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Abstract 36 

 37 

Few strains of Metschnikowia pulcherrima are under development for control of 38 

postharvest pathogens on fruit. A substrate was developed to optimize the biomass 39 

production M. pulcherrima strain BIO126. Different complex nutrient sources, with or 40 

without pH control, were tested. Growth in Yeast Extract provided at concentrations 41 

equal to or higher than 30 g l-1 resulted in the highest biomass. The addition of two 42 

carbon sources, D-Mannitol and L-Sorbose at 5 g l-1 each, significantly improved the 43 

yeast growth. Initial pH values of the medium ranging from 5.0 to 7.5 permitted the 44 

highest growth of the yeast. A combination of Yeast Extract, D-Mannitol and L-Sorbose 45 

(YEMS), probably with diauxic utilization, showed synergistic effect, widening the 46 

exponential phase (the maximum specific growth rate was 0.45 h-1), and increasing the 47 

final cell number (1.5 x 109 cells ml-1) and dry biomass (6.0 g l-1) in well controlled 48 

batch fermentation. In efficacy trials on ‘Golden Delicious’ apples, the microorganism 49 

grown in YEMS effectively reduced incidence and severity of B. cinerea (51.1% and 50 

70.8%) and P. expansum (41.7% and 14.0%). Also on ‘Gala’ apples, the best reduction 51 

of grey and blue mould incidence was obtained with cells grown in YEMS (58.1% and 52 

50.5%, respectively).  53 

 54 

Keywords: batch fermentation, biological control, pH effect, postharvest, yeast. 55 

 56 

57 
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1. Introduction 58 

Several microorganisms have been evaluated to obtain microbial based products useful 59 

in agriculture, such as biofertilisers or biopesticides. Among the biofungicides, during 60 

the last twenty years, several yeast have been widely investigated against postharvest 61 

fungal pathogens of different host species (Janisiewicz and Korsten 2002; Spadaro and 62 

Gullino 2004; Wilson and Wisnieswki 1994). 63 

Among the microorganisms under development, there are few strains of Metschnikowia 64 

pulcherrima antagonistic against fungi causing postharvest decay of fruit. Some strains 65 

are effective against Botrytis cinerea, Penicillium expansum, or Alternaria alternata of 66 

apples (Janisiewicz et al. 2001; Piano et al. 1997; Spadaro et al. 2002; 2008), other 67 

strains were selected against Penicillium digitatum on grapefruit, B. cinerea, Rhizopus 68 

stolonifer, and Aspergillus niger on table grape, or B. cinerea and R. stolonifer on 69 

cherry tomato (Schena et al. 2000). Epiphytic isolates reduced A. carbonarius and A. 70 

niger colonization on grapes (Bleve et al. 2006). Moreover, a strain of M. pulcherrima 71 

proved effective in preventing the growth or survival of food-borne human pathogens, 72 

such as Listeria monocytogenes or Salmonella enterica, on fresh-cut apple tissue 73 

(Leverentz et al. 2006). M. pulcherrima could act through competition for iron 74 

(Saravanakumar et al. 2008) or production of hydrolases, such as chitinases and 75 

glucanases (Saravanakumar et al. 2009). 76 

The efficacy of many antagonists of wound pathogens is directly related to the number 77 

of antagonist propagules applied (Hofstein et al. 1994). Sinigaglia et al. (1998) found 78 

that the antagonistic effects of isolates of four yeast species, including M. pulcherrima, 79 

against Penicillium glabrum were more pronounced at high cell concentrations. 80 

Moreover, an increasing efficacy in reducing the germination of B. cinerea was 81 
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demonstrated by increasing the number of yeast cells applied (Spadaro et al. 2002). A 82 

simple way to increase the effectiveness of such biofungicides is the application of a 83 

higher number of cells. Mass production of yeast cells is an essential step in the 84 

commercialization of a biocontrol agent. A rapid, efficient and cheap mass production 85 

of yeast antagonists, generally by liquid fermentation, is one of the key issues to achieve 86 

the commercial use of the biofungicide (Wraight et al. 2001).  87 

Due to the recent interest over the use of the yeast species M. pulcherrima as biocontrol 88 

agent, efforts must be intensified to produce M. pulcherrima in a laboratory scale 89 

fermenter to provide relevant information for the scale-up production. Operating 90 

conditions (aeration, agitation, pH and temperature) as well as medium constituents may 91 

affect the quality and quantity of the tested microorganisms. To increase the biomass 92 

production of an antagonistic yeast on a laboratory scale, the optimization of the growth 93 

conditions, using different complex nutrient sources, is essential. The culture media can 94 

greatly influence the efficacy of the biocontrol agents (Wraight et al. 2001). The aim of 95 

developing a substrate for laboratory purposes is to optimize the biomass production, to 96 

find optimal conditions for stabilization and formulation, and to develop a quality 97 

control system. To scale-up a laboratory fermentation process to an industrial level, it is 98 

fundamental to find cheap nutrient sources, generally industrial by-products, with 99 

nutritional values similar to the laboratory standardized media.  100 

In this work, the influence of different complex nutrient media on the growth of M. 101 

pulcherrima strain BIO126 in 5 L batch fermentation was considered. The aim of the 102 

research was to find which sources provided the highest biomass production (as number 103 

of living cells and as dry biomass) of the antagonistic yeast and what was the optimal 104 

concentration for the identified sources. The experiments were carried out first in shake 105 
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flasks as a preliminary screening, and then in a 5-liter fermenter, optimizing aeration, 106 

temperature and pH. Finally, biological control assays were used to test the efficacy of 107 

the yeast cells produced through well controlled batch fermentation.  108 

 109 

2. Materials and Methods 110 

2.1. Microorganism 111 

Metschnikowia pulcherrima (Pitt) M.W. Miller strain BIO126 was isolated from the 112 

carposphere of a ‘Golden Delicious’ apple harvested from an unsprayed orchard located 113 

in Piedmont, Northern Italy (Spadaro et al. 2002). The strain was stored as a cell 114 

suspension in 20% V/V glycerol at –80°C at the Microorganism Culture Collection of 115 

the Centre of Competence for the Innovation in the Agro-environmental Sector of the 116 

University of Torino (Italy). The strain was deposited within the American Type 117 

Culture Collection on June 19, 2007 with deposit designation PTA-8486. 118 

 119 

2.2. Inoculum preparation 120 

The yeast inoculum was prepared by subculturing in Yeast extract-Peptone-Dextrose 121 

(YPD) [10 g l-1 granulated yeast extract (Merck, Darmstadt, Germany); 20 g l-1 triptone-122 

peptone of casein (Difco, Detroit, MI, USA); 20 g l-1 D(+)-glucose monohydrate 123 

(Merck)] on a rotary shaker (100 rpm) at 25°C for 48 h. Yeast cells were collected by 124 

centrifugation at 2500 x g for 7 minutes, washed, resuspended in sterilized Ringer 125 

solution (pH 6.9±0.1; Merck) and used as inoculum for the different liquid substrates 126 

evaluated in shake flask and batch fermentation experiments. 127 

 128 

2.3. Shake flask experiments 129 
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Cell suspensions of M. pulcherrima strain BIO126 (3 ml; 5 x 108 cfu ml-1) were 130 

inoculated in 1 litre Erlenmeyer flasks containing 300 ml of liquid media and grown on 131 

a rotary shaker (150 rpm) at 25°C for 48 h. Three flasks were prepared per each medium 132 

and two samples were collected from each flask. The final number of viable cells (cfu 133 

ml-1) was determined by plating on NYDA (Nutrient broth-Yeast extract-Dextrose-Agar 134 

as in Droby et al., 1989): 10-fold dilutions of each suspension were prepared in 135 

sterilized Ringer solution (pH 6.9+0.1; Merck) and spread-plated in order to calculate 136 

the cell number. Plates were incubated at 25°C for 48 h and the number of colony 137 

forming units per millilitre (cfu ml-1) was determined. The shake flask experiments were 138 

repeated two times.  139 

 140 

2.4. Culture media 141 

Complex nutrient media selection. The complex sources selected for the experiments 142 

were rich organic sources (yeast extract, nutrient broth, malt extract, meat peptone, 143 

casein peptone, bacto-peptone and casein hydrolyzed). Every source was tested at 10 g 144 

l-1. The pH values were registered at the beginning of the experiment, after 24 and 48 h 145 

of culture. In a second experiment, the initial pH of the seven complex nutrient sources 146 

was adjusted to 7.00 ± 0.05, using a 1.0 M phosphate buffer (Na2HPO4 and NaH2PO4) 147 

solution, in order to evaluate the pH effect on the yeast growth. Every  source was tested 148 

at 10 g l-1. The pH values were registered after growth for 24 and 48 h.  149 

 150 

Concentration of the complex nutrient source. Yeast extract medium was tested at 151 

different concentrations (5, 10, 15, 20, 30, 40, 50 and 60 g l-1). The pH values were 152 

registered after growth for 48 h.  153 



 8

 154 

Initial pH. Yeast extract (30 g l-1) was put in all the flasks. The pH of the media 155 

prepared was adjusted using either 0.1 N HCl or NaOH to obtain initial pH ranging 156 

from 1.0 to 11.0. The pH values were registered after growth for 24 and 48h. 157 

 158 

Carbon source addition. In a first assay, the carbon sources were tested in a medium 159 

containing 30 g l-1 of yeast extract. Three monosaccharide sugars (D-Glucose, D-160 

Fructose and L-Sorbose), two disaccharide sugars (Maltose and Sucrose, Sigma 161 

Chemical Co.) and two sugar alcohols (L-Sorbitol and D-Mannitol) were added to the 162 

yeast extract, at 10 and 20 g l-1. The pH values were registered after growth for 48h.  163 

In a second assay, D-Mannitol and L-Sorbose were tested either individually at different 164 

concentrations (from 2.5 g l-1 to 20 g l-1) or mixed at concentrations of 5+5 g l-1 or 6+6 g 165 

l-1  in a medium containing 30 g l-1 of yeast extract. The pH values were registered after 166 

growth for 48h. The results of the two experiments were similar, so they could be 167 

analyzed together and combined (Table 3).    168 

 169 

2.5. Fermentation experiments 170 

Well-controlled fermentations of 4.0 L working volume (nominal volume, 5 L) were 171 

carried out in Applikon BioConsole ADI 1025 glass stirred tank vessels (AppliconTM 172 

Biotechnology, Schiedam, The Netherlands), integrated with the software Bioexpert 173 

Lite for data acquisition. Operating conditions included temperature controlled at 25± 174 

0.2° C, dissolved oxygen permitted to float and monitored using a polarographic  probe, 175 

agitation with two equally spaced Rushton impellers controlled at a constant speed of 176 

450 rpm, and air sparging through a submerged ring sparger controlled at 4.0L/min or 1 177 
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vvm (volume of air per volume of medium). 178 

The tested substrates were YE (Yeast Extract 30 g l-1), YEM (Yeast Extract 30 g l-1; D-179 

Mannitol 10 g l-1), YES (Yeast Extract 30 g l-1; L-Sorbose 10 gl-1) and YEMS (Yeast 180 

Extract 30 g l-1; D-Mannitol 5 g l-1; L-Sorbose 5 g l-1). 0.05 ml/L of silicone antifoam 181 

(Sigma antifoam 204) were added. Every 2 h, starting from the inoculation of the 182 

fermenter to the end of the experiment, a 5 ml sample was harvested in order to measure 183 

the microorganism cell concentration. The concentration of viable cells (cfu ml-1) was 184 

determined by serial dilutions and plating, as indicated in the shake flask experiments. 185 

The fermenter experiments were carried out twice. 186 

In order to know the dry biomass produced by fermentation, the dry weight was 187 

determined. After 36 h, the liquid cultures were collected and centrifuged (7500 rpm) at 188 

4°C for 10 min (Beckman J21-2 centrifuge, Palo Alto, CA, USA) and the supernatant 189 

was discarded. The cell pellet was dried at 105°C for 30h and the dry mass was 190 

weighed. 191 

 192 

2.6. Biocontrol assay 193 

To evaluate the effect of the growth of M. pulcherrima strain BIO126 in four substrates 194 

(YE, YEM, YES and YEMS) on the biocontrol efficacy, four trials were carried out 195 

against Botrytis cinerea and Penicillium expansum on ‘Golden Delicious’ and ‘Gala’ 196 

apples. Yeast cells were grown in the four substrates for 36h, centrifuged and suspended 197 

to 107 cfu ml-1in 100 l tanks. Five strains per each pathogen were isolated from rotted 198 

apples and selected for their virulence. Each strain was stored in slant on Potato 199 

Dextrose Agar (PDA; Merck) with 50 mg l-1 streptomycin Merck at 4°C. Spore 200 

suspensions were prepared by growing the fungal pathogens on Petri dishes for two 201 
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weeks on PDA with 50 mg l-1 of streptomycin. Spores from the five strains were 202 

collected, suspended in sterile Ringer’s solution, filtered through 8 layers of sterile 203 

cheese-cloth and brought to a final concentration of 105 spores ml-1 per strain. Apples 204 

were artificially wounded at the equatorial region (3 mm diameter; 6 mm depth; 3 205 

wounds per fruit). The fruits were artificially inoculated by dipping for 60 seconds in a 206 

100 l tank containing a conidial suspension (105 spores ml-1 per pathogen) of B. cinerea 207 

or P. expansum. After 3 hours, biocontrol isolates were applied at 107 cells ml-1 by 208 

completely dipping the boxes of fruits for 60 sec in a 100 l tank containing the yeast cell 209 

suspensions prepared as described. Fifty apples per replicate and three replicates per 210 

treatment were used. After incubation at 1°C for 28 days, the incidence of rotten fruits 211 

and the lesion diameters were measured. A chemical control treatment consisted of 212 

fruits treated with thiabendazole (Tecto 20 S, Elf Atochem Agri Italy, 19.7 % a.i., 20 g 213 

a.i. 100 l-1). The experiment was carried out twice. 214 

 215 

2.7. Statistical analysis 216 

The fermentation experiments in bioreactor were performed twice, while the growth 217 

experiments in shake flasks and the biocontrol experiments were repeated twice. No 218 

significant differences were found among corresponding experiments so that the trials 219 

were pooled and statistical analysis was performed by using the SPSS software (SPSS 220 

Inc., version 13.0, Chicago, IL, USA). Statistical significance was generally judged at 221 

the level of P<0.05 for the shake flasks growth and biocontrol experiments, but at 222 

P<0.01 for the assay of concentration of the complex nutrient source. When the analysis 223 

of variance was statistically significant either in the shake flask growth or in the 224 

biocontrol experiments, Duncan’s multiple range test was used for the separation of 225 
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means. 226 

 227 

3. Results 228 

 229 

3.1. Growth in complex nutrient media 230 

Maximum exponential growth rate and biomass production of the strain BIO126 of M. 231 

pulcherrima varied with the complex nutrient source (Table 1a). The total nitrogen 232 

content of the tested media ranged from 8.0% to 15.4%, but it was very low for Malt 233 

Extract (1.1%). The highest yield was obtained with Yeast Extract (1.2 x 108 cfu ml-1) 234 

and Nutrient Broth (8.5 x 107 cfu ml-1), followed by Malt Extract and Meat Peptone. 235 

The Ringer solution, used as control, permitted to keep alive the initial inoculum.  236 

Five out of seven complex nutrient sources, with an initial pH almost neutral, favoured 237 

the growth of M. pulcherrima, and the two substrates providing the highest biomass 238 

resulted in an increased pH value after 24 and 48 h from the inoculum. In the case of 239 

Malt Extract and Casein Hydrolyzed, the pH, initially acidic, decreased further at the 240 

end of the microorganism growth. For this reason, the experiment was repeated, 241 

adjusting the initial pH to 7.00±0.05 with a phosphate buffer (Table 1b). Yeast Extract 242 

and Nutrient Broth confirmed the highest viable biomass. The pH values after 24 and 48 243 

h were higher and slightly acidic when the microorganism was grown in buffered Malt 244 

Extract, but the final biomass obtained was lower. On the opposite, the viable cells 245 

obtained in buffered Casein Hydrolyzed were higher compared to the not buffered 246 

substrate, and the pH value after 48 h was basic (8.04). 247 

An increase in initial Yeast Extract concentration from 5 to 30 g l-1 gave a proportional 248 

increase in the biomass produced at the stationary phase (Fig.1). No significant increase 249 
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in biomass was observed from 40 to 60 g l-1 of Yeast Extract, which is likely due to the 250 

Crabtree effect (Crabtree 1928; Boulton et al. 1998). At the stationary phase, pH values 251 

of the culture substrate ranged from 8.07 to 8.70. 252 

To assess the effect of the initial pH value on the final biomass produced, M. 253 

pulcherrima was grown in Yeast Extract (30 g l-1) whose initial pH was adjusted at 254 

values ranging from 1.0 to 11.0 (Table 2). The pH values lower than 3.0 and higher than 255 

10.0 did not permit the growth of M pulcherrima. A growth of at least 108 cfu ml-1 was 256 

possible at initial pH values ranging from 4.0 to 8.5. When the initial pH ranged 257 

between 5.0 and 7.5, a viable population higher than 3.0 x 108 cfu ml-1 was achieved 258 

and the final pH ranged between 8.05 and 8.34. 259 

 260 

3.2. Effect of carbon addition 261 

The effect of different carbon sources on the growth of M. pulcherrima was assessed in 262 

presence of Yeast Extract at two different concentrations: 10 and 20 g l-1 (Table 3). All 263 

the carbon sources tested increased the yeast biomass production when used at 10 g l-1. 264 

At 20 g l-1 of carbon source, only D-Fructose did not provide a statistically significant 265 

increase in the biomass of M. pulcherrima. In general, 20 g l-1 of carbon source did not 266 

improve the yeast biomass compared to 10 g l-1 suggesting that high external carbon 267 

source concentration are not beneficial to growth of this yeast. Only D-Glucose, applied 268 

at 20 g l-1, provided a M. pulcherrima biomass higher than at 10 g l-1. 269 

D-Mannitol and L-Sorbose at the concentration of 10 g l-1 provided the highest biomass, 270 

1.5 x 109 cfu ml-1 and  8.0 x 108 cfu ml-1, respectively. Also Sucrose, either at 10 or 20 g 271 

l-1, was a good carbon source, resulting in 6.7 and 6.9 x 108 cfu ml-1 of M. pulcherrima, 272 

respectively.  273 
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The addition of different carbon sources resulted in a lower pH after 48 h. For D-274 

Fructose, D-Mannitol, D-Sorbitol, and Sucrose, the pH was below 7.0 even after 48 h. 275 

D-Mannitol and L-Sorbose were used alone or combined at different concentrations in a 276 

second assay to evaluate the effect on the final growth of the yeast strain (Table 3). The 277 

maximum growth was obtained using 5.0 g l-1 of D- Mannitol + 5.0 g l-1 of L-Sorbose, 278 

that caused increase in the final number of cells to 1.7 x 109 cfu ml-1. At equal 279 

concentrations, D-Mannitol provided more yeast growth than L-Sorbose. In particular, 280 

the addition of 7.5 and 10.0 g l-1 of D-Mannitol were the most effective concentrations 281 

resulting in a final cell number of 1.5 x 109 cfu ml-1. The highest growth with L-Sorbose 282 

was achieved at concentration of 12.5 g l-1 (1.2 x 109 cfu ml-1). Addition of D-Mannitol 283 

and the mixture of D-Mannitol and L-Sorbose reduced pH after 48h growth. Increasing 284 

concentrations of D-Mannitol contributed to increase in the final pH value, while 285 

increasing concentrations of L-Sorbose had the opposite effect. 286 

 287 

3.3. Fermentation experiments 288 

The biomass production process was scaled-up from shaking flasks to a 5-l fermenter. 289 

The yeast biomass resulted significantly higher (1.6 x 109 cfu ml-1) in YEMS medium 290 

compared to simple YE, YE with L-Sorbose, or YE with D-Mannitol (Fig.2a). At 5 l 291 

min-1 of aeration and 450 rpm, the stationary phase was achieved after 32 h of batch 292 

culture in YEMS medium, while in the other substrates it was reached from 2 to 4 h 293 

later. The maximum specific growth rate during the exponential phase was 0.45 h-1 in 294 

YEMS, while it was 0.33 h-1 in YES and 0.34 h-1 in YE and YEM. 295 

Initial pH was 6.9 in YE and in YEM (Fig.2b). The presence of L-Sorbose contributed 296 

to lower the initial pH to 6.5 in YES and YEMS. As the growth approached the 297 
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stationary phase, pH tended to increase. The metabolism of D-Mannitol contributed to 298 

lower the pH of 0.4 units: the minimum value achieved was 6.40 for YEM and 6.03 for 299 

YEMS. 300 

The consumption of oxygen is an indication of exponential growth (Fig.2c). The 301 

reduction in the dissolved oxygen became visible when the viable population reached 302 

around 107 cfu ml-1. In YE, the length of the exponential phase and the final number of 303 

cells obtained were reduced. In YES and YEM, the dissolved oxygen started to decrease 304 

earlier than in YE. In YE, moreover, even during the exponential phase, the dissolved 305 

oxygen was never reduced to 0%, but in YEMS it declined to 0% from the hour 24 to 306 

the hour 31, for the longest period, indicating a long exponential phase. The evolution 307 

of the dissolved oxygen indicated the sequential metabolism of D-Mannitol, followed 308 

by L-Sorbose and finally by the amino acids and proteins contained in Yeast Extract. 309 

At the end of the fermentation experiments, 1000 ml of cultural broth were harvested, 310 

centrifuged and dried to measure the wet and the dry biomass produced. Using YE, 311 

YES, YEM and YEMS, the wet biomass was 11.1, 12.0, 19.8, and 26.4 g l-1, 312 

respectively, and the dry biomass was 1.4, 2.1, 4.2, and 6.0 g l-1, respectively. These 313 

results confirmed the values obtained by plate counting.  314 

 315 

3.4. Efficacy trials 316 

In the efficacy trials carried out on apples by treating with M. pulcherrima strain 317 

BIO126 grown on four substrates, yeast cells grown in YEMS were more effective. 318 

Generally, yeast concentrations being equal, the efficacy of the antagonistic cell 319 

suspension was influenced by the growth culture substrate (Fig. 3). On ‘Golden 320 

Delicious’ apples (Fig.3a), grey mould incidence and severity on the fruits treated with 321 
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BIO126 grown on YEMS were 48.9% and 29.2% compared to the inoculated control 322 

(whose incidence and lesion diameter were 91.3% and 51.9 mm, respectively). Among 323 

the fruits treated with the four yeast cell suspensions, grey mould incidence was 324 

significantly lower when fruit were treated with cells grown in YEMS, but the mean 325 

lesion diameters observed were not significantly different. Considering the efficacy 326 

against P. expansum on ‘Golden Delicious’ apples, the cell suspension of M. 327 

pulcherrima BIO126 grown in YEMS reduced the incidence from 86.3% (inoculated 328 

control) to 50.3% and the mean lesion diameter from 37.9 mm (inoculated control) to 329 

32.6 mm. On the opposite, when the yeast was grown in YE, it was ineffective in 330 

reducing blue mould severity compared to the control. 331 

On ‘Gala’ apples (Fig. 3b), the grey mould incidence was significantly reduced by 332 

BIO126 grown on YEMS, YES, or YEM, but not when the yeast was grown on YE. 333 

The lesion diameter of grey rots was not significantly reduced by any yeast application. 334 

Similarly, against Penicillium expansum on ‘Gala’ apples, none of the biological 335 

treatments could significantly reduce the lesion diameter, but cell suspensions of the 336 

yeast grown in YES or YEMS significantly reduced blue mould incidence.       337 

The fungicide thiabendazole reduced the incidence of grey mould and blue mould on 338 

both apple cultivars, but its efficacy in reducing the lesion diameter was higher against 339 

B. cinerea on ‘Golden Delicious’ apples, lower, although significant, against P. 340 

expansum on ‘Golden Delicious’ apples, and not significant against both pathogens on 341 

‘Gala’ apples. 342 

 343 

4. Discussion 344 

The cell production is an essential step in the commercialization of a yeast with 345 
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industrial application as a biopesticide. To our knowledge, there are not studies that 346 

have addressed the production process of M. pulcherrima, considering the biomass 347 

viable count and the biocontrol efficacy as an objective function of the process. 348 

The growth parameters were initially optimized in flask experiments: the complex 349 

nutrient source that provided the maximum biomass of the antagonistic yeast M. 350 

pulcherrima was Yeast Extract. Although other sources tested (nutrient broth and the 351 

three peptones) contained higher nitrogen content, probably Yeast Extract possesses a 352 

more balanced equilibrium of amino acids and peptides (it contained 11.4% nitrogen), 353 

together with vitamins and carbohydrates, able to promote and sustain a rapid growth of 354 

a yeast microorganism (Peppler 1982; Perez et al. 1992). Moreover Yeast Extract shows 355 

a buffer ability (Gaudreau et al. 1997) and this could contribute to reach the highest 356 

viable cells concentration. The concentrations of Yeast Extract providing the highest 357 

growth were 30 g l-1 or more. 358 

The trial carried out using the complex source media adjusted to pH 7.00 ± 0.05 allowed 359 

to determine the effect of the pH control on the biomass production by the strain 360 

BIO126. The buffering permitted to significantly improve the final yeast biomass 361 

obtained using Casein Hydrolyzed and Nutrient Broth, but it did not affect the result 362 

with the other complex source media. For this reason, the trials continued using Yeast 363 

Extract without phosphate buffer. 364 

A wide range of pH permitted the growth of M. pulcherrima (from 3.0 to 10.0), 365 

although  initial pH values ranging from 5.0 to 7.5 provided the highest culture growth. 366 

Thus the subsequent trials were carried out measuring the initial pH values. 367 

The results obtained in flask experiments were confirmed in well-controlled batch 368 

fermentations. The higher viable cells count obtained in the top bench fermenter could 369 



 17

be linked to a better oxygenation as compared to the shake flasks. Maximum 370 

exponential growth rate, maximum culture density and maximum wet and dry 371 

biomasses were reached using YEMS medium. Moreover, the stationary phase was 372 

reached in YEMS from 2 to 4 h earlier than in the other substrates tested. Our results on 373 

M. pulcherrima are in accordance or higher than previously obtained results. Abadias et 374 

al. (2003) obtained 8 x 108 cfu ml-1 of Candida sake after 30 h growth in a 5 l lab-scale 375 

fermenter. By growing Rhodotorula minuta in a shake flasks for 48 h, the best results in 376 

terms of viable microorganisms (over 109 cells ml-1) were obtained with a PYD, a 377 

medium containing soluble potato starch, dextrose and yeast extract (Patiño-Vera et al. 378 

2005).  379 

In the fermentation experiments performed, L-Sorbose lowered the initial pH when it 380 

was added to YES and YEMS, and the metabolism of D-Mannitol contributed to lower 381 

the pH of the medium during the exponential growth phase. For this reason the 382 

combination of the two carbon sources, probably with diauxic utilization, showed a 383 

synergistic effect, improving the final yeast biomass over those obtained with the single 384 

carbohydrates, and lowering the pH up to 6.08 during the exponential phase. The 385 

sequential metabolism of D-Mannitol, followed by L-Sorbose, and finally by the amino 386 

acids and proteins contained in Yeast Extract, suggests that the growth response is 387 

diauxic, reflecting a sequential rather than simultaneous utilization of the carbon sources 388 

(Collier et al. 1996).  389 

Actively growing yeast acidifies the growth medium through a differential ion uptake 390 

and direct secretion of organic acids and carbon dioxide (Walker 1998). An increase of 391 

the pH was related to the beginning of the stationary phase. During the experiments, 392 

when the microorganism was approaching the stationary phase of growth, the 393 
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respiration growth decreased, carbon dioxide production decreased and, consequently, 394 

pH tended to increase. An experiment was carried out in the top bench fermenter using 395 

YEMS as a substrate and with pH control kept at 6.00 (data not shown). The final cell 396 

concentration obtained was not significantly different from the experiment without pH 397 

buffering, as already shown in the shake flask experiments, so that pH control was not 398 

considered as an essential factor to increase the yeast biomass. 399 

Oxygen consumption could be considered an indicator of exponential growth (Abadias 400 

et al. 2003). The dissolved oxygen rapidly decreased during the exponential phase 401 

because of cell respiration and, on the opposite, it started back to increase because of a 402 

decrease in the respiration rate of the cells (Meesters et al. 2003). 403 

Cells were grown for 48 h in shake flask experiments and 40 h in well-controlled batch 404 

experiments, periods largely sufficient for the microorganism to reach the stationary 405 

phase of growth. Harvesting stationary phase cells is desirable to enhance cell survival 406 

under stress conditions such as low water potential or drying (Abadias et al. 2001). This 407 

could be an advantage as, after production, M. pulcherrima cells have to be formulated, 408 

probably, through a drying process, such as freeze drying (Melin et al. 2007) or fluid 409 

bed drying (Bayrock and Ingledew 1997). In both cases, yeast cells harvested at the 410 

stationary phase are more resistant to the osmotic stress caused by the drying process 411 

(Wraight et al. 2001).The efficacy trials conducted on two commercial varieties of apple 412 

permitted to test the influence of the growing media on the biocontrol capability of M. 413 

pulcherrima BIO126. The growth of both pathogens and the biocontrol efficacy of 414 

BIO126 were affected by the host cultivar. The two different cultivars chosen for the 415 

test, “Gala” and “Golden Delicious”, have different pH and titrable acidity, able to 416 

modify the growth and fitness of postharvest pathogens (Morales et al. 2008). On ‘Gala, 417 
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the incidence of fruits with grey or blue mould was lower than on ‘Golden Delicious’ 418 

apples. On ‘Golden Delicious’ apples, the microorganism cells grown in YEMS 419 

provided a higher reduction of incidence and severity of B. cinerea and P. expansum. 420 

Results were more promising against grey mould than blue mould, probably because P. 421 

expansum is growing at a faster rate. On ‘Gala’ apples, the best results on the reduction 422 

of the disease incidence were obtained with cells grown on YEMS or YES. Previous 423 

studies, carried out to test the influence of the growing media on the biocontrol efficacy 424 

of other antagonists, such as Pantoea agglomerans, did not show any statistically 425 

significant effect of the substrates (Costa et al. 2001). 426 

As a chemical control, thiabendazole was used. Benzimidazoles can effectively control 427 

grey mould on apples, but they are almost ineffective against P. expansum, due to the 428 

high level of resistance developed by most of the Italian strains of this pathogen 429 

(Bertetti et al. 2003). To represent conditions more similar to the postharvest 430 

environment, both pathogen mixtures used in the efficacy trials were formed by four 431 

benzimidazole-sensitive isolates and one benzimidazole-resistant isolate. Penicillium 432 

expansum can cause economical losses due to blue mould, but also produces patulin, a 433 

mycotoxin often found in apple juices (Spadaro et al. 2007). For this reason, effective 434 

control strategies against blue mould are necessary, and strain BIO126 could constitute 435 

an effective alternative for blue mold control after harvest.  436 

The results obtained were encouraging and a good substrate was developed for 437 

laboratory purposes (i.e. to find optimal conditions for biomass production, 438 

stabilization, formulation, and to develop a quality control system), but the following 439 

step will be the scaling up of the production process to the level of pilot plant and the 440 

subsequent stabilization and formulation. To scale-up a laboratory fermentation process 441 
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to an industrial level, it is fundamental to find nitrogen and carbon sources that provide 442 

maximum biomass production and minimum cost of media, whilst maintaining 443 

biocontrol efficacy (Mousdale et al. 1999). Yeast extract was the best complex 444 

nutritional source for BIO126 but it is expensive for an industrial process. The use of 445 

commercial by-products with the same nutritional qualities can result in a cheap 446 

alternative for the yeast biomass production (Ghribi et al. 2006). Anyway, often by-447 

products are not standardized as purified products and they may contain impurities that 448 

need to be removed before fermentation (Stanbury et al., 1995). Moreover, their 449 

composition may vary according to season and origin. For these reasons, appropriate 450 

procedures should be employed to standardize the industrial growth media (Thomsen 451 

2005). Commercial dry beer yeast could replace synthetic yeast extract, but it should be 452 

filtered before autoclaving, to discard the insoluble fraction (Reed and Nagodawithana 453 

1991). 454 

The knowledge gained about the addition of D-Mannitol and L-Sorbose will be useful 455 

to develop a cheap substrate containing a complex nutritional source similar to yeast 456 

extract together to the sugars selected in this study. After producing the biomass of the 457 

antagonistic yeast, the next step will be the cell stabilization by freeze-drying or fluid 458 

bed drying (Brian and Etzel 1997).  459 
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Table 1 Growth of Metschnikowia pulcherrima strain BIO126 (cfu ml–1) in different 578 
complex nutrient media (10 g l-1 each), without (a, left) or with (b, right) adjustment of 579 
initial pH0 7.00±0.05 with a phosphate buffer. Values of pH (±0.05) at initial time 580 
(pH0), after 24h (pH24) and 48h culture (pH48) are shown. Cultures (5 x 105 cfu ml-1) 581 
were inoculated in 300 ml of liquid media and grown on a rotary shaker (150 rpm) at 582 
25°C for 48 h.  583 
  Total 

nitrogen 
content 

Complex nutrient media (a) Buffered complex nutrient media (b)
pH0 pH24 pH48 Mean (cfu ml-1) pH24 pH48 Mean (cfu ml-1) 

Yeast Extract 11.4 7.13 7.91 8.56 1.2 x 10 8 a*  8.05 8.61 1.1 x 10 8 a* 
Nutrient Broth 13.0 7.11 7.72 8.57 8.5 x 10 7 a-b 8.19 8.73 1.2 x 10 8 a 

Malt Extract 1.1 5.17 4.94 3.84 5.3 x 10 7 b 6.77 6.70 1.8 x 10 7 c 
Meat Peptone  13.9 7.36 7.30 7.20 2.3 x 10 7 b-c 7.10 7.34 1.8 x 10 7 c 

Casein Peptone  13.5 7.04 7.35 7.50 1.5 x 10 7 c 7.14 7.22 2.7 x 10 7 c 

Bacto-peptone 15.4 7.09 7.56 7.53 1.3 x 10 7 c 7.26 7.35 1.4 x 10 7 c 

Casein Hydrolyzed  8.0 5.42 5.53 5.67 1.3 x 10 7 c 7.45 8.04 8.0 x 10 7 b 

Ringer solution -- 6.35 6.30 6.54 4.9 x 10 5 d 7.42 7.32 5.6 x 10 5 d 

 584 
* Values in the same column followed by the same letter are not statistically different 585 
by 586 
Duncan’s Multiple Range Test (P<0.05). 587 

588 
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Table 2 Effect of the initial pH value on the growth of Metschnikowia pulcherrima 589 
strain BIO126 (inoculum: 5 x 105 cfu ml–1) produced in liquid medium containing yeast 590 
extract (30 g l-1) at 25°C for 48 h. Values of pH (±0.05)  at initial time (pH0), after 24 591 
(pH24) and 48h culture (pH48) are shown. 592 
 593 

pH0 pH 24h 
Mean 24h 
(cfu ml-1) pH 48h 

Mean 48h 
(cfu ml-1) 

1.0 1.06 no living cells 0.94 no living cells 
1.5 1.58 no living cells 1.42 no living cells 
2.0 2.08 no living cells 1.95 no living cells 
2.5 2.53 no living cells 2.45 no living cells 
3.0 3.22 5.2 x 10 5 7.35 9.5 x 10 6 b* 
3.5 6.03 1.2 x 10 6 7.67 1.6 x 10 7 b-c 
4.0 7.72 1.2 x 10 8 7.32 2.6 x 10 8 d-f 
4.5 7.70 1.1 x 10 8 6.59 2.1 x 10 8 d-e 
5.0 8.02 1.3 x 10 8 8.12 4.9 x 10 8 g 
5.5 7.02 1.6 x 10 8 8.27 3.8 x 10 8 f-g 
6.0 6.80 1.5 x 10 8 8.16 3.7 x 10 8 f-g 
6.5 8.23 1.4 x 10 8 8.33 3.2 x 10 8 e-g 
7.0 7.98 7.3 x 10 7 8.34 3.1 x 10 8 e-g 
7.5 7.68 5.8 x 10 7 8.05 3.4 x 10 8 e-g 
8.0 7.91 5.5 x 10 7 6.70 2.2 x 10 8 d-f 
8.5 8.30 6.3 x 10 7 8.28 1.6 x 10 8 d 
9.0 7.05 3.3 x 10 7 7.62 3.6 x 10 7 c 
9.5 8.53 1.4 x 10 7 8.23 2.3 x 10 7 b-c 

10.0 8.86 3.9 x 10 5 8.90 1.5 x 10 5 a 
11.0 9.30 3.9 x 10 5 9.43 no living cells 

 594 
* See Table 1. 595 

596 
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Table 3 Growth of Metschnikowia pulcherrima strain BIO126 (cfu ml–1) in media 597 
containing yeast extract (30 g l-1) and different carbon sources. Cultures (5 x 105 cfu ml-598 
1) were inoculated in 300 ml of liquid media and grown on a rotary shaker (150 rpm) at 599 
25°C for 48 h. Values of pH (±0.05) at initial time (pH0) and 48h culture (pH48) are 600 
shown. 601 

 602 
Nitrogen 
source Carbon source pH 0 h pH 48h Mean 48h (cfu ml-1) 

Yeast 
extract  
(30 g l-1) 

D-Glucose 
 

10 g l-1 6.88 7.38 3.7 x 108 b-c* 
20 g l-1 6.80 8.18 5.2 x 108 b-c 

D-Fructose 10 g l-1 6.89 8.54 3.8 x 108 b-c 
20 g l-1 6.90 6.78 3.0 x 108 a-b 

Sucrose 10 g l-1 6.90 7.64 6.7 x 108 c-e 
20 g l-1 6.89 6.85 6.9 x 108 c-e 

Maltose 10 g l-1 6.89 8.20 6.2 x 108 b-d 
20 g l-1 6.87 7.70 5.7 x 108 b-d 

D-Sorbitol 10 g l-1 6.92 7.18 5.9 x 108 b-d 
20 g l-1 6.90 6.94 5.6 x 108 b-d 

D-Mannitol 

2.5 g l-1 6.90 6.40 2.4 x108 a-b 
5.0 g l-1 6.92 6.40 6.5 x 108 c-e 
7.5 g l-1 6.92 6.50 1.5 x 109 g 
10.0 g l-1 6.90 6.60 1.5 x 109 g 
12.5 g l-1 6.90 7.00 1.2 x 109 f-g 
15.0 g l-1 6.90 7.20 1.3 x 109 f-g 
17.5 g l-1 6.91 7.20 8.2 x 108 d-e 
20.0 g l-1 6.91 7.50 6.6 x 108 c-e 

L-Sorbose 

2.5 g l-1 6.90 8.40 1.5 x 108 a 
5.0 g l-1 6.90 8.40 2.4 x 108 a-b 
7.5 g l-1 6.91 8.30 7.3 x 108 d-e 
10.0 g l-1 6.89 8.20 8.0 x 108 d-e 
12.5 g l-1 6.90 8.20 1.2 x 109 f-g 
15.0 g l-1 6.89 8.00 9.0 x 108 e-f 
17.5 g l-1 6.90 7.95 7.0 x 108 c-e 
20.0 g l-1 6.90 7.95 7.0 x 108 c-e 

D-Mannitol + 
L-Sorbose 

5.0 g l-1 + 5.0 g l-1 6.97 6.69 1.7 x 109 g 
6.0 g l-1 + 6.0 g l-1 6.93 7.23 1.3 x 109 f-g 

None  6.91 8.40 1.5 x 108 a 
 603 
* See Table 1. 604 

605 



 29

Fig. 1 Effect of the Yeast Extract concentration on the growth of Metschnikowia 606 
pulcherrima strain BIO126 (cfu ml–1) produced in shake flasks at 25°C for 48 h. Values 607 
of pH after 48h culture are shown between parentheses. 608 
 609 
 610 
 611 
 612 
 613 
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 617 
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* Dots followed by the same letter are not statistically different by Duncan’s Multiple 625 
Range Test (P<0.01). 626 

627 
A (pH 8.73)

B (pH 8.80)

C (pH 8.77)

D (pH 8.56)
E (pH 8.53)

E (pH 8.47)
E (pH 8.20)

E (pH 8.07)

1.0E+07

1.0E+08

1.0E+09

5 10 15 20 30 40 50 60

Yeast Extract concentration (g l-1)

M
ea

n 
48

h 
(C

FU
 m

l-1
)



 30

Fig 2 (a) Evolution of biomass production (cfu ml-1) of Metschnikowia pulcherrima 628 
strain BIO126, (b) pH and (c) dissolved oxygen using YE (Yeast Extract; ▲), YES 629 
(Yeast Extract + D-Sorbitol; x), YEM (Yeast Extract + L-Mannitol; ♦) and YEMS 630 
(Yeast Extract + D-Sorbitol + L-Mannitol; ■) media in a 5 l fermenter, maintaining 631 
temperature at 25°C, stirring at 450 rpm and oxygen flow at 5 l min-1 for 40 h. 632 
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Fig 3 Influence of the cultivation substrate on the efficacy of M. pulcherrima strain 640 
BIO126 (107 cfu ml-1) against Botrytis cinerea (left) and Penicillium expansum (right) 641 
on apples ‘Golden Delicious’ (a) and ‘Gala’ (b). Fruits were artificially inoculated with 642 
the pathogen (105 conidia ml-1) 3 hours before treatment with the biocontrol agent, and 643 
then stored at 1°C for 28 days. Disease incidence was expressed as percentage of rotten 644 
fruits and disease severity was assessed by measuring the lesion diameter of the rots 645 
(mm). Thiabendazole was used as chemical control (Tecto 20 S, Elf Atochem Agri 646 
Italy, 19.7 % a.i., 20 g a.i. 100 l-1). 647 
a 648 

 649 
b 650 

 651 
Values in columns of the same colour followed by the same letter are not statistically 652 
different by Duncan’s Multiple Range Test (P < 0.05). 653 
 654 


