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Abstract:   Effectiveness of the Fenton’s reagent for partial degradation of diethanolamine (DEA) 

prior to biological treatment is investigated.  The effects of the major process parameters on the 

time evolution of COD, an indicator of the extent of degradation, were measured.  The DEA 

concentration ranged from 800 to 16,000 ppm, in consideration of the COD of real effluents of 

natural gas processing plants.  The initial reaction rate was a strong function of the feed amine 

concentration.  About 70-80% of the ultimate COD removal could be achieved within three 

minutes.  The pH of the medium was varied over 1-4;  the best results were obtained at pH 3.  

The effectiveness of a hybrid scheme of advanced oxidation followed by biodegradation was 

explored.  Activated sludge from a local wastewater treatment pond was used.  Fast COD 

removal of the partially degraded DEA was achieved within a day. Biodegradation of pure DEA 

was much slower, apparently because of the acclimatization time of the microbes. 

 

Keywords:  Diethanolamine; advanced oxidation; Fenton’s reagent; biodegradation 

 

 

INTRODUCTION 

 

Alkanolamines, mainly mono- and di-ethanolamine as well as hindered amines, are extensively 

used in natural gas sweetening and other processes, involving removal of carbon dioxide.  

Release of the amines in wastewater occurs during routine cleaning of the absorption and 

stripping towers as well as during a process upset.  In such circumstances, the amine 

concentration in the wastewater may become too high to be amenable to conventional biological 

oxidation [1].  Sometimes the wastewater with a high amine loading is disposed of by 

incineration, which is an expensive option for aqueous solutions [2].  As such, development of an 

alternative strategy of remediation of amine-loaded wastewater would be greatly useful to the gas 

processing industry. 
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Advanced oxidation processes (AOPs) include techniques of degradation of recalcitrant or poorly 

biodegradable organics by oxidizing species such as hydroxyl (OH•) and hydroperoxyl (•OH2) 

radicals [3-13].  These radicals can be generated by a number of techniques, such as O3/UV, 

O3/H2O2, H2O2/UV, O3/H2O2/UV, TiO2/UV, Fe2+/H2O2 (Fenton’s reaction) and a few more [14].  

The Fenton’s reaction is used in this work for the remediation of diethanolamine (DEA) in an 

aqueous solution.  

The effectiveness of the Fenton’s reagent for the degradation of organic pollutants in wastewater 

has been reported in a large number of publications.  The substrates include aromatic 

hydrocarbons and other compounds such as amines, phenol and substituted phenols, polycyclic 

aromatics, chlorinated hydrocarbons and more complex molecules like dyes, pharmaceuticals, 

alcohols, mineral oils, etc. Lou and Lee [3] used Fenton’s reagent to destroy benzene, toluene and 

xylene (BTX).  Almost complete removal was achieved within short time (ten minutes).  

Degradation of aromatic amines (aniline and a few substituted anilines) was studied by Casero et 

al. [4], who also identified the transformation intermediates by mass spectrometry.  Complete 

mineralization was achieved within one to three hours.  Mineralization of aniline was also studied 

by Brillas et al. [5] by using a few advanced oxidation techniques – such as anodic oxidation, 

photo-catalysis, electro-Fenton and photo-Fenton reactions.  UV irradiation was found to 

accelerate the relevant processes.  Another study into the degradation of aniline was carried out 

by Anatoi et al., using Fenton and photo-Fenton techniques [7]. A negative order of aniline 

removal with respect to the Fe(II) concentration was reported.  De et al. [6] studied the 

degradation of phenol and chlorinated phenols.  Interestingly, improvement of the 

biodegradability of organic pollutants by Fenton’s pre-oxidation has been explored by a few 

researchers.  Alaton and Teksoy [8] studied the effectiveness of Fenton’s reagent to pre-treat acid 

dye-bath effluents of a textile industry before conventional biological treatment.  Biodegradation 

of a pharmaceutical wastewater was greatly improved by Fenton’s treatment as reported by Tekin 

et al. [9], because the breakdown of the organics into smaller fragments made the waste amenable 

to normal biological oxidation. An interesting aspect of coupling Fenton pre-treatment and 

biological degradation is that the cost of pollutant removal would be significantly lower 

compared to Fenton degradation alone. Moreover, the preliminary oxidation would enable 

application of the relatively cheap biological treatment to non-biodegradable or poorly 

biodegradable wastes. Another advantage of the Fenton process is that Fe(II) can be added as 

such or produced from the cheaper Fe(III) by photochemical, electrochemical or sonochemical 

processes [7, 12, 14-16]. 

To our knowledge, few or no works have studied so far the degradation of DEA with the Fenton’s 

reagent, and a fortiori no study has been carried out into the effect of the Fenton pre-treatment on 

the biodegradation of DEA and its transformation intermediates.  The present study focuses on 
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the partial degradation of DEA, followed by the biological post-treatment. The effects of 

important process parameters such as reagents dose (H2O2 and FeSO4, 7H2O), the amine 

concentration and pH have been investigated in detail.  Identification of the main intermediates 

formed during Fenton’s degradation was carried out, and the patterns of COD removal as 

compared to TOC and total initial nitrogen have been studied.  Biological oxidation has been 

carried out following standard procedures [17]. 

 

 

MATERIALS AND METHODS   

 

The chemicals used in the work were purchased from the following manufacturers:  DEA and 

sodium hydroxide from R & M Chemicals (UK); hydrogen peroxide (30%) and KMnO4 from 

Merck (Germany); FeSO4⋅7H2O from HmbG Chemicals (Germany); H2SO4 (analytical 

grade) from Systerm (Germany). 

 

Experimental set-up and procedure 

 

Experimental runs were carried out in a double-walled glass reactor (1 liter volume), with a 

ground glass cover that can be fixed by clips.  The reactor was provided with pH and temperature 

probes.  Temperature was maintained by circulating water at a controlled value through the glass 

jacket of the reactor.  Mixing of the internal solution was carried out with a stirring bar and a 

magnetic stirrer placed under the reactor.  A solution of the amine at the desired concentration 

was prepared (synthetic wastewater) and the pH was adjusted by drop-wise addition of sulfuric 

acid.  The requested amount of ferrous sulfate (FeSO4⋅7H2O) was added and the content was 

mixed well.  This was followed by addition of a measured quantity of 30% H2O2.  The effective 

reaction volume was about 800 ml.  The reaction started immediately and the temperature was 

maintained by the cooling water circulating through the jacket as stated before.  Samples of 

the liquid were withdrawn from time to time using a syringe and analyzed for the COD, 

unreacted amine, and residual H2O2.   

 

Biodegradability test of partially degraded DEA 

 

Since Fenton’s treatment would require a large amount of reagents to achieve complete 

degradation, coupling of this process with biological oxidation was carried out.  Partially 

degraded DEA was prepared by the Fenton’s process.  Biodegradation experiments were 

conducted in a 1 L beaker as an aerobic batch bioreactor following the EPA method (OPPTS 
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835.3200 Zahn-Wellens/EMPA Test) [17]. Partially degraded DEA solution diluted to about 

1000 mg/L COD was mixed with activated sludge having about 1000 mg/L mixed liquor volatile 

suspended solids (MLVSS, dry matter) from the central wastewater treatment plant of the 

Petronas University (Malaysia).  Samples were withdrawn from the batch bioreactor periodically 

and the COD, pH, dissolved oxygen (DO), and oxygen uptake rate (OUR) were measured.  

Observations were made until no further changes in COD were noted. A parallel set of 

biodegradation experiments was conducted with a pure DEA solution of the same initial COD.  

Two additional sets of experiments were run in parallel – one using 1000 ppm ethylene glycol (a 

reference compound, see the EPA method) of the same COD as the partially degraded DEA, and 

a blank experiment for comparison.   

 

Analytical methods 

 

The course of Fenton oxidation and biological oxidation was determined by COD measurement, 

using a Hach 5000 instrument and following standard procedure (Method 8000).  Removal of 

H2O2 prior to COD analysis was done by warming each sample in a boiling water bath for 10 

minutes, after addition of 2 ml of a 1 M NaOH solution to 8 ml of sample. The addition of NaOH 

was intended to stop the Fenton reaction and to increase the pH above 7.  The precipitated 

hydrated ferric oxide was removed by filtration using a 0.45 µm filter membrane, and the COD of 

the sample was measured.  The change of volume of the sample at different steps was taken into 

account for COD calculation. 

An Agilent series 1100 HPLC (High Performance Liquid Chromatograph) was used to monitor 

the by-products and unreacted DEA after the Fenton’s treatment. YMC-Pack PolymerC18 

column was used, with 100mM Na2HPO4/100mM NaOH (60/40, pH 12) as eluent, and UV 

detection (215 nm and 253nm).  A Perkin Elmer Spectrum One Fourier Transform Infrared 

spectrometer was used to obtain the infrared spectra. pH measurement was performed using a pH 

probe (HACH sens ion 1).  Dissolved Oxygen (DO) and Oxygen Uptake Rate (OUR) 

measurements during the biodegradability test were conducted with HQ30d flexi HACH 

DO meter with LD0101 DO probe.  TOC was determined with a HACH 5000 

spectrophotometer and a standard TOC measurement kit. 
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RESULTS AND DISCUSSION 

 

Treatment studies with Fenton’s oxidation 

 

In the acidic pH range, hydrogen peroxide in the presence of ferrous ions undergoes a series of 

redox reaction, of which the main ones are the following [18]:  

 Fe(II) + H2O2   Fe(III) + OH− + OH•   (R1) 

OH• + Fe(II)  Fe(III) + OH−     (R2) 

OH• + RH  H2O + R•    (R3) 

  OH• + H2O2  H2O + HO2
•    (R4) 

           Fe(III)  +  H2O2  Fe(II) + H+ + HO2
•   (R5) 

             Fe(III) + HO2
•  Fe(II) + H+ + O2   (R6) 

R• + Fe(III)  Fe(II) + product    (R7) 

The degradation of organic substrates normally proceeds through hydrogen abstraction (R3) and 

the reaction rate is controlled by the generation of OH• radicals (R1), which in turn depends upon 

the concentrations of H2O2 and FeSO4. Note that R3 competes with other reactions (R2, R4) that 

scavenge OH• and may lead to loss of the oxidation power in the system [18].   

Interestingly, the production of OH• in the Fenton’s reaction takes place via a fast step (R1) that 

involves Fe(II) and H2O2, followed by a considerably slower process that proceeds through the 

reduction of Fe(III) to Fe(II) (R5-R7) and ends up in R1. The acceleration of Fe(III) reduction, 

which controls the degradation rates after the very fast initial step, is the main target of the photo-

Fenton and electro-Fenton techniques [15, 19]. In some cases the reduction of Fe(III) could be 

enhanced by quinones, aromatic additives and even humic acids. These compounds, despite their 

action as OH• scavengers, would be able to enhance degradation by accelerating the slow step of 

the process [20-22]. Also the transformation intermediates of a given substrate, or the substrate 

itself, could play a role in the process of Fe(III) reduction. 

In this study, rather mild conditions of Fenton treatment were used because the main target was to 

enhance biodegradability of DEA, rather than achieving complete degradation by the Fenton’s 

reagent alone. The effects of initial concentration of DEA, concentration of H2O2, pH and the 

concentration of ferrous ion were studied independently.  The ranges of values of the variables 

used in the experiments are DEA concentration: 800-16,000 ppm (7.6 mM – 0.15 M);  pH: 1 to 4;  

FeSO4,7H2O:  0.4 to 16 g in 800 ml solution (1.8 to 72 mM); and H2O2 (30% w/w): 50 to 

200 ml in 800 ml solution (0.61 to 2.44 M). 
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Effect of initial DEA concentration 

 

The rate of removal of COD was found to be strongly dependent on the initial DEA 

concentration.  Figure 1 shows that the COD removal was very slow when the DEA concentration 

was small:  it was only 17.9% after 30 minutes for a 800 ppm initial COD solution (7.6 mM 

DEA).  In contrast, about 25-35% COD removal was achieved within 5 minutes when the 

initial concentration was 16,000 ppm (0.15 M DEA).  Note that, while increasing the 

initial concentration of DEA, the concentrations of both Fe(II) and H2O2 where also 

increased so as to keep constant the concentration ratios Fe(II):H2O2:DEA. The adopted 

pH was 3. 

The sharp decrease of COD in a small time (around 1 min), followed by a much slower 

decrease afterwards, can be ascribed to the combination of a very fast initial reaction (R1 

between Fe2+ and H2O2) and a considerably slower process of Fe(III) reduction. A 

contribution to slowing down the degradation reactions at longer time could also derive 

from the transformation intermediates of MEA (vide infra). The COD data suggest that 

the rate of the slower process increases with increasing the concentrations of Fe(II) and 

H2O2. This is reasonable considering that the reduction of Fe(III), which derives from the 

quantitative initial oxidation of Fe(II), takes place via bimolecular reactions that involve 

Fe(III) itself and H2O2, or H2O2–derived radical species.  

 

                                                  

Figure1. Effect of initial DEA concentration on degradation at pH 3 [800 ppm (7.6 mM) 

DEA, 1.8 mM FeSO4,7H2O, 0.11 M H2O2; 5000 ppm (48 mM) DEA, 11 mM 

FeSO4,7H2O, 0.67 M H2O2; 10000 ppm (95 mM) DEA, 22 mM FeSO4,7H2O, 

1.3 M H2O2; and 16000 ppm (150 mM) DEA, 36 mM FeSO4,7H2O, 2.1 M 

H2O2].  
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Effect of hydrogen peroxide concentration 

 

By increasing the concentration of H2O2 one would expect the reaction R1 to be faster and the 

production rate of OH• to increase. However, H2O2 is also able to scavenge the hydroxyl radicals 

(R4). It is, therefore, of interest to study the effect of H2O2 concentration on the COD removal. 

The relevant experiments were carried out at pH 3 and at four different H2O2 concentrations, 

while keeping the amine and FeSO4,7H2O constant. The maximum COD removal was achieved at 

2.1 M H2O2, with 16,000 ppm DEA (0.15 M) and 36 mM FeSO4,7H2O.  Above 2.1 M H2O2, no 

further increase of degradation could be observed (see Figure 2). The plateau (or even the slight 

decrease) of COD removal observed at and above 2.1 M H2O2 can be ascribed to the scavenging 

of OH• by hydrogen peroxide. Indeed, the second-order reaction rate constant between OH• and 

the diethylammonium ion (the prevailing form of DEA under the adopted pH conditions) is 

1.3×108 M−1 s−1, to be compared with 2.7×107 M−1 s−1 for H2O2 [23]. Accordingly, hydrogen 

peroxide would prevail over DEA as hydroxyl scavenger for [H2O2]/[DEA] > 4.8 (i.e., for [H2O2] 

> 0.72 M in the case of 0.15 M DEA). 

 

            .  

Figure 2. Effect of H2O2 on DEA degradation [16000 ppm (0.15 M) DEA, 36 mM 

FeSO4,7H2O at pH 3, at four different H2O2 concentrations]. 

 

 

Effect of FeSO4⋅⋅⋅⋅7H2O concentration 

 

The effect of FeSO4 dosing on COD removal was measured at an initial DEA concentration of 

16,000 ppm (0.15 M) and with constant 2.1 M H2O2, at pH 3.  The time evolution of COD is 

shown in Figure 3.  The reduction of COD during the first five minutes was highest for 36 mM 

FeSO4 (8 g in 800 mL), conditions that also afforded the maximum removal of COD after 30 min. 
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Interestingly, the percentage of COD removal after 30 min would plateau at approximately 40% 

for FeSO4,7H2O ≥ 36 mM. Note that the second-order reaction rate constant between Fe2+ and 

OH• is 4.3×108 M−1 s−1 [23], thus Fe2+ would prevail over DEA as OH• scavenger for 

[Fe2+]/[DEA] = 0.3 (i.e., for [Fe2+] > 45 mM at 0.15 M DEA). However, 2.1 M H2O2 would still 

be the most important OH• scavenger in the system at all the adopted concentration values of 

Fe(II). 

The results reported in Figure 3 suggest that the addition of FeSO4,7H2O above 36 mM would not 

help to increase the COD removal in the presence of 0.15 M DEA and 2.1 M H2O2.  

 

 

 
Figure 3. Effect of FeSO4;7H2O on DEA degradation (0.15 M DEA and 2.1 M H2O2 at 

pH 3) for different concentrations of FeSO4;7H2O: 18, 36, 54 and 72 mM, 

respectively. 

 

 

Effect of pH 

 

The Fe(II)/Fe(III)-H2O2 system has its maximum activity at pH 2.8-3 [24]. A higher or lower pH 

sharply reduces the effectiveness of the Fenton’s reaction. At low pH the complexation of Fe(III) 

with hydrogen peroxide is inhibited, therefore inhibiting the step of H2O2 reduction [18], while at 

a high pH ferric ions precipitate as ferric hydroxide, which catalyzes the decomposition of 

hydrogen peroxide. 

Zhang et al [25] reported that the optimum pH for the treatment of landfill leachate by Fenton’s 

reagent was 2-3.5. With pH values higher than 3.5, removal efficiency decreased. In this study the 

best pH was found to be 3, with limited differences in the 2-3 pH range. The effect of pH on DEA 
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degradation is depicted in Figure 4. Interestingly, in the case of pH 1 the initial decrease of COD 

was significant, but no further decrease was observed at longer reaction time. This is in 

agreement with a very slow reduction of Fe(III) to Fe(II) at pH 1, as reported in the literature 

[18]. 

 

                        

Figure 4. Effect of pH on the degradation DEA [0.15 M DEA, 36 mM FeSO4,7H2O, 2.1 

M H2O2 at different pH: 1-4]. 

 

 

Comparison of COD and TOC removal 

 

The patterns of COD and TOC variations in the course of DEA degradation were similar. COD 

and TOC underwent fast decrease in the initial step, and the decrease slowed down 

thereafter. Figure 5 shows the corresponding COD and TOC evolution. 
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Figure 5. Decrease of COD and TOC by Fenton’s reagent. [0.095 and 0.15 M DEA 

initial concentration (10,000 and 16,000 ppm, respectively)]. Note that COD 

evolution is plotted vs. the lower x axis, TOC vs. the upper one (which has 

opposite direction) 

 

 

Figure 5 shows that the decrease of TOC was more limited than that of COD: 9.8 and 16.5% TOC 

removal was observed for the two adopted initial concentrations of DEA, to be compared with 

36.3 and 43.2% for the decrease of COD. Note that the removal of TOC and that of COD can 

reflect rather different pathways. For the TOC to decrease, it is necessary for the substrate to lose 

organic carbon atoms and that these atoms are transformed into inorganic carbon (CO2). In 

contrast, the decrease of COD can be carried out also by abstraction of hydrogen atoms, a process 

that is expected to take place upon reaction between DEA and OH•, without the need of losing 

carbon atoms as CO2. The data reported in Figure 5 suggest that the degradation in the initial 30 

minutes could proceed via oxidation of the carbon chains, with limited mineralization. Also note 

that cleavage of the ethyl groups of DEA to give free, oxidized C2 organic compounds would 

decrease the COD but not the TOC. A likely oxidation pathway of the carbon chains would be the 

production of carboxylic acids, which is partially confirmed by the detection of glycine among 

the transformation intermediates (vide infra). This could also be the preliminary step to 

mineralization, because the oxidation of the carboxylic group could yield CO2 [26]. 
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Degradation using stoichiometric amounts of H2O2 and FeSO4   

 

An interesting feature of the Fenton’s reaction that has already been cited is that, after the fast 

first step (R1), the process continues more slowly through the reduction of Fe(III) to Fe(II).  The 

occurrence of the second process implies that some residual H2O2 is still available for the 

reactions R5-R7 to take place and, therefore, that H2O2 is added in excess with respect to Fe(II).  

If, on the contrary, stoichiometric amounts of both H2O2 and Fe(II) are used, it would be possible 

to produce OH• very quickly in the first step alone.  Figure 6 shows the time trends of COD and 

H2O2 in the presence of 48 mM DEA + 0.55 M H2O2 + 0.55 M FeSO4,7H2O.  It is 

noticeable the almost complete disappearance of H2O2, as can be expected by a 

quantitative reaction between Fe(II) and hydrogen peroxide, and a 60% decrease of the 

COD.  Note that after the initial fast decrease, no further disappearance of COD is 

detected at longer reaction time.  This is compatible with the practically complete 

consumption of hydrogen peroxide, after which the reduction of Fe(III) to Fe(II) and the 

subsequent generation of OH• would no longer be possible.  Also note that the complete 

mineralization to CO2 of the carbon chains of a DEA molecule would require 24 

electrons and that OH• is a monoelectronic oxidant, whether is reacts by abstraction of 

electrons or by abstraction of hydrogen atoms [23].  The Fenton’s reagent (Fe(II)+H2O2) 

was used in a 11.5:1 molar ratio compared to DEA, and the 60% decrease of the COD is 

a reasonable result considering that 100% decrease would imply complete oxidation to 

CO2.  It could even be inferred that some Fe(III), generated in reaction (1), could be 

involved in the oxidation of DEA or of its transformation intermediates, because from the 

(Fe(II)+H2O2):DEA molar ratio one would foresee a 50% COD decrease if OH• alone was 

involved in the degradation.  However, the addition of Fe(II) in stoichiometric ratio to 

H2O2 in the Fenton’s reaction would increase the treatment costs, thus it is also 

convenient to investigate the use of the Fenton process as a pre-oxidation step before 

biological treatment. 
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Figure 6. COD profile with 48 mM DEA + 0.55 M H2O2 + 0.55 M FeSO4,7H2O at pH 3. 

Note that H2O2 evolution is plotted vs. the lower x axis, COD vs. the upper 

one (which has opposite direction) 

 

 

Degradation intermediates 

 

An attempt was made to identify the degradation intermediates by HPLC and FTIR.  A sample of 

liquid after 15 minute Fenton’s treatment was run on HPLC.  The chromatogram (Figure 7) 

shows quite a few peaks, one of them being glycine that appears at around 4 minutes.  No peak 

for DEA in the sample was found under the given reaction conditions (retention time around 5.4 

minutes); essentially the whole of it had been oxidized.  FTIR spectra of the samples (Figure 8) 

give evidence about functional groups of the degradation intermediates in partially degraded 

DEA.  A carbonyl (C=O) peak appears around 1620 cm-1 [(C=O) as carboxylic acid] and bonding 

between C and N appears on the center of the peak at 1080 cm-1 [(C–N) as aliphatic amine]. The 

sample was in aqueous solution, thus the peak of water (H2O) is very broad in the region between 

3000 – 3700 cm-1 and covers many peaks for N–H (amine), O–H (carboxylic acid) and O–H 

(alcohol) that should be appear in that region. In addition, peaks centered at 2090 cm-1 appear as 

interaction between COO− from the carboxylic group and N+ from the ammonium group [27].  

Overall, the FTIR results suggest that at least some of the transformation intermediates have 

retained the C-N bond and that at least some of the lateral carbon chains have been oxidized to 

carboxylic acids.  Both features are compatible with the HPLC detection of glycine as 

transformation intermediate. 
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Figure 7. Chromatogram of DEA, glycine and partially degraded DEA. 

 

 

 

 

Figure 8. Infrared spectra of partially degraded DEA. 
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Biodegradation studies of partially degraded DEA 

 

The removal of COD accounted for by DEA and its intermediates would require quite large 

amounts of Fe(II) and H2O2, thus making the treatment rather expensive.  However, as stated 

before, Fenton’s reagent is suitable for the partial degradation of organics followed by biological 

oxidation of the fragments of the original compound.  Accordingly, we have carried out 

biological oxidation of partially degraded DEA using the EPA method OPPTS 835.3200 [17].  

A sample of the liquid after about 40% COD removal was subjected to biological oxidation using 

activated sludge collected from the University wastewater treatment plant.  The COD profile of 

the liquid diluted to an initial COD level of 1000 ppm is plotted in Figure 9.  The biological 

oxidation of ‘pure’ DEA at the same initial COD level was run in parallel.  The results show that 

the COD of the partially degraded solution is reduced to below 100 ppm within 24 hours.  The 

degradation rate of DEA was much slower, which is probably due to the time required for 

acclimatization of the bacteria.  The oxygen uptake rates (OUR) for both sets of experiments are 

shown in Figure 10.  For ‘pure DEA’ the growth-phase of the bacteria and the oxygen uptake start 

after a long time (>50 hours), whereas for the partially degraded solution oxygen uptake starts 

from the beginning.  The OUR trend reflects quite closely that of the COD of the two 

samples, where further degradation of partially degraded DEA starts at once while ‘pure’ 

DEA has a lapse time of over 50 hours (Figure 9). 

   

 

Figure 9. COD profile of degradation of DEA compared with partially degraded DEA by 

activated sludge. 
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Figure 10. OUR Profile of DEA compared with partially degraded DEA by activated 

sludge. 

 

 

CONCLUSIONS 

 

Diethanolamine, a common chemical for acid gas treatment, can be partially degraded by the 

Fenton’s method without excessive consumption of reagents that would, in contrast, be required 

for complete degradation.  The rate of degradation is very fast in the first few minutes because of 

fast generation of hydroxyl radicals by the reaction between Fe(II) and H2O2.  The optimum pH 

was 3, in agreement with literature data concerning the Fenton degradation of most organic 

substrates.  The COD removal after 30 minutes reaction time reached a plateau in the presence of 

a high dose of either H2O2 or FeSO4. Scavenging of OH• could account for this finding, 

particularly in the case of H2O2. Glycine was detected among the transformation intermediates.  

The partially degraded solution could be effectively degraded by the conventional biological 

treatment, and the biodegradation of pure DEA was much slower than for the partially degraded 

material.  Accordingly, the combination of Fenton pre-oxidation and biological treatment has 

potential advantages over the separate techniques, because the Fenton’s reaction alone would be 

quite costly if complete degradation is to be achieved, and the biological treatment alone would 

be quite slow. The findings of this study will be potentially useful for the treatment of DEA in the 

wastewater from natural gas processing plants. 
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