant restitution coefficient
(γ = 0) given in [24] and the one predicted for viscoelastic hard spheres (γ = 1/5)
in [27]. The method of the proof has similarities to that of the constant restitution
coefficient [24] but is technically more challenging.
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The main tools to prove Theorem 1.1 are the following:
• The study of the moments of solutions to the Boltzmann equation uses a
generalization of Povzner’s lemma developed in [8, 11].

• Precise Lp estimates, in the same spirit of [24], of the solution to the Boltz-
mann equation for p > 1 are used.

• For the previous item, the analysis is understood in the easiest way using
rescaled solutions to (1.3) of the form

f(t, v) = V (t)3g(τ(t), V (t)v),

where τ(·) and V (·) are fixed time-scaling functions to be crafted depend-
ing upon the restitution coefficient. In the self-similar variables (τ, w) the
function g(τ, w) is a solution of an evolution problem of the type

(1.5) ∂τg(τ, w) + ξ(τ)∇w · (wg(τ, w)) = Qẽ(τ)(g, g)

for some ξ(τ) depending on the time scale τ . The collision operatorQẽ(τ)(g, g)
is associated with a time-dependent restitution coefficient ẽ(τ) (see section 2.3
for details). In this respect we note that one notable difference with respect
to the case of a constant restitution coefficient treated in [23] is that the
rescaled collision operator depends on the (rescaled) time τ , leading to a
nonautonomous problem for g. This is the main reason why the construction
of self-similar profile g independent of τ obtained in [23] (homogeneous cooling
state) is not valid for nonconstant restitution coefficient.

Let us explain in more details our method of proof.
1. We start proving in sections 2 and 3 an upper bound for the decay of the en-

ergy. This shows that, for restitution coefficients satisfying 3.1, the cooling of
the temperature is at least algebraic. More precisely, under suitable assump-
tions on the restitution coefficient e(·), we exhibit a convex and increasing
mapping Ψe such that

d

dt
E(t) � −Ψe(E(t)) ∀t � 0,

which leads to an upper bound for E(t) of the type

E(t) � C(1 + t)−
2

1+γ ∀t � 0

for some positive constant C > 0.
2. The lower bound for the free cooling is much more difficult to establish and

consists in proving that the cooling rate found above is optimal; i.e., there
exists c > 0 such that

(1.6) E(t) � c(1 + t)−
2

1+γ ∀t � 0.

A careful study of the moments of the solution to (1.3) shows that it suffices
to prove a similar algebraic lower bound with some arbitrary rate; i.e., (1.6)
will hold if there exists λ > 0 and c > 0 such that

E(t) � c(1 + t)−λ ∀t � 0.

These two points are proved in the last part of section 3.
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3. To prove that the lower bound with some unprescribed rate λ holds, we use,
as in [23], precise Lp estimates (p > 1) for solutions to (1.3) in self-similar
variables. We craft correct time-scaling functions τ(t) and V (t) such that (1.6)
is equivalent to Θ(τ(t)) � c (here Θ(·) denotes the second moment of g).
Once this scale is fixed, the function g(τ, w) satisfies the rescaled Boltzmann
equation (1.5) with ξ(τ) → 0 as τ → ∞. This is a major difference from the
constant restitution coefficient case where ξ(τ) ≡ 1. This technical difficulty is
overcome by proving that the Lp-norm of g(τ) behaves at most polynomially
with respect to τ . The details can be found in section 5.

The derivation of precise Lp estimates for the solution g(τ, w) to (1.5) requires
a careful study of the collision operator Qe and its regularity properties. We present
in section 4 a full discussion of the regularity and integrability properties of the
gain part of the collision operator Q+

B,e associated to a general collision kernel
B(u, σ) = Φ(|u|)b(û · σ) satisfying Grad’s cut-off assumption (see section 2 for the
definition). This section is divided in four subsections starting with the Carleman
representation of the gain operator Q+

B,e. It is well known [19, 20, 21, 26, 31, 23] that
such a representation is essential for the study of regularizing properties of the gain
operator Q+

B,e when smooth assumptions are imposed on the kernel B(u, σ). Our con-
tribution in sections 4.3 and 4.4 is to extend the existing theory to the inelastic case
with variable restitution coefficient. Since the estimates of section 4 will be applied
for solutions written in self-similar variables, we make sure that such estimates are
independent of the restitution coefficient. This allows us to overcome the technical
problem of the time dependence of the gain operator in the self-similar variables.
Additional convolution-like inequalities [3, 26] are derived in subsection 4.2 assuming
minimal regularity of the angular kernel b(·).

The final part of this work is devoted to the proof of propagation of exponential
L1-tails where the full power of Povzner’s lemma is exploited. Much of the argument,
with a minor adaptation, is taken from [11]. This important result is presented in the
final section for convenience and not because the machinery of sections 4 and 5 is
needed to prove it.

Theorem 1.2 (L1-exponential tails theorem). Let B(u, σ) = |u|b(û · σ) be the
collision kernel with b(·) satisfying (2.6) and b(·) ∈ Lq(S2) for some q � 1. Assume
that the variable restitution coefficient e(·) satisfies Assumption 3.1. Furthermore,
assume that f0 satisfies (2.8), and that there exists r0 > 0 such that∫

R3

f0(v) exp (r0|v|) dv <∞.

Then there exists some r � r0 such that

(1.7) sup
t�0

∫
R3

f(t, v) exp (rV (t)|v|) dw <∞.

The function V (t) is the appropriate scaling, depending solely on the restitution coef-
ficient, given in (3.17).

1.3. Notations. Let us introduce the notations we shall use in the following.
Throughout the paper we shall use the notation 〈·〉 =

√
1 + | · |2. We denote, for any

η ∈ R, the Banach space

L1
η =

{
f : R3 → R measurable ; ‖f‖L1

η
:=

∫
R3

|f(v)| 〈v〉η dv < +∞
}
.
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More generally, we define the weighted Lebesgue space Lp
η(R

3) (p ∈ [1,+∞),
η ∈ R) by the norm

‖f‖Lp
η(R3) =

[∫
R3

|f(v)|p 〈v〉pη dv
]1/p

, 1 � p <∞,

while ‖f‖L∞
η (R3) = supv∈R3 (|f(v)|〈v〉η) for p = ∞.

For any k ∈ N, we denote by Hk = Hk(R3) the usual Sobolev space defined by
the norm

‖f‖Hk =

⎡⎣ ∑
|j|�k

‖∂jvf‖
p
L2

⎤⎦1/p

,

where ∂jv denotes the partial derivative associated with the multi-index j ∈ N
N .

Moreover, this definition can be extended to Hs for any s � 0 by using the Fourier
transform F . The binomial coefficients for noninteger p � 0 and k ∈ N are defined as(

p
k

)
=
p(p− 1) . . . (p− k + 1)

k!
, k � 1,

(
p
0

)
= 1.

2. Preliminaries.

2.1. The kinetic model. We assume the granular particles to be perfectly
smooth hard spheres of mass m = 1 performing inelastic collisions. Recall that, as
explained in the introduction, the inelasticity of the collision mechanism is character-
ized by a single parameter, namely, the coefficient of normal restitution 0 � e � 1
which we assume to be nonconstant. More precisely, let (v, v�) denote the velocities
of two particles before they collide. Their respective velocities after collisions v′ and
v′� are given, by virtue of (1.1) and the conservation of momentum, by

(2.1) v′ = v − 1 + e

2
(u · n̂)n̂, v′� = v� +

1 + e

2
(u · n̂)n̂,

where the symbol u stands for the relative velocity u = v − v� and n̂ is the impact
direction. From the physical viewpoint, a common approximation consists in choosing
e as a suitable function of the impact velocity; i.e., e := e(|u·n̂|). The main assumptions
on the function e(·) are listed in the following (see [1]).

Assumption 2.1. Assume the following hold.
(1) The mapping r ∈ R+ �→ e(r) ∈ (0, 1] is absolutely continuous.
(2) The mapping r ∈ R+ → ϑ(r) := r e(r) is strictly increasing.
Further assumptions on the function e(·) shall be needed later on. Given assump-

tion (2), the Jacobian of the transformation (2.1) can be computed as

J :=

∣∣∣∣∂(v′, v′�)∂(v, v�)

∣∣∣∣ = e(|u · n̂|) + |u · n̂| de
dr

(|u · n̂|) = dϑ

dr
(|u · n̂|) > 0.

In practical situations, the restitution coefficient e(·) is usually chosen among the
following three examples.

Example 2.2 (constant restitution coefficient). The most documented example in
the literature is the one in which

e(r) = e0 ∈ (0, 1] for any r � 0.
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Fig. 1. Restitution coefficient for viscoelastic hard spheres given by (2.3) with a = 0.12

Example 2.3 (monotone decreasing). A second example of interest is the one in
which the restitution coefficient e(·) is a monotone decreasing function:

(2.2) e(r) =
1

1 + arη
∀r � 0,

where a > 0 and η > 0 are two given constants.
Example 2.4 (viscoelastic hard spheres). This is the most physically relevant

model treated in this work. For such a model, the properties of the restitution coeffi-
cient have been derived in [12, 27] where representation (1.2) is given. It also accepts
the implicit representation

(2.3) e(r) + ar1/5e(r)3/5 = 1,

where a > 0 is a suitable positive constant depending on the material viscosity (see
Figure 1).

In the following, it shall be more convenient to use the following equivalent
parametrization of the postcollisional velocities. For distinct velocities v and v�, let
û = u

|u| be the relative velocity unit vector. The change of variables,

σ = û− 2 (û · n̂)n̂ ∈ S
2,

provides an alternative parametrization of the unit sphere S2 for which the impact
velocity reads

|u · n̂| = |u| |û · n̂| = |u|
√

1− û · σ
2

,

Then the postcollisional velocities (v′, v′�) given in (2.1) are transformed to

(2.4) v′ = v − β
u− |u|σ

2
, v′� = v� + β

u− |u|σ
2

,
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where

β = β

(
|u|

√
1−û·σ

2

)
=

1 + e

2
∈
(
1
2 , 1

]
.

In this representation, the weak formulation of the Boltzmann collision operator QB,e

given a collision kernel B(u, σ) reads

(2.5)

∫
R3

QB,e(f, g)(v)ψ(v) dv =
1

2

∫
R3×R3

f(v)g(v�)AB,e[ψ](v, v�) dv� dv

for any suitable test function ψ = ψ(v). Here

AB,e[ψ](v, v�) =

∫
S2

(
ψ(v′) + ψ(v′�)− ψ(v) − ψ(v�)

)
B(u, σ) dσ,

with v′, v′� defined in (2.4). We assume that the collision kernel B(u, σ) takes the form

B(u, σ) = Φ(|u|)b(û · σ),

where Φ(·) is a suitable nonnegative function known as potential, while the angular
kernel b(·) is usually assumed to belong to L1(−1, 1). For any fixed vector û, the
angular kernel defines a measure on the sphere through the mapping σ ∈ S2 �→
b(û ·σ) ∈ [0,∞] that we assume to satisfy the renormalized Grad’s cut-off hypothesis:

(2.6) ‖b‖L1(S2) = 2π ‖b‖L1(−1,1) = 1.

The most relevant model in our case is hard spheres that correspond to Φ(|u|) = |u|
and b(û·σ) = 1

4π . We shall also consider the generalized hard-sphere collision kernel for
which Φ(|u|) = |u| and the angular kernel is satisfying (2.6) without being necessarily
constant. For the particular model of hard-sphere interactions, we simply denote the
collision operator QB,e by Qe.

2.2. On the Cauchy problem. We consider the following homogeneous Boltz-
mann equation:

(2.7)

{
∂tf(t, v) = QB,e(f, f)(t, v), t > 0, v ∈ R3,

f(0, v) = f0(v), v ∈ R3,

where the initial datum f0 is a nonnegative velocity function such that

(2.8)

∫
R3

f0(v) dv = 1,

∫
R3

f0(v)v dv = 0, and

∫
R3

f0(v)|v|3 dv <∞.

There is no loss of generality in assuming the two conditions in (2.8) due to scaling
and translational arguments. We say that a nonnegative f = f(t, v) is a solution to
(2.7) if f ∈ C([0,∞), L1

2(R
3)) and∫ ∞

0

dt

∫
R3

(
f(t, v)∂tψ(t, v) +QB,e(f, f)(t, v)ψ(t, v)

)
dv =

∫
R3

f0(v)ψ(0, v) dv

holds for any compactly supported ψ ∈ C1([0,∞) × R3). Under Assumption
2.1, Assumptions H1 and H2 of [22] are fulfilled. (With the terminology of [22],
we are dealing with a noncoupled collision rate and, more precisely, with the
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so-called generalized viscoelastic model; see [22, p. 661].) In particular, [22, Theo-
rem 1.2] applies directly and allows us to state the following.

Theorem 2.5 (Mischler, Mouhot, and Rodriguez Ricard [22]). For any nonneg-
ative velocity function f0 satisfying (2.8), there is a unique solution f = f(t, v) to
(2.7). Moreover,

(2.9)

∫
R3

f(t, v) dv = 1,

∫
R3

f(t, v)v dv = 0 ∀t � 0.

2.3. Self-similar variables. Let us discuss precisely the rescaling using self-
similar variables. Let f(t, v) be the solution to (2.7) associated to some initial datum
f0 satisfying (2.8) and collision kernel

B(u, σ) = Φ(|u|)b(û · σ),

with b(·) satisfying (2.6). The rescaled solution g = g(τ, w) is defined such that

(2.10) f(t, v) = V (t)3g(τ(t), V (t)v),

where τ(·) and V (·) are time-scaling functions to be determined solely on the behavior
of the restitution coefficient in the low-impact velocity region. Since these are scaling
functions they are increasing and satisfy τ(0) = 0 and V (0) = 1. One has

1 =

∫
R3

f(t, v) dv =

∫
R3

g(τ(t), w) dw ∀t � 0,

and g(0, w) = f0(w). Furthermore, some elementary calculations show that the func-
tion g(τ, w) satisfies

(2.11) V (t)−2Qe(f, f)(t, v) = τ̇ (t)V (t)∂τg(τ, w) + V̇ (t)∇w · (wg(τ, w))
∣∣∣∣
w=V (t)v

τ=τ(t)

,

where the overdot symbol denotes the derivative with respect to t. Moreover, the
expression of the collision operator in the self-similar variables is

V (t)−2QB,e(f, f)

(
t,

v

V (t)

)
= QBτ ,ẽτ (g, g)(τ(t), v),

where the rescaled collision kernel Bτ is given by

Bτ(t)(u, σ) := V (t)Φ

(
|u|
V (t)

)
b(û · σ).

The rescaled restitution coefficient ẽτ has been defined by

ẽτ : (r, t) �−→ ẽτ(t)(r) := e

(
r

V (t)

)
for r � 0, t � 0.

Since the mapping t ∈ R+ �−→ τ(t) ∈ R+ is injective with inverse ζ, one can rewrite
(2.11) in terms of τ only. Thus, g(τ, w) is a solution to the following rescaled Boltz-
mann equation:

(2.12) λ(τ)∂τ g(τ, w) + ξ(τ)∇w · (wg(τ, w)) = QBτ ,ẽτ (g, g)(τ, w) ∀τ > 0,
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with

λ(·) = τ̇ (ζ(·))V (ζ(·)) and ξ(·) = V̇ (ζ(·)),

and model parameters

(2.13) Bτ (u, σ) = V (ζ(τ))Φ

(
|u|

V (ζ(τ))

)
b(û · σ) and ẽτ (r) = e

(
r

V (ζ(τ))

)
.

Notice that, for generalized hard-sphere interactions (i.e., whenever Φ(|u|) = |u|), one
has Bτ = B. For true hard-sphere interaction (i.e., b(·) = 1

4π ), one simply denotes
the rescaled collision operator by Qẽτ . In addition, observe that the rescaled operator
depends on time, and therefore, g is a solution to a nonautonomous problem.

2.4. Povzner-type inequalities. We extend in this section the results of [11]
and [24] to the case of variable restitution coefficient satisfying 2.1. We consider a
collision kernel of the form

B(u, σ) = Φ(|u|)b(û · σ),

with angular kernel b(·) satisfying the renormalized Grad’s cut-off assumption (2.6).
Let f be a nonnegative function satisfying (2.9) and ψ(v) = Ψ(|v|2) be a given test
function with Ψ nondecreasing and convex. Then (2.5) leads to∫

R3

QB,e(f, f)(v)ψ(v) dv =
1

2

∫
R3×R3

f(v)f(v�)AB,e[ψ](v, v�) dv� dv,

with

AB,e[ψ](v, v�) = Φ(|u|)
(
A+

B,e[Ψ](v, v�)−A−
B,e[Ψ](v, v�)

)
,

where

A+
B,e[Ψ](v, v�) =

∫
S2

(
Ψ(|v′|2) + Ψ(|v′�|2)

)
b(û · σ) dσ.

Using (2.6) we also have

A−
B,e[Ψ](v, v�) =

∫
S2

(ψ(v) + ψ(v�)) b(û · σ) dσ =
(
Ψ(|v|2) + Ψ(|v�|2)

)
.

Following [11], we define the velocity of the center of mass U = v+v�
2 so that

v′ = U +
|u|
2
ω, v′� = U − |u|

2
ω, with ω = (1− β)û+ βσ.

Recall that for any vector x ∈ R
3, we set x̂ = x

|x| . When e, or equivalently β, is

constant, the strategy of [11] consists, roughly speaking, of performing a suitable
change of unknown σ → ω̂ to carefully estimate A+

B,e[ψ]. For variable β, such strategy
does not apply directly. Instead, observe that |ω| � 1 and, since Ψ is increasing, one
has

Ψ(|v′|2) + Ψ(|v′�|2) � Ψ

(
|U |2 + |u|2

4
+ |u||U |Û · ω

)
+Ψ

(
|U |2 + |u|2

4
− |u||U |Û · ω

)
= Ψ

(
E
1 + ξ Û · ω

2

)
+Ψ

(
E
1− ξ Û · ω

2

)
,
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where we have set E := |v|2+ |v�|2 = 2|U |2+ |u|2
2 and ξ = 2 |U| |u|

E . Since Ψ(·) is convex
the mapping

Ψ0(t) = Ψ(x+ ty) + Ψ(x− ty)

is even and nondecreasing for t � 0 and x, y ∈ R (see [11]). Therefore, using that
ξ � 1 one gets

(2.14) Ψ(|v′|2) + Ψ(|v′�|2) � Ψ

(
E
1 + Û · ω

2

)
+Ψ

(
E
1− Û · ω

2

)
.

In the case that Û · σ � 0 it follows that∣∣∣Û · ω
∣∣∣ = ∣∣∣(1 − β)Û · û+ βÛ · σ

∣∣∣ � (1− β) + βÛ · σ;

thus, using the fact that Ψ0(t) is even and nondecreasing for t � 0, we conclude from
(2.14) that

Ψ(|v′|2) + Ψ(|v′�|2) � Ψ

(
E
2− β + βÛ · σ

2

)
+Ψ

(
E
β − βÛ · σ

2

)
.

When Û · σ � 0, a similar argument shows that

Ψ(|v′|2) + Ψ(|v′�|2) � Ψ

(
E
2− β − βÛ · σ

2

)
+Ψ

(
E
β + βÛ · σ

2

)
.

Hence, setting b̃(s) = b(s)+ b(−s) and using these last two estimates with the change
of variables σ → −σ, we get

A+
B,e[Ψ](v, v�) �

∫
{̂U·σ�0}

[
Ψ

(
E
2− β + βÛ · σ

2

)
+Ψ

(
E
β − βÛ · σ

2

)]
b̃(û · σ) dσ

�
∫
{̂U·σ�0}

[
Ψ

(
E
3 + Û · σ

4

)
+Ψ

(
E
1− Û · σ

4

)]
b̃(û · σ) dσ,(2.15)

where the second inequality can be shown by writing

2− β + βÛ · σ
2

=
1

2
+

(
1

2
− β

2

(
1− Û · σ

))
and

β − βÛ · σ
2

=
1

2
−

(
1

2
− β

2

(
1− Û · σ

))
.

The term in parentheses is maximized when β = 1/2; thus, the monotonicity of Ψ0

implies the result.
Next, we particularize the previous estimates to the important case Ψ(x) = xp.

This choice will lead to the study of the moments of solutions.
Lemma 2.6. Let q � 1 be such that b ∈ Lq(S2). Then, for any restitution co-

efficient e(·) satisfying Assumption 2.1 and any real p � 1, there exists an explicit
constant κp > 0 such that

(2.16) Φ(|u|)−1AB,e[| · |p](v, v�) � −(1− κp)
(
|v|2p + |v�|2p

)
+ κp

[(
|v|2 + |v�|2

)p − |v|2p − |v�|2p
]
.
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This constant κp has the following properties.
(1) κ1 � 1.
(2) For p � 1 the map p �→ κp is strictly decreasing. In particular, κp < 1 for

p > 1.
(3) κp = O(1/p1/q

′
) for large p, where 1/q + 1/q′ = 1.

(4) For q = 1, one still has κp ↘ 0 as p→ ∞.
Proof. Let Ψp(x) = xp. From (2.15), one sees that

A+
B,e[Ψp](v, v�) � κp E

p,

where we recall that E = |v|2 + |v�|2, and we set

(2.17) κp = sup
̂U,û

∫
̂U ·σ�0

[
Ψp

(
3 + Û · σ

4

)
+Ψp

(
1− Û · σ

4

)]
b̃(û · σ) dσ.

It is clear that the above inequality yields (2.16). Let us prove that κp satisfies the
aforementioned conditions. First, we use the Hölder inequality to obtain

κp � 4π ‖b‖Lq(S2)

(∫ 1

−1

[
Ψp

(
3 + s

4

)
+Ψp

(
1− s

4

)]q′
ds

)1/q′

<
16π ‖b‖Lq(S2)

(q′p+ 1)1/q′
.

This proves that κp is finite and also yields item (3) for q > 1. For items (1) and
(2) observe that the integral in the right-hand side (2.15) is continuous in the vectors

Û , û ∈ S2. This can be shown by changing the integral to polar coordinates. Thus,
the supremum in these arguments is achieved. Therefore, there exist Û0, û0 ∈ S2

(depending on the angular kernel b) such that

κp =

∫
{̂U0·σ�0}

[
Ψp

(
3 + Û0 · σ

4

)
+Ψp

(
1− Û0 · σ

4

)]
b̃(û0 · σ) dσ.

A simple computation with this estimate shows that κ1 = ‖b‖L1(S2) = 1. Moreover,
the integrand is almost everywhere strictly decreasing as p increases, and this proves
(2). Finally, let p→ ∞ in this expression and use dominated convergence to conclude
(4) for the case q = 1.

The above lemma is analogous to [11, Corollary 1] for variable restitution coeffi-
cient e(·), and it proves that the subsequent results of [11] extend readily to variable
restitution coefficient. In particular, [11, Lemma 3] reads1 as follows.

Proposition 2.7. Let f be a nonnegative function satisfying (2.9). For any p � 1,
we set

mp =

∫
R3

f(v)|v|2p dv.

Assume that the collision kernel B(u, σ) = |u|b(û · σ) is such that b(·) satisfies (2.6)
with b(·) ∈ Lq(S2) for some q � 1. For any restitution coefficient e(·) satisfying
Assumption 2.1 and any real p � 1, one has

(2.18)

∫
R3

QB,e(f, f)(v)|v|2p dv � −(1− κp)mp+1/2 + κp Sp,

1Notice that, though stated for hard-sphere interactions only, [11, Lemma 3] applies to our
situation thanks to Lemma 2.6 above and [11, Lemma 1].
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where

Sp =

[p+1/2]∑
k=1

(
p
k

)(
mk+1/2 mp−k +mk mp−k+1/2

)
,

with [p+1
2 ] denoting the integer part of p+1

2 and κp being the constant of Lemma 2.6.
Inequality (2.18) was introduced in [11] because the term Sp involves only mo-

ments of order p− 1/2. Thus, the above estimate has important consequences on the
propagation of moments for the solution to (2.7) (see section 3 for more discussion).

3. Free cooling of granular gases: Generalized Haff’s law. We investigate
in this section the so-called generalized Haff’s law for granular gases with variable
restitution coefficient. More precisely, we aim to derive the exact rate of decay of the
temperature E(t) of the solution to (2.7). In this section, we exclusively study the
generalized hard-sphere collision kernel,

B(u, σ) = |u|b(û · σ),

where b(·) satisfies (2.6), but generalization to the so-called variable hard-sphere in-
teractions (i.e., Φ(|u|) = |u|s for s � 0) is easy to handle. Let f0 be a nonnegative
velocity distribution satisfying (2.8), and let f(t, v) be the associated solution to the
Cauchy problem (2.7). We denote its temperature by E(t):

E(t) =
∫
R3

f(t, v)|v|2 dv.

The conditions (2.8) imply that supt�0 E(t) < ∞. Indeed, the evolution of E(t) is
governed by

d

dt
E(t) =

∫
R3

QB,e(f, f)(t, v)|v|2 dv =
1

2

∫
R3×R3

f(t, v)f(t, v�)|u|

×
∫
S2

(
|v′|2 + |v′�|2 − |v|2 − |v�|2

)
b(û · σ) dσ dv� dv,

where we applied (2.5) with ψ(v) = |v|2. One checks readily that

|v′|2 + |v′�|2 − |v|2 − |v�|2 = −|u|2 1− û · σ
4

(
1− e2

(
|u|

√
1− û · σ

2

))
so that

d

dt
E(t) = −1

2

∫
R3×R3

f(t, v)f(t, v�)|u|3 dv dv�

×
∫
S2

1− û · σ
4

(
1− e2

(
|u|

√
1− û · σ

2

))
b(û · σ) dσ

We compute this last integral over S2 (for fixed v and v�) using polar coordinates to
get the following:

|u|3
∫
S2

1− û · σ
8

(
1− e2

(
|u|

√
1− û · σ

2

))
b(û · σ) dσ

= 2π|u|3
∫ 1

0

(
1− e2(|u|y)

)
b(1− 2y2)y3 dy = Ψe(|u|2),
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where we have defined

(3.1) Ψe(r) := 2πr3/2
∫ 1

0

(
1− e(

√
rz)2

)
b
(
1− 2z2

)
z3 dz ∀r � 0.

In other words, the evolution of the temperature E(t) is given by

d

dt
E(t) = −

∫
R3×R3

f(t, v)f(t, v�)Ψe(|u|2) dv dv� � 0, t � 0.

In addition to Assumption 2.1, we assume in the rest of the paper that the restitution
coefficient e(·) satisfies the following.

Assumption 3.1. Assume that the mapping r �→ e(r) ∈ (0, 1] satisfies Assumption
2.1 and that

(1) there exist α > 0 and γ � 0 such that

e(r) � 1− α rγ for r � 0,

(2) lim infr→∞ e(r) = e0 < 1,
(3) b(·) ∈ Lq(S2) for some q � 1, and
(4) the function r > 0 �−→ Ψe(r) defined in (3.1) is strictly increasing and convex

over (0,+∞).
Remark 3.2. For hard-sphere interactions, b(û · σ) = 1

4π ; thus, Ψe reduces to

Ψe(r) =
1

2
√
r

∫ √
r

0

(
1− e(y)2

)
y3 dy, r > 0.

We prove in Appendix A that Assumption 3.1 is satisfied for the viscoelastic hard
spheres of Example 2.4 with γ = 1/5. More generally, in the case of hard-sphere in-
teractions, Assumption 3.1(4) is fulfilled if e(·) is continuously decreasing (see Lemma
A.1 in Appendix A). For constant restitution coefficient e(r) = e0, these assumptions
are trivially satisfied.

3.1. Upper bound for E(t). We first prove the first half of Haff’s law; namely,
the temperature E(t) has at least algebraic decay.

Proposition 3.3. Let f0 be a nonnegative velocity distribution satisfying (2.8),
and let f(t, v) be the associated solution to the Cauchy problem (2.7) where the variable
restitution coefficient satisfies Assumption 3.1. Then

d

dt
E(t) � −Ψe(E(t)) ∀t � 0.

Moreover, there exists C > 0 such that

(3.2) E(t) � C (1 + t)−
2

1+γ ∀t � 0.

Proof. Recall that the evolution of the temperature is given by

(3.3)
d

dt
E(t) = −

∫
R3×R3

f(t, v)f(t, v�)Ψe(|u|2) dv dv�, t � 0,

where u = v − v�. Since Ψe(| · |2) is convex according to Assumption 3.1(4) and
f(t, v�) dv� is a probability measure over R3, Jensen’s inequality implies∫

R3

f(t, v�)Ψe(|u|2) dv� � Ψe

(∣∣∣∣v − ∫
R3

v�f(t, v�) dv�

∣∣∣∣2
)

= Ψe(|v|2),
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where we used (2.9). Applying Jensen’s inequality again, we obtain∫
R3

f(t, v)Ψe(|v|2) dv � Ψe

(∫
R3

f(t, v)|v|2 dv
)
,

and therefore,

d

dt
E(t) � −Ψe(E(t)) ∀t � 0.

Note that Ψe(·) is strictly increasing with limx→0 Ψe(x) = 0; this ensures that

lim
t→∞ E(t) = 0.

Moreover, according to Assumption 3.1(1), it is clear from (3.1) that

Ψe(x) � Cγx
3+γ
2 for x � 0,

where the constant can be taken as Cγ = 2πα
∫ 1

0 y
3+γb(1 − 2y2) dy < ∞. Since

E(t) → 0, there exists t0 > 0 such that Ψe(E(t)) � 1
2CγE(t)

3+γ
2 ∀ t � t0 which implies

that

d

dt
E(t) � −Cγ

2
E(t)

3+γ
2 ∀t � t0.

This proves (3.2) and, hence, Proposition 3.3.
Example 3.4. In the case of constant restitution coefficient e(r) = e0 ∈ (0, 1) for

any r � 0, for hard-sphere interactions, one has

Ψe(x) =
1− e20

8
x3/2.

Thus, one recovers from (3.2) the decay of the temperature established from physical
considerations (dimension analysis) in [18] and proved in [23]; namely, E(t) � C(1 +
t)−2 for large t.

Example 3.5. For the restitution coefficient e(·) associated to viscoelastic hard
spheres (see Example 2.4), one has γ = 1/5; thus, the above estimate (3.2) leads to
a decay of the temperature faster than (1 + t)−5/3 which is the one obtained in [27]
(see also [12]) from physical considerations and dimensional analysis.

Notice that, since E(t) → 0 as t → ∞, it is possible to resume the arguments of
[22, Proposition 5.1] to prove that the solution f(t, v) to (2.7) converges to a Dirac
mass as t goes to infinity; namely,

f(t, v) −→
t→∞ δv=0 weakly ∗ in M1(R3),

where M1(R3) denotes the space of normalized probability measures on R3. We shall
not investigate further on the question of longtime asymptotic behavior of the distri-
bution f(t, v) but rather try to capture the very precise rate of convergence of the
temperature to zero.

Using the Povzner-like estimate of section 2.4, it is possible, from the decay in
E(t), to deduce the decay of any moments of f . Indeed, for any t � 0 and any p � 1,
we define the p-moment of f as

(3.4) mp(t) :=

∫
R3

f(t, v)|v|2p dv.
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Corollary 3.6. Let f0 be a nonnegative velocity distribution satisfying (2.8), and
let f(t, v) be the associated solution to the Cauchy problem (2.7) where the variable
restitution coefficient satisfies Assumption 3.1. For any p � 1, there exists Kp > 0
such that

(3.5) mp(t) � Kp (1 + t)−
2p

1+γ ∀t � 0.

Proof. Set u(t) = (1 + t)−
2

1+γ . We prove that, for any p � 1, there exists Kp > 0
such that mp(t) � Kpu

p(t) for any t � 0. Observe that using classical interpolation,
it suffices to prove this for any p such that 2p ∈ N. We argue by induction. It is clear
from Proposition 3.3 that estimate (3.5) holds for p = 1. Let p > 1, with 2p ∈ N, be
fixed, and assume that for any integer 1 � j � p− 1/2 there exists Kj > 0 such that
mj(t) � Kju

j(t) holds. According to Proposition 2.7,

(3.6)
d

dt
mp(t) =

∫
R3

QB,e(f, f)(t, v)|v|2p dv � −(1− κp)mp+1/2(t) + κp Sp(t),

where

Sp(t) =

[ p+1
2 ]∑

k=1

(
p
k

)(
mk+1/2(t) mp−k(t) +mk(t) mp−k+1/2(t)

)
∀t � 0.

For p � 2, the above expression Sp(t) involves moments of order less than p − 1/2.
The case p = 3/2 is treated independently.

Step 1 (p = 3/2). In this case (3.6) reads

(3.7)
d

dt
m3/2(t) � −(1− κ3/2)m2(t) +m3/2(t)m1/2(t) + E2(t) ∀t � 0.

Let K be a positive number to be chosen later, and define

U3/2(t) := m3/2(t)−Ku(t)3/2.

Using (3.7) one has

dU3/2

dt
(t) � −(1 − κ3/2)m2(t) + m3/2(t)m1/2(t) + E2(t) +

3K

1 + γ
(1 + t)−

4+γ
1+γ .

From Holder’s inequality,

(3.8) m3/2(t) �
√
E(t)

√
m2(t) and m1/2(t) �

√
E(t) ∀t � 0;

hence,

dU3/2

dt
(t) � −(1− κ3/2)

m2
3/2(t)

E(t) +
√
E(t)m3/2(t) + E2(t) +

3K

1 + γ
(1 + t)−

4+γ
1+γ .

Since E(t) � C(1 + t)−
2

1+γ , there exist a, b, c > 0 such that

(3.9)
dU3/2

dt
(t) � −am2

3/2(t)(1 + t)
2

1+γ + b (1 + t)−
4

1+γ

+ c (1 + t)−
1

1+γm3/2(t) +
3

1 + γ
K(1 + t)−

4+γ
1+γ ∀t > 0.
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Inequality (3.9) implies the result for the case p = 3/2, provided K is large enough.
Indeed, choose K so that m3/2(0) < Ku3/2(0) = K. Then, by time-continuity of the
moments, the result follows at least for some finite time. Assume that there exists a

time t� > 0 such that m3/2(t�) = Ku
3
2 (t�) = K(1 + t�)

− 3
1+γ ; then (3.9) implies

dU3/2

dt
(t�) �

(
−aK2 + b+ cK +

3

1 + γ
K

)
(1 + t�)

− 4
1+γ < 0

whenever K is large enough. Thus, (3.5) holds for p = 3/2 choosing K3/2 := K.
Step 2 (p � 2). The induction hypothesis implies that there exists a constant

Cp > 0 such that

Sp(t) � Cp u(t)
p+1/2 ∀t � 0,

where Cp can be taken as

Cp =

[ p+1
2 ]∑

k=1

(
p
k

)(
Kk+1/2 Kp−k +Kk Kp−k+1/2

)
.

Furthermore, according to Jensen’s inequality mp+1/2(t) � m
1+1/2p
p (t) for any t � 0.

Thus, from (3.6), we conclude that

d

dt
mp(t) � −(1− κp)m

1+1/2p
p (t) + κp Cp u(t)

p+1/2 ∀t � 0.

Arguing as in Step 1 for some K > 0 to be chosen later, we define

Up(t) := mp(t)−Ku(t)p.

In this way,

d

dt
Up(t) � −(1− κp)m

1+ 1
2p

p (t) + κp Cp u(t)
p+ 1

2 +
2pK

1 + γ
(1 + t)−

2p+1
1+γ ∀t � 0.

Then, if K is such that Up(0) < 0, the result holds at least for some finite time. For
any t� > 0 such that Up(t�) = 0, one notices then that

d

dt
Up(t�) �

(
−(1− κp)K

1+ 1
2p + κp Cp +

2pK

1 + γ

)
(1 + t�)

− 2p+1
1+γ < 0,

provided K is large enough. This proves (3.5) for any p � 1.

3.2. Lower bound for E(t): Preliminary considerations. The next goal is
to complete the proof of Haff’s law by showing that the cooling rate (3.2) is optimal
under Assumption 3.1. Thus, we have to show that there exists C > 0 such that

E(t) � C(1 + t)−
2

1+γ ∀t � 0.

First, we prove the following result that simplifies our endeavor.
Theorem 3.7. Assume a nonconstant (γ > 0) restitution coefficient e(·) satisfy-

ing Assumption 3.1. If there exist C0 > 0 and λ > 0 such that

(3.10) E(t) � C0 (1 + t)−λ ∀t � 0,
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then there exists Cp > 0 such that

(3.11) mp(t) � Cp Ep(t) for any t � 0 and p � 1.

As a consequence, there exists C > 0 such that

(3.12) E(t) � C (1 + t)−
2

1+γ ∀t � 0.

Proof. According to Assumption 3.1(1),

Ψe(x) � Cγx
3+γ
2 for x � 0.

In addition, Assumption 3.1(2) implies that there exists Cb > 0 such that

Ψe(x) � Cbx
3/2 for large x,

where the constant can be taken as Cb = 2π(1 − e20)
∫ 1

0
b(1 − 2z2)z3 dz. Thus, there

exists another constant C > 0 such that

(3.13) Ψe(x) � Cx
3+γ
2 ∀x > 0.

Therefore, there exists C > 0 such that, for any ε > 0 and any p > 3+γ
2 ,

Ψe(x) � Cx
3+γ
2 � C

(
ε

γ
2 x

3
2 +

xp

εp−
3+γ
2

)
∀x > 0.

Then from (3.3) one deduces that for any ε > 0 and p > 3+γ
2 ,

− d

dt
E(t) � C

(
ε

γ
2

∫
R3×R3

f(t, v)f(t, v�)|u|3 dv dv�

+
1

εp−
3+γ
2

∫
R3×R3

f(t, v)f(t, v�)|u|2p dv dv�
)
.

In other words, for any ε > 0 and any p > 3+γ
2 , there is some C > 0 such that

− d

dt
E(t) � C

(
ε

γ
2m3/2(t) +

1

εp−
3+γ
2

mp(t)

)
� C

(
ε

γ
2m3/2(t) +

Cp

εp−
3+γ
2

(1 + t)−
2p

1+γ

)
∀t � 0,

where we have used Corollary 3.6 for the second inequality. In particular, using (3.10)
and the fact that E(t) is a nonincreasing function, one can choose p sufficiently large
so that

− d

dt
E(t) � C

(
ε

γ
2m3/2(t) +

C̃p

εp−
3+γ
2

E(t) 3
2

)

for some positive constant C̃p. In other words, for any δ > 0 there exists Cδ > 0 such
that

(3.14) − d

dt
E(t) � δm3/2(t) + CδE(t)3/2 ∀t � 0.
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With this preliminary observation, the proof of (3.11) is a direct adaptation of that
of Corollary 3.6. Here again, by simple interpolation, it is enough to prove the result
for any p such that 2p ∈ N and argue using induction. The result is clearly true for
p = 1 with C1 = 1. For p = 3/2, let K > 0 be a constant chosen later and define

u3/2(t) = m3/2(t)−KE(t)3/2.

Thus, from (3.7)

d

dt
u3/2(t) � −(1− κ3/2)m2(t) +m3/2(t)m1/2(t) + E2(t)− 3

2
K
√
E(t) d

dt
E(t).

Using (3.8), one deduces from (3.14) that for any δ > 0, there exists Cδ > 0 such that

d

dt
u3/2(t) � −(1−κ3/2)

m2
3/2(t)

E(t) +

(
1 +

3

2
Kδ

)
m3/2(t)

√
E(t)+

(
1 +

3

2
KCδ

)
E2(t).

Fix δ =
1−κ3/2

3 and choose K > 0 such that u3/2(0) < 0. If t� > 0 is such that
u3/2(t�) = 0, then the following holds:

d

dt
u3/2(t�) �

(
−
1− κ3/2

2
K2 +

(
K + 1 +

3

2
KCδ

))
E(t�)2 < 0,

provided K is sufficiently large. This proves (3.11) for p = 3/2 with C3/2 := K. The
case p � 2 follows in the same lines as the proof of Corollary 3.6 interchanging the
roles of E(t) and u(t).

To conclude the proof, observe that according to (3.13) and (3.3), there exists
C > 0 such that

− d

dt
E(t) � Cm 3+γ

2
(t) ∀t � 0.

Then, applying (3.11) with p = 3+γ
2 , one deduces that there is Cγ > 0 such that

− d

dt
E(t) � CγE(t)

3+γ
2 ∀t � 0.

A simple integration of this inequality yields (3.12).
Remark 3.8. For constant restitution coefficient e = e0, since γ = 0, (3.14) does

not hold anymore. However, for some Ce > 0, we have

(3.15) − d

dt
E(t) � Cem3/2(t) ∀t � 0.

Assuming that e0 � 1 (quasi-elastic regime), the constant Ce is small; thus, the
argument above can be reproduced to prove that the conclusion of Theorem 3.7 still
holds. Recall that for γ = 0, the second part of Haff’s law (3.12) has been proved in [23,
Theorem 1.2] with the additional requirement that f0 ∈ Lp(R3) for some 1 < p <∞.
It appears that, by (3.15), in the quasi-elastic regime e0 � 1, Haff’s law holds true for
constant restitution coefficient under the sole assumption (2.8) on the initial datum.

In order to prove that (3.10) is satisfied for some λ > 0, we will need precise Lp

estimates, following the spirit of [23], for the rescaled function g given in section 2.3.
The idea to craft the correct time-scaling functions τ(·) and V (·) is choosing them
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such that the corresponding temperature of g is bounded away from zero. Indeed, for
any τ > 0, define

Θ(τ) :=

∫
R3

g(τ, w)|w|2 dw.

Since

(3.16) E(t) = V (t)−2Θ(τ(t)) ∀t � 0,

we choose

(3.17) V (t) = (1 + t)
1

γ+1 ∀t � 0.

In this way, (3.12) is equivalent to Θ(τ(t)) � C for any t � 0. Notice that (3.2)
immediately translates into

(3.18) sup
t>0

Θ(τ(t)) <∞.

Moreover, for simplicity we pick τ(t) such that τ̇ (t)V (t) = 1; therefore, for γ > 0,

(3.19) τ(t) =

∫ t

0

ds

V (s)
=
γ + 1

γ

(
(1 + t)

γ
1+γ − 1

)
,

which is an acceptable time-scaling function. Thus, the rescaled solution g(τ, w) sat-
isfies (2.12) with λ(τ) = 1 with

(3.20) ξ(τ) =
1

γτ + (1 + γ)
and ẽτ (r) = e

(
r

(
1 +

γ

γ + 1
τ

)−1/γ
)
.

If γ = 0, the restitution coefficient is constant [23]; in particular, ẽτ = e, and the
rescaling reads V (t) = 1 + t and τ(t) = ln(1 + t). In such a case, ξ(τ) ≡ 1.

The next sections are devoted to the proof of the second part of Haff’s law. With
the choice of the scaling, it is equivalent to prove that

inf
τ>0

Θ(τ) > 0.

However, it appears difficult to prove directly such a lower bound, and we shall instead
prove a lower bound of the type

Θ(τ) � C1 (1 + τ)
−κ1 ∀τ > 0

for some positive constants C1, κ1 > 0 and use Theorem 3.7 to get the conclusion (see
Proposition 5.1 and Theorem 5.2 below). To do so, one has to perform a careful study
of the properties of the collision operator Qe in Sobolev or Lp spaces p > 1.

4. Regularity properties of the collision operator. In this section the reg-
ularity properties studied originally for the elastic case in [19, 20, 21, 26, 31] and later
for the constant restitution coefficient in [23] are generalized to cover variable resti-
tution coefficients depending on the impact velocity. The path that we follow closely
follows [26].
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4.1. The Carleman representation. We establish here a technical represen-
tation of the gain term Q+

B,e which is reminiscent of the classical Carleman repre-
sentation in the elastic case. More precisely, let B(u, σ) be a collision kernel of the
form

B(u, σ) = Φ(|u|)b(û · σ),

where Φ(·) � 0, and b(·) � 0 satisfies (2.6). For any ψ = ψ(v), define the following
linear operators:

(4.1) S±(ψ)(u) =
∫
S2

ψ(u±)b(û · σ) dσ ∀u ∈ R
3,

where the symbols u− and u+ are defined by

u− := β

(
|u |

√
1− û · σ

2

)
u− |u| σ

2
and u+ := u− u−.

Lemma 4.1. For any bounded and measurable functions ψ and ϕ,∫
R3

ϕ(u)S−(ψ)(u)Φ(|u|) du =

∫
R3

ψ(x)ΓB(ϕ)(x) dx,

where the linear operator ΓB is given by

(4.2) ΓB(ϕ)(x) =

∫
ω⊥

B(z + α(r)ω, α(r))ϕ(α(r)ω + z) dπz,

x = rω, r � 0, ω ∈ S
2.

Here dπz is the Lebesgue measure in the hyperplane ω⊥ perpendicular to ω, and α(·)
is the inverse of the mapping s �→ sβ(s). Moreover,

(4.3) B(z, �) = 8Φ(|z|)
|z|(�β(�))2 b

(
1− 2

�2

|z|2

)
�

1 + ϑ′(�)
, � � 0, z ∈ R

3,

with ϑ(·) defined in Assumption 2.1(2) and ϑ′(·) denoting its derivative.
Proof. For simplicity assume that Φ ≡ 1. Define

I :=

∫
R3

ϕ(u)S−(ψ)(u) du =

∫
R3

ϕ(u) du

∫
S2

ψ(u−)b(û · σ) dσ.

For fixed u ∈ R3, we perform the integration over S2 using the formula∫
S2

F

(
u− |u|σ

2

)
dσ =

4

|u|

∫
R3

δ(|x|2 − x · u)F (x) dx

valid for any given function F . Then

I = 4

∫
R3×R3

ϕ(u)|u|−1δ(|x|2 − x · u)ψ
(
xβ(|x|)

)
b

(
1− 2

|x|2
|u|2

)
dxdu.

Now setting u = z + x, we get

I = 4

∫
R3×R3

ϕ(x + z)|x+ z|−1δ(x · z)ψ
(
xβ(|x|)

)
b

(
1− 2

|x|2
|x+ z|2

)
dz dx.
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Keeping x fixed, we remove the Dirac mass using the identity∫
R3

F (z)δ(x · z) dz = 1

|x|

∫
x⊥
F (z) dπz,

which leads to

I = 4

∫
R3

ψ
(
xβ(|x|)

) dx

|x|

∫
x⊥

ϕ(x+ z)

|x+ z| b
(
1− 2

|x|2
|x+ z|2

)
dπz .

We compute the x-integral using polar coordinates x = �ω and the change of variables
r = � β(�). Recall that α(r) is the inverse of such mapping; furthermore, notice that
dr = 1

2 (1 + ϑ′(�)) d�. This yields

I = 8

∫ ∞

0

α(r) dr

1 + ϑ′(α(r))

∫
S2

ψ(rω) dω

∫
ω⊥

ϕ(z + α(r)ω)

|z + α(r)ω| b
(
1− 2

α(r)2

|z + α(r)ω|2

)
dπz .

Turning back to Cartesian coordinates x = rω, we obtain the desired expression,

I =

∫
R3

ψ(x)ΓB(ϕ)(x) dx,

with ΓB given by (4.2).
The above result leads to a Carleman-like expression for Q+

B,e.
Corollary 4.2 (Carleman representation). Let e(·) be a restitution coefficient

satisfying Assumption 2.1, and let

B(u, σ) = Φ(|u|)b(û · σ)

be a collision kernel satisfying (2.6). Then, for any velocity distribution functions f
and g, one has

Q+
B,e(f, g)(v) =

∫
R3

f(z) [(tz ◦ ΓB ◦ tz) g] (v) dz,

where [tvψ](x) = ψ(v − x) for any v, x ∈ R3 and test function ψ.
Proof. The proof readily follows from Lemma 4.1, and the identity,

(4.4)

∫
R3×R3

Q+
B,e(f, g)(v)ψ(v) dv =

1

2

∫
R3×R3

f(v)g(v − u)Φ(|u|)S−(tvψ)(u) dv du

is valid for any test function ψ.

4.2. Convolution-like estimates for Q+
B,e. General convolution-like esti-

mates are obtained in [3, Theorem 1] for nonconstant restitution coefficient. Such
estimates are given in Lp

η with η � 0, and, for the applications we have in mind, we
need to extend some of them to η � 0. This can be done using the method developed
in [26] (see also [17]) together with the estimates of [3].2

Theorem 4.3. Assume that the collision kernel B(u, σ) = Φ(|u|)b(û · σ) satisfies
(2.6) and Φ(·) ∈ L∞

−k for some k ∈ R. In addition, assume that e(·) fulfills Assumption
2.1. Then, for any 1 � p � ∞ and η ∈ R, there exists Cη,p,k(B) > 0 such that∥∥∥Q+

B,e(f, g)
∥∥∥
Lp

η

� Cη,p,k(B) ‖f‖L1
|η+k|+|η|

‖g‖Lp
η+k

,

2Notice that the constants γ(η, p, b) and γ̃(η, p, b) given by (4.6) and (4.8) are not finite for
arbitrary angular kernel b. It is implicitly assumed that the theorem applies to the range of parameters
leading to finite constants (see also Remark 4.4).
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where the constant Cη,p,k(B) is given by

(4.5) Cη,p,k(B) = ck,η,p γ(η, p, b) ‖Φ‖L∞
−k
,

with a constant ck,η,p > 0 depending only on k, η, and p. Furthermore, the dependence
on the angular kernel is given by

(4.6) γ(η, p, b) =

∫ 1

−1

(
1− s

2

)− 3+η+
2p′

b(s) ds,

where 1/p + 1/p′ = 1, and η+ is the positive part of η: η+ = max(η, 0). Similarly,

there exists C̃η,p,k(B) > 0 such that∥∥∥Q+
B,e(f, g)

∥∥∥
Lp

η

� C̃η,p,k(B) ‖g‖L1
|η+k|+|η|

‖f‖Lp
η+k

,

where the constant C̃η,p,k(B) is given by

(4.7) C̃η,p,k(B) = c̃k,η,p γ̃(η, p, b) ‖Φ‖L∞
−k

for some constant c̃k,η,p > 0 depending only on k, η, and p. The dependence on the
angular kernel is given by

(4.8) γ̃(η, p, b) =

∫ 1

−1

(
1 + s

2
+ (1− β0)

2 1− s

2

)− 3+η+
2p′

b(s) ds,

where 1/p+ 1/p′ = 1 and β0 = β(0) = 1+e(0)
2 .

Proof. Fix 1 � p � ∞ and η ∈ R, and use the convention 1/p′ + 1/p = 1. By
duality, ∥∥∥Q+

B,e(f, g)
∥∥∥
Lp

η

= sup

{∣∣∣∣∫
R3

Q+
B,e(f, g)(v)ψ(v) dv

∣∣∣∣ ; ‖ψ‖
Lp′

−η

� 1

}
.

Using (4.4),∫
R3

Q+
B,e(f, g)(v)ψ(v) dv =

∫
R3×R3

f(v)g(v − u)T−(tvψ)(u) dv du,

with

T−(ψ)(u) = Φ(|u|)S−(ψ)(u), and tvψ(x) = ψ(v − x),

with S− defined in (4.1). With the notation of [3], one recognizes that S−(h) = P(h, 1),
thus, applying [3, Theorem 5] with q = ∞ and α = −η,

‖S−(h)‖Lp′
−η

� γ(η, p, b)‖h‖
Lp′

−η

,

with γ(η, p, b) given by (4.6). Notice that, with respect to [3], we used the weight 〈v〉η
instead of |v|η; this is the reason to introduce η+ in our definition of γ(η, p, b). As a
consequence,

(4.9) ‖T−(h)‖Lp′
−η−k

� γ(η, p, b)‖Φ‖L∞
−k

‖h‖
Lp′

−η

.
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Now, ∣∣∣∣∫
R3

Q+
B,e(f, g)ψ dv

∣∣∣∣ � ∫
R3

|f(v)| dv
(∫

R3

|g(u)| [(tv ◦ T− ◦ tv)ψ] (u) du
)

� ‖g‖Lp
η+k

∫
R3

|f(v)| ‖(tv ◦ T− ◦ tv)ψ‖Lp′
−k−η

dv.

Using the inequality ‖tvh‖Lp′
s

� 2|s|/2〈v〉|s|‖h‖
Lp′

s
for any s ∈ R and v,∣∣∣∣∫

R3

Q+
B,e(f, g)ψ dv

∣∣∣∣ � 2|η+k|/2‖g‖Lp
η+k

∫
R3

|f(v)|〈v〉|η+k| ‖(T− ◦ tv)ψ‖Lp′
−k−η

dv

� 2|η+k|/2γ(η, p, b)‖Φ‖L∞
−k
‖g‖Lp

η+k

∫
R3

|f(v)|〈v〉|η+k| ‖tvψ‖Lp′
−η

dv

� 2|η+k|+|η|/2γ(η, p, b)‖Φ‖L∞
−k
‖g‖Lp

η+k

∫
R3

|f(v)|〈v〉|η+k|+|η| ‖ψ‖
Lp′

−η

dv,

which proves the first part of the theorem. To prove the second part, observe that∫
R3

Q+
B,e(f, g)(v)ψ(v) dv =

∫
R3×R3

f(v − u)g(v)T+(tvψ)(u) dv du,

where T+(ψ)(u) = Φ(|u|)S+(ψ)(u) and S+ is defined as in (4.1). Using the notation
of [3], we identify S+(h) = P(1, h). Thus, applying [3, Theorem 5] with p = ∞ and
α = −η,

‖S−(h)‖Lp′
−η

� γ̃(η, p, b)‖h‖
Lp′

−η

,

where γ̃(η, p, b) is given by (4.8). One concludes as above, interchanging the roles of
f and g.

Remark 4.4. The careful reader will notice that the constants given in the theorem
are independent of e(·) except for γ̃(η, p, b) which depends only on the value e(0).

Clearly, the constants γ(η, p, b) and γ̃(η, p, b) are not finite for arbitrary b(·) be-
cause of the possible singularity at s = ±1. For instance, for hard-sphere interactions,
i.e., b ≡ 1

4π , one has

γ(η, p, b) <∞ ⇐⇒ γ̃(η, p, b) <∞ ⇐⇒ 1 � p <
3 + η+
1 + η+

.

However, if one assumes, as in [23, Theorem 2.1], that the angular kernel b(·) vanishes
in the vicinity of s = 1, then γ(η, p, b) <∞ for any 1 � p � ∞ and η ∈ R. This is an
additional difficulty of the inelastic regime that is overcome in the elastic case using
symmetry, i.e., defining b in half the domain. In the inelastic regime such difficulty
can be handled when dealing with quadratic estimates (i.e., whenever f = g in the
above). Precisely, one has the following corollary.

Corollary 4.5. Assume that the collision kernel B(u, σ) = Φ(|u|)b(û · σ) sat-
isfies (2.6) and Φ(·) ∈ L∞

−k for some k ∈ R. In addition, assume that e(·) fulfills
Assumption 2.1. Then, for any 1 � p � ∞ and η ∈ R, there exists some positive
constant C(k, η, p) > 0 (independent of B) such that∥∥∥Q+

B,e(f, f)
∥∥∥
Lp

η

� C(k, η, p) ‖Φ‖L∞
−k

‖b‖L1(S2) ‖f‖L1
|η+k|+|η|

‖f‖Lp
η+k
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for any f ∈ L1
|η+k|+|η| ∩ L

p
η+k.

Proof. Recall that B(u, σ) = Φ(|u|)b(û · σ). Thus, one can write

B(u, σ) = B0(u, σ) +B1(u, σ) = Φ(|u|)b0(û · σ) + Φ(|u|)b1(û · σ),

where

b0(s) = b(s)χ[−1,0] and b1(s) = b(s)χ[0,1].

Then, with the notations of Theorem 4.3, it is clear that

γ(η, p, b0) =

∫ 0

−1

(
1− s

2

)− 3+η+
2p′

b(s) ds � 2
3+η+
2p′ ‖b‖L1(S2) <∞,

while

γ̃(η, p, b1) =

∫ 1

0

(
1 + s

2
+ (1− β0)

2 1− s

2

)− 3+η+
2p′

b(s) ds � cη,p‖b‖L1(S2) <∞

for some explicit numerical constant cη,p (depending on e(·) through β0). Then writing
Q+

B,e(f, f) = Q+
B0,e

(f, f) +Q+
B1,e

(f, f), we get from Theorem 4.3 that∥∥∥Q+
B,e(f, f)

∥∥∥
Lp

η

�
(
Cη,p,k(B0) + C̃η,p,k(B1)

)
‖f‖L1

|η+k|+|η|
‖f‖Lp

η+k
,

which is the desired conclusion.

4.3. Sobolev regularity for smooth collision kernel. For this section we
assume Φ(·) and b(·) are smooth and compactly supported as follows:

(4.10) Φ ∈ C∞
0 (R3 \ {0}), b ∈ C∞

0 (−1, 1).

Denote by QB,e the associated collision operator defined by (2.5).
Lemma 4.6. Assume that e(·) satisfies Assumption 2.1 with e(·) ∈ Cm(0,∞)

for some integer m ∈ N. Then, for the collision kernel satisfying (4.10), for any
0 � s � m, there exists C = C(s,B, e) such that

‖ΓB(f)‖Hs+1 � C(s,B, e) ‖f‖Hs ∀f ∈ Hs,

where ΓB is the operator defined in Lemma 4.1. The constant C(s,B, e) depends
only on s, on the collision kernel B, and on the restitution coefficient e(·). More
precisely, C(s,B, e) depends on e(·) through the L∞ norm of the derivatives Dke(·)
(k = 1, . . . ,m) over some compact interval bounded away from zero depending only
on B.

We postpone the proof of Lemma 4.6 and first prove its important consequence.
Theorem 4.7. Let B(u, σ) = Φ(|u|)b(û ·σ) be a collision kernel satisfying (4.10),

and let e(·) satisfy Assumption 2.1. In addition, assume that e(·) ∈ Cm(0,∞) for some
integer m ∈ N. Then, for any 0 � s � m,∥∥∥Q+

B,e(f, g)
∥∥∥
Hs+1

� C(s,B, e) ‖g‖Hs ‖f‖L1,

with constant C(s,B, e) given in Lemma 4.6.
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Proof. Let F [Q+
B,e(f, g)](ξ) denote the Fourier transform of Q+

B,e(f, g). According
to Corollary 4.2,

F
[
Q+

B,e(f, g)
]
(ξ) =

∫
R3

f(v)F [(tv ◦ ΓB ◦ tv) g] (ξ) dv.

To simplify notation, set G(v, ξ) = F [(tv ◦ ΓB ◦ tv) g] (ξ). Thus,∥∥∥Q+
B,e(f, g)

∥∥∥2
Hs+1

=

∫
R3

∣∣∣F [
Q+

B,e(f, g)
]
(ξ)

∣∣∣2 〈ξ〉2(s+1) dξ

=

∫
R3

〈ξ〉2(s+1)

∣∣∣∣∫
R3

f(v)G(v, ξ) dv

∣∣∣∣2 dξ

� ‖f‖L1

∫
R3×R3

|f(v)| |G(v, ξ)|2〈ξ〉2(s+1) dξ dv.

(4.11)

Since G(v, ξ) = F [(tv ◦ ΓB ◦ tv) g] (ξ),∫
R3

|G(v, ξ)|2〈ξ〉2(s+1) dξ = ‖(tv ◦ ΓB ◦ tv) g‖2Hs+1 � C(s,B, e)2 ‖g‖2Hs .

For this inequality we used Lemma 4.6 and the fact that the translation operator
tv has norm one in any Sobolev space. Hence, estimate (4.11) yields the desired
estimate.

Proof of Lemma 4.6. The proof of the regularity property of ΓB can be obtained
following the lines of the corresponding one for the elastic Boltzmann operator [26].
Indeed, note that

Γ̃B(f)(r, ω) : = ΓB(f)(α
−1(r), ω) = ΓB(f)(rβ(r), ω)

=

∫
ω⊥

B(z + rω, r)ϕ(rω + z) dπz.

The condition (4.10) on the collision kernel implies that there exists δ > 0 such that
b(x) = 0 for |x± 1| � δ and {|z| ; z ∈ Supp(Φ)} ⊂ (a,M) for some positive constants
0 < a < M . Then, by virtue of (4.3), B(z + rω, r) = 0 for any r > 0, ω ∈ S

2, and
z ∈ ω⊥ provided that |z|2 > 2−δ

δ r2. For |z|2 � 2−δ
δ r2, one has |z+ rω|2 � 2r2/δ; thus,

B(z + rω, r) = 0 if r <
√
δa2/2. Putting these together, we conclude that

(4.12) B(z + rω, r) = 0 ∀r /∈ I :=
(√

δa2/2,M
)
, ω ∈ S

2, and any z⊥ω.

In particular, Γ̃B(f)(r, ω) = 0 for any r /∈ I independently of f . Define

B0(z, �) :=
1 + ϑ′(�)

�
β2(�)B(z, �) =

Φ(|z|)b
(
1− 2 �2

|z|2
)

|z|�2 ,

and denote Γ̃0(f) the associated operator

Γ̃0(f)(r, ω) :=

∫
ω⊥

B0(z + rω, r)ϕ(rω + z) dπz .
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Then B0 does not depend on the restitution coefficient e(·), and Γ̃0 is exactly of the
form of the operator T studied in [26, Theorem 3.1]. Therefore, arguing as in [26], for
any s � 0, there is an explicit constant C0 = C0(s,Φ, b) such that

(4.13)
∥∥∥Γ̃0(f)

∥∥∥
Hs+1

� C0(s,Φ, b) ‖f‖Hs ∀f ∈ Hs.

Setting

(4.14) Ge(�) =
�

(1 + ϑ′(�))β2(�)
∀� � 0,

one observes that Ge is a Cm function over I whose derivatives DkGe are bounded
over I for any k � m and

Γ̃B(f)(r, ω) = Ge(r)χI (r)Γ̃0(f)(r, ω).

Here χI is the characteristic function of I = (
√
δa2/2,M) (see (4.12)). Therefore, for

any 0 � s � m, there exists some constant C = C0(s, b, e) such that

(4.15)
∥∥∥Γ̃B(f)

∥∥∥
Hs+1

� C0(s,B, e) ‖f‖Hs ∀f ∈ Hs,

where the constant C0(s,B, e) can be chosen as

(4.16) C0(s,B, e) = C0(s,Φ, b) max
k=0,...,s

‖DkGe‖L∞(I).

From estimate (4.15) we deduce Lemma 4.6 with the following argument. Assume
first s = k � 1 is an integer. Using polar coordinates

‖ΓB(f)‖2Hk =
∑
|j|�k

∫ ∞

0

Fj(�)�
2 d�

∫
S2

|∂jvΓ̃B(f)(�, ω)|2 dω,

where, for any |j| � k, the function Fj(�) can be written as

(4.17) Fj(�) = Pj(ϑ
(1)(�), . . . , ϑ(j)(�))(1 + ϑ(1)(�))−nj .

Here Pj(y1, . . . , yj) is a suitable polynomial, nj ∈ N, and ϑ(p) denotes the pth deriva-
tive of ϑ(·). Since ϑ ∈ Cm(0,∞) and I is a compact interval away from zero, one has
sup�∈I Fj(�) = Ck <∞ for any |j| � k. Thus,

(4.18) ‖ΓB(f)‖Hk � Ck‖Γ̃B(f)‖Hk ,

where Ck is an explicit constant involving the L∞ norm of the first kth order deriva-
tives of α(·) on I. This proves that the conclusion of Lemma 4.6 holds true for any
integer s � m, and we deduce the general case using interpolation.

Remark 4.8. It is important, for our subsequent analysis, to obtain a precise ex-
pression for the constant C(s,B, e). For instance, in the case in which e(·) ∈ C1(0,∞),
one obtains that

C(1, B, e) � C0(1, B, e) sup
�∈I

F1(�),

where F1 is of the form (4.17), with I defined in (4.12). Note that C0(1, B, e) and
Ge(�) are given by (4.16) and (4.14), respectively. In particular, under Assumption
2.1, Ge(�) � 4� for large � and Ge(�) � �/2 for � � 0.
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Arguing as in [26, Corollary 3.2], we translate the gain of regularity obtained in
Theorem 4.7 in gain of integrability.

Corollary 4.9. Let B(u, σ) = Φ(|u|)b(û · σ) be a collision kernel satisfying
(4.10), and let e(·) ∈ C1(0,∞) satisfy Assumption 2.1. Then, for any 1 < p <∞,∥∥∥Q+

B,e(f, g)
∥∥∥
Lp

� C(p,B, e) (‖g‖Lq ‖f‖L1 + ‖g‖L1 ‖f‖Lq) ,

where the constant C(p,B, e) depends on B and e through the constant C(1, B, e) of
Theorem 4.7. The exponent q < p is given by

(4.19) q =

⎧⎪⎨⎪⎩
5p

3 + 2p
if p ∈ (1, 6],

p

3
if p ∈ [6,∞).

4.4. Regularity and integrability for hard spheres. We consider in this
section the case of hard-sphere collision kernel

B(u, σ) =
|u|
4π
.

Such a collision kernel does not enjoy the regularity properties assumed in the previous
section. This does not present a problem since the dependence of the constant on the
collision kernel B permits us to adapt the method developed in [26] for the elastic
case. We need some supplementary assumptions on the restitution coefficient e(·).

Assumption 4.10. In addition to Assumption 2.1, suppose that e(·) ∈ C1(0,∞)
and that there exists k ∈ R such that

e′(r) = O(rk) when r → ∞,

where e′(·) denotes the derivative of e(·).
The above assumption implies ϑ′(�) = O(�k+1) for large � and ϑ′(�) � 1 when

� � 0. Recall that ϑ′(·) is the derivative of ϑ(r) = re(r).
Theorem 4.11. Assume that e(·) satisfies Assumption 4.10. For any 1 < p <∞,

there exist κ > 0, θ ∈ (0, 1), and a constant Ce > 0 depending only on p and the
restitution coefficient e(·) such that, for any δ > 0,∫

R3

Q+
e (f, f) f

p−1 dv � Ceδ
−κ ‖f‖1+pθ

L1 ‖f‖p(1−θ)
Lp + δ ‖f‖L1

2
‖f‖p

Lp
1/p

.

Proof. We follow the same lines presented in [26] and subsequently used in [23, 24].
We present the argument for convenience. Fix p � 1, and let Θ : R → R+ be an

even C∞ function with compact support in (−1, 1) and
∫ 1

−1 Θ(s) ds = 1. In the same

way, consider a radial C∞ function Ξ : R3 → R with support in the ball B(0, 1) and∫
R3 Ξ(v) dv = 1. Define the mollifications Ξn(v) := n3Ξ(nv) and Θm(s) := mΘ(ms)

form,n � 1. Thus, ΦSn = Ξn∗(| · |χAn) and bSm = Θm∗( 1
4πχ[−1+ 2

m ,1− 2
m ]) are smooth

mollifications of the collision kernel. Here we have defined the set

An =

{
v ∈ R

3 ; |v| ∈
[
2

n
, n

]}
, n � 1.

Consider the smooth collision kernel

BSm,n(|u|, û · σ) = ΦSn(|u|) bSm(û · σ),
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and observe that

supp (ΦSn) ⊆
{
1

n
� |v| � n+ 1

}
and supp (bSm) ⊆

[
−1 +

1

m
, 1− 1

m

]
.

Define naturally

BSRm,n(|u|, û · σ) := ΦSn(|u|) bRm(û · σ),
BRSm,n(|u|, û · σ) := ΦRn(|u|) bSm(û · σ), and

BRRm,n(|u|, û · σ) := ΦRn(|u|) bRm(û · σ).

Here ΦRn(|u|) = |u| − ΦSn(|u|) and bRm(û · σ) = 1
4π − bSm(û · σ) are the remainder

parts. Thus, one splits Q+
e in four parts using obvious notation as follows:

Q+
e = Q+

BSm,n ,e +Q+
BSRm,n ,e +Q+

BRSm,n ,e +Q+
BRRm,n ,e.

Since BSm,n(|u|, û · σ) fulfills (4.10), one deduces from Corollary 4.9 that there is a
constant C(m,n) such that∥∥∥Q+

BSm,n ,e(f, f)
∥∥∥
Lp

� C(m,n)‖f‖Lq ‖f‖L1

for q < p given by (4.19). A simple application of Hölder’s inequality yields

(4.20)

∫
R3

Q+
BSm,n ,e(f, f) f

p−1 dv � C(m,n) ‖f‖Lq ‖f‖L1 ‖f‖p−1
Lp .

Recall from Corollary 4.9 that C(m,n) depends on m and n through the constant
C(1, BSm,n , e) in Theorem 4.7. Moreover, according to Remark 4.8, one sees that

C(1, BSm,n , e) � C0(1,ΦSn , bSm) max
k=0,1

‖DkGe‖L∞(I) sup
�∈I

F1(�),

where C0(s,Φ, b) is the constant appearing in (4.13), Ge(·) is given by (4.14), and
F1 is of the form (4.17). The interval I = Im,n is defined in (4.12), with δ = 1/m,
M = n+ 1, and a = 1/n,

I =

(√
1

2mn2
, n+ 1

)
.

That C0(1,ΦSn , bSm) depends on m and n in a polynomial way follows as in [26].
Moreover, from the properties of Ge given in Remark 4.8 and the fact that F1(�) is a
rational function in ϑ′(�), one deduces from Assumption 4.10 and the above expression
of I that there exist a, b > 0 such that

(4.21) C(m,n) = O(ma nb) as m,n→ ∞.

Now, applying Corollary 4.5 with k = 1 and η = −1/p′, we get∥∥∥Q+
BSRm,n ,e(f, f)

∥∥∥
Lp

η

+
∥∥∥Q+

BRRm,n ,e(f, f)
∥∥∥
Lp

η

� ε(m)‖f‖L1
1
‖f‖Lp

1/p
,

where ε(m) � c‖bm‖L1(S2) for some positive constant c > 0 (independent of n since
‖Φn‖L∞

−1
� ‖Φ‖L∞

−1
for any n � 0). In particular, one can choose a regularizing

function Θ such that there exists some r > 0 such that

(4.22) ε(m) = O(m−r) as m→ ∞.
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Using the above estimate with η = −1/p′, we get

(4.23)

∫
R3

[
Q+

BSRm,n ,e(f, f) +Q+
BRRm,n ,e(f, f)

]
fp−1 dv � ε(m)‖f‖L1

1
‖f‖p

Lp
1/p

.

It remains only to estimate

I :=

∫
R3

Q+
BRSm,n ,e(f, f) f

p−1 dv.

One notes that

ΦRn(|v − v�|) � Cn−1
(
|v|2 + |v�|2

)
∀v, v� ∈ R

3

for some C > 0. Thus,

I � Cn−1

∫
R3×R3

f(v)f(v�)
(
|v|2 + |v�|2

)
dv dv�

∫
S2

fp−1(v′)bSm(û · σ) dσ.

Define

I1 :=

∫
R3×R3

f(v)f(v�)|v|2 dv dv�
∫
S2

fp−1(v′)bSm(û · σ) dσ, and

I2 :=

∫
R3×R3

f(v)f(v�)|v�|2 dv dv�
∫
S2

fp−1(v′)bSm(û · σ) dσ.

Observe that I1 can be written as

I1 =

∫
R3×R3

Q+
Bm,e(F, f)(v)ψ(v) dv,

where

F (v) = |v|2f(v), ψ(v) = fp−1(v) ∈ Lp′
(R3),

with the collision kernel Bm(|u|, û · σ) = bSm(û · σ). Applying Theorem 4.3 with
η = k = 0 gives

I1 �
∥∥∥Q+

Bm,e(F, f)
∥∥∥
Lp

‖ψ‖Lp′

� C0,p,0(Bm) ‖F‖L1‖f‖Lp‖ψ‖Lp′ � C0,p,0(Bm)‖f‖L1
2
‖f‖pLp,

where C0,p,0(Bm) is defined by (4.5). Now, with the same notation,

I2 =

∫
R3×R3

Q+
Bm,e(f, F )(v)ψ(v) dv;

therefore, applying Theorem 4.3 with η = 0 and k = −2 yields

I2 � C0,p,−2(Bm) ‖f‖L1
2
‖F‖Lp

−2
‖ψ‖Lp′ � C0,p,−2(Bm) ‖f‖L1

2
‖f‖pLp .

Combining the two estimates for I1 and I2,

I � C(m)

n
‖f‖L1

2
‖f‖pLp,
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where C(m) = C0,p,0(Bm) + C0,p,−2(Bm). The support of bSm(s) lies to a positive
distance, of order 1/m, from s = 1. Then we use the expression (4.5) to conclude that

(4.24) C(m) � m
− 3

2p′ as m→ ∞.

Estimates (4.24), (4.20), and (4.23) give∫
R3

Q+
e (f, f) f

p−1 dv � C(m,n) ‖f‖Lq ‖f‖L1 ‖f‖p−1
Lp

+ ε(m)‖f‖L1
1
‖f‖p

Lp
1/p

+
C(m)

n
‖f‖L1

2
‖f‖pLp.

Using the polynomial bounds (4.21), (4.22), and (4.24), we get the result as in
[23].

Remark 4.12. Assumption 4.10 allows us to present the explicit dependence of
the constants with respect to δ > 0. This dependence will be crucial in the proof of
Haff’s law in section 5. Note that the constant Ce in Theorem 4.11 depends on the
regularity of the restitution coefficient away from zero.

Remark 4.13. Notice also that the above estimates involving Lp-norms for p <∞
degenerate as p→ ∞ and do not allow us to derive L∞ estimates in some direct way.
We refer the reader to [4] for further considerations on pointwise estimates.

Corollary 4.14. Assume that e(·) satisfies Assumption 4.10. For any 1 < p <
∞, there exist κ > 0, θ ∈ (0, 1), and a constant Ce > 0 depending only on p and the
restitution coefficient e(·) such that, for any δ > 0,∫
R3

Q+
e (g, g) g

p−1〈v〉ηp dv � Ceδ
−κ ‖g‖1+pθ

L1
η

‖g‖p(1−θ)

Lp
η

+δ ‖g‖L1
2+η

‖g‖p
Lp

η+1/p

∀η � 0.

The constant Ce is provided by Theorem 4.11.
Proof. Fix g � 0 and η � 0, and set f(v) = g(v)〈v〉η . Note that 〈v′〉η � 〈v〉η 〈v�〉η

for any v, v� ∈ R3; then, using the weak formulation of Q+
e ,∫

R3

Q+
e (g, g) g

p−1〈v〉ηp dv =

∫
R3

〈v〉ηQ+
e (g, g) f

p−1 dv �
∫
R3

Q+
e (f, f)f

p−1 dv.

Conclude the proof with Theorem 4.11.
The following result applies to the rescaled solutions g(τ, w). Its importance lies

in that the estimate is uniform in the rescaled time τ .
Corollary 4.15. Assume that e(·) satisfies Assumption 4.10. For any τ � 0, let

ẽτ be the restitution coefficient defined by (2.13), and let Qẽτ (f, f) be the associated
collision operator. Assume that V (ζ(τ)) is continuous and goes to infinity as τ → ∞.
For any 1 < p < ∞, there exist κ > 0, θ ∈ (0, 1), and K > 0 all independent of τ
such that, for any δ > 0,∫
R3

Q+
ẽτ
(g, g) gp−1〈w〉ηp dw � Kδ−κ‖g‖1+pθ

L1
η

‖g‖p(1−θ)

Lp
η

+δ ‖g‖L1
2+η

‖g‖p
Lp

η+1/p

∀η � 0.

Proof. From Corollary 4.14, for any τ � 0, there exists K(τ) = Cẽτ for which the
above inequality holds. It suffices to prove that K = supτ�0K(τ) < ∞. Recall that
K(τ) depends on τ through the restitution coefficient ẽτ ; more precisely, Cẽτ depends
on the L∞ norm of the derivatives Dkẽτ (·), k = 0, 1, over some compact interval of
(0,∞) bounded away from zero (independent of τ). Now, for any τ � 0,

Dkẽτ (·) = μ−k(τ)(Dke)

(
·

μ(τ)

)
,
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with μ(τ) = V (ζ(τ)). Since μ−1(τ) is continuous and goes to zero as τ goes to ∞, one
concludes that all the L∞ norms of Dkẽτ (·) remain uniformly bounded with respect
to τ . The same holds for K(τ).

5. Generalized Haff’s law continued.

5.1. Proof of Haff’s law. In this section we prove the second part of Haff’s law
establishing the lower bound of the temperature (3.12). Recall that, from Theorem
3.7 it suffices to prove (3.10). As explained in section 3, this is done using suitable Lp

estimates in the self-similar variables. In this section, the restitution coefficient fulfills
Assumptions 3.1 and 4.10, and the collision kernel is that of hard-sphere interactions.
Recall that the rescaled function g(τ, w) is the solution to the Boltzmann equation in
rescaled variables (2.12):

(5.1) ∂τg(τ, w) + ξ(τ)∇w · (wg(τ, w)) = Qẽτ (g, g)(τ, w) τ > 0.

The restitution coefficient ẽτ and the time-dependent mapping ξ(τ) are given by
(3.20).

Proposition 5.1. Assume that e(·) fulfills Assumption 3.1 with γ > 0 and As-
sumption 4.10. Let f0 satisfy (2.8) with f0 ∈ L1

2 ∩ Lp(R3) for some 1 < p < ∞. Let
g(τ, ·) be the solution to the rescaled equation (5.1) with initial datum g(0, w) = f0(w).
Then there exist C0 > 0 and κ0 > 0 such that

(5.2) ‖g(τ)‖Lp � C0(1 + τ)κ0 ∀τ � 0.

Consequently, there exist C1 > 0 and κ1 > 0 such that

(5.3) Θ(τ) :=

∫
R3

g(τ, w)|w|2 dw � C1(1 + τ)−κ1 ∀τ � 0.

Proof. The proof relies on Corollary 4.15. Multiply (5.1) by gp−1 and integrate
over R3 to obtain

(5.4)
1

p

d ‖g(τ)‖pLp

dτ
+ 3

(
1− 1

p

)
ξ(τ) ‖g(τ)‖pLp

=

∫
R3

Q+
ẽτ
(g, g)gp−1 dw −

∫
R3

Q−(g, g)gp−1 dw.

From Jensen’s inequality, one has

(5.5)

∫
R3

Q−(g, g)gp−1 dw �
∫
R3

gp(τ, w)|w| dw ∀τ � 0.

According to Corollary 4.15, there exist κ > 0, θ ∈ (0, 1), and a constant K > 0 that
does not depend on τ such that∫
R3

Q+
ẽτ
(g, g) gp−1 dw�Kδ−κ‖g(τ)‖1+pθ

L1 ‖g(τ)‖p(1−θ)
Lp +δ ‖g(τ)‖L1

2
‖g(τ)‖p

Lp
1/p

∀δ > 0.

From conservation of mass, ‖g(τ)‖L1 ≡ 1; furthermore, M2 := supτ�0 ‖g(τ)‖L1
2
< ∞

from (3.18). Thus, using (5.4) and (5.5),

(5.6)
d ‖g(τ)‖pLp

dτ
� pKδ−κ ‖g(τ)‖p(1−θ)

Lp + pM2 δ ‖g(τ)‖pLp
1/p

− μ(τ)‖g(τ)‖p
Lp

1/p

,
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where μ(τ) = min (p, 3(p− 1)ξ(τ)). Since ξ(τ) → 0 as τ → ∞ for γ > 0, there exists
τ0 > 0 such that

μ(τ) = 3(p− 1)ξ(τ) =
3(p− 1)

γτ + 1 + γ
for any τ � τ0.

Choosing δ = μ(τ)/(pM2) in (5.6), we get

d ‖g(τ)‖pLp

dτ
� pK (pM2)

κμ(τ)−κ‖g(τ)‖p(1−θ)
Lp � C(γτ +1+γ)κ‖g(τ)‖p(1−θ)

Lp ∀τ � τ0

for some positive constant C > 0. Integrating the above estimate, we conclude the
existence of some constant C0 > 0 such that

‖g(τ)‖pLp � C0 (γτ + 1 + γ)
κ+1
θ ∀τ � τ0,

and (5.2) readily follows.
Regarding estimate (5.3), note that for any R > 0,

Θ(τ) =

∫
|w|�R

g(τ, w)|w|2 dw +

∫
|w|>R

g(τ, w)|w|2 dw

� R2

∫
|w|>R

g(τ, w) dw � R2

(
1−

∫
|w|�R

g(τ, w)|w| dw
)

∀τ � 0.

From Hölder’s inequality,∫
|w|�R

g(τ, w)|w| dw �
(
4

3
πR3

)1/p′

‖g(τ)‖Lp with the convention
1

p
+

1

p′
= 1.

Therefore, using (5.2), there exists a positive constant C > 0 independent of R such
that

Θ(τ) � R2
(
1− C R3/p′

(1 + τ)κ0

)
∀R > 0, ∀τ � 0.

Pick R = R(τ) > 0 such that C R3/p′
(1 + τ)κ0 = 1/2; then

Θ(τ) � 1

2
R2(τ) =

1

2

(
1

2C(1 + τ)κ0

)p′/3

∀τ � 0,

which gives (5.3) with κ1 = p′κ0/3.
The generalized Haff’s law is a consequence of Theorem 3.7 and Proposition 5.1.
Theorem 5.2. Let f0 � 0 satisfy the conditions given by (2.8) with f0 ∈ Lp0(R3)

for some 1 < p0 < ∞. In addition, assume that e(·) fulfills Assumptions 3.1 and
4.10. Then the solution f(t, v) to the associated Boltzmann equation (2.7) satisfies the
generalized Haff’s law,

(5.7) c(1 + t)−
2

1+γ � E(t) � C(1 + t)−
2

1+γ , t � 0,

where c and C are positive constants independent of time t � 0.
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Proof. The upper bound in (5.7) has already been obtained in Proposition 3.3.
The proof of the lower bound is a straightforward consequence of Theorem 3.7 and
Proposition 5.1. Indeed, recall that for γ > 0,

E(t) = V −2(t)Θ(τ(t)),

where V (t) = (1 + t)
1

1+γ and τ(t) is given by (3.19). Since Θ(·) decays at least
algebraically (5.3), one recognizes that there exists some constant a > 0 such that
E(t) � a (1 + t)

−μ
, with μ = 2+γκ1

1+γ and with κ1 being the rate in (5.3). The result
follows from Theorem 3.7. The proof for γ = 0 is identical.

Remark 5.3. Recall that, in self-similar variables, (5.7) reads

c � Θ(τ) � C ∀τ > 0.

In particular, as explained in Theorem 3.7, the algebraic lower bound in (5.3) improves
as

(5.8) Θmin := inf
τ>0

Θ(τ) > 0.

Remark 5.4. As we pointed out (see Remark 3.8), for constant restitution coef-
ficient e0, the proof of Haff’s law for the quasi-elastic regime e0 � 1 follows without
the need of the Lp requirement (p > 1); this suggests that such requirement might be
avoided in the general case. This, of course, would greatly simplify the technicalities
of the proof and, more importantly, would clearly separate the L1 and Lp theories
(p > 1) for the inelastic Boltzmann equation. The proper treatment of this issue
remains an open problem.

Example 5.5. For constant restitution coefficient γ = 0, we recover the classical
Haff’s law of [18] proved recently in [23]:

c(1 + t)−2 � E(t) � C(1 + t)−2, t � 0.

Example 5.6. For viscoelastic hard spheres given in Example 2.4, one has γ = 1/5.
Thus, Theorem 5.2 provides the first rigorous justification of the following cooling rate
conjectured in [12, 27]:

c(1 + t)−5/3 � E(t) � C(1 + t)−5/3, t � 0.

Remark 5.7. Theorem 5.2 shows that the decay of the temperature is governed
by the behavior of the restitution coefficient e(r) for small impact. The cooling of the
gases is slower for larger γ.

From the explicit rate of cooling of the temperature, one deduces the algebraic
decay of any moments of the solution to (2.7). Under the assumptions of the above
Theorem 5.2, the p-moment mp(t) defined in (3.4) satisfies

(5.9) cp(1 + t)−
2p

1+γ � E(t)p � mp(t) � C̃p E(t)p � Cp(1 + t)−
2p

1+γ , t � 0.

The positive constants cp, Cp, and C̃p depend on p, mp(0), E(0), and e(·). The lower
bound is a direct consequence of Jensen’s inequality and (1.4), while the upper bound
was established in Theorem 3.7.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HAFF’S LAW FOR VISCOELASTIC HARD SPHERES 2533

5.2. Application: Propagation of Lebesgue norms. We complement Propo-
sition 5.1 by proving the propagation of Lp-norms for the solution g(τ, w) satisfying
the rescaled equation (5.1). Thus, the method introduced in the elastic case [26] and
later used in [23] for constant restitution coefficient is extended to the case of a variable
restitution coefficient satisfying Assumptions 3.1 and 4.10.

Lemma 5.8. Assume that the initial f0 � 0 satisfies the conditions given by (2.8)
with f0 ∈ Lp(R3) for some 1 < p < ∞, and let g(τ, ·) be the solution to the rescaled
equation (5.1) with initial datum g(0, w) = f0(w). Then there exists a constant ν0 > 0
such that∫

R3

g(τ, w�)|w − w�| dw� � max {ν0, |w|} � ν0
2
〈w〉 ∀w ∈ R

3, τ > 0.

In particular,∫
R3

gp−1Q−
e (g, g) dw � ν0

2

∫
R3

gp(τ, w)(1 + |w|2)1/2 dw =
ν0
2

‖g(τ)‖pLp
1/p

.

Proof. The proof is a simple consequence of (5.8). Indeed, since f0 ∈ L1
3, the

propagation of p-moments in the rescaled variables implies supt�0 ‖g(τ)‖L1
3
< ∞.

Then, for R > 0 large enough,∫
{|w|�R}

g(τ, w)|w|2 dw =

∫
R3

g(τ, w)|w|2 dw −
∫
{|w|�R}

g(τ, w)|w|2 dw

� Θmin −
1

R
sup

{τ�0}
‖g(τ)‖L1

3
� Θmin

2
> 0.

We conclude that∫
R3

g(τ, w)|w| dw � 1

R

∫
{|w|�R}

g(τ, w)|w|2 dw � Θmin

2R
=: ν0 > 0.

Using this observation and Jensen’s inequality, we obtain the result.
Theorem 5.9. Assume the variable restitution coefficient e(·) satisfies Assump-

tions 3.1 and 4.10 for some positive γ > 0. Assume that f0 � 0 satisfies (2.8) with
f0 ∈ L1

2(1+η) ∩ Lp
η(R

3) for some 1 < p < ∞ and η � 0. Then the rescaled solution

g(τ, ·) to (5.1) with initial datum g(0, w) = f0(w) satisfies

sup
τ�0

‖g(τ)‖Lp
η
<∞.

In particular,

sup
t�0

{
V (t)−3/p′ ‖f(t)‖Lp

}
= sup

τ�0
‖g(τ)‖Lp <∞.

Recall that V (t) = (1 + t)
1

1+γ .
Proof. Multiplying (5.1) by gp−1(τ, w) 〈w〉ηp and integrating over R3 yields

1

p

d ‖g(τ)‖pLp
η

dτ
+ 3

(
1− 1

p

)
ξ(τ) ‖g‖pLp

η
=

∫
R3

Q+
ẽτ
(g, g)gp−1 〈w〉ηp dw

−
∫
R3

Q−(g, g)gp−1 〈w〉ηp dw + ηξ(τ)

∫
R3

gp(τ, w)|w|2 〈w〉ηp−2
dw.
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Using Lemma 5.8, one has∫
R3

Q−(g, g)gp−1 〈w〉ηp dw � ν0
2
‖g(τ)‖p

Lp
η+1/p

.

Moreover, Cη = supτ�0 ‖g(τ)‖L1
2+η

< ∞ by virtue of the propagation of moments in

self-similar variables (5.9). Applying Corollary 4.15 with δ = ν0
4C ,

(5.10)
1

p

d

dτ
‖g(τ)‖pLp

η
+
ν0
4

‖g(τ)‖pLp
η+1/p

� K ‖g(τ)‖p(1−θ)

Lp
η

+ ξ(τ)

(
η − 3

p′

)
‖g(τ)‖pLp

η
∀τ > 0

for some uniform constant K. Since γ > 0, the mapping ξ(τ) decreases toward zero;
thus, (5.10) leads to the result.

Remark 5.10. We refer to [23, Theorem 1.3] for a proof of the case γ = 0.

6. High-energy tails for the self-similar solution. We finalize this work
studying the high-energy tails of f(t, v) of the solution to (1.3). For models with
variable restitution coefficient, the high-energy tail is dynamic since gas changes its
behavior during the cooling process. This is noted by a dynamic rate in the tail. Here
again, we shall deal with the following generalized hard-sphere collision kernel:

B(u, σ) = |u|b(û · σ),

where b(·) satisfies (2.6). We argue in the self-similar variables; thus, it is convenient
to define the rescaled p-moments

mp(τ) =

∫
R3

g(τ, w) |w|2p dw, p � 0.

Notice that (5.9) readily translates into

(6.1) cp � mp(τ) � Cp for τ � 0.

The following theorem generalizes [23, Proposition 3.1] to the case of a variable resti-
tution coefficient.

Theorem 6.1 (L1-exponential tails theorem). Let B(u, σ) = |u|b(û · σ) satisfy
(2.6) with b ∈ Lq(S2) for some q > 1. Assume that e(·) and f0 fulfill Assumption 3.1
and (2.8), respectively. Furthermore, assume that there exists r0 > 0 such that∫

R3

f0(v) exp (r0|v|) dv <∞.

Let g(τ, w) be the rescaled solution defined by (2.10). Then there exists some r � r0
such that

(6.2) sup
τ�0

∫
R3

g(τ, w) exp (r|w|) dw <∞.

Consequently,

sup
t�0

∫
R3

f(t, v) exp (rV (t)|v|) dw <∞.
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Proof. The method of proof is carefully documented in [2, 8, 11]. We sketch the
proof dividing the argument in five steps.

Step 1. Note that formally∫
R3

g(τ, w) exp (r|w|s) dw =
∞∑
k=0

rk

k!
msk/2(τ)

for any r > 0 and any s > 0. Hence, the summability of the integral is described

by the behavior of the functions
msk/2(τ)

k! . This motivates the introduction of the
renormalized moments

zp(τ) :=
mp(τ)

Γ(ap+ b)
, with a = 2/s,

where Γ(·) denotes the gamma function. We shall prove that the series converges for
some r < r0 and with s = 1 (i.e., a = 2). To do so, it is enough to prove that, for
some b < 1 and Q > 0 large enough, one has zp(τ) � Qp for any p � 1 and any τ � 0.

Step 2. Recall that, according to Lemma 2.6, the estimates of Proposition 2.7 are
independent of the restitution coefficient e(·). In particular, they hold for the time-
dependent collision operator Qẽτ , providing bounds which are uniform with respect
to τ . Specifically,∫

R3

Qẽτ (g, g)(τ, w)|w|2p dw � −(1− κp)mp+1/2(τ) + κp Sp(τ) ∀τ � 0,

where κp is the constant introduced in Lemma 2.6 and

Sp(τ) =

[ p+1
2 ]∑

k=1

(
p
k

)(
mk+1/2(τ) mp−k(τ) +mk(τ) mp−k+1/2(τ)

)
.

Step 3. An important simplification, first observed in [11], consists of noticing
that the term Sp satisfies

Sp(τ) � A Γ(ap+ a/2 + 2b) Zp(τ) for a � 1, b > 0,

where A = A(a, b) > 0 does not depend on p and

Zp(τ) = max
1�k�kp

{
zk+1/2(τ) zp−k(τ), zk(τ) zp−k+1/2(τ)

}
.

With such an estimate, the rather involved term Sp is more tractable.
Step 4. Using the above steps and the evolution problem (5.1) satisfied by the

rescaled solution g, we check that

dmp

dτ
(τ) + (1− κp)mp+1/2(τ) � κp Γ

(
ap+

a

2
+ 2b

)
Zp(τ) + 2p ξ(τ)mp(τ),

where we used the fact that∫
R3

|w|2p∇w · (wg(τ, w)) dw = −2pmp(τ).

Using the asymptotic formula

lim
p→∞

Γ(p+ r)

Γ(p+ s)
ps−r = 1,
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the fact that ξ(τ) � 1 and κp ∼ 1/p1/q
′
for large p, one concludes that there are

constants ci > 0 (i = 1, 2) and p0 > 1 sufficiently large so that

dzp
dτ

(τ) + c1 p
a/2z1+1/2p

p (τ) � c2 p
a/2+b−1/q′ Zp(τ) + 2p zp(τ) ∀τ � 0, p � p0.

We also used that mp+1/2(τ) � m
1+1/2p
p (τ) for any τ � 0 thanks to Jensen’s

inequality.
Final step. We claim that if we choose a = 2 and 0 < b < 1/q′, it is possible to

find Q > 0 large enough so that mp(τ) � Qp. Indeed, let p0 and Q <∞ such that

c2
c1
p
b−1/q′
0 � 1

2
, and Q �

{
max

1�k�p0

sup
τ�0

zk(τ), Q0,
16

c21
, 1

}
,

where Q0 is a constant such that zp(0) � Qp
0. This constant exists by the exponential

integrability assumption on the initial datum. Moreover, since moments of g are uni-
formly propagated, the existence of such finite Q is guaranteed. Arguing by induction
and standard comparison of ODEs, one proves that yp(τ) := Qp satisfies for p � p0

dyp
dτ

(τ) + c1 p
a/2y1+1/2p

p (τ) � c2 p
a/2+b−1/q′ Zp(τ) + 2p yp(τ), yp(0) � zp(0);

therefore, yp(τ) � zp(τ) for any p � p0. Since this is trivially true for p < p0, we
obtain that

mp(τ) � Γ(2p+ b)Qp ∀p � 1, τ � 0.

From Step 1, this is enough to prove the theorem.
Example 6.2. For viscoelastic hard spheres, V (t) = (1 + t)5/3. Therefore,∫

R3

f0(v) exp (r0|v|) dv <∞ =⇒ sup
t�0

∫
R3

f(t, v) exp
(
r(1 + t)5/3|v|

)
dv <∞

for some r < r0. In particular, using the terminology of [11], f(t, v) has a (dynamic)
exponential tail of order 1.

Appendix A: Viscoelastic hard spheres. In this appendix we prove that
Assumption 3.1 is met by the restitution coefficient e(·) associated to the so-called
viscoelastic hard spheres as derived in [27] (see also [12, Chapter 4]). In fact, we prove
a more general result for the following hard-sphere collision kernel:

B(u, σ) =
|u|
4π

∀u ∈ R
3, σ ∈ S

2.

Recall that Ψe was defined in (3.1) as

Ψe(x) =
1

2
√
x

∫ √
x

0

(
1− e(z)2

)
z3 dz, x > 0.

Lemma A.1. Assume that e(·) satisfies Assumption 2.1 and that the mapping
r � 0 �→ e(r) is decreasing. Then the associated function Ψe defined in (3.1) is
strictly increasing and convex.
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Proof. Since e is decreasing, e′(r) � 0 for any r � 0. Here e′(·) denotes the
derivative of e(·). Define

Φ(x) :=
1

x

∫ x

0

(
1− e2(z)

)
z3 dz, x > 0.

Note that Ψe(·) is convex if and only if xΦxx(x)−Φx(x) � 0 for any x > 0, where Φx

and Φxx denote the first and second derivatives of Φ, respectively. A simple calculation
shows that

xΦxx(x) − Φx(x) = −2x3e′(x)e(x) +
3

x2

∫ x

0

(1− e2(z))z3 dz ∀x > 0.

Since e′(x) � 0 and e(·) ∈ (0, 1], one concludes that xΦxx(x) − Φx(x) � 0 for any
x > 0.

Similarly, since e′(·) � 0, the mapping z � 0 �→ (1 − e2(z))z3 is nondecreasing;
thus, Φx(x) > 0 for any x > 0. This implies that Ψe(·) is strictly increasing over
(0,+∞).

For the viscoelastic hard spheres, as derived in [27], the restitution coefficient e
is the solution of the equation

(A.1) e(r) + α r1/5e(r)3/5 = 1 ∀r � 0,

where α > 0 is a constant depending on the material viscosity. It was proved in
[1, p. 1006] that, on the basis of (A.1), Assumption 2.1 is met. From (A.1), one
deduces that

lim
r→0+

e(r) = 1, and e(r) � 1− αr1/5 for r � 0,

which means that Assumption 3.1(1) is met. Furthermore, (A.1) also implies that e
is continuously decreasing. According to Lemma A.1, e(·) satisfies Assumption 3.1.
Moreover, it is easy to deduce from (A.1) that Assumption 4.10 is satisfied.

Example A.2. For monotone decreasing restitution coefficient introduced in Ex-
ample 2.3, Assumption 3.1 is also met by virtue of the above lemma. In such a case,
according to (2.2), the cooling of the temperature E(t) is

E(t) = O
(
(1 + t)−

2
1+η

)
as t→ ∞.
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