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1. Introduction

The most common approach of biologists to describe biological systems is based on the use of determin-
istic mathematical means (like, e.g., ODE), and makes it possible to abstractly reason on the behaviour of
biological systems and to perform a quantitativein silico investigation. This kind of modelling, however,
becomes more and more difficult, both in the specification phase and in the analysis processes, when the
complexity of the biological systems taken into consideration increases. This has probably been one of
the main motivations for the application of Computer Science formalisms to the description of biological
systems [19]. Other motivations can also be found in the fact that the use of formal methods from Com-
puter Science permits the application of analysis techniques that are practically unknown to biologists,
such as, for example, static analysis and model checking.

Among the formalisms that have either been applied to biology or have been inspired by biological
systems there are automata-based models [2, 16], rewrite systems [11, 17], and process calculi [19,
20, 18, 10]. On the one hand, automata inspired models have the advantage of allowing the direct
use of many verification tools such as model checkers. On the other hand, rewrite systems usually
allow describing biological systems with a notation that can be easily understood by biologists. While
automata-based models and rewrite systems present, in general, problems of compositionality (which
might allow studying the behaviour of a system componentwise), these are resolved in general by using
process calculi, included those used to describe biological systems.

In [6] we introduced a new formalism, called Calculus of Looping Sequences (CLS for short), for
describing biological systems and their evolution. CLS is based on term rewriting with some features,
such as a commutative parallel composition operator, and some semantic means, such as bisimulations,
that are common in process calculi. This permits to combine the simplicity of notation of rewriting
systems with the advantage of a form of compositionality. Actually, in [7] we have defined bisimulation
relations which are congruences with respect to the operators. This is ensured by the assumption that the
same set of rewrite rules is used for terms that are composed.

CLS terms are constructed by starting from basic constituent elements and composing them by means
of operators of sequencing, looping, containment and parallel composition. Sequences may represent
DNA fragments and proteins, looping sequences may represent membranes, and parallel composition
may represent juxtaposition.

A formalism for modelling protein interactions was developed in the seminal paper by Danos and
Laneve [11], and extended in [15]. This formalism allows expressing proteins by a node with a fixed
number of domains; binding between domains allows complexating proteins. In this work we extend
CLS to represent protein interaction at the domain level. Such an extension, called Linked Calculus
of Looping Sequences (LCLS), is obtained by labelling elements of sequences. Two elements with the
same label are considered to be linked.

The possibility of modelling protein interaction at the domain level allows some combinatorial prob-
lems in the description of cellular pathways to be avoided. In particular, cellular pathways often involve
many different proteins, which can bind with each other in several different ways, thus forming a huge
number of different protein complexes. The usual approach to the modelling of these pathways is by
considering each possible protein complex as a different species, hence as a different entity in the model.
The result is that models often become too complex to be analysed. The modelling of protein interaction
at the domain level allows the set of species considered in a model to consist only of the proteins involved
in the described pathway by representing complexes as structures having proteins as building blocks. In
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the case of LCLS, we can combine the advantages of this way of modelling protein interactions with the
advantages of having a rather general formalism.

The use of pairs of labels to represent links in LCLS requires a notion of well-formedness of terms
to be defined. Moreover, it is important to ensure that well-formedness is preserved by the application
of rewrite rules. This is not true in general, but we propose two approaches to obtain this result: the
first approach is based on a syntactic constraint for rewrite rules and the second on a type system. The
two approaches are different in terms of expressiveness and efficiency. As an example of application, we
show the LCLS description of a biological system, namely the EGF pathway.

This paper derives from the merging of the two papers [4, 3]. Both papers study well-formedness of
links between protein sites within the Linked Calculus of Looping Sequences. The present version con-
tains a detailed description of the two approaches, a theoretical comparison, and an explicit application
in which the two approaches are put at work.

1.1. Systems Biology and Type Systems

In the last few years there has been a growing interest in the use of type disciplines to enforce biological
properties. In [3] a type system has been defined to ensure the well-formedness of links between protein
sites within the Linked Calculus of Looping Sequences (see [4]). In [14] three type systems are defined
for the Biochemical Abstract Machine, BIOCHAM (see [1]). The first one is used to infer the functions
of proteins in a reaction model, the second one to infer activation and inhibition effects of proteins,
and the last one to infer the topology of compartments. In [13] we have defined a type system for the
Calculus of Looping Sequences (see [6]) to guarantee the soundness of reduction rules with respect
to the requirement of certain elements, and the repellency of others. Bioglio, in [8], refines this idea
by designing a type system which assures that the cardinalities of elements of some types are in given
numerical intervals. We have proposed in [12] a type system for the Stochastic Calculus of Looping
sequences (see [5]) that allows for a quantitative analysis and models how the presence of catalysers (or
inibitors) can modify the speed of reactions. In [9], we enrich the BioAmbients calculus with a static
type system classifying each ambient with group types specifying the kind of compartments in which the
ambient can stay. The type system ensures that, in a well-typed process, ambients cannot be nested in a
way that violates the type hierarchy.

1.2. Summary

The remainder of this paper is organised as follows. In Section 2 we present the Calculus of Loop-
ing Sequences and introduce our running example about the EGF signalling pathway. In Section 3 we
provide the formalisation of the Linked Calculus of Looping Sequences and introduce the definition of
well-formed terms with links. We also redefine the EGF signalling pathway example by taking links
into account. The well-formedness condition on the link structure should be checked at run-time on the
term resulting after the application of a rewrite rule. In Section 4 we investigate two statically verifiable
conditions that allow to avoid or simplify the run-time checking. Hence, we introduce the condition of
compartment safety, checking that the structure of our rewrite rules do not alter the well-formed linkage
of a term to be rewritten, and the one oftyped safety, checking that the right hand side of the rule has a
type which issimilar to the one of the left hand side. For this last condition, we develop a type inference
technique which simplifies checking applicability of rewrite rules. In Section 5 we discuss, through an
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Figure 1. Examples of CLS terms: (i) represents
(
a · b · c

)L
; (ii) represents

(
a · b · c

)L
⌋

(
d · e

)L
; (iii) represents

(
a · b · c

)L
⌋ (

(
d · e

)L
| f · g).

example, our techniques to guarantee the well-formedness of terms. Finally, in Section 6, we draw our
conclusions.

2. The Calculus of Looping Sequences

In this section we recall the Calculus of Looping Sequences (CLS). It is essentially based on term rewrit-
ing, hence a CLS model consists of a term and a set of rewrite rules. The term is intended to represent the
structure of the modelled system, and the rewrite rules to represent the events that may cause the system
to evolve.

We start with defining the syntax of terms. We assume a possibly infinite alphabetE of symbols
ranged over bya, b, c, . . ..

Definition 2.1. (Terms)
Terms T andSequences S of CLS are given by the following grammar:

T ::= S
∣∣ (

S
)L

⌋ T
∣∣ T | T

S ::= ǫ
∣∣ a

∣∣ S · S

wherea is a generic element ofE , andǫ represents the empty sequence. We denote withTT the infinite
set of terms, and withS the infinite set of sequences.

In CLS we have a sequencing operator· , a looping operator
( )L

, a parallel composition operator
| and a containment operator⌋ . Sequencing can be used to concatenate elements of the alphabetE .

The empty sequenceǫ denotes the concatenation of zero symbols. A term can be either a sequence, or a
looping sequence (that is the application of the looping operator to a sequence) containing another term,
or the parallel composition of two terms. By definition, looping and containment are always applied
together, hence we can consider them as a single binary operator

( )L
⌋ that applies to one sequence

and one term.
The biological interpretation of the operators is the following: the main entities which occur in

cells are DNA and RNA strands, proteins, membranes, and other macro-molecules. DNA strands (and
similarly RNA strands) are sequences of nucleic acids, but they can be seen also, at a higher level of
abstraction, as sequences of genes. Proteins are sequences of amino acids that may have a very complex
three-dimensional structure. In a protein there are usually (relatively) few subsequences, called domains,
which actually are able to interact with other entities by means of chemical reactions. CLS sequences
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can model DNA/RNA strands and proteins by describing each gene or each domain with a symbol
of the alphabet. Membranes are closed surfaces, often interspersed with proteins, which may contain
something. A closed surface can be modelled by a looping sequence. The elements (or the subsequences)
of the looping sequence may represent the proteins on the membrane, and by the containment operator
it is possible to specify the content of the membrane. Other macro-molecules can be modelled as single
alphabet symbols, or as short sequences. Finally, juxtaposition of entities can be described by the parallel
composition of their representations.

Brackets can be used to indicate the order of application of the operators, and we assume
( )L

⌋
to have precedence over| . In Figure 1 we show some examples of CLS terms and their visual
representation.

In CLS we may have syntactically different terms representing the same structure. We introduce a
structural congruence relation to identify such terms.

Definition 2.2. (Structural Congruence)
The structural congruence relations≡S and≡T are the least congruence relations on sequences and on
terms, respectively, satisfying the following rules:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ǫ ≡S ǫ · S ≡S S

S1 ≡S S2 implies S1 ≡T S2 and
(
S1

)L
⌋ T ≡T

(
S2

)L
⌋ T

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3

T | ǫ ≡T T
(
S1 · S2

)L
⌋ T ≡T

(
S2 · S1

)L
⌋ T

Rules of the structural congruence state the associativity of· and | , the commutativity of the latter

and the neutral role ofǫ. Moreover, axiom
(
S1 ·S2

)L
⌋ T ≡T

(
S2 ·S1

)L
⌋ T says that looping sequences

can rotate. In the following, for simplicity, we will use≡ in place of≡T .
Rewrite rules will be defined essentially as pairs of terms, in which the first term describes the portion

of the system in which the event modelled by the rule may occur, and the second term describes how
that portion of the system changes when the event occurs. In the terms of a rewrite rule we allow the
use of variables. As a consequence, a rule will be applicable to all terms which can be obtained by
properly instantiating their variables. Variables can be of three kinds: two of these are associated with
the two different syntactic categories of terms and sequences, and one is associated with single alphabet
elements. We assume a set of term variablesTV ranged over byX,Y,Z, . . ., a set of sequence variables
SV ranged over bỹx, ỹ, z̃, . . ., and a set of element variablesX ranged over byx, y, z, . . .. All these sets
are possibly infinite and pairwise disjoint. We denote byV the set of all variables,V = TV ∪ SV ∪ X ,
and withρ a generic variable ofV. Hence, a pattern is a term which may include variables.

Definition 2.3. (Patterns)
Patterns P andsequence patterns SP of CLS are given by the following grammar:

P ::= SP
∣∣ (

SP
)L

⌋ P
∣∣ P | P

∣∣ X

SP ::= ǫ
∣∣ a

∣∣ SP · SP
∣∣ x̃

∣∣ x

wherea is a generic element ofE , andX, x̃ andx are generic elements ofTV, SV andX , respectively.
We denote withP the infinite set of patterns.
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We assume the structural congruence relation to be trivially extended to patterns. Aninstantiation
is a partial functionσ : V → TT. An instantiation must preserve the type of variables, thus forX ∈
TV, x̃ ∈ SV andx ∈ X we haveσ(X) ∈ TT, σ(x̃) ∈ S andσ(x) ∈ E , respectively. GivenP ∈ P, with
Pσ we denote the term obtained by replacing each occurrence of each variableρ ∈ V appearing inP
with the corresponding termσ(ρ). With Σ we denote the set of all the possible instantiations and, given
P ∈ P, with V ar(P ) we denote the set of variables appearing inP . Now we define rewrite rules.

Definition 2.4. (Rewrite Rules)
A rewrite rule is a pair of patterns(P1, P2), denoted withP1 7→P2, whereP1, P2 ∈ P, P1 6≡ ǫ and such
thatV ar(P2) ⊆ V ar(P1). We denote withℜ the infinite set of all the possible rewrite rules.

A rewrite ruleP1 7→ P2 states that a termP1σ, obtained by instantiating variables inP1 by some
instantiation functionσ, can be transformed into the termP2σ. We define the semantics of CLS as a
transition system, in which states correspond to terms, and transitions correspond to rule applications.

Definition 2.5. (Semantics)
Given a set of rewrite rulesR ⊆ ℜ, the semantics of CLS is the least transition relation→ on terms
closed under≡, and satisfying the following inference rules:

P1 7→P2 ∈ R P1σ 6≡ ǫ σ ∈ Σ

P1σ → P2σ
T1 → T2

T | T1 → T | T2

T1 → T2(
S

)L
⌋ T1 →

(
S

)L
⌋ T2

A model in CLS is given by a term describing the initial state of the system and by a set of rewrite
rules describing all the events that may occur.

In order to show the usage of CLS as a model of biological systems, we give the CLS model of a
well-known example of cellular signal transduction, namely the EGF signalling pathway.

In Biology, signal transduction refers to any process by which a cell converts one kind of signal or
stimulus into another. Signals are typically proteins that may be present in the environment of the cell.
In order to be able to receive the signal, namely to recognize that the corresponding ligand is available in
the environment, a cell exposes some receptors on its external membrane. A receptor is a transmembrane
protein that can bind to a signal protein on its extracellular end. When such a binding is established, the
intracellular end of the receptor undergoes a conformational change that enables interaction with other
proteins inside the cell. This typically causes an ordered sequence of biochemical reactions inside the
cell, usually called signalling pathway, that are carried out by enzymes and may produce different effects
on the cell behaviour.

A complex signal transduction cascade, that modulates cell proliferation, survival, adhesion, mi-
gration and differentiation, is based on a family of receptors called epidermal growth factor receptors
(EGFRs). While EGFR signalling is essential for many normal morphogenic processes, the aberrant
activity of these receptors has been shown to play a fundamental role in proliferation of tumor cells. Epi-
dermal growth factor receptors are sinthesized from specific genes in the DNA through transcription into
RNA (mediated by polymerase enzymes) and translation into protein (mediated by ribosomes), and they
are located on the cell surface. Receptors are activated by the binding with a specific ligand (epidermal
growth factor, EGF) to form a EGFR (ligand-receptor) complex. Upon activation, EGFR undergoes a
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EGF EGFR
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Figure 2. The EGF signaling pathway.

transition from a monomeric form to an active dimeric one. EGFR dimerization stimulates its intracel-
lular phosphorylation which activates signalling proteins. These activated signalling proteins (effector
proteins) initiate several signal transduction cascades, leading to DNA synthesis and cell proliferation.

Now we give the CLS model of the first steps of the signalling pathway. We model the cell membrane
as a looping sequence

(
m

)L
, where the alphabet symbolm generically denotes the whole membrane

surface when no receptors are present yet on the membrane. Similarly, we model the membrane of the
nucleus as the looping sequence

(
n
)L

. Moreover, we model DNA and RNA as the elementsDNA and
RNA, and the signal and receptor proteins as the elementsEGF andEGFR, respectively. Polymerases
and ribosomes are modelled as elementsPOLY andRIBO, respectively. A signal-receptor complex
is denoted asCMPLX and a dimer composed by two of such complexes is denoted either asDIM ,
before phosphorylation, or asDIMp, after phosphorylation. We denote an effector protein withEFF ,
that becomesDIMEFF when bound to a dimer andEFFp after phosphorylation.

First of all, synthesis of the EGFR receptor from the DNA is described by the following rules:

POLY | DNA 7→ POLY | DNA | RNA (R1)
(
n
)L

⌋ (RNA | X) 7→ RNA |
(
n
)L

⌋ X (R2)

RNA | RIBO 7→ RNA | RIBO | EGFR (R3)
(
m · x̃

)L
⌋ (EGFR | X) 7→

(
m · x̃ · EGFR

)L
⌋ X (R4)

Rule (R1) describes the transcription of DNA into RNA performed by the polymerase enzyme. Rule
(R2) describes the coming out of the RNA from the nucleus. Rule (R3) describes the translation of RNA
into the EGFR protein performed by the ribosome. Rule (R4) describes the incorporation of the EGFR
in the cell membrane.

The first steps of the EGF signalling pathway are described by the following rules:
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EGF |
(
EGFR · x̃

)L
⌋ X 7→

(
CMPLX · x̃

)L
⌋ X (R5)

(
CMPLX · x̃ · CMPLX · ỹ

)L
⌋ X 7→

(
DIM · x̃ · ỹ

)L
⌋ X (R6)

(
DIM · x̃

)L
⌋ X 7→

(
DIMp · x̃

)L
⌋ X (R7)

(
DIMp · x̃

)L
⌋ (X | EFF ) 7→

(
DIMEFF · x̃

)L
⌋ X (R8)

(
DIMEFF · x̃

)L
⌋ X 7→

(
DIMp · x̃

)L
⌋ (X | EFFp) (R9)

Rule (R5) describes the binding of the EGF signal protein with a receptor EGFR on the cell mem-
brane. The result of the binding is a signal-receptor complex whose dimerization is described by rule
(R6). Rule (R7) describes the phosphorylation (activation) of a dimer, which enables the propagation of
the signal inside the cell by means of phosphorylation of effector proteins (rules (R8) and (R9)).

3. The Linked Calculus of Looping Sequences

To model a protein at the domain level in CLS it would be natural to use a sequence with one symbol for
each domain. However, the binding between two domains of two different proteins, that is the linking
between two elements of two different sequences, cannot be expressed in CLS. For example, the CLS
terma · b · c | d · e · f could model two proteins each having three domains. However, CLS does not
provide any suitable method to model the binding of one of the domains of the first protein to one of the
domains of the second protein. To represent this, we extend CLS by labels on basic symbols. If in a term
two symbols have the same label, we intend that they represent domains that are bound to each other.
For example, we will denote witha · b1 · c | d · e1 · f two proteins in which domainb of the first protein
is bound to domaine of the second protein. If in a term there is a single symbol with a certain label, we
intend that the term represents only a part of a system we model, and that the symbol will be linked to
another symbol in another part of the term representing the full model.

As membranes create compartments, elements inside a looping sequence cannot be linked to ele-
ments outside. Elements inside a membrane can be linked either to other elements inside the membrane
or to elements of the membrane itself. An element can be linked at most to another element. The partner
to which an element is bound may be different at different times, and a domain able to bind to multiple
partners simultaneously could be described by using more elements instead of a single one.

Now we formally define the Linked Calculus of Looping Sequences (LCLS), namely the extension
of CLS with labels on basic symbols. In the definition we often abuse of notations already introduced
for CLS. However, this will not cause ambiguities because in the following we shall always use these
notations with reference to LCLS.

The syntax of LCLS terms is defined as follows. We use as labels natural numbers.

Definition 3.1. (Terms)
Terms T andSequences S of LCLS are given by the following grammar:

T ::= S
∣∣ (

S
)L

⌋ T
∣∣ T | T

S ::= ǫ
∣∣ a

∣∣ an
∣∣ S · S
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Figure 3. Examples of well-formed and non well-formed terms:(i) representsa1 |
(
b11 · b22

)L
⌋ c1 · c22 · c3;

(ii) representsa1 |
(
b
)L

⌋ c1; (iii) representsa1 | b1 | c1.

wherea is a generic element ofE , andn is a natural number. We denote withTT the infinite set of terms,
and withS the infinite set of sequences.

We will denote byO(T ), T (T ) the set of labels which occur once or twice inT , respectively, and by
L(T ) the setO(T ) ∪ T (T ).

In what follows, we will use the notion oftop-level compartment of a term. The top-level com-
partment is the portion of the term that is not inside any looping sequence. For instance, the top-level
compartment of the following term

T = a |
(
b
)L

⌋ c |
(
d
)L

⌋ (e · f |
(
g
)L

⌋ h)

is

a |
(
b
)L

⌋ ǫ |
(
d
)L

⌋ ǫ.

Formally, we define a functiontlc(T ) that gives the top-level compartment of termT as follows:

tlc(S) = S tlc
((
S

)L
⌋ T

)
=

(
S

)L
⌋ ǫ tlc(T1 | T2) = tlc(T1) | tlc(T2).

As explained before, it is intended that in an LCLS term each label should appear either once or
twice. Moreover, for a term to bewell formed it is also important that labels inT (T ) either appear in the
same compartment, or one in a looping sequence and the other in the compartment immediately inside
such a looping sequence. Moreover, labels inO(T ) must appear in the top-level compartment ofT in
order to allow them to correctly pair with another label provided by a possible context ofT . In Figure 3
we show some examples of well-formed and non well-formed terms: term (i) is well formed since labels
appear twice and in proper positions; term (ii) is not well formed since the two occurrences of the label
are associated with elements that are in completely different compartments; term (iii) is not well formed
since there is a label occurring three times.

We now define a unary relationwf on terms such thatwf(T ) holds if and only if termT is well
formed.
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Definition 3.2. (Well-formedness)
The unary relationwf on LCLS terms is the least relation satisfying the following rules:

wf(ǫ) wf(a) wf(an)

wf(S1) wf(S2) L(S1) ∩ T (S2) = T (S1) ∩ L(S2) = ∅

wf(S1 · S2)

wf(T1) wf(T2) L(T1) ∩ T (T2) = T (T1) ∩ L(T2) = ∅

wf(T1 | T2)

wf(S) wf(T ) L(S) ∩ T (T ) = T (S) ∩ L(T ) = ∅ O(T ) ⊆ O(S)

wf(
(
S

)L
⌋ T )

Rules of well-formedness simply check that labels do not occur more than twice in a term, and that
symbols occurring only once in a term contained in a looping sequence occur once also in the looping
sequence itself.

We can show that, as expected, labels occurring only once in a term are placed in the top-level
compartment of the term.

Proposition 3.1. GivenT ∈ T , if wf(T ) holds, thenO(T ) = O(tlc(T )).

Proof:
Easy by structural induction onT . ⊓⊔

The structural congruence for LCLS extends the corresponding relation for CLS with a notion ofα-
renaming that allows labels inT (T ) to be replaced inT by other unused labels (i.e. labels not belonging
to L(T )). Theα-renaming is assumed not to change labels inO(T ) since this could break a binding
between an element inT and another in the context ofT , leading to a non well-formed term.

Patterns of LCLS are similar to those of CLS, with the addition of the labels.

Definition 3.3. (Patterns)
Patterns P andsequence patterns SP of LCLS are given by the following grammar:

P ::= SP
∣∣ (

SP
)L

⌋ P
∣∣ P | P

∣∣ X

SP ::= ǫ
∣∣ a

∣∣ an
∣∣ SP · SP

∣∣
x̃

∣∣ x
∣∣ xn

wherea is an element ofE , n is a natural number andX, x̃ andx are elements ofTV, SV andX ,
respectively. We denote withP the infinite set of patterns.

Structural congruence, the notions of top-level compartment, and the well-formedness relationwf
trivially extend to patterns.

Rewrite rules for LCLS are defined exactly as for CLS, namely as pairs of patternsP1 7→ P2 with
the conditionsP1 6= ǫ andV ar(P2) ⊆ V ar(P1). Obviously,P1 andP2 are now LCLS patterns.

The definition of the semantics of LCLS is similar to that of CLS, but with the requirement that states
are well-formed terms. This means that the initial term of an LCLS model has to be well formed and that
application of rules leading to non well-formed terms are forbidden.
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Definition 3.4. (Semantics)
Given a set of rewrite rulesR ⊆ ℜ, the semantics of LCLS is the least transition relation→ on well-
formed terms (according to the definition ofwf ) that is closed under≡, and satisfies the following
inference rules:

P1 7→P2 ∈ R P1σ 6≡ ǫ σ ∈ Σ

P1σ → P2σ
T1 → T2

T | T1 → T | T2

T1 → T2(
S

)L
⌋ T1 →

(
S

)L
⌋ T2

Now, let us reformulate the CLS model of signal transduction given in Section 2 as an LCLS model.
We model the EGFR protein as the sequenceRE1 · RE2 · RI1 · RI2, whereRE1 andRE2 describe two
extra-cellular domains, whereasRI1 andRI2 describe two intra-cellular domains. In particular,RE1

models theEGF signal binding site,RE2 the dimerization site,RI1 the phosphorilation site, andRI2

the effector binding site. The use of links will allow us to avoid introducing different elements to model
complexes, such as theCMPLX,DIM andDIMEFF elements we used in the CLS model in Section
2.

The rewrite rules modeling the pathway are the following. Each rule in this model has a correspond-
ing (unprimed) rule in the CLS model in Section 2. In the description of the rules we will focus on the
main differences with respect to the corresponding ones in the CLS model.

First of all, synthesis of the EGFR receptor from the DNA is described by the following rules:

POLY | DNA 7→ POLY | DNA | RNA (R1’)
(
n
)L

⌋ (RNA | X) 7→ RNA |
(
n
)L

⌋ X (R2’)

RNA | RIBO 7→ RNA | RIBO | RE1 · RE2 ·RI1 ·RI2 (R3’)
(
m · x̃

)L
⌋ (RE1 · RE2 · RI1 · RI2 | X) 7→

(
m · x̃ · RE1 · RE2 · RI1 ·RI2

)L
⌋ X (R4’)

Rule (R3’) represents the ribosome translation of the RNA into the EGFR sequenceRE1 ·RE2 ·RI1 ·RI2.
Rule (R4’) defines the embedding of the sequence within the external cell membrane.

The first steps of the EGF signalling pathway are described by the following rules:

EGF |
(
RE1 · x̃

)L
⌋ X 7→ EGF 1 |

(
R1

E1
· x̃

)L
⌋ X (R5’)

(
R1

E1
·RE2 · x̃ ·R2

E1
·RE2 · ỹ

)L
⌋ X 7→

(
R1

E1
· R3

E2
· x̃ ·R2

E1
·R3

E2
· ỹ

)L
⌋ X (R6’)

(
R1

E2
·RI1 · x̃

)L
⌋ X 7→

(
R1

E2
· RpI1 · x̃

)L
⌋ X (R7’)

(
R1

E2
·RpI1 ·RI2 ·x̃·R

1

E2
·RpI1 ·ỹ

)L
⌋(X |EFF ) 7→

(
R1

E2
·RpI1 ·R

2

I2
·x̃·R1

E2
·RpI1 ·ỹ

)L
⌋(X |EFF 2) (R8’)

(
R1

I2
· x̃

)L
⌋ (X | EFF 1) 7→

(
RI2 · x̃

)L
⌋ (X | EFFp) (R9’)

Rule (R5’) describes the binding of the EGF signal protein with theRE1 domain by creating a
link with label 1. When two of these bindings are constructed on the membrane, the signal-receptor
complexes might dimerise originating a new link between the twoRE2 domains of the two receptors:
see the link labelled with3 in rule (R6’). Then, theRI1 domain of a receptor of a dimer formed on the
membrane can be activated (phosphorylated) moving to the formRpI1. This process is represented in
rule (R7’). The activated dimer enables the propagation of the signal inside the cell by promoting the
binding of the effector protein EFF inside the cell with one of itsRI2 domains (link labelled with2 in
rule (R8’)). The effector protein bound to the dimer gets phosphorylated and released within the cell: in
Rule (R9’) the link between EFF and theRI2 domain is removed.
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4. Syntactic Constraints and Types for LCLS

The semantics of LCLS ensures that by starting from a well-formed term it is not possible to reach non
well-formed terms. In practice, this means that before applying a rewrite rule one has to check that the
whole term obtained as the result of the application is well formed. Checking the well-formedness of
a term at run-time, before applying every rule, could be a very costly operation. Hence, in this section
we investigate two statically verifiable conditions that allow run-time checking to be either avoided or
reduced.

The first condition we investigate is whether the two patterns of each rule are similar enough to
avoid non well-formed terms to be obtained as result of their application to a well-formed term. If this
condition, that we shall callcompartment safety, is satisfied by the rules of an LCLS model, then it is
possible to avoid any run-time well-formedness checking.

The second condition we investigate is whether the two patterns of each rule have similar types,
according to a type system we shall define. If this condition, that we shall calltyped safety, is satisfied by
the rules of an LCLS model, then the run-time checking can be limited to a control on the instantiation of
variables. Note that the constraints of typed safety are weaker than those of compartment safety, hence
the corresponding semantics is more general. Moreover, we shall develop a type inference technique for
typed safety based on the machinery ofprincipal typing.

4.1. Compartment safety in LCLS

Compartment safety is defined as a condition on pairs of (well-formed) patterns, intended to be LCLS
rewrite rules. Roughly speaking, the condition forbids rewrite rules (i) to introduce single occurrences
of labels, (ii) to create copies or delete sequence and term variables, and (iii) to move sequence and term
variables from one compartment to another. In fact, all of these three actions may lead to non well-formed
terms. For instance, the introduction of a single occurrence of a label may lead to a non well-formed term
if in the same compartment two occurrences of such a label are already present. Moreover, duplication or
movement of a sequence (or term) variable from one compartment to another may cause either too many
occurrences of the same labels to be created in the same compartment or single occurrences to remain in
some inner compartment.

The compartment safety relation is defined as follows.

Definition 4.1. (Compartment Safety)
The compartment safety relation cs is the least congruence on well-formed patterns satisfying the fol-
lowing rules:

cs(ǫ, ν) cs(νn, µn) cs(ǫ, νn | µn) (cs1,cs2,cs3)

cs(P1 | P2, P2 | P1) cs(P, ǫ | P ) (cs4,cs5)

cs(SP1 | SP2, SP1 · SP2) cs(SP,
(
SP

)L
⌋ ǫ) (cs6,cs7)

cs(
(
SP1 · SP2

)L
⌋ P,

(
SP2

)L
⌋ (SP1 | P )) with SP1 ∈ SP∗ (cs8)

cs(
(
SP1 · SP2

)L
⌋ P, SP1 |

(
SP2

)L
⌋ P ) with SP1 ∈ SP∗ or tlc(P ) ∈ P∗ (cs9)

whereν, µ ∈ E ∪ X , n ∈ IN, P1, P2, P3, P4 are any pattern,SP1, SP2, SP3 are any sequence pattern.
Moreover,P∗ andSP∗ denote the set of all patterns and sequence patterns, respectively, in which only
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element varialble are allowed (sequence and term variables are not allowed).

We remark that compartment safety is defined on well-formed patterns and that it is a congruence,
hence the condition can be verified on two patterns in a compositional and transitive way.

The definition of the relationcs is such that one can provecs(P1, P2) to hold by proving that
cs(P1, P

′

1
), cs(P ′

1
, P ′

2
) andcs(P ′

2
, P2) hold, whereP ′

1
andP ′

2
are obtained by moving all elements and

element variables inP1 andP2, respectively, in a parallel composition in the top-level compartment. For
example, fromP1 =

(
a · b1 · x̃

)L
⌋ (c1 | X) we obtainP ′

1
= a | b1 | c1 |

(
x̃
)L

⌋ X, and from

P2 =
(
a · b1 · x̃

)L
⌋ (c1 · c2 | b2 | X) we obtainP ′

2
= a | b1 | c1 | c2 | b2 |

(
x̃
)L

⌋ X.
In order to provecs(P1, P2), rules (cs6-9) should be used to provecs(P1, P

′

1
) and cs(P2, P

′

2
),

whereas rules (cs1-5) to provecs(P ′

1
, P ′

2
). The essence of the relation is actually represented by rules

(cs1-3) which state that two compartment safe patterns may differ only in the presence of elements and
element variables without labels, in the element or element variable carrying a specific label or in the
presence of additional pairs of elements or element variables with the same label. The fact thatP1 andP2

are required to be well formed ensures that two labels of each pair possibly introduced by a compartment
safe rewrite rule will be placed in the same compartment.

Definition 4.2. (Compartment Safe Rewrite Rule)
A rewrite ruleP1 7→ P2 is compartment safe (CS) if cs(P1, P2) holds. It iscompartment unsafe (CU)
otherwise. We denote withℜCS ⊂ ℜ the infinite set of CS rewrite rules, and withℜCU ⊂ ℜ the infinite
set of CU rewrite rules.

Compartment safety is a rather strong syntactical requirement on rewrite rules. For example, it
forbids rules such asa 7→ a1, x̃ · ỹ 7→ x̃, anda · x̃ |

(
b
)L

⌋ X 7→
(
b
)L

(a · x̃ | X) to be used. However,
compartment safe rewrite rules are expressive enough to describe most of the biochemical interactions
typical of cellular processes. For example,x̃·a·ỹ | w̃ ·b·z̃ 7→ x̃·a1 ·ỹ | w̃ ·b1 ·z̃ could describe the creation

of protein/protein or protein/dna bindings,x̃ · a · ỹ |
(
w̃ · b · z̃

)L
⌋ X 7→ x̃ · a1 · ỹ |

(
w̃ · b1 · z̃

)L
⌋ X the

creation of signal-receptor complexes on cell membranes, and
(
x̃
)L

⌋ (X | a·x·y) 7→ a·x·y |
(
x̃
)L

⌋ X
the release by a cell of a signal protein (represented by the sequencea ·x · y not containing any sequence
variable). In all these cases sequence and term variables actually play the role of the context in which
the interaction occurs, hence they are not moved from one compartment to another. What cannot be
described by compartment safe rules are more complex events which involve, for example, changes in
compartments structure. Moreover, it does not allow elements (such as signal proteins) that are usually
moved from one compartment to another to be described in an abstract way by means of sequence
variables.

The application of a rule satisfying compartment safety to a well-formed term preserves the well-
formedness of the term.

Lemma 4.1. Givenσ ∈ Σ and a rewrite ruleP1 7→P2 ∈ ℜCS, it holds thatwf(P1σ) implieswf(P2σ).

Proof:
By induction on the derivation ofcs(P1, P2). The only non-trivial (base) cases are those of rules (cs8)
and (cs9).
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• Let (cs8) be the last applied rule, namelyP1 =
(
SP1 ·SP2

)L
⌋ P andP2 =

(
SP2

)L
⌋ (SP1 | P ).

By definition ofwf and by distributivity ofσ we have thatwf
(
(
(
SP1 · SP2

)L
⌋ P )σ

)
implies

wf(SP1σ), wf(SP2σ) andwf
(
Pσ

)
. By definition ofwf we also have thatL((SP1 · SP2)σ) ∩

T (Pσ) = T ((SP1 · SP2)σ) ∩ L(Pσ) = ∅ andO(Pσ) ⊆ O((SP1 · SP2)σ). It follows immedi-
ately thatwf((SP1 | P )σ)) holds.

In order to prove thatwf
(
(
(
SP2

)L
⌋ (SP1 | P ))σ

)
holds it remains to prove thatL((SP2)σ) ∩

T ((SP1 | P )σ) = T ((SP2)σ) ∩ L((SP1 | P )σ) = ∅ andO((SP1 | P )σ) ⊆ O(SP2σ).
Sincecs is defined on well-formed patterns, we have thatL(SP2) ∩ T (SP1 | P ) = T (SP2) ∩
L(SP1 | P ) = ∅ and O(SP1 | P ) ⊆ O(SP2) hold. In other words, the only possible
cause of violation of well-formedness is instantiation of sequence and term variables. How-
ever, conditionSP1 ∈ SP∗ in (cs8) implies thatO(SP1σ) = O(SP1), T (SP1σ) = T (SP1)
andL(SP1σ) = L(SP1). Hence, from the facts thatL((SP1 · SP2)σ) ∩ T (Pσ) = ∅ implies
L(SP2σ) ∩ T (Pσ) = ∅, thatL(SP2) ⊆ L(SP2σ), and thatL(SP2) ∩ T (SP1) = ∅, we can
conclude thatL(SP2σ) ∩ T ((SP1 | P )σ) = L(SP2σ) ∩ (T (SP1) ∪ T (Pσ)) = ∅. Similarly we
can also prove thatT ((SP2)σ) ∩ L((SP1 | P )σ) = ∅. As regardsO((SP1 | P )σ) ⊆ O(SP2σ),
namely(O(SP1σ) ∪ O(Pσ)) ⊆ O(SP2σ), from conditionSP1 ∈ SP∗ in (cs8) we have that
O(SP1σ) = O(SP1). Moreover, fromO(SP1 | P ) ⊆ O(SP2) we have thatO(SP1) ⊆ O(SP2),
which impliesO(SP1σ) ⊆ O(SP2σ). Hence, it remains to prove thatO(Pσ) ⊆ O(SP2σ), but
this follows immediately fromO(Pσ) ⊆ O((SP1 · SP2)σ).

• The case in which (cs9) is the last applied rule can be proved similarly to the case of (cs8) if
conditionSP1 ∈ SP∗ of (cs9) is satisfied. The case in which conditiontlc(P ) ∈ P∗ is satisfied
can be proved by following a similar approach and by exploiting Proposition 3.1.

⊓⊔

Now, we can define the semantics of LCLS.

Definition 4.3. (Semantics)
Given a finite set of rewrite rulesR ⊂ ℜCS, thesemantics of LCLS is the least relation on terms closed
under≡, and satisfying the following inference rules:

(appCS)
P1 7→ P2 ∈ R P1σ 6≡ ǫ σ ∈ Σ

P1σ
CS
−−→ P2σ

(par)
T1

CS
−−→ T ′

1
T (T ′

1
) ∩ L(T2) = {n1, . . . , nM} n′

1
, . . . , n′M fresh

T1 | T2

CS
−−→ T ′

1
{n

′

1
, . . . , n′

M/n1, . . . , nM} | T2

(cont)
T

CS
−−→ T ′ T (T ′) ∩ L(S) = {n1, . . . , nM} n′

1
, . . . , n′M fresh

(
S

)L
⌋ T

CS
−−→

(
S

)L
⌋ T ′{n

′

1
, . . . , n′

M/n1, . . . , nM}

Rule (appCS) describes the application of compartment safe rewrite rules. The (par) and (cont) rules
propagate the effect of a rewrite rule application to contexts by resolving conflicts in the use of labels.

Finally, we prove a lemma stating that transitions performed by the semantics preserve the set of
labels occurring only once in the term. This lemma will be used to prove the main theorem stating that
the application of well-formed rewrite rules to well-formed terms produces new well-formed terms.
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Lemma 4.2. Given a finite set of rewrite rulesR ⊂ ℜCS andT, T ′ ∈ T , it holds thatwf(T ) and

T
CS
−−→ T ′ imply O(T ) = O(T ′).

Proof:
By induction on

CS
−−→.

• If the last applied rule is (appCS), thenP1 7→ P2 ∈ R, T ≡ P1σ andT ′ ≡ P2σ. It can be easily
proved by induction on the derivation ofcs(P1, P2) thatO(P1) = O(P2). Hence, a difference
betweenO(T ) andO(T ′) can only be caused by a difference in the occurrences of sequence and
term variables inP1 and inP2. By Proposition 3.1 we have that actually only variables in the
top-level compartments ofP1 andP2 have to be considered. Again, it can be easily proved by
induction on the derivation ofcs(P1, P2) that every occurrence of a sequence or a term variable in
tlc(P1) is also intlc(P2) and viceversa.

• If the last applied rule is either (par) or (cont), the proof is a trivial application of the induction
hypothesis.

⊓⊔

Theorem 4.1. Given a finite set of rewrite rulesR ⊂ ℜCS andT, T ′ ∈ T , it holds thatwf(T ) and

T
CS
−−→ T ′ imply wf(T ′).

Proof:
By induction on

CS
−−→.

• If the last applied rule is (appCS), thenP1 7→ P2 ∈ R. The fact thatwf(T ′) holds follows from
wf(T ) and Lemma 4.1.

• If the last applied rule is (par), thenT ≡ T1 | T2 andT1

CS
−−→ T ′

1
. By definition ofwf we have that

wf(T1 | T2) implieswf(T1) andwf(T2). Moreover,wf(T ′

1
) holds by induction hypothesis. By

definition ofwf , fromwf(T1 | T2) we getL(T1) ∩ T (T2) = T (T1) ∩ L(T2) = ∅, and in order
to provewf(T ′

1
| T ′

2
) we have to prove thatL(T ′

1
) ∩ T (T2) = T (T ′

1
) ∩ L(T2) = ∅. By Lemma

4.2 we haveO(T1) = O(T ′

1
). This means that what we only have to prove isT (T ′

1
)∩L(T2) = ∅,

but this is ensured by the substitution of conflicting labels with fresh ones done in rule (par) of the
semantics.

• For rule (cont) the proof is similar to that of rule (par).
⊓⊔

From Theorem 4.1 it follows immediately that the semantics obtained by considering only compart-

ment safe rules is contained in the general semantics of LCLS, namelyT1

CS
−−→ T2 impliesT1 → T2.

The viceversa does not hold asa 7→ a1 ∈ ℜCU could be used to derivea | b −→ a1 | b, whereas this rule
cannot be used in the semantics based on compartment safety.
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4.2. Typed safety in LCLS

In this section we propose a generalisation of compartment safety in two respects:

• we classify elements with basic types and we assure that only elements of the same basic types are
linked;

• we relax the restrictions on the shapes of the rewrite rules and of the instantiations.

To this aim we require atomic elements to be of some basic type. We assume a possibly infinite setB
of basic types and we uset to range over basic types. Intuitively, given a molecule represented by an
element inE , we associate with it a type inB which specifies the kind of the molecule and the kind of
bindings the molecule can create. We assume a fixed typingΓ0 for the elements inE , i.e. Γ0 is a mapping
from E to B.

We useη ∈ SV ∪ TV to denote either sequence or term variables. WithT we denote a finite set
of natural numbers and withO we denote a finite set of typed natural numbers, i.e. numbers associated
with basic types.

Intuitively, given a patternP , we can associate withP a set of numbersT which contains all the
numbers used to create closed point to point bindings. A pattern may however also contain some numbers
which do not bind another molecule inP but may bind somewhere else in the environment. Thus, we
may associate with a patternP a setO of typed numbers. We do not need to keep track of types for
closed links, but, for open links, we should guarantee that a molecule of some type is bound, somewhere
else in the environment, with a molecule of the same type. To sum up we associate with a pattern apair
type of the shape(T, O). We associate pair types also with sequence patterns.

We define the domain of a set of typed numbersO as

dom(O) = {n | n : t ∈ O}.

We say that two sets of typed numbersO andO′ arecompatible (written O ⊲⊳ O′) if and only if whenever
n : t ∈ O andn : t′ ∈ O′, then it holdst = t′. The linked union of two compatible setsO andO′

(notationO ⊎ O′) is defined as

O ⊎ O′ = {n : t ∈ O ∧ n 6∈ dom(O′)} ∪ {n : t′ ∈ O′ ∧ n 6∈ dom(O)}.

With the following grammar we definebases Γ, which map element variables to basic types, and
map sequence and term variables to pair types:

Γ ::= ∅
∣∣ Γ, x : t

∣∣ Γ, η : (T, O).

The type discipline to check safe bindings, namely, to avoid non well-formed bindings, is defined by
the typing rules in Figure 4.

Rules(ǫ)-(a)-(x): any basis types withT andO empty sets, the termǫ and any elementary object
without binding labels. Rules(an)-(xn): an elementary object with a binding labeln gets typed withT
empty (there are no labels defining a closed link) and withO = {n : t} (there is an open link represented
by labeln of typet). Rule(η): complex sequences and terms may contain both closed links and open
links.
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Γ ⊢ ǫ : (∅, ∅) (ǫ)
a : t ∈ Γ0

(a)
Γ ⊢ a : (∅, ∅)

a : t ∈ Γ0

(an)
Γ ⊢ an : (∅, {n : t})

Γ, x : t ⊢ x : (∅, ∅) (x) Γ, x : t ⊢ xn : (∅, {n : t}) (xn) Γ, η : (T, O) ⊢ η : (T, O) (η)

Γ ⊢ SP : (T, O) Γ ⊢ SP ′ : (T′, O′) T ∩ T
′ = T ∩ dom(O′) = T

′ ∩ dom(O) = ∅ O ⊲⊳ O
′

(seq)
Γ ⊢ SP · SP ′ : (T ∪ T

′ ∪ (dom(O) ∩ dom(O′)), O ⊎ O
′)

Γ ⊢ P : (T, O) Γ ⊢ P ′ : (T′, O′) T ∩ T
′ = T ∩ dom(O′) = T

′ ∩ dom(O) = ∅ O ⊲⊳ O
′

(par)
Γ ⊢ P | P ′ : (T ∪ T

′ ∪ (dom(O) ∩ dom(O′)), O ⊎ O
′)

Γ ⊢ SP : (T, O) Γ ⊢ P : (T′, O′) T ∩ T
′ = T ∩ dom(O′) = T

′ ∩ dom(O) = ∅ O
′ ⊆ O

(loop)
Γ ⊢

`

SP
´L

⌋ P : (T ∪ dom(O′), O \ O′)

Figure 4. Typing rules for safe bindings

Rule(seq): when putting two sequences together, the numbers representing the closed links should
not appear in any other binding. Open links in the two sequences to be join can form a closed link if they
have the same label (since we require compatibility betweenO andO′, the labels closing each open link
are of the same type). In the resulting sequences, the labels which got closed are removed formO andO′

and added to the final set of labels representing closed links. Rule(par): similarly to what happens for
Rule (seq), putting two patterns in parallel may allow to close some of the links which are open in the
two patterns in isolation.

Rule (loop): we can put a patternP inside a looping sequenceSP only when all the open links of
P are closed. This is because ifP gets inside a compartment (represented by the looping sequence),
it cannot interact any more with the environment. Thus, ifP has some open link, it should be bound
with equal open links present on the looping sequenceSP , which now represents the only environment
surroundingP . For this to be done, we require that the set of open links ofP is a subset of the set of
open links ofSP (all the open links inP can be closed bySP ).

The following lemma clarifies the meaning of pair types and can be easily shown by induction on
LCLS terms.

Lemma 4.3. The following implications hold:

1. ⊢ T : (T, O) if and only ifwf(T ).

2. If ⊢ T : (T, O), thenT = T (T ) anddom(O) = O(T ).

3. If ⊢ T : (T ∪ {n}, O) andn′ is fresh, then⊢ T{n
′

/n} : (T ∪ {n′}, O).

Rewrite rules may modify the status of the bindings by creating new closed links or destroying some
of them. We require, however, that rewrite rules do not change the status of open bindings, which are
assumed to be closed by the environment and represent only a partial state of the system.
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Definition 4.4. (Γ-Safe Rules)
A rewrite ruleP 7→ P ′ is Γ-safe (notationP 7→ P ′ ∈ RΓ) if Γ ⊢ P : (T, O) andΓ ⊢ P ′ : (T′, O) for
someT, T′, O.

An instantiationσ agrees with a basisΓ (notationσ ∈ ΣΓ) if x : t ∈ Γ impliesσ(x) : t ∈ Γ and
η : (T, O) ∈ Γ impliesΓ ⊢ σ(η) : (T, O).

Lemma 4.4. If σ ∈ ΣΓ, then⊢ Pσ : (T, O) if and only if Γ ⊢ P : (T, O).

Proof:

(⇐) By induction onΓ ⊢ P : (T, O). Consider the last applied rule.

• For rules(ǫ), (a), (an) we havePσ = P and, moreover,P is typable from the empty
environment. If the rule is(x), (xn), or (η), the proof follows fromσ ∈ ΣΓ.

• Rule(seq). In this caseP = SP1 · SP2, T = T1 ∪ T2 ∪ (dom(O1)∩ dom(O2)), O = O1 ⊎ O2,
Γ ⊢ SP1 : (T1, O1), Γ ⊢ SP2 : (T2, O2), T1 ∩ T2 = T1 ∩ dom(O2) = T2 ∩ dom(O1) = ∅ and
O1 ⊲⊳ O2. By induction hypotheses,⊢ SP1σ : (T1, O1) and⊢ SP2σ : (T2, O2). Therefore,
sinceSP1σ · SP2σ = (SP1 · SP2)σ, applying rule(seq) we conclude⊢ (SP1 · SP2)σ :
(T, O).

• For rules(par), (loop) the proof is similar.

(⇒) By induction onP .

• If P is a variable the proof follows fromσ ∈ ΣΓ. If P = ǫ, orP = a, orP = an, the lemma
holds by weakening.

• LetP beSP1 ·SP2. Since(SP1 ·SP2)σ = SP1σ·SP2σ, the fact that⊢ (SP1 ·SP2)σ : (T, O)
implies that the last applied rule must be(seq). Therefore,T = T1 ∪ T2 ∪ (dom(O1) ∩
dom(O2)), O = O1 ⊎ O2, Γ ⊢ SP1 : (T1, O1), Γ ⊢ SP2 : (T2, O2), T1 ∩ T2 = T1 ∩ dom(O2) =
T2 ∩ dom(O1) = ∅ andO1 ⊲⊳ O2. By induction hypothesis onSP1 andSP2 we getΓ ⊢ SP1 :
(T1, O1) andΓ ⊢ SP2 : (T2, O2). Applying rule(seq) we concludeΓ ⊢ SP1 · SP2 : (T, O).

• If P = P ′ | P ′′ or P =
(
SP

)L
⌋ P ′ the proof is similar.

⊓⊔

We can safely apply aΓ-safe rule to a term only if the involved instantiation agrees withΓ. In this

case we denote by
TS
−−→ the so obtained reduction. More formally:

Definition 4.5. (Typed Semantics)
Given a finite set of rewrite rulesR, the typed semantics of LCLS is the least relation on terms closed
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with respect to≡ and satisfying the following inference rules:

(appTS)
P1 7→ P2 ∈ RΓ P1σ 6≡ ǫ σ ∈ ΣΓ

P1σ
TS
−−→ P2σ

(par)
T1

TS
−−→ T ′

1
T (T ′

1
) ∩ L(T2) = {n1, . . . , nM} n′

1
, . . . , n′M fresh

T1 | T2

TS
−−→ T ′

1
{n

′

1
, . . . , n′

M/n1, . . . , nM} | T2

(cont)
T

TS
−−→ T ′ T (T ′) ∩ L(S) = {n1, . . . , nM} n′

1
, . . . , n′M fresh

(
S

)L
⌋ T

TS
−−→

(
S

)L
⌋ T ′{n

′

1
, . . . , n′

M/n1, . . . , nM}

As expected,
TS
−−→ reduction preserves typing of LCLS terms.

Theorem 4.2. If ⊢ T : (T, O) andT
TS
−−→ T ′, then⊢ T ′ : (T′, O) for someT′.

Proof:
By induction on

TS
−−→.

• If the last applied rule is (appTS), thenP1 7→ P2 ∈ RΓ, σ ∈ ΣΓ and⊢ P1σ : (T, O). By Lemma
4.4 we getΓ ⊢ P1 : (T, O), which impliesΓ ⊢ P2 : (T′, O) for someT′ by definition ofΓ-safe rule.
Again by Lemma 4.4 we conclude⊢ P2σ : (T′, O).

• If the last applied rule is (par), thenT ≡ T1 | T2 and⊢ T : (T, O) is derived by using rule(par).
Therefore⊢ T1 : (T1, O1), ⊢ T2 : (T2, O2), T1∩T2 = T1∩dom(O2) = T2∩dom(O1) = ∅, O1 ⊲⊳ O2,
T = T1 ∪ T2 ∪ (dom(O1) ∩ dom(O2)), O = O1 ⊎ O2. By induction hypothesis⊢ T ′

1
: (T′

1
, O1) for

someT′
1
. By Lemma 4.3(2)T′

1
= {n1, . . . , nM} ∪ T′′

1
for someT′′

1
, and then by (3) of the same

lemma⊢ T ′

1
{n

′

1
, . . . , n′

M/n1, . . . , nM} : ({n′
1
, . . . , n′M} ∪ T′′

1
, O1). We can then apply rule(par) to

⊢ T ′

1
{n

′

1
, . . . , n′

M/n1, . . . , nM} : ({n′
1
, . . . , n′M}∪T′′

1
, O1) and⊢ T2 : (T2, O2), since by construction

{n′
1
, . . . , n′M} ∪ T′′

1
, O1, T2, O2 satisfy the required conditions, and conclude⊢ T ′ : (T′, O), where

T′ = {n′
1
, . . . , n′M} ∪ T′′

1
∪ T2 ∪ (dom(O1) ∩ dom(O2)).

• For rule (cont) the proof is similar to that of rule (par).
⊓⊔

In order to decide which rewriting rules areΓ-safe the inference of principal basis schemes, type
schemes and typing conditions for patterns is handy.

We convene that for each variablex ∈ X there is ane-type variable ϕx ranging over basic types,
and for each variableη ∈ SV ∪ TV there are two variablesφη, ψη (called t-type variable ando-type
variable) ranging over sets of untyped and typed numbers, respectively.

A basis scheme Θ is a map from atomic variables to their e-type variables, and from sequence and
term variables to pairs of their t-type variables and o-type variables:

Θ ::= ∅
∣∣ Θ, x : ϕx

∣∣ Θ, η : (φη, ψη).
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⊢ ǫ : ∅; (∅, ∅); ∅ (Iǫ)
a : t ∈ Γ0

(Ia)
⊢ a : ∅; (∅, ∅); ∅

a : t ∈ Γ0

(Ian)
⊢ an : ∅; (∅, {n : t}); ∅

⊢ x : {x : ϕx}; (∅, ∅); ∅ (Ix) ⊢ xn : {x : ϕx}; (∅, {n : ϕx}); ∅ (Ixn)

⊢ η : {η : (φη, ψη)}; (φη, ψη); ∅ (Iη)

⊢ SP : Θ; (Φ,Ψ);Ξ ⊢ SP ′ : Θ′; (Φ′

,Ψ′); Ξ′

(Iseq)
⊢ SP · SP ′ : Θ ∪ Θ′; (Φ ∪ Φ′ ∪ (dom(Ψ) ∩ dom(Ψ′)),Ψ ⊎ Ψ′); Ξ′′

whereΞ′′ = Ξ ∪ Ξ′ ∪ {Φ ∩ Φ′ = Φ ∩ dom(Ψ′) = Φ′ ∩ dom(Ψ) = ∅} ∪ {Ψ ⊲⊳ Ψ′}

⊢ P : Θ; (Φ,Ψ);Ξ ⊢ P ′ : Θ′; (Φ′

,Ψ′); Ξ′

(Ipar)
⊢ P | P ′ : Θ ∪ Θ′; (Φ ∪ Φ′ ∪ (dom(Ψ) ∩ dom(Ψ′)),Ψ ⊎ Ψ′); Ξ′′

whereΞ′′ = Ξ ∪ Ξ′ ∪ {Φ ∩ Φ′ = Φ ∩ dom(Ψ′) = Φ′ ∩ dom(Ψ) = ∅} ∪ {Ψ ⊲⊳ Ψ′}

⊢ SP : Θ; (Φ,Ψ); Ξ ⊢ P : Θ′; (Φ′

,Ψ′); Ξ′

(Iloop)
⊢

`

SP
´L

⌋ P : Θ ∪ Θ′; (Φ ∪ dom(Ψ′),Ψ \ Ψ′); Ξ′′

whereΞ′′ = Ξ ∪ Ξ′ ∪ {Φ ∩ Φ′ = Φ ∩ dom(Ψ′) = Φ′ ∩ dom(Ψ) = ∅} ∪ {Ψ′ ⊆ Ψ}

Figure 5. Inference rules

A type scheme is a pair(Φ,Ψ), whereΦ ranges over unions of sets of untyped numbers and t-type
variables, andΨ ranges over unions of sets of typed numbers and o-type variables.

A typing condition is either a set theoretic or a compatibility condition involving unions of sets of
untyped numbers and t-type variables, and unions of sets of typed numbers and o-type variables.

The inference rules use judgements of the shape:

⊢ P : Θ; (Φ,Ψ);Ξ

whereΘ is theprincipal basis scheme in whichP is well formed,(Φ,Ψ) is theprincipal type scheme of
P , andΞ is theprincipal set of typing conditions which should be satisfied when building upP .

Figure 5 gives these inference rules, derived from the typing rules in Figure 4.
Rules (Iǫ), (Ia) and (Ian) directly derive from rules (ǫ), (a) and (an). The rules for typing variables

(rules (Ix), (Ixn) and (Iη)) put the variable with its type in the basis. In rules (Iseq), (Ipar) and (Iloop),
the principal type is derived as in (seq), (par) and (loop) rules, respectively. The set of constraints is
the union between the constraints in the premise of the rule itself and the constraints in the premise of
(seq), (par) and (loop) rules, respectively. The principal basis is the union of the principal bases of the
composing patterns, without renaming, because each variablex, xn or η is associated to a unique e-type
variable or to a unique pair of t-type and o-type variables, respectively.
The key difference between inference rules, in Figure 5, and typing rules, in Figure 4, is that the condi-
tions are not premises, but conclusions. In this way, at the end of inference all these conditions create a
set of constraints, that must be checked to decide the applicability of the rules.

Since the inference rules follow the structure of patterns it is easy to verify that the complexity of
inference is linear in the number of symbols occurring in patterns.
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Soundness and completeness of our inference rules can be stated as usual. Atype mapping maps
e-type variables to basic types, t-type variables to sets of numbers and o-type variables to sets of typed
numbers. A type mappingm satisfies a set of constraintsΞ if all constraints inm(Ξ) hold true.

Theorem 4.3. (Soundness of Type Inference)
If ⊢ P : Θ; (Φ,Ψ);Ξ andm is a type mapping which satisfiesΞ, thenm(Θ) ⊢ P : (m(Φ),m(Ψ)).

Proof:
By induction on derivations, and by cases on the last applied rule.

• For rules(Iǫ), (Ia), (Ian), (Ix), (Ixn), and(Iη) the result is trivial.

• Rule (Iseq). In this case the conclusion of the rule is⊢ SP1 · SP2 : Θ; (Φ,Ψ);Ξ where
Θ = Θ1 ∪ Θ2, Φ = Φ1 ∪ Φ2 ∪ (dom(Ψ1) ∩ dom(Ψ2)), Ψ = Ψ1 ⊎ Ψ2, Ξ = Ξ1 ∪ Ξ2 ∪
{Φ1 ∩ Φ2 = Φ1 ∩ dom(Ψ2) = Φ2 ∩ dom(Ψ1) = ∅} ∪ {Ψ1 ⊲⊳ Ψ2} and the assumptions are
⊢ SP1 : Θ1; (Φ1,Ψ1); Ξ1 and ⊢ SP2 : Θ2; (Φ2,Ψ2); Ξ2. Sincem satisfiesΞ1 andΞ2, by

induction hypothesis, and weakening, we derive thatm(Θ1 ∪ Θ2) ⊢ SP1 : (m(Φ1),m(Ψ1)) and
m(Θ1 ∪ Θ2) ⊢ SP2 : (m(Φ2),m(Ψ2)). Moreover, sincem satisfiesΞ, we have thatm(Φ1) ∩
m(Φ2) = m(Φ1) ∩ dom(m(Ψ2)) = m(Φ2) ∩ dom(m(Ψ1)) = ∅ andm(Ψ1) ⊲⊳ m(Ψ2). So rule
(seq) can be applied, andm(Θ1 ∪ Θ2) ⊢ SP1 · SP2 : (m(Φ),m(Ψ)).

• For rules(Ipar), and(Iloop) the result can be proved like for rule(Iseq).
⊓⊔

Theorem 4.4. (Completeness of Type Inference)
If Γ ⊢ P : (T, O), then ⊢ P : Θ; (Φ,Ψ);Ξ for someΘ, Φ, Ψ, Ξ and there is a type mappingm that
satisfiesΞ and such thatΓ ⊇ m(Θ), T = m(Φ), O = m(Ψ).

Proof:
By induction on the derivation ofΓ ⊢ P : (T, O).

• If the last rule of the derivation is(ǫ), (a), (an), (x), (xn), or (η) the result is obvious.

• Rule (seq). In this caseP = SP1 · SP2, T = T1 ∪ T2 ∪ (dom(O1) ∩ dom(O2)), O = O1 ⊎ O2,
Γ ⊢ SP1 : (T1, O1), Γ ⊢ SP2 : (T2, O2), T1 ∩ T2 = T1 ∩ dom(O2) = T2 ∩ dom(O1) = ∅ and
O ⊲⊳1 O2. By induction hypothesis, there areΘ1, Φ1, Ψ1, Ξ1, Θ2, Φ2, Ψ2, Ξ2 such that ⊢
SP1 : Θ1; (Φ1,Ψ1); Ξ1 and ⊢ SP2 : Θ2; (Φ2,Ψ2); Ξ2. These are the assumptions of rule(Iseq),
whose conclusion is⊢ SP1 · SP2 : Θ1 ∪ Θ2; (Φ1 ∪ Φ2 ∪ (dom(Ψ1) ∩ dom(Ψ2)),Ψ1 ⊎ Ψ2); Ξ,
where Ξ = Ξ1 ∪ Ξ2 ∪ {Φ1 ∩ Φ2 = Φ1 ∩ dom(Ψ2) = Φ2 ∩ dom(Ψ1) = ∅} ∪ {Ψ1 ⊲⊳
Ψ2}. Moreover, by induction there is a type mappingm1 satisfyingΞ1 such thatΓ ⊇ m1(Θ1),
T1 = m1(Φ1) and O1 = m1(Ψ1), and there is a type mappingm2 satisfying Ξ2 such that
Γ ⊇ m2(Θ2), T2 = m2(Φ2) andO2 = m2(Ψ2). Therefore, we deriveΓ ⊇ m1(Θ1) ∪ m2(Θ2),
T = m1(Φ1) ∪ m2(Φ2) ∪ (dom(m1(Ψ1)) ∩ dom(m2(Ψ2))) andO = m1(Ψ1) ⊎ m2(Ψ2). Since
the basism1(Θ1) andm2(Θ2) are both subsets of the same basisΓ, then for all the (e-type, t-type
or o-type) variablesζ such thatζ ∈ dom(m1) ∩ dom(m2) we getm1(ζ) = m2(ζ). Therefore the
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mappingm

m(ζ) =

{
m1(ζ) if ζ ∈ dom(m1)

m2(ζ) if ζ ∈ dom(m2)

is well defined.
Moreover, sincem satisfiesΞ1, Ξ2, Φ1 ∩ Φ2 = Φ1 ∩ dom(Ψ2) = Φ2 ∩ dom(Ψ1) = ∅, and
Ψ1 ⊲⊳ Ψ2, thenm satisfies also all the constraints of the conclusion of the rule(Iseq).

• If the last rule is(par) or (loop) the proof is similar.
⊓⊔

Now, we put our inference rules at work in order to decide the applicability ofΓ-safe rules.

Lemma 4.5. (Characterization of Γ-safe rules)
A rule P1 7→ P2 is aΓ-safe rule if and only if the type mappingm defined by

1. m(ϕx) = t if Γ(x) = t

2. m(φη) = T′ if Γ(η) = (T′, O′)

3. m(ψη) = O′ if Γ(η) = (T′, O′)

satisfies the set of constraintsΞ1 ∪ Ξ2 ∪ {Ψ1 = Ψ2}, where ⊢ P1 : Θ1; (Φ1,Ψ1); Ξ1 and ⊢ P2 :
Θ2; (Φ2,Ψ2); Ξ2.

Proof:

(⇐) Since ⊢ P1 : Θ1; (Φ1,Ψ1); Ξ1, ⊢ P2 : Θ2; (Φ2,Ψ2); Ξ2 andm satisfiesΞ1 andΞ2, by applying
Theorem 4.3 we derivem(Θ1) ⊢ P1 : (m(Φ1),m(Ψ1)), andm(Θ2) ⊢ P2 : (m(Φ2),m(Ψ2)).
From the definition ofm, we have thatm(Θ2) ⊆ Γ andm(Θ2) ⊆ Γ, and by weakening we derive
thatΓ ⊢ P1 : (m(Φ1),m(Ψ1)) andΓ ⊢ P2 : (m(Φ2),m(Ψ2)). Moreover, from the fact thatm
satisfiesΨ1 = Ψ2, we have thatm(Ψ1) = m(Ψ2). Therefore,P1 7→ P2 is aΓ-safe rule.

(⇒) SinceP1 7→ P2 is aΓ-safe rule, we have thatΓ ⊢ P1 : (T, O) andΓ ⊢ P2 : (T, O). From Theorem
4.4, applied toΓ ⊢ P1 : (T, O), we derive that ⊢ P1 : Θ1; (Φ1,Ψ1); Ξ1 and there is a type
mappingm1 satisfyingΞ1 such thatΓ ⊇ m1(Θ1), T = m1(Φ1), O = m1(Ψ1). Applying Theorem
4.4 toΓ ⊢ P2 : (T, O) we derive that ⊢ P2 : Θ2; (Φ2,Ψ2); Ξ2 and there is a type mappingm2

satisfyingΞ2 such thatΓ ⊇ m2(Θ2), T′ = m2(Φ2), O = m2(Ψ2). Since the basism1(Θ1) and
m2(Θ2) are both subsets ofΓ, then, (letζ is an e-type, t-type, or o-type variable) the mappingm

defined by

m(ζ) =

{
m

′(ζ) if ζ ∈ dom(m1)

m
′′(ζ) if ζ ∈ dom(m2)

is well defined. Moreover,m satisfiesΞ1 ∪ Ξ2, and sincem1(Ψ1) = O = m2(Ψ2), thenm also
satisfiesΨ1 = Ψ2.
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⊓⊔

Theorem 4.5. (Applicability of rewrite rules)
Let

⊢ P1 : Θ1; (Φ1,Ψ1); Ξ1 , ⊢ P2 : Θ2; (Φ2,Ψ2); Ξ2

andP1σ 6≡ ǫ. Then the ruleP1 7→ P2 can be applied to the termP1σ (i.e. P1σ
TS
−−→ P2σ) if and only if

the type mappingm defined by

1. m(ϕx) = t if σ(x) : t ∈ Γ0,

2. m(φη) = T′ if ⊢ σ(η) : (T′, O′),

3. m(ψη) = O′ if ⊢ σ(η) : (T′, O′),

satisfies the set of constraintsΞ1 ∪ Ξ2 ∪ {Ψ1 = Ψ2}.

Proof:
We define the basisΓ as follows:

• x : t ∈ Γ if σ(x) : t ∈ Γ0, and

• η : (T′, O′) ∈ Γ if ⊢ σ(η) : (T′, O′).

In this way we get thatσ ∈ ΣΓ and the type mappingm is such that:

1. m(ϕx) = t iff x : t ∈ Γ

2. m(φη) = T′ iff η : (T′, O′) ∈ Γ

3. m(ψη) = O′ iff η : (T′, O′) ∈ Γ.

(⇐) If the mappingm satisfies the the set of constraintsΞ1 ∪ Ξ2 ∪ {Ψ1 = Ψ2}, then by Lemma 4.5 the

ruleP1 7→ P2 is Γ-safe and we getP1σ
TS
−−→ P2σ by applying rule (appTS).

(⇒) If P1σ
TS
−−→ P2σ by applying rule (appTS), then the ruleP1 7→ P2 is Γ-safe and then the mapping

m satisfies the the set of constraintsΞ1 ∪ Ξ2 ∪ {Ψ1 = Ψ2} by Lemma 4.5.
⊓⊔

Notably the inference for a fixed set of rewrite rules can be done once for all. As already said, the
complexity is linear in the number of symbols occurring in the rules. The set of typing conditions so
generated is also linear in the number of symbols occurring in the rules. Therefore the applicability of a
rewrite rule can be decided in linear time with respect to the number of symbols occurring in the rule.
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4.3. Compartment safety versus typed safety

Since the type system of Section 4.2 only allows links between elements of the same type, this compar-
ison is sensible only by assuming thatΓ0 associates the same basic type with all atomic elements andΓ
associates the same basic type to all element variables. Under this assumption we can show:

Theorem 4.6. Each compartment safe rule isΓ-safe too, i.e. ifwf(P1) andcs(P1, P2), thenΓ ⊢ P1 :
(T, O) andΓ ⊢ P2 : (T′, O) for someΓ, T, T′, O.

Proof:
Easy by induction on the definition ofcs. ⊓⊔

The opposite implication is not true, since for example the rulea1 | x̃ 7→ a1 | a1 is not compartment
safe, but it isΓ-safe forΓ = {x̃ : (∅, {1 : t})} whenΓ0 = {a : t}.

As a consequence of Theorem 4.6 we have thatT
CS
−−→ T ′ implies T

TS
−−→ T ′, while the opposite

implication fails again by the above counter-example.

5. An Application

In this section we compare the notions of compartment safety and typed safety proposed in the previous
section under the viewpoint of their applicability to the description of biological systems. In Section 4.3
we have shown that every compartment safe rule is alsoΓ-safe, and that the vice versa does not hold.
Hence, the class of biological systems that can be modelled by means ofΓ-safe rules is for sure richer
than the class of systems that can be modelled by using compartment safe rules only. On the other
hand, the semantics of compartment safety can be computed more efficiently than the one of the typed
safety. In fact, the latter asks the checking that the mappingm defined in Theorem 4.5 satisfies the set of
constraints required by the same theorem.

The existence of a trade-off between biological expressiveness and efficiency in the computation
(and analysis) of the semantics makes the characterization of the two considered classes of biological
systems very important. In fact, the two proposed notions of safety are both of some interest only if (i)
the class of systems that can be modelled with compartment safe rules includes a relevant part of the
biological systems of interest, and (ii) there is a relevant part of the biological systems of interest that
can be modelled only ifΓ-safe rules are used.

As regards (i), we have already described in Section 4.1 the class of biological systems that can be
modelled with compartment safe rules. It includes essentially all of the most common biochemical forms
of interaction such as protein/protein and protein/dna bindings (and unbindings), dna transcription and
translation, complexation/decomplexation of molecules, enzymatic activities, and so on. An example of
biological system in this class is the EGF signallig pathway we described in Section 2. The rules of the
LCLS model of such a pathway we have given in Section 3, namely rules (R1’)-(R9’), are indeed all
compartment safe.

As regards (ii), we consider another biological process involving EGFR proteins in cells, namely the
internalization and degradation of such proteins. This is a very important process that is also a target of
some oncogenic viruses, such as vCBL and the human papilloma virus, which interfere the process by
causing EGFR proteins recycling, with the result of increasing their presence on the cellular membrane
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and consequently stimulating cell proliferation as an effect of the EGF singalling pathway [21]. We shall
see that in order to suitably model the internalization and degradation process in LCLS, compartment
safe rules are not enough, whereasΓ-safe are.

CELL MEMBRANE

CBL
UB

Endosome

Lysosome

Late endosome

Figure 6. The EGF signaling pathway.

The internalization and degradation process is as follows. After the activation of some effector
proteins, ligand-receptor dimers are internalized in endosomes. An endosome consists of a portion of the
cellular membrane which forms a vesicle bringing a number of ligand-receptor dimers (but also some
individual receptors) inside the cell. Several vesicles join together and form a so called late endosome.
Then, a ubiquitin ligase, known as Cbl, binds an ubiquitin protein to a dimer or to a receptor in the late
endosome. The ubiquitin protein targets dimers and receptors for degradation in the lysosome. Another
vesicle is formed to transport the ubiquinated proteins from the late endosome to the lysosome (see
Figure 6).

The following rules describe internalization and degradation of signal-receptor complexes:

X |
(
m · x̃ ·RE1 · ỹ · RI2 · z̃

)L
⌋ Y 7→

(
m · x̃ · z̃

)L
⌋ (Y |

(
endo · RE1 · ỹ ·RI2

)L
⌋ X) (R10’)

(
endo · x̃

)L
⌋ X |

(
late · ỹ

)L
⌋ Y 7→

(
late · x̃ · ỹ

)L
⌋ (X | Y ) (R11’)

EFF 1 |
(
R1

I2
· x̃

)L
⌋ X 7→ EFFp |

(
RI2 · x̃

)L
⌋ X (R12’)

CBL |
(
late · x̃ · RI2 · ỹ

)L
⌋ X 7→ CBL |

(
late · x̃ · RI2ub · ỹ

)L
⌋ X (R13’)

(
late · x̃ · ỹ · RI2ub · w̃ · z̃

)L
⌋ (X | Y ) 7→

(
late · x̃ · z̃

)L
⌋ X |

(
endoub · ỹ · RI2ub · w̃

)L
⌋ Y (R14’)

(
endoub · x̃

)L
⌋ X |

(
lyso

)L
⌋ Y 7→

(
lyso

)L
⌋ (x̃ | X | Y ) (R15’)

(
lyso

)L
⌋ (X | Y ) 7→

(
lyso

)L
⌋ X (R16’)

Rule (R10’) models a portion of the cellular membrane forming a vesicle and bringing a number of
ligand-receptor dimers inside the cell in the form of an internalized endosome. Rule (R11’) describes an
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endosome vesicle joining a late endosome. By rule (R12’), the effector protein bound to the dimer gets
phosphorylated and released. Rule (R13’) describes the ubiquitination of the late endosome performed
by the Cbl enzyme which transforms theRI2 domain into theRI2ub. A late ubiquanted endosome may
form some new vesicle in the form of a ubiquinated endosome: by rule (R14’), parts of the late endosome
membrane and content are used to generate an ubiquinated endosome. Ubiquinated endosomes can be
encapsulated within lysosomes by rule (R15’). Rule (R16’) models how lysosomes may digest parts of
their content.

If we consider the limited EGF pathway model seen in Section 3, starting from a well-formed term,
we can statically check that all the terms reached by applying rules (R1’)-(R9’) are still well formed. In
fact, as already mentioned, rules (R1’)-(R9’) satisfy the relation of compartment safety.

However, the new rules (R10’)-(R16’) are not compartment safe; except for rules (R12’) and (R13’).
Hence, we cannot statically guarantee the well-formedness of the terms reached via the reductions driven
by these new rules. In the cases of rules (R11’) and (R14’)-(R16’) we can resort to the notion of typed
safety. Just as an example, starting from the initial well-formed term:

T = EGF | EGF |
(
m

)L
(RIBO | EFF | CBL |

(
n
)L

⌋ (POLY | DNA))

by applying the compartment safe rules (R1’)-(R9’) we can get the well-formed term:

T ′ = EGF 1 | EGF 2 |
(
m ·R1

E1
· R3

E2
·RpI1 ·RI2 · R

2

E1
·R3

E2
·RpI1 · RI2

)L
⌋

(RIBO | EFFp | CBL |
(
n
)L

⌋ (POLY | DNA))

Now, in order to apply rule (R10’) and engulf the endosome inside the cell, we need to resort to the
typed semantics. We leave it to the reader to find the correct instantiationσ allowing to reduceT ′ via
(R10’) in aΓ-safe way.

6. Related Work and Conclusions

In this paper we have presented an extension of the Calculus of Looping Sequences (CLS) suitable
to describe protein interaction at the domain level. The extended calculus, called Linked Calculus of
Looping Sequences (LCLS) is obtained by allowing elements of sequences to be connected by links
(denoted as pairs of labels) which can represent bindings between protein domains.

In order to correctly denote links, labels appearing in an LCLS term should occur exactly twice and
in a single compartment, with the exception of labels in the top-level compartment of the term which
are also allowed to occur only once (thus denoting a link with a component from the environment). We
have formalised these requirements on the occurrences of labels in an LCLS term as a well-formedness
relation, and we have proposed two approaches (compartment safety and typed safety) to ensure that
well-formedness is preserved by rewrite rule applications. We have also shown by means of examples of
biological applications, that both the approaches are meaningful.

It is very important to compare our work with theκ-calculus [11, 15]. Actually, the idea of us-
ing labels to denote links representing bindings between protein domains is taken from such a calculus.
However, LCLS is aimed at describing a much more general class of biological phenomena than that
describable by theκ-calculus, with the consequence that the handling of links in LCLS is more compli-
cated.



R.Barbuti et al. / A Formalism for the Description of Protein Interaction 27

Let us shortly recall the definition of theκ-calculus as given in [11]. As LCLS, theκ-calculus is a
formalism based on term rewriting. Terms denotegraphs-with-sites, namely graphs in which each node
(representing a protein) is enriched with a finite number of sites. The number of sites could be different
for different nodes. Edges connect two sites of different nodes and represent protein bindings.

Given a countable set ofprotein names P ranged over byA,B,C, . . ., and a countable set ofedge
names E ranged over byx, y, z, . . ., a node of a graph-with-sites (orprotein) is represented in theκ-
calculus as a protein name associated with a partial mappingρ from IN to E ∪ {h, v}. The mappingρ
is defined only for values from1 to the number of sites of the node. The meaning ofρ(i) = x is that
site i is connected to a site of another protein by edgex, otherwise we have that sitei is not connected
and it is eitherhidden, namely not available for connection, ifρ(i) = h, or visible, namely available for
connection, ifρ(i) = v.

A whole graph-with-sites (orsolution) is represented by a multiset of proteins, denoted as a comma
separated list. Edges are hence denoted by pairs of edge names occurring in the solution. Binders can be
used to define the scope of a edge name, and reuse the same name to denote several edges. In order for a
solution to be well formed (orgraph-like) edge names not in the scope of any binder must occur at most
twice, and binders must bind either zero or two occurrences of a edge name.

For the sake of simplicity, let us forget about binders. An example ofκ-calculus term is the following
solution

S = A(1x + 2 + 3), B(1 + 2x), C(1y + 2)

where we have an edge namedx between the first site of proteinA and the second site of proteinB, and
(a part of) an edge connected to the first site of proteinC. If a line is present over a number it means that
the corresponding site is hidden. The site is visible otherwise.

The dynamics of theκ-calculus is driven by the application of rewrite rules. A rewrite rule is a pair
L,R, writtenL → R, of pre-solutions, namely solutions in which only a part of the protein sites are
mentioned. This allows rules to address only the parts of the proteins that are changed or checked during
the modelled reaction. An example of rewrite rule is

Rule = A(2 + 3), C(2) → A(2z + 3), C(2z)

that, when applied toS, creates an edge between the second site ofA and the second site ofC and makes
the third site ofA visible. In other words, it transformsS into

S′ = A(1x + 2z + 3), B(1 + 2x), C(1y + 2z) .

Two main classes of rewrite rules are considered in [11], namelymonotonic andanti-monotonic rules.
Monotonic and anti-monotonic rules, apart from changing the hidden/visible state of sites, either only
add edges or only remove edges, respectively. Both kinds of rules, when applied to a graph-like term,
are proved to preserve graph-likeness.

Now, an encodingenc of the κ-calculus into LCLS can be given which translates, for example,
solutionS into the following LCLS term:

enc(S) = A · 11 · 2 · 3 | B · 1 · 21 | C · 12 · 2

and the previously givenκ-calculus rewrite rule into the following LCLS rewrite rule:

enc(Rule) = A · x̃ · 2 · 3 | C · ỹ · 2 7→ A · x̃ · 21 · 3 | C · ỹ · 21 .
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The rather simple form ofκ-calculus rules, in particular of monotonic and anti-monotonic ones, can be
exploited to prove that the translation of such rules gives compartment safe LCLS rules. This implies
that graph-likeness in theκ-calculus is a special case of well-formedness of LCLS terms.

Summing up, LCLS combines the advantages of a formalism capable of describing a rather general
class of biological phenomena with the advantages of the modelling of protein interaction at the domain
level. Further extensions could be defined to describe also quantitative and stochastic aspects of bio-
logical systems by following approaches already available for CLS [5]. Possible further work aimed
at facing the size and complexity of real biological systems may consist in the development of static
analysis techniques for LCLS.
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