
10 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Session Types for Access and Information Flow Control

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/79102 since

This is an author version of the contribution published on:

Sara Capecchi, Ilaria Castellani, Mariangiola Dezani, Tamara Rezk
Session Types for Access and Information Flow Control

Editor: Springer
2010

ISBN: 9783642153747

in

CONCUR'10
237 - 252

CONCUR'10
Parigi

August 31 to September 3, 2010

The definitive version is available at:
http://link.springer.com/chapter/10.1007%2F978-3-642-15375-4_17

http://link.springer.com/chapter/10.1007%2F978-3-642-15375-4_17

Session types for access and information flow control ?

Sara Capecchi1, Ilaria Castellani2,
Mariangiola Dezani-Ciancaglini1, and Tamara Rezk2

1 Dipartimento di Informatica, Università di Torino, corso Svizzera 185, 10149 Torino, Italy
2 INRIA, 2004 route des Lucioles, 06902 Sophia Antipolis, France

Abstract. We consider a calculus for multiparty sessions with delegation, enriched with
security levels for session participants and data. We propose a type system that guaran-
tees both session safety and a form of access control. Moreover, this type system ensures
secure information flow, including controlled forms of declassification. In particular, the
type system prevents leaks that could result from an unrestricted use of the control con-
structs of the calculus, such as session opening, selection, branching and delegation. We
illustrate the use of our type system with a number of examples, which reveal an inter-
esting interplay between the constraints used in security type systems and those used in
session types to ensure properties like communication safety and session fidelity.

Keywords: concurrency, communication-centred computing, session types, access con-
trol, secure information flow.

1 Introduction
With the advent of web technologies and the proliferation of programmable and inter-
connectable devices, we are faced today with a powerful and heterogeneous computing
environment. This environment is inherently parallel and distributed and, unlike pre-
vious computing environments, it heavily relies on communication. It therefore calls
for a new programming paradigm which is sometimes called communication-centred.
Moreover, since computations take place concurrently in all kinds of different devices,
controlled by parties which possibly do not trust each other, security properties such
as the confidentiality and integrity of data become of crucial importance. The issue is
then to develop models, as well as programming abstractions and methodologies, to
be able to exploit the rich potential of this new computing environment, while mak-
ing sure that we can harness its complexity and get around its security vulnerabilities.
To this end, calculi and languages for communication-centred programming have to be
security-minded from their very conception, and make use of specifications not only for
data structures, but also for communication interfaces and for security properties.

The aim of this paper is to investigate type systems for safe and secure sessions.
A session is an abstraction for various forms of “structured communication” that may
occur in a parallel and distributed computing environment. Examples of sessions are
a client-service negotiation, a financial transaction, or a multiparty interaction among
different services within a web application.

? Work partially funded by the INRIA Sophia Antipolis COLOR project MATYSS, and by the
ANR-SETI-06-010 and ANR-08-EMER-010 grants.

Language-based support for sessions has now become the subject of active research.
Primitives for enabling programmers to code sessions in a flexible way, as well as type
systems ensuring the compliance of programs to session specifications (session types),
have been studied in a variety of calculi and languages in the last decade. Session types
were originally introduced in a variant of the pi-calculus [20]. We refer to [6] for a
survey on the session type literature. The key properties ensured by session types are
communication safety, namely the consistency of the communication patterns exhibited
by the partners (implying the absence of communication errors), and session fidelity,
ensuring that channels which carry messages of different types do it in a specific order.

Enforcement of security properties via session types has been studied in [3, 15].
These papers propose a compiler which, given a multiparty session description, imple-
ments cryptographic protocols that guarantee session execution integrity. The question
of ensuring access control in binary sessions has been recently addressed in [12] for the
Calculus of Services with Pipelines and Sessions of [4], where delegation is absent. On
the other hand, the property of secure information flow has not been investigated within
session calculi so far. This property, first studied in the early eighties [8], has regained
interest in the last decade, due to the evolution of the computing environment. It has
now been thoroughly studied for both programming languages (cf [16] for a review)
and process calculi [7, 9, 11].

In this paper, we address the question of incorporating access control and secure
information flow within session types. We consider a calculus for multiparty sessions
with delegation, enriched with security levels for both session participants and data,
and providing a form of declassification for data [18, 1], as required by most practical
applications. We propose a type system that ensures access control, namely that each
participant receives data of security level less than or equal to its own. For instance, in
a well-typed session involving a Customer, a Seller and a Bank, the secret credit card
number of the Customer will be communicated to the Bank, but not to the Seller. More-
over, our type system prevents insecure flows that could occur via the specific constructs
of the language, such as session opening, selection, branching and delegation. Finally,
we show that it allows controlled forms of declassification, namely those permitted by
the access control policy. Our work reveals an interesting interplay between the con-
straints of security type systems and those used in session types to ensure properties
like communication safety and session fidelity.

The rest of the paper is organised as follows. In Section 2 we motivate our access
control and declassification policies with an example. Section 3 introduces the syntax
and semantics of our calculus. In Section 4 we define the secure information flow prop-
erty. In Section 5, we illustrate this property by means of examples. Section 6 presents
our main contribution: a type system for safe and secure sessions and theorems estab-
lishing that it enforces access control and secure information flow, in the presence of
declassification. Section 7 concludes with a short discussion on future work.

The Appendix contains complete definitions and proofs and it is only added for
reviewers’ convenience.

2

2 A First Example on Access Control and Declassification
In this section we illustrate by an example the basic features of our typed calculus, as
well as our access control policy and its use for declassification. The question of secure
information flow will only be marginal here. It will be discussed in Sections 4 and 5.

A client C sends the title of a book to a bookseller S. Then S delegates to a bank
B both the reception of the credit card number of C and the control of its validity. This
delegation is crucial for assuring the secrecy of the credit card number, which should
be read by B but not by S. Then B notifies S about the result of the control: for this a
declassification is needed. Finally, if the credit card is valid, C receives a delivery date
from S, otherwise the deal falls through. More precisely, the protocol is as follows:

1. C opens a connection with S and sends a title to S;
2. S opens a connection with B and delegates to B part of his conversation with C;
3. C sends his secret credit card number apparently to the untrusted party S but really - thanks

to delegation - to the trusted party B;
4. B delegates back to S the conversation with C;
5. B selects the answer ok or ko for S depending on the validity of the credit card, thus perform-

ing a declassification;
6. S sends to C either ok and a date, or just ko, depending on the label ok or ko chosen by B.

In our calculus, which is an enrichment with security levels of the calculus in [2], this
scenario may be described as the parallel composition of the following processes, where
security levels appear as superscripts on both data and operators (here we omit unnec-
essary levels on operators and use ⊥ to mean “public” and > to mean “secret”):

I = ā[2] | b̄[2]

C = a[1](α1).α1!〈2,Title⊥〉.α1!⊥〈2,CreditCard>〉.α1&(2,{ok : α1?(2,date⊥).0,ko : 0})

S = a[2](α2).α2?(1,x⊥).b[2](β2).β2!〈〈1,α2〉〉.β2?((1,ζ)).
β2&(1,{ok : ζ ⊕〈1,ok〉.ζ !〈1,Date⊥〉.0,ko : ζ ⊕〈1,ko〉.0})

B = b[1](β1).β1?((2,ζ)).ζ ?>(2,cc⊥).β1!〈〈ζ ,2〉〉.
if valid(cc⊥) then β1⊕〈2,ok〉.0 else β1⊕〈2,ko〉.0

A session is a particular activation of a service, involving a number of parties with pre-
defined roles. Here processes C and S communicate by opening a session on service a,
while processes S and B communicate by opening a session on service b. The initiators
ā[2] and b̄[2] specify the number of participants of each service. We associate integers
with participants in services: here C=1, S=2 in service a and B=1, S=2 in service b.

In process C, the prefix a[1](α1) means that C wants to act as participant 1 in service
a using channel α1, matching channel α2 of participant 2, who is S. When the session
is established, C sends to S a title of level ⊥ and a credit card number of level >,
indicating (by the superscript ⊥ on the output operator) that the credit card number
may be declassified to ⊥. Then he waits for either ok, followed by a date, or ko.

Process S receives a value in service a and then enters service b as participant 2.
Here the output β2!〈〈1,α2〉〉 sends channel α2 to the participant 1 of b, who is B, thus
delegating to B the use of α2. Then S waits for a channel ζ from B. Henceforth, S
communicates using both channels β2 and ζ : on channel β2 he waits for one of the
labels ok or ko, which he then forwards to C on ζ , sending also a date if the label is ok.

3

Forgetting session opening and abstracting from values to types, we may represent the
whole communication protocol by the following global types (where we use B, C, S
instead of 1, 2):

1. C→ S :
〈
String⊥

〉
2. S �δ S→ B : 〈T 〉
3. C→ S :

〈
Number>↓⊥

〉
4. S �δ B→ S : 〈T ′〉
5. B→ S : {ok : end,ko : end}
6. S→ C : {ok : S→ C :

〈
String⊥

〉
;end,ko : end}

where the left-hand side and right-hand side describe services a and b, respectively.
Line 1 says that C sends a String of level ⊥ to S. In line 2, S�δ means that the

channel from S to C is delegated: this delegation is realised by the transmission of the
channel (with type T) from S to B, as shown on the right-hand side. Line 3 says that
C sends a Number of level > to S, allowing him to declassify it to ⊥. Notice that due
to the previous delegation the Number is received by B and not by S. Line 4 describes
a delegation which is the inverse of that in Line 2: here the (behavioural) type of the
channel has changed, since the channel has already been used to receive the Number.
Line 5 says that B sends to S one of the labels ok or ko. Finally, line 6 says that S sends
to C either the label ok followed by a String of level ⊥, or the label ko. Since B’s choice
of the label ok or ko depends on a test on the Number, it is crucial that Number be
previously declassified to ⊥, otherwise the reception of a String of level ⊥ by C would
depend on a value of level > (this is where secure information flow comes into play).

Type T represents the conversation between C and S after the first communication,
seen from the viewpoint of S. Convening that ?(−), !〈−〉 represent input and output in
types, that “;” stands for sequencing and that⊕〈−{−}〉 represents the choice of sending
one among different labels, it is easy to see that the session type T is:

?
(
C,Number>↓⊥

)
;⊕

〈
C,{ok :!

〈
C,String⊥

〉
;end,ko : end}

〉
where the communication partner of S (namely C) is explicitly mentioned. The session
type T ′ is the rest of type T after the first communication has been done:

⊕
〈
C,{ok :!

〈
C,String⊥

〉
;end,ko : end}

〉
To formalise access control, we will give security levels to service participants, and
require that a participant of a given level does not receive data of higher or incomparable
level. Since the only secret data in our example is CreditCard, it is natural to associate⊥
with S in both services a and b, and>with B in service b. Notice that Cmay indifferently
have level > or ⊥, since it only sends, but does not receive, the high data CreditCard.

3 Syntax and Semantics
Our calculus for multiparty asynchronous sessions is essentially the same as that con-
sidered in [2], with the addition of runtime configurations and security levels.

Syntax. Let (S ,v) be a finite lattice of security levels, ranged over by `,`′. We
denote by t and u the join and meet operations on the lattice, and by ⊥ and > its
minimal and maximal elements.

4

P ::= ū[n] n-ary session initiator
| u[p](α).P p-th session participant
| c!`〈Π ,e〉.P Value sending
| c?`(p,x`′).P Value receiving
| c!`〈〈q,c′〉〉.P Delegation sending
| c?`((p,α)).P Delegation reception
| c⊕` 〈Π ,λ 〉.P Selection
| c&`(p,{λi : Pi}i∈I) Branching
| if e then P else Q Conditional
| P | Q Parallel
| 0 Inaction
| (νa`)P Name hiding
| def D in P Recursion
| X〈e,c〉 Process call

u ::= x` | a` Identifier
v ::= a | true | false | . . . Value

c ::= α | s[p] Channel
e ::= v` | x`

| e and e′ | not e . . . Expression

D ::= X(x`,α) = P Declaration

Π ::= {p} | Π ∪{p} Set of participants

ϑ ::= v`↓`′ | s[p]` | λ ` Message content

m ::= (p,Π ,ϑ) Message in transit

h ::= m ·h | ε Queue

H ::= H ∪{s : h} | /0 Q-set

r ::= a` | s Service/Session Name

Table 1. Syntax of expressions, processes, queues, and configurations

We assume the following sets: service names, ranged over by a,b, . . . each of which
has a given arity n (its number of participants) and a security level `, value variables,
ranged over by x,y, . . . , all decorated with security levels, identifiers, i.e., service names
and value variables, ranged over by u,w, . . . , all decorated with security levels, channel
variables, ranged over by α,β , . . . , labels, ranged over by λ ,λ ′, . . . (acting like labels
in labelled records). Values v are either service names or basic values (boolean values,
integers, etc.). When treated as an expression, a value is decorated with a security level
`; when used in a message, it is decorated with a declassified level of the form ` ↓ `′

(which will be rendered simply as ` in case `′ = `).
Sessions, the central abstraction of our calculus, are denoted with s,s′ A session

represents a particular instance or activation of a service. Hence sessions only appear
at runtime. We use p, q,. . . to denote the participants of a session. In an n-ary session
(a session corresponding to an n-ary service) p, q are assumed to range over the natural
numbers 1, . . . ,n. We denote by Π a non empty set of participants. Each session s has
an associated set of channels with role s[p], one for each participant. Channel s[p] is the
private channel through which participant p communicates with the other participants in
the session s. We use c to range over channel variables and channels with roles. Finally,
we assume a set of process variables X ,Y, . . . , in order to define recursive behaviours.

The set of expressions, ranged over by e,e′, . . . , and the set of processes, ranged
over by P,Q . . . , are given by the grammar in Table 1, where syntax occurring only at
runtime appears shaded . The primitives are decorated with security levels. When there
is no risk of confusion we omit the set delimiters {,}.

As in [10], in order to model TCP-like asynchronous communications (with non-
blocking send but message order preservation between a given pair of participants),
we use queues of messages, denoted by h; an element of h may be a value message
(p,Π ,v`↓`′), indicating that the value v` is sent by participant p to all participants in Π ,

5

with the right of declassifying it from ` to `′; a channel message (p,q,s[p′]`), indicating
that p delegates to q the role of p′ with level ` in the session s; and a label message
(p,Π ,λ `), indicating that p selects the process with label λ among the processes offered
by the set of participants Π . The empty queue is denoted by ε , and the concatenation
of a new message m to a queue h by h ·m. Conversely, m ·h means that m is the head of
the queue. Since there may be nested and parallel sessions, we distinguish their queues
by naming them. We denote by s : h the named queue h associated with session s. We
use H,K to range over sets of named queues, also called Q-sets.

Operational Semantics. The operational semantics is defined on configurations. A
runtime configuration is a pair C =< P , H > of a process P and a Q-set H, possibly
restricted with respect to service and session names, or a parallel composition of such
configurations, denoted by C‖C . In a configuration (νs) < P , H >, all occurrences of
s[p] in P and H and of s in H are bound. By abuse of notation we will write simply P
instead of < P , /0 > when there is no risk of confusion.

We use a set of structural rules [13] for processes, queues and configurations. Mod-
ulo these rules, each configuration has the form (ν r̃) < P , H >, where (ν r̃)C stands for
(νr1) · · ·(νrk)C, if r̃ = r1 · · ·rk. Among the rules for queues, we have one for commuting
independent messages and another one for splitting a message for multiple recipients.

The transitions for configurations have the form C −→ C′. They are derived using
the reduction rules in Table 2. The first rule, [Link], describes the initiation of a new
session among n processes, corresponding to an activation of the service a of arity n.
After the connection, the participants share a private session name s and the correspond-
ing queue, initialised to s : ε . The variable αp in each participant Pp is replaced by the
corresponding channel with role s[p]. The output rules [Send], [DelSend] and [Label]
push values, channels and labels, respectively, into the queue s : h. In rule [Send], e ↓ v`

denotes the evaluation of the expression e to the value v`, where ` is the join of the se-
curity levels of the variables and values occurring in e. The superscript `′ on the output
sign indicates that v` can be declassified to level `′, when received by an input process
s[q]?`(p,x`′).P. This is why the value is recorded with both levels in the queue. The
rules [Rec], [DelRec] and [Branch] perform the corresponding complementary opera-
tions. As usual, we will use −→∗ for the reflexive and transitive closure of −→.

a`[1](α1).P1 | ... | a`[n](αn).Pn | ā`[n] −→ (νs) < P1{s[1]/α1} | ... | Pn{s[n]/αn} , s : ε > [Link]

< s[p]!`
′〈Π ,e〉.P , s : h >−→< P , s : h · (p,Π ,v`↓`′) > (e↓v`) [Send]

< s[q]?`(p,x`′).P , s : (p,q,v`↓`′) ·h > −→< P{v`′/x`′} , s : h > [Rec]

< s[p]!`〈〈q,s′[p′]〉〉.P , s : h >−→< P , s : h · (p,q,s′[p′]`) > [DelSend]

< s[q]?`((p,α)).P , s : (p,q,s′[p′]`) ·h >−→< P{s′[p′]/α} , s : h > [DelRec]

< s[p]⊕` 〈Π ,λ 〉.P , s : h >−→< P , s : h · (p,Π ,λ `) > [Label]

< s[q]&`(p,{λi : Pi}i∈I) , s : (p,q,λ `
i0) ·h >−→< Pi0 , s : h > (i0 ∈ I) [Branch]

Table 2. Reduction rules (excerpt)

6

4 Information Flow Security in Sessions
We turn now to the question of ensuring secure information flow within sessions. We
shall be interested in the property of noninterference (NI) [8], combined with a limited
form of declassification, which may only take place during a value communication.
The property of NI requires that there is no flow of information from objects of a given
level to objects of lower or incomparable level [21, 19, 16]. To set the stage for our
information flow analysis, the first questions to ask are:

1. Which objects of the calculus should carry security levels?
2. Which information leaks can occur and how can they be detected?

As concerns objects, we shall see that besides values, also labels, delegated channels
and services will need security levels. Since this question requires some discussion,
which is best understood through examples, we defer it to the next section, just assum-
ing here as a fact that queue messages have the form (p,Π ,ϑ), where ϑ may be v`↓`′ ,
λ ` or s[p]`. In the rest of this section, we will focus on the observation model, which
will be based on bisimulation, as is now standard for concurrent processes [19, 17].

We assume that the observer can see the content of messages in session queues.
To fix ideas, one may view the observer as a kind of buffer through which messages
may transit while reaching or leaving a session queue. We do not want to go as far as
allowing an observer to take part in a session, since that could affect the behaviour of
other processes. In other words, we assume a passive observer rather than an active one,
and we do not represent it explicitly in the language.

What matters for security is observation relative to a given set of levels. Given a
downward-closed subset L of S , a L -observer will only be able to see messages
whose level belongs to L . A notion of L -equality =L on Q-sets is then introduced,
representing indistinguishability of Q-sets by a L -observer. Based on =L , a notion of
L -bisimulation 'L will formalise indistinguishability of processes by a L -observer.

Formally, a queue s : h is L -observable if it contains some message with a level in
L . Then two Q-sets are L -equal if their L -observable queues have the same names
and contain the same messages with a level in L . This equality is based on a L -
projection operation on Q-sets, which discards all messages whose level is not in L .

Definition 1. Let the functions lev↑ and lev↓ be defined by:

lev↑(v`↓`′) = ` lev↓(v`↓`′) = `′

lev↑(s[p]`) = lev↑(λ `) = ` = lev↓(s[p]`) = lev↓(λ `).

Definition 2. The projection operation ⇓L is defined inductively on messages, queues
and Q-sets as follows:

(p,Π ,ϑ) ⇓L =

{
(p,Π ,ϑ) if lev↓(ϑ) ∈L ,

ε otherwise.
ε ⇓L = ε

(m ·h) ⇓L = m ⇓L ·h ⇓L

/0 ⇓L = /0
(H ∪{s : h}) ⇓L =

{
H ⇓L ∪{s : h ⇓L } if h ⇓L 6= ε,

H ⇓L otherwise.

7

Definition 3 (L -Equality of Q-sets).
Two Q-sets H and K are L -equal, written H =L K, if H ⇓L = K ⇓L .

When reducing a configuration (ν r̃) < P , H >, we have to make sure that input prefixes
in P “agree” with messages in H. This is assured by our type system given in Section 6.

A relation on processes is a L -bisimulation if it preserves L -equality of Q-sets at
each step, starting from typable configurations:

Definition 4 (L -Bisimulation on processes).
A symmetric relation R ⊆ (Pr×Pr) is a L -bisimulation if P1 R P2 implies, for any
pair of Q-sets H1 and H2 such that H1 =L H2 and < P1 , H1 >, < P2 , H2 > are typable:

If (ν r̃) < P1 , H1 >−→ (ν r̃′) < P′1 , H ′
1 >, then there exist P′2,H

′
2 such that

(ν r̃) < P2 , H2 >−→∗ (ν r̃′) < P′2 , H ′
2 > , where H ′

1 =L H ′
2 and P′1 R P′2.

Processes P1,P2 are L -bisimilar, P1 'L P2, if P1 R P2 for some L -bisimulation R.

Intuitively, a transition that adds or removes a message with level in L must be simu-
lated in one or more steps, producing the same effect on the Q-set, whereas a transition
that only affects high messages may be simulated by inaction.

Definition 5 (L -Security). A program P is L -secure if P 'L P.

5 Examples of Information Flow Security in Sessions
In this section we illustrate the various kinds of flow that can occur in our calculus,
through simple examples. Since we aim at justifying the introduction of security levels
in the syntax (other than on values and participants), we shall initially omit levels in
all other objects. In queues, we will use v` as a shorthand for v`↓`. For the sake of
simplicity, we assume here just two security levels ⊥ and > (also called low and high).
In all examples, we suppose H1 = {s : (1,2, true>)} and H2 = {s : (1,2, false>)}.

5.1. High input should not be followed by low actions. A simple example of insecure
flow, which is not specific to our calculus but arises in all process calculi with values
and a conditional construct, is the following (assuming session s has four participants):

s[2]?(1,x>).if x> then s[2]!〈3, true>〉.0 else 0
| s[3]?(2,z>).s[3]!〈4, true⊥〉.0 | s[4]?(3,y⊥).0

This process is insecure because, depending on the high value received for x> on chan-
nel s[2], that is, on whether the Q-set is H1 or H2, the low value true⊥ will be emitted
or not on channel s[3], leading to H ′

1 = {s : (3,4, true⊥)} 6=L H ′
2 = {s : ε} if L = {⊥}.

This shows that a high input should not be followed by a low output. Note that the re-
verse is not true, since output is not blocking: if we swapped the polarities of input and
output in the third participant (and adjusted them accordingly in the other participants),
then the resulting process would be secure.

Let us point out that this process is not typable in a classical session type system,
since the session types of the conditional branches are not the same. However, it would
become typable if the second branch of the conditional were replaced by the deadlocked

8

process (νb)b[1](β1).s[2]!〈3, true>〉.0. The expert reader will notice that by adding to
our type system the interaction typing of [2] (which enforces global progress) we would
rule out also this second process. On the other hand, the interaction typing does not
prevent deadlocks due to inverse session calls, as for instance:

b̄[2] | b[1](β1).c[1](γ1).s[2]!〈3, true>〉.0
c̄[2] | c[2](γ2).b[2](β2).0

Clearly, this deadlock could be used to implement the insecure flow in our example, by
placing it in the second branch of the conditional.

5.2. Need for levels on services. Consider the following process:

s[2]?(1,x>).if x> then b̄[2] else 0
| b[1](β1).β1!〈2, true⊥〉.0 | b[2](β2).β2?(1,y⊥).0

This process is insecure because, depending on the high value received for x>, it will
initiate or not a session on service b, which performs a low value exchange. To rule out
this kind of leak we annotate service names with security levels which are a lower bound
for all the actions they execute. Then service b must be of level >, since it appears in
the branch of a >-conditional, and hence it will not allow the output of the value true⊥.

5.3. Need for levels on selection and branching. Consider the following process:

s[2]?(1,x>).if x> then s[2]⊕〈3,λ 〉.0 else s[2]⊕〈3,λ ′〉.0
| s[3]&(2,{λ : s[3]!〈4, true⊥〉.0,λ ′ : s[3]!〈4, false⊥〉.0})
| s[4]?(3,y⊥).0

This process is insecure because a selection in one participant, which depends on a high
value, causes the corresponding branching participant to emit two different low values.
To prevent this kind of leak, the selection and branching operators will be annotated
with a security level which is a lower bound for all actions executed in the branches.

5.4. Need for levels on delegated channels. Consider the following process:

s[2]?(1,x>).if x> then s[2]!〈〈3,s′[1]〉〉.s[2]!〈〈4,s′′[1]〉〉.0 else s[2]!〈〈3,s′′[1]〉〉.s[2]!〈〈4,s′[1]〉〉.0
| s[3]?((2,η)).η!〈2, true⊥〉.0 | s[4]?((2,η ′)).η ′!〈2, false⊥〉.0
| s′[2]?(1,x⊥).0 | s′′[2]?(1,y⊥).0

This process is insecure because, depending on the high value received for x>, the par-
ticipants 3 and 4 of s will be delegated to participate in sessions s′ and s′′, or viceversa,
feeding the queues of s′ and s′′ with different low values. This shows that delegation
send and receive should also carry a level, which will be a lower bound for all actions
executed in the receiving participant after the delegation.

5.5. Levels in queue messages. So far, we have identified which objects of the calcu-
lus need security levels, namely: values, service names, and the operators of selection,
branching and delegation. We now discuss how levels are recorded into queue messages.

Values are recorded in the queues with both their level and their declassified level.
The reason for recording also the declassified level is access control: the semantics does
not allow a low input process to fetch a high value declassified to low. More formally,
a value v>↓⊥ in the queue can only be read by a process s[q]?>(p,x⊥).P. Concerning
service names a`, the level ` guarantees that the session initiator and all the participants

9

get started in a context of level `′ ≤ ` (see Example 5.2). Once the session is established,
the name a` disappears and it is its global type (cf next section) that will ensure that all
participants perform actions of levels greater than or equal to `. As for the operators of
branching/selection and delegation, they disappear after the reduction and their level is
recorded respectively into labels and delegated channels within queue messages. This is
essential since in this case the communication is asynchronous and occurs in two steps.
Hence queue messages have the form (p,Π ,ϑ), where ϑ is v`↓`′ , λ ` or s[p]`.

6 Type system
In this section we present our type system for secure sessions and state its properties.
Just like process syntax, types will contain security levels.
Safety Global Types, Session Types, and Projections. A safety global type is a pair
〈L,G〉`, decorated with a security level `, describing a service where:

– L : {1, . . . ,n}→S is a safety mapping from participants to security levels;
– G is a global type, describing the whole conversation scenario of an n-ary service;
– ` is the meet of all levels appearing in G, denoted by M(G).

The grammar of global types is:

Global G ::= p→ Π : 〈U〉.G Exchange U ::= S`↓`′ | T | 〈L,G〉`
| p→ Π : {λi : Gi}`

i∈I Sorts S ::= bool | . . .
| p �δ .G
| µt.G | t | end

The global type p→ Π : 〈U〉.G says that participant p multicasts a message of type U
to all participants in Π and then the interactions described in G take place. Exchange
types U may be sort types S`↓`′ for values (base types decorated with a declassification
` ↓ `′, where `′ ≤ `), session types T for channels (defined below), or safety global types
for services. In case U is T , then Π is a singleton {q}. We use S` as short for S`↓`, which
we call a trivial declassification. Type p→Π : {λi : Gi}`

i∈I , where ` =
d

i∈I M(Gi), says
that participant p multicasts one of the labels λi to the participants in Π . If λ j is sent,
interactions described in G j take place. Type p �δ .G says that the role of participant p
is delegated to another agent; this construct does not appear in the original global types
of [10], and it is added here to deal with security.

Type µt.G is a recursive type, assuming the type variable t is guarded in the standard
way. In the grammar of exchange types, we suppose that G does not contain free type
variables. Type end represents the termination of a session.

While global types represent the whole session protocol, session types correspond to
the communication actions, representing each participant’s contribution to the session.
As for M(G), we denote by M(T) the meet of all security levels appearing in T .

Session T ::= !〈Π ,S`↓`′〉;T send
| !`〈q,T 〉;T ′ delsend
| ⊕`〈Π ,{λi : Ti}i∈I〉 selection
| µt.T recursive
| �δ ;T delegation

| ?(p,S`↓`′);T receive
| ?`(p,T);T ′ delreceive
| &`(p,{λi : Ti}i∈I) branching
| t variable
| end end

10

The send type !〈Π ,S`↓`′〉;T expresses the sending to all participants in Π of a value
of type S, of level ` declassified to `′, followed by the communications described in T .
The delsend type !`〈q,T 〉;T ′, where ` = M(T), says that a channel of type T is sent
to participant q, and then the protocol specified by T ′ takes place. The selection type
⊕`〈Π ,{λi : Ti}i∈I〉, where ` =

d
i∈I M(Ti), represents the transmission to all participants

in Π of a label λ j in {λi | i ∈ I}, followed by the communications described in Tj. The
delegation type �δ ;T , says that the communications described in T will be delegated to
another agent. The receive, delreceive and branching types are dual to the send, delsend,
and selection ones. The type system will assure that `′≤M(T) in type ?(p,S`↓`′);T , that
`≤M(T ′) in type ?`(p,T);T ′ and that ` =

d
i∈I M(Ti) in type &`(p,{λi : Ti}i∈I). In all

cases, the need for the security level ` is motivated by one of the examples in Section 5.
The relation between global types and session types is formalised by the notion of

projection [10]. The projection of G onto q, denoted (G � q), gives participant q’s view
of the protocol described by G. For example the projection of G = p→ p′ : 〈T 〉.G′ on q
is the following, assuming ` = M(T):

(p→ p′ : 〈T 〉.G′) � q =

!`〈p′,T 〉;(G′ � q) if q = p,

?`(p,T);(G′ � q) if q = p′,

G′ � q otherwise
Well-formedness of safety global types. To formulate the well-formedness condition
for safety global types, we define the join J(T) of a session type T . Intuitively, while
M(T) is needed for secure information flow, J(T) will be used for access control. Recall
from Section 2 our access control policy, requiring that participants in a session only
read data of level less than or equal to their own level. This motivates our (slightly non
standard) definition of join: in short, J(T) is the join of all the security levels decorating
the input constructs in T (receive, delreceive, branching).

This leads to the following condition of well-formedness for safety global types:

A safety global type 〈L,G〉` is well formed if for all p ∈ dom(L): L(p)≥ J(G � p).

Henceforth we shall only consider well-formed safety global types.
Typing expressions. The typing judgments for expressions are of the form:

Γ ` e : S`

where Γ is the standard environment which maps variables to sort types with trivial
declassification, services to safety global types, and process variables to pairs of sort
types with trivial declassification and session types. Formally, we define:

Γ ::= /0 | Γ ,x` : S`′ | Γ ,a` : 〈L,G〉`′ | Γ ,X : S` T
assuming that we can write Γ ,x` : S`′ (respectively Γ ,a` : 〈L,G〉`′ and Γ ,X : S` T) only
if x` (respectively a` and X) does not belong to the domain of Γ . An environment Γ is
well formed if x` : S`′ ∈ Γ implies `′ = ` and a` : 〈L,G〉`′ ∈ Γ implies that `′ = ` and G
is well formed. Hence, if Γ is well formed, a` : 〈L,G`〉 ∈ Γ implies ` = M(G). In the
following we will only consider well-formed environments.

We type values by decorating their type with their security level, and names accord-
ing to Γ :

Γ ` true`, false` : bool` Γ ,u : S` ` u : S` bNAMEc
We type expressions by decorating their type with the join of the security levels of the
variables and values they are built from.

11

Typing processes The typing judgments for processes are of the form:
Γ `` P.∆

where ∆ is the process environment which associates session types with channels:
∆ ::= /0 | ∆ ,c : T

We decorate the derivation symbol ` with the security level ` inferred for the process:
this level is a lower bound for the actions and communications performed in the process.
Let us now present some selected typing rules for processes.
– Rule bSUBSc allows the security level inferred for a process to be decreased.

Γ `` P.∆ `′ ≤ `
bSUBSc

Γ ``′ P.∆

– In rule bMINITc, the standard environment must associate with the identifier u a safety
global type. The premise matches the number of participants in the domain of L with
the number declared by the initiator. The emptiness of the process environment in the
conclusion specifies that there is no further communication behaviour after the initiator.

dom(L) = {1, . . . ,n}
bMINITc

Γ ,u : 〈L,G〉` `` ū[n]. /0
– In rule bMACCc, the standard environment must also associate with u a safety global
type. The premise guarantees that the type of the continuation P in the p-th participant
is the p-th projection of the global type G of u.

Γ ,u : 〈L,G〉` `` P.∆ ,α : G � p
bMACCc

Γ ,u : 〈L,G〉` `` u[p](α).P.∆

Concerning security levels, in rule bMACCc we check that the continuation process
P conforms to the security level ` associated with the service name u. Note that this
condition does not follow from well-formedness of environments, since the process P
may participate in other sessions, but it is necessary to avoid information leaks. For
example, without this condition we could type

ā>[2] | a>[1](α1).α1!〈2, true>〉.0 | a>[2](α2).α2?(1,x>).if x> then b̄>[2] else 0
| b>[1](β1).c⊥[1](γ1).γ1!〈2, true⊥〉.0 | b>[2](β2).0

c̄⊥[2] | c[2](γ2).γ2?(1,y⊥).0
– In rule bSENDc, the first hypothesis binds expression e with type S`, where ` is the
join of all variables and values in e. The second hypothesis imposes typability of the
continuation of the output with security level `′′. The third hypothesis relates levels `,
`′′ and `′ (the level to which e will be declassified), preserving the invariant that `′′ is a
lower bound for all security levels of the actions in the process.

Γ ` e : S`
Γ ``′′ P.∆ ,c : T `′′ ≤ `′ ≤ `

bSENDc
Γ ``′′ c!`

′〈Π ,e〉.P.∆ ,c : !〈Π ,S`↓`′〉;T
Note that the hypothesis `′′ ≤ `′ ≤ ` is not really constraining, since P can always be
downgraded to `′′ using rule bSUBSc and `′ ≤ ` follows from well-formedness of S`↓`′ .
– Rule bRCVc is the dual of rule bSENDc, but it is more restrictive in that it requires the
continuation P to be typable with exactly the level `′:

Γ ,x`′ : S`′ ``′ P.∆ ,c : T `′ ≤ `
bRCVc

Γ ``′ c?`(p,x`′).P.∆ ,c :?(p,S`↓`′);T
Notice for instance that we cannot type the reception of a > value followed by a ⊥
action. On the other hand we can type the reception of a > ↓ ⊥ value followed by a

12

⊥ action. For instance, in our introductory example of Section 2, rule [Rcv] allows the
delegation send in process B to be decorated by ⊥: this is essential for the typability of
both the process B and the session b between S and B.
– Rule bIFc requires that the two branches of a conditional be typed with the same
process environment, and with the same security level as the tested expression.

Γ ` e : bool` Γ `` P.∆ Γ `` Q.∆
bIFc

Γ `` if e then P else Q.∆

We say that a process P is typable in Γ if Γ `` P.∆ holds for some `, ∆ .
Typing queues and Q-sets. Message types represent the messages contained in queues.

Message T ::= !〈Π ,S`↓`′〉 message value send
| !`〈q,T 〉 message delegation
| ⊕`〈Π ,λ 〉 message selection
| T;T′ message sequence

Message types are very close to the send, delsend, selection session types, hence we
shall not dwell on them. Let us just mention the associativity of the construct T;T′.

Typing judgments for queues have the shape
Γ ` s : h.Θ

where Θ is a queue environment associating message types with channels.
Example: we can derive ` s : (2,{1,3},ok>).{s[2] : ⊕>〈{1,3},ok〉}.

Typing judgments for Q-sets have the shape:
Γ `Σ H .Θ

where Σ is the set of session names which occur free in H.
Typing configurations. Typing judgments for runtime configurations C have the form:

Γ `Σ C . < ∆ �Θ >
They associate with a configuration the environments ∆ and Θ mapping channels to
session and message types respectively. We call < ∆ �Θ > a configuration environment.

A configuration type is a session type, or a message type, or a message type followed
by a session type:

Configuration T ::= T session
| T message
| T;T continuation

An example of configuration type is:
⊕⊥〈{1,3},ok〉; !〈{3},String>〉; ?(3,Number⊥);end

A configuration is initial if the process is closed, it does not use runtime syntax and
the Q-set is empty. It is easy to check that for typable initial configurations the set of
session names and the process and queue environments are all empty.

Since channels with roles occur both in processes and in queues, a configuration
environment associates configuration types with channels, in notation < ∆ �Θ >(c).
Configuration types can be projected on a participant p. We write T � p to denote the
projection of the type T on the participant p. We also define a duality relation ./ be-
tween projections of configuration types, which holds when opposite communications
are offered (input/output, selection/branching). The above definitions are needed to state
coherence of configuration environments. Informally, this holds when the inputs and the
branchings offered by the process agree both with the outputs and the selections offered
by the process and with the messages in the queues. More formally:

13

Definition 6. A configuration environment < ∆ �Θ > is coherent if s[p] ∈ dom(∆)∪
dom(Θ) and s[q] ∈ dom(∆)∪dom(Θ) imply

< ∆ �Θ > (s[p]) � q ./ < ∆ �Θ > (s[q]) � p.

Typing rules assure that configurations are always typed with coherent environments.
Since process and queue environments represent future communications, by reduc-

ing processes we get different configuration environments. This is formalised by the no-
tion of reduction of configuration environments, denoted by < ∆ �Θ > ⇒ < ∆ ′ �Θ ′ >.

We say that a queue is generated by service a, or a-generated, if it is created by
applying rule [Link] to the parallel composition of a’s participants and initiator.

We are now able to state our main results, namely type preservation under reduction
and the soundness of our type system for both access control and noninterference. In
Theorem 2, we will use the function lev↑(ϑ) defined in Section 4 (Definition 1).

Theorem 1 (Subject Reduction). Suppose Γ `Σ C . < ∆ �Θ > and C −→∗ C′. Then
Γ `Σ C′ . < ∆ ′ �Θ ′ > with < ∆ �Θ > ⇒ < ∆ ′ �Θ ′ >.

Theorem 2 (Access Control).
Let C be an initial configuration, and suppose Γ ` /0 C . < /0 � /0 > for some standard
environment Γ such that a` : 〈L,G〉` ∈ Γ . If C −→∗ (νs)C′, where the queue of name s
in C′ is a-generated and contains the message (p,q,ϑ), then lev↑(ϑ)≤ L(q).

Theorem 3 (Noninterference). If P is typable, then P 'L P for all down-closed L .

7 Conclusion and future work
In this work, we have investigated the integration of security requirements into session
types. Interestingly, there appears to be an influence of session types on security.

For instance, it is well known that one of the causes of insecure information flow in a
concurrent scenario is the possibility of different termination behaviours in the branches
of a high conditional. In our calculus, we may distinguish three termination behaviours:
(proper) termination, deadlock and divergence. Now, the classical session types of [20]
already exclude some combinations of these behaviours in conditional branches. For
instance, a non-trivial divergence (whose body contains some communication actions)
in one branch cannot coexist with a non-trivial termination in the other branch. More-
over, session types prevent local deadlocks due to a bad matching of the communication
behaviours of participants in the same session. By adding to classical session types the
interaction typing of [2], we would also exclude most of the global deadlocks due to a
bad matching of the protocols of two interleaved sessions. However, this typing does
not prevent deadlocks due to inverse session calls. We plan to study a strengthening of
interaction typing that would rule out also this kind of deadlock. This would allow us
to simplify our type system by removing our constraint in the typing rule for input.

The form of declassification considered in this work is admittedly quite simple.
However, it already illustrates the connection between declassification and access con-
trol, since a declassified value may only be received by a participant whose level is
greater than or equal to the original level of the value. This means that declassification
is constrained by the access control policy, as in [5]. We plan to extend declassification

14

also to data which are not received from another participant, by allowing declassifica-
tion of a tested expression, as in this variant of the B process of our example in Section 2:

B′ = . . . if {cc⊥ = secret>}>↓⊥ then β1⊕⊥ 〈2,ok〉.0 else β1⊕⊥ 〈2,ko〉.0
Again, this declassification would be controlled by requiring B′ to have level >.

References
1. A. Almeida Matos and G. Boudol. On Declassification and the Non-Disclosure Policy. In

Proc. CSFW’05, pages 226–240. IEEE Computer Society, 2005.
2. L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, and N. Yoshida.

Global Progress in Dynamically Interleaved Multiparty Sessions. In Proc. CONCUR’08,
volume 5201 of LNCS, pages 418–433. Springer, 2008.

3. K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. J. Leifer. Cryptographic Protocol
Synthesis and Verification for Multiparty Sessions. In Proc. CSF’09, pages 124–140. IEEE
Computer Society, 2009.

4. M. Boreale, R. Bruni, R. Nicola, and M. Loreti. Sessions and Pipelines for Structured Service
Programming. In Proc. FMOODS ’08, pages 19–38. Springer-Verlag, 2008.

5. G. Boudol and M. Kolundzija. Access Control and Declassification. In Computer Network
Security, volume 1 of Communications in Computer and Information Science, pages 85–98.
Springer-Verlag, 2007.

6. M. Dezani-Ciancaglini and U. de’ Liguoro. Sessions and Session Types: an Overview. In
Proc. WSFM’09, LNCS. Springer, 2010. To appear.

7. R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Information Flow).
In Proc. FOSAD’00, pages 331–396. Springer, 2001.

8. J. A. Goguen and J. Meseguer. Security Policies and Security Models. In IEEE Symposium
on Security and Privacy, pages 11–20, 1982.

9. K. Honda and N. Yoshida. A Uniform Type Structure for Secure Information Flow. In Proc.
POPL’02, pages 81–92. ACM, 2002.

10. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In Proc.
POPL’08, pages 273–284. ACM, 2008.

11. N. Kobayashi. Type-Based Information Flow Analysis for the Pi-Calculus. Acta Informatica,
42(4–5):291–347, 2005.

12. M. Kolundzija. Security Types for Sessions and Pipelines. In Proc. WSFM’08, volume 5387
of Lecture Notes in Computer Science, pages 175–190. Springer, 2009.

13. R. Milner. Communicating and Mobile Systems: the Pi-Calculus. CUP, 1999.
14. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
15. J. Planul, R. Corin, and C. Fournet. Secure Enforcement for Global Process Specifications.

In Proc. CONCUR’09, pages 511–526, 2009.
16. A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security. IEEE J. Selected

Areas in Communications, 21(1):5–19, Jan. 2003.
17. A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Programs. In

Proc. CSFW’00, pages 200–214, 2000.
18. A. Sabelfeld and D. Sands. Dimensions and Principles of Declassification. In

Proc. CSFW’05. IEEE Computer Society, 2005.
19. G. Smith and D. Volpano. Secure Information Flow in a Multi-threaded Imperative Lan-

guage. In Proc. POPL’98, pages 355–364, 1998.
20. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language and its Typing Sys-

tem. In Proc. PARLE’94, volume 817 of LNCS, pages 398–413. Springer, 1994.
21. D. Volpano, C. Irvine, and G. Smith. A Sound Type System for Secure Flow Analysis.

J. Comput. Secur., 4(2,3):167–187, 1996.

15

A Complementary Definitions

A.1 Structural and reduction rules

In this section we present the structural rules and the remaining reduction rules (besides
those given in Table 2) of our calculus.

P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

(νr)P | Q ≡ (νr)(P | Q) if r /∈ fn(Q)

(νrr′)P ≡ (νr′r)P (νr)0 ≡ 0 def D in 0 ≡ 0

def D in (νr)P ≡ (νr)def D in P if r /∈ fn(D)

(def D in P) | Q ≡ def D in (P | Q) if dpv(D)∩ fpv(Q) = /0

def D in (def D′ in P)≡ def D and D′ in P if dpv(D)∩dpv(D′) = /0

(p,Π ,ϑ) · (p′,Π ′,ϑ ′) ·h ≡ (p′,Π ′,ϑ ′) · (p,Π ,ϑ) ·h
if Π ∩Π ′ = /0 or p 6= p′

(p,Π ,ϑ) ·h ≡ (p,Π ′,ϑ) · (p,Π ′′,ϑ) ·h
if Π = Π ′∪Π ′′ and Π ′∩Π ′′ = /0

h ≡ h′ ⇒ H ∪{s : h} ≡ H ∪{s : h′}

P ≡ Q and H ≡ K ⇒ < P , H >≡< Q , K >

(ν r̃) < P , H > ‖(ν r̃′) < Q , K > ≡ (ν ˜rr′) < P | Q , H ∪K >

if qn(H)∩qn(K) = r̃∩ r̃′ = (fn(P)∪ fn(H))∩ r̃′ = (fn(Q)∪ fn(K))∩ r̃ = /0

(νrr′)C ≡ (νr′r)C

(νr)(< P , H >) ≡ < (νr)P , H > if r /∈ fn(H)

(νr)(< P , H >) ≡ < P , (νr)H > if r /∈ fn(P)

Table 3. Structural equivalence

We use fn(P), fn(D), fn(H) and fn(C) to denote the free names of P,D,H and C
respectively, fpv(P) to denote the free process variables of P, dpv(D) to denote the
defined process variables of D, and qn(H) to denote the queue names of H.

16

if e then P else Q −→ P (e ↓ true`) if e then P else Q −→ Q (e ↓ false`) [If-T, If-F]

P −→ P′ ⇒ (νa`)P −→ (νa`)P′ [ScopP]

P −→ P′ ⇒ def D in P −→ def D in P′ [Defin]

def X(x`,α) = P in (X〈e,s[p]〉 | Q) −→ def X(x`,α) = P in (P{v`/x`}{s[p]/α} | Q) (e ↓ v`) [Def]

C ≡C′, D ≡ D′ and C −→ D ⇒ C′ −→ D′ [StructC]

C −→ (ν s̃)C′ and s̃∩ r̃ = s̃∩ fn(C′′) = /0 ⇒ (ν r̃)(C‖C′′)−→ (ν r̃)(ν s̃)(C′ ‖C′′) [ScopC]

Table 4. Remaining reduction rules

A.2 Join and Meet of types

The meet of global types is defined as follows:

M(p→ Π : 〈S`↓`′〉.G) = `′uM(G) M(p→ q : 〈T 〉.G) = M(T)uM(G)
M(p→ Π : {λi : Gi}`

i∈I) = `u
d

i∈I M(Gi) M(p �δ .G) = M(G)
M(t) => M(µt.G) = M(G)
M(end) =>

We define now the join and meet of session types. The join J(T) is needed for ac-
cess control, and only takes into account the input constructs in T (receive, delreceive,
branching), using the higher level of declassified input. It ignores everything else and
in particular delegation. The meet M(T) is needed for information flow control, and it
takes into account the lower level of declassified input and output, and the level of all
other constructs, including delegation.

J(!〈Π ,S`↓`′〉;T) = J(T) J(?(p,S`↓`′);T) = `tJ(T)
J(!`〈q,T 〉;T ′) = J(T ′) J(?`(p,T);T ′) = `tJ(T ′)
J(⊕`〈Π ,{λi : Ti}i∈I〉) =

⊔
i∈I J(Ti) J(&`(p,{λi : Ti}i∈I)) = `t

⊔
i∈I J(Ti)

J(t) =⊥ J(µt.T) = J(T)
J(�δ ;T) =⊥ J(end) =⊥

M(!〈Π ,S`↓`′〉;T) = `′uM(T) M(?(p,S`↓`′);T) = `′uM(T)
M(!`〈q,T 〉;T ′) = `uM(T ′) M(?`(p,T);T ′) = `uM(T ′)
M(⊕`〈Π ,{λi : Ti}i∈I〉) =

d
i∈I M(Ti) M(&`(p,{λi : Ti}i∈I)) =

d
i∈I M(Ti)

M(t) => M(µt.T) = M(T)
M(�δ ;T) = M(T) M(end) =>

In the definition of M(T), the absence of ` in the cases of selection and branching is
justified by the well-formedness condition ` =

d
i∈I M(Ti). In the definition of J(T),

17

on the other hand, we cannot omit ` in the case of branching, because we could have
M(T) 6≤ J(T). If for instance all Ti are such that M(Ti) = > and J(Ti) = ⊥, we have⊔

i∈I J(Ti) =⊥ and ` =
d

i∈I M(Ti) => and thus
⊔

i∈I J(Ti) =⊥ 6=>= `t
⊔

i∈I J(Ti).

A.3 Projections of global types
The projection of a global type G on the participant q is a session type representing the
contribution of q to the service described by G.

Definition 7. The projection of G onto q (written G � q) is defined by induction on G:

(p→ Π : 〈S`↓`′〉.G′) � q =

!〈Π ,S`↓`′〉;(G′ � q) if q = p,

?(p,S`↓`′);(G′ � q) if q ∈ Π ,

G′ � q otherwise.

(p→ p′ : 〈T 〉.G′) � q =

!`〈p′,T 〉;(G′ � q) if q = p,

?`(p,T);(G′ � q) if q = p′,

G′ � q otherwise
where `= M(T)

(p→ Π : {λi : Gi}`
i∈I) � q =
⊕`(Π ,{λi : Gi � q}i∈I) if q = p

&`(p,{λi : Gi � q}i∈I) if q ∈ Π

G1 � q if q 6= p,q 6∈ Π and
Gi � q = G j � q for all i, j ∈ I.

p �δ .G′ � q =

{
�δ ;(G′ � q) if q = p,

G′ � q otherwise.

(µt.G′) � q = µt.(G′ � q) t � q = t end � q = end.

The mapping of the global type for message multicasting assures that the message has
sort S and security level ` declassified to `′ in both the sender and the receivers. The
mapping of the global type for delegation assures that the security levels of the projec-
tions be the same and equal to the meet of the session type of the delegated channel.

The condition Gi � q = G j � q for all i, j ∈ I assures that the projections of all the
participants not involved in the branching are identical session types.

A.4 Typing processes
The complete set of typing rules for processes is given in Tables 5 and 6.
We comment here the rules we did not mention in Section 6, focusing on security.

bINACTc This rule gives security level> to 0 since a terminated process cannot leak any
information. The hypothesis assures that there is no further behaviour after inaction.

bCONCc This rule allows the parallel composition of two processes to be typed if both
processes are typable and their process environments have disjoint domains.

18

Γ `` P.∆ `′ ≤ `
bSUBSc

Γ ``′ P.∆

∆ end only
bINACTc

Γ `> 0.∆

Γ `` P.∆ Γ `` Q.∆
′

bCONCc
Γ `` P | Q.∆ ,∆ ′

Γ ` e : bool` Γ `` P.∆ Γ `` Q.∆

bIFc
Γ `` if e then P else Q.∆

Γ ,a` : 〈L,G〉` ``′ P.∆

bNRESc
Γ ``′ (νa`)P.∆

Γ ` e : S` `′ = M(T) ∆ end only
bVARc

Γ ,X : S` T ``u`′ X〈e,c〉.∆ ,c : T

Γ ,X : S` T,x` : S` ``u`′ P.{α : T} `′ = M(T) Γ ,X : S` T ``′′ Q.∆

bDEFc
Γ ``′′ def X(x`,α) = P in Q.∆

Table 5. Typing rules for processes I

dom(L) = {1, . . . ,n}
bMINITc

Γ ,u : 〈L,G〉` `` ū[n]. /0

Γ `` P.∆ ,α : G � p
bMACCc

Γ ,u : 〈L,G〉` `` u[p](α).P.∆

Γ ` e : S`
Γ ``′′ P.∆ ,c : T `′′ ≤ `′ ≤ `

bSENDc
Γ ``′′ c!`

′
〈Π ,e〉.P.∆ ,c : !〈Π ,S`↓`′〉;T

Γ ,x`′ : S`′ ``′ P.∆ ,c : T `′ ≤ `
bRCVc

Γ ``′ c?`(p,x`′).P.∆ ,c :?(p,S`↓`′);T

Γ `` P.∆ ,c : T `≤ `′

bDELEGc
Γ `` c!`

′
〈〈q,c′〉〉.P.∆ ,c : !`

′
〈q,T ′〉;T,c′ :�δ ;T ′

Γ `` P.∆ ,c : T,α : T ′

bSRECc
Γ `` c?`((p,α)).P.∆ ,c :?(p,T ′);T

Γ `` P.∆ ,c : Tj j ∈ I
bSELc

Γ `` c⊕` 〈Π ,λ j〉.P.∆ ,c : ⊕`〈Π ,{λi : Ti}i∈I〉

Γ `` Pi .∆ ,c : Ti
bBRANCHc

Γ `` c&`(p,{λi : Pi}i∈I).∆ ,c : &`(p,{λi : Ti}i∈I)

Table 6. Typing rules for processes II

bNRESc This rule types a restricted process: the use of the restricted name a in the
process P is constrained by the premise.

bVARc This rule types X〈e,c〉 with a level which is the meet of the security level of
expression e and the security levels of the communications performed on channel c.

bDEFc This rule uses different levels for P and Q since X could not occur in Q: then P
is typed with the meet of the security levels associated with x and α .

bDELEGc This rule types a delegating process with the meet of the type of the delegated
channel, provided the continuation process P is typable with a lower or equal level.

bSRECc This rule is the dual of the bDELEGc rule.
bSELc This rule types a selecting process with the level associated with the selection

operator, provided the continuation process may be typed with the same level.
bBRANCHc This rule is the dual of the bSELc rule.

19

A.5 Typing queues and Q-sets.

In order to take into account the structural congruence on queues given in Table 3, we
consider message types modulo the equivalence relation ≈ induced by the rules shown
in Table 7 (with \ ∈ {!, !`,⊕`} and Z ∈ {T,S`↓`′ ,λ}).

– \〈Π ,Z〉; \′〈Π ′,Z〉;T ≈ \′〈Π ′,Z〉; \〈Π ,Z〉;T if Π ∩Π ′ = /0
– \〈Π ,Z〉;T ≈ \〈Π ′,Z〉; \〈Π ′′,Z〉;T if Π = Π ′∪Π ′′,Π ′∩Π ′′ = /0

Table 7. Equivalence relation on message types

bQINITc
Γ ` s : ε . /0

Γ ` s : h.Θ Γ ` v` : S`

bQSENDc
Γ ` s : h · (p,Π ,v`↓`′).Θ ;{s[p] : !〈Π ,S`↓`′〉}

Γ ` s : h.Θ

bQDELEGc
Γ ` s : h · (p,q,s′[p′]).Θ ,s′[p′] : T ;{s[p] : !〈q,T 〉}

Γ ` s : h.Θ

bQSELc
Γ ` s : h · (p,Π ,λ `′).Θ ;{s[p] : ⊕`′〈Π ,λ 〉}

Γ ` s : h.Θ Θ ≈Θ
′

bQCONGc
Γ ` s : h.Θ

′

Table 8. Typing rules for single queues

bQSINITc
Γ ` /0 /0 . /0

Γ `Σ H .Θ Γ ` s : h.Θ
′

bQSUNIONc
Γ `Σ ,s H ∪{s : h} .Θ ,Θ ′

Table 9. Typing rules for Q-sets

Typing rules for queues are given in Table 8. The empty queue has an empty queue en-
vironment (rule bQINITc). In rules bQSENDc, bQDELEGc and bQSELc, each message
adds an output type to the current type of the sending channel. The composition “;” of
queue environments is defined by:

Θ ;Θ ′ = {s[p] : T;T′ | s[p] : T ∈Θ and s[p] : T′ ∈Θ ′}∪
{s[p] : T | s[p] : T ∈Θ and s[p] 6∈ dom(Θ ′)}∪
{s[p] : T′ | s[p] 6∈ dom(Θ) and s[p] : T′ ∈Θ ′}

Rule bQCONGc allows a Q-set to be typed with equivalent queue environments (the
equivalence ≈ on message types can be trivially extended to queue environments).

20

Typing rules for Q-sets are given in Table 9. Here the turnstyle is decorated with the set
of names of the queues present in the queue environment. As for process environments,
Σ ,Σ ′ and Θ ,Θ ′ are defined only if Σ ∩Σ ′ = /0 and dom(Θ)∩dom(Θ ′) = /0 respectively.
The empty Q-set has an empty queue environment (rule bQSINITc). Rule bQSUNIONc
types the addition of a queue to the set H by checking that a queue associated with that
session name is not already present.

A.6 Typing configurations
We start with some definitions, which are preliminary to the definition of coherence of
configuration environments (Definition 6).

Γ `` P.∆ Γ `Σ H .Θ < ∆ �Θ > is coherent
bCINITc

Γ `Σ < P , H > . < ∆ �Θ >

Γ `Σ1 C1 . < ∆1 �Θ1 > Γ `Σ2 C2 . < ∆2 �Θ2 >
Σ1∩Σ2 = /0 < ∆1,∆2 �Θ1,Θ2 > is coherent

bCPARc
Γ `Σ1∪Σ2 C1‖C2 . < ∆1,∆2 �Θ1,Θ2 >

Γ `Σ C . < ∆ �Θ >
bGSRESc

Γ `Σ\s (νs)C . < ∆ \ s�Θ \ s >

Γ ,a` : 〈L,G〉` `Σ C . < ∆ �Θ >
bGNRESc

Γ `Σ (νa`)C . < ∆ �Θ >

Table 10. Typing rules for configurations

Definition 8. The configuration type of a channel s[p] in a configuration environment
< ∆ �Θ > (notation < ∆ �Θ > (s[p])) is defined by:

< ∆ �Θ > (s[p]) =

T;T if s[p] : T ∈Θ and s[p] : T ∈ ∆ ,

T if s[p] : T ∈Θ and s[p] 6∈ dom(∆),
T if s[p] 6∈ dom(Θ) and s[p] : T ∈ ∆ ,

end otherwise.

Definition 9. The projection of the configuration type T onto q , denoted by T � q , is
defined by:

(!〈Π ,S`↓`′〉;T) � q =

{
!S`↓`′ ;T � q if q ∈ Π ,

T � q otherwise.

(!`〈p,T 〉;T) � q =

{
!`T ;T � q if q = p,

T � q otherwise.

(⊕`〈Π ,λ 〉;T) � q =

{
⊕`λ ;T � q if q ∈ Π ,

T � q otherwise.

(?(p,S`↓`′);T) � q =

{
?S`↓`′ ;T � q if q = p

T � q otherwise.

21

(?`(p,T);T ′) � q =

{
?`T ;T ′ � q if q = p

T ′ � q otherwise.

(⊕`〈Π ,{λi : Ti}i∈I〉) � q =

{
⊕`{λi : Ti � q}i∈I if q ∈ Π ,

T1 � q otherwise.

(&`(p,{λi : Ti}i∈I)) � q =

{
&`{λi : Ti � q}i∈I if q = p,

T1 � q otherwise.

(µt.T) � q = µt.(T � q) t � q = t (�δ ;T) � q = T � q end � q = end

Definition 10. The duality relation between projections of configuration types is the
minimal symmetric relation which satisfies:

end ./ end t ./ t T ./ T ′ =⇒ µt.T ./ µt.T ′

∀i ∈ I Ti ./ T ′
i =⇒ ⊕`{λi : Ti}i∈I ./ &`{λi : T ′

i }i∈I
T ./ T =⇒ !S`;T ./ ?S`;T T ./ T =⇒ !`T ′;T ./ ?`T ′;T

∃i ∈ I λ = λi & T ./ Ti =⇒ ⊕`λ ;T ./ &`{λi : Ti}i∈I

The typing rules for configurations are given in Table 10.
Rule bCPARc types the parallel composition of two configurations checking that

there are no session names in common. Rules bGSRESc and bGNRESc type restriction
on session and service names respectively, where ∆ \ s and Θ \ s are defined as follows:

– ∆ \ s = ∆ \{s[i] : T | s[i] ∈ Dom(∆)}
– Θ \ s = Θ \{s[i] : T| s[i] ∈ Dom(Θ)}

All rules assure that the configuration environments in the conclusions are coherent.
Rules bCINITc and bCPARc explicitly check this condition. For rule bGSRESc, note
that the coherence of < ∆ \ s�Θ \ s > follows easily from the coherence of < ∆ �Θ >.

A.7 Reduction of configuration environments
We introduce now a reduction relation on configuration environments, as in [2], which
is necessary to formulate the type preservation property.

Definition 11 (Reduction of configuration environments). Let⇒ be the reflexive and
transitive relation on configuration environments generated by:

1. < {s[p] : !〈Π ,S`↓`′〉; T}�Θ > ⇒ < {s[p] : T}�Θ ;{s[p] : !〈Π ,S`↓`′〉}>
2. < {s[p] : !`〈q,T 〉; T ′}�Θ > ⇒ < {s[p] : T ′}�Θ ;{s[p] : !`〈q,T 〉}>
3. < {s[p] : ⊕`〈Π ,{λi : Ti}i∈I〉}�Θ > ⇒ < {s[p] : Tj}�Θ ;{s[p] : ⊕`(Π ,λ j)}>

4. < {s[q] :?(p,S`↓`′); T}�{s[p] : !〈q,S`↓`′〉};Θ > ⇒ < {s[q] : T}�Θ >
5. < {s[q] :?`(p,T); T ′}�{s[p] : !`〈q,T 〉};Θ > ⇒ < {s[q] : T ′}�Θ >
6. < {s[q] : &`(p,{λi : Ti}i∈I)}�{s[p] : ⊕`(q,λ j)};Θ > ⇒ < {s[q] : Tj}�Θ >
7. < ∆ ∪∆ ′′ �Θ ∪Θ ′′ > ⇒ < ∆ ′∪∆ ′′ �Θ ′∪Θ ′′ > if < ∆ �Θ > ⇒ < ∆ ′ �Θ ′ >

where message types are considered modulo the equivalence relation of Table 7.

The first three rules correspond to participant p putting a value, a channel or a label
in the queue. The following three rules correspond to participant p reading a value, a
channel or a label from the queue. The last rule is contextual.

22

B Proofs
We present here the proofs of our main results, namely subject reduction, confinement,
access control enforcement, and soundness for noninterference.

B.1 Subject Reduction
We first state some auxiliary results that are used in the subject reduction proof. The
first lemma says that reduction of configuration environments preserves coherence.

Lemma 1. If < ∆ �Θ > is coherent and < ∆ �Θ > ⇒ < ∆ ′ �Θ ′ >, then < ∆ ′ �Θ ′ >
is coherent.

Proof. By induction on the definition of ⇒ (Definition 11).

The following inversion lemmas immediately follow from our typing rules.

Lemma 2 (Inversion Lemma for Processes).
1. If Γ `` 0.∆ , then ∆ end only.
2. If Γ `` P | Q.∆ , then ∆ = ∆1,∆2 and Γ `` P.∆1 and Γ `` Q.∆2.
3. If Γ `` if e then P else Q.∆ , then Γ ` e : bool` and Γ `` P.∆ and Γ `` Q.∆ .
4. If Γ ``′ (νa`)P.∆ , then Γ ,a` : 〈L,G〉` ``′ P.∆ .
5. If Γ `` X〈e,c〉 . ∆ , then Γ = Γ ′,X : S`′ T and ∆ = ∆ ′,c : T and Γ ` e : S`′ and

` = `′uM(T) and ∆ ′ end only.
6. If Γ ``′ def X(x`,α) = P in Q.∆ , then Γ ,X : S` T,x` : S` ``uM(T) P.{α : T} and

Γ ,X : S` T ``′ Q.∆ .
7. If Γ `` ū[n].∆ , then Γ = Γ ′,u : 〈L,G〉` and dom(L)={1, . . . ,n} and ∆ = /0.
8. If Γ `` u[p](α).P.∆ , then Γ = Γ ′,u : 〈L,G〉` and Γ `` P.∆ ,α : G � p.
9. If Γ ``′′ c!`

′〈Π ,e〉.P . ∆ , then ∆ = ∆ ′,c : !〈Π ,S`↓`′〉;T and Γ ` e : S` and Γ ``′′

P.∆ ′,c : T and `′′ ≤ `′ ≤ `.
10. If Γ ``′′ c?`(p,x`′).P.∆ , then ∆ = ∆ ′,c :?(p,S`↓`′);T and Γ ,x`′ : S`′ ``′′ P.∆ ′,c : T

and `′′ = `′ ≤ `.
11. If Γ `` c!`

′〈〈q,c′〉〉.P . ∆ , then ∆ = ∆ ′,c : !`
′〈q,T ′〉;T,c′ :�δ ;T ′ Γ `` P . ∆ ′,c : T

and `≤ `′.
12. If Γ ``′ c?`((p,α)).P . ∆ , then ∆ = ∆ ′,c :?(p,T ′);T and Γ ``′ P . ∆ ′,c : T,α : T ′

and ` = `′.
13. If Γ ``′ c⊕` 〈Π ,λ j〉.P.∆ , then ∆ = ∆ ′,c : ⊕`〈Π ,{λi : Ti}i∈I〉 and j ∈ I and Γ ``′

P.∆ ′,c : Tj and ` = `′.
14. If Γ ``′ c&`(p,{λi : Pi}i∈I) . ∆ , then ∆ = ∆ ′,c : &`(p,{λi : Ti}i∈I) and Γ ``′ Pi .

∆ ′,c : Ti for all i ∈ I and ` = `′.

Lemma 3 (Inversion Lemma for Queues and Q-sets).
1. If Γ ` s : ε .Θ , then Θ = /0.
2. If Γ ` s : h · (p,Π ,v`↓`′).Θ , then Θ = Θ ′;{s[p] : !〈Π ,S`↓`′〉} and Γ ` s : h.Θ ′ and

Γ ` v` : S`.
3. If Γ ` s : h ·(p,q,s′[p′]).Θ , then Θ =Θ ′;s′[p′] : T ;{s[p] : !〈q,T 〉} and Γ ` s : h.Θ ′.
4. If Γ ` s : h · (p,Π ,λ `′).Θ ;{s[p] :⊕`′〈Π ,λ 〉}, then Θ = Θ ′;{s[p] :⊕`′〈Π ,λ 〉} and

Γ ` s : h.Θ ′.
5. If Γ `Σ /0 .Θ , then Σ = Θ = /0.
6. If Γ `Σ H ∪{s : h} .Θ , then Σ = Σ ′,s and Θ = Θ1,Θ2 and Γ `Σ ′ H .Θ1, Γ ` s :

h.Θ2.

23

Lemma 4 (Inversion Lemma for Configurations).

1. If Γ `Σ < P , H > . < ∆ �Θ >, then Γ `` P.∆ and Γ `Σ H .Θ and < ∆ �Θ >
is coherent.

2. If Γ `Σ C1‖C2 . < ∆ �Θ >, then Σ = Σ1∪Σ2 and ∆ = ∆1,∆2 and Θ = Θ1,Θ2 and
Γ `Σ1 C1 . < ∆1 �Θ1 > and Γ `Σ2 C2 . < ∆2 �Θ2 > and Σ1∩Σ2 = /0 and < ∆ �Θ >
is coherent.

3. If Γ `Σ (νs)C . < ∆ �Θ >, then Σ = Σ ′\s and ∆ = ∆ ′ \ s and Θ = Θ ′ \ s and
Γ `Σ ′ C . < ∆ ′ �Θ ′ >.

4. If Γ `Σ (νa`)C . < ∆ �Θ >, then Γ ,a` : 〈L,G〉` `Σ C . < ∆ �Θ >.

The next lemma characterises the types due to messages occurring as heads of queues.
The proof is standard, by induction on the length of queues.

Lemma 5. 1. If Γ ` s : (p,Π ,v`↓`′) ·h .Θ , then Θ = {s[p] : !〈Π ,S`↓`′〉};Θ ′ and Γ `
s : h.Θ ′ and Γ ` v` : S`.

2. If Γ ` s : (p,q,s′[p′]) · h .Θ , then Θ = {s[p] : !〈q,T 〉};Θ ′ and Γ ` s : h .Θ ′ and
s′[p′] : T ∈Θ .

3. If Γ ` s : (p,Π ,λ) ·h.Θ , then Θ = {s[p] : ⊕`〈Π ,λ 〉};Θ ′ and Γ ` s : h.Θ ′.

Theorem 4 (Type Preservation under Equivalence).
If Γ `Σ C . < ∆ �Θ > and C ≡C′, then Γ `Σ C′ . < ∆ �Θ >.

Proof. By induction on the definition of ≡.

Lemma 6 (Substitution Lemma).

1. If Γ ` v` : S` and Γ ,x`′ : S`′ ``′′ P.∆ and `′′ ≤ `′ ≤ `, then Γ ``′′ P{v`′/x`′}.∆ .
2. If Γ `` P.∆ ,α : T , then Γ `` P{s[p]/α}.∆ ,s[p] : T .

Proof. By standard induction on P.

Theorem 1 (Subject Reduction)
Let Γ `Σ C . < ∆ �Θ > and C−→∗C′. Then Γ `Σ C′ . < ∆ ′�Θ ′ > with < ∆ �Θ > ⇒ < ∆ ′ �Θ ′ >.

Proof. We prove the simpler statement (of which Theorem 1 is an immediate corollary):

If Γ `Σ C . < ∆ �Θ > and C−→C′, then Γ `Σ C′ . < ∆ ′�Θ ′ > with < ∆ �Θ > ⇒ < ∆ ′ �Θ ′ >.

By induction on the derivation of C −→ C′, with a case analysis on the final rule. We
only consider some paradigmatic cases.

[Link]

a`[1](α1).P1 | ... | a`[n](αn).Pn | ā`[n]−→ (νs)< P1{s[1]/α1} | ... | Pn{s[n]/αn} , s : ε >

By hypothesis we have

Γ `Σ < a`[1](α1).P1 | ... | a`[n](αn).Pn | ā`[n] , /0 > . < ∆ �Θ >

24

which implies by Lemma 4(1)

Γ ``′ a`[1](α1).P1 | ... | a`[n](αn).Pn | ā`[n].∆ (1)
Γ `Σ /0 .Θ . (2)

From (2) by Lemma 3(5) we get Σ = Θ = /0.
From (1) by Lemma 2(2) we get ∆ =

⋃n
i=1 ∆i∪∆ ′ and

Γ ``′ a`[i](αi).Pi .∆i (1 ≤ i ≤ n) (3)
Γ ``′ ā`[n].∆

′. (4)

From (4) by Lemma 2(7) we get Γ = Γ ′,a` : 〈L,G〉`′ and ∆ ′ = /0. Since Γ is a well
formed environment, this implies ` = `′.
From (3) by Lemma 2(8) we get

Γ `` Pi .∆i,αi : G � i (1 ≤ i ≤ n)

which implies by Lemma 6(2)

Γ `` Pi{s[i]/αi}.∆i,s[i] : G � i (1 ≤ i ≤ n).

Applying rule bCONCc and bQINITc we derive

Γ `` P1{s[1]/α1}|...|Pn{s[n]/αn}.
n⋃

i=1

(∆i,s[i] : G � i) (5)

Γ ` s : ε . /0 (6)

From (6) using rules bQSINITc and bQSUNIONc we derive

Γ `{s} s : ε . /0 (7)

Applying rule bCINITc to (5) and (7) we derive

Γ `{s}< P1{s[1]/α1}|...|Pn{s[n]/αn} , s : ε > . <
n⋃

i=1

(∆i,s[i] : G � i)� /0 >

which implies by rule bGSRESc, taking into account that ∆ =
⋃n

i=1 ∆i

Γ ` /0 (νs) < P1{s[1]/α1}|...|Pn{s[n]/αn} , s : ε > . < ∆ � /0 >

This concludes the proof for this case, since < ∆ �Θ > ⇒ < ∆ �Θ >.

[Send]
< s[p]!`

′〈Π ,e〉.P , s : h >−→< P , s : h · (p,Π ,v`↓`′) > (e ↓ v`)

By hypothesis we have

Γ `Σ < s[p]!`
′〈Π ,e〉.P , s : h > . < ∆ �Θ >

25

which implies by Lemma 4(1)

Γ ``′′ s[p]!`
′〈Π ,e〉.P.∆ (8)

Γ `Σ s : h .Θ . (9)

From (8) by Lemma 2(9) we get ∆ = ∆ ′,s[p] : !〈Π ,S`0↓`′〉;T and `′′ ≤ `′ ≤ `0 and

Γ ` e : S`0 (10)
Γ ``′′ P.∆

′,s[p] : T . (11)

From (10) by subject reduction on expressions we have:

Γ ` v` : S`0 , (12)

which implies `0 = ` by our assumption on the typing of values.
From (9) by Lemma 3(5) and (6) we get Σ = {s} and

Γ ` s : h.Θ . (13)

Applying rule bQSENDc on (12) and (13) we derive

Γ ` s : h · (p,Π ,v`↓`′).Θ ;{s[p] : !〈Π ,S`↓`′〉}

which implies by rules bQSINITc and bQSUNIONc:

Γ `{s} s : h · (p,Π ,v`↓`′) .Θ ;{s[p] : !〈Π ,S`↓`′〉}. (14)

Applying rule bCINITc on (11) and (14) we derive

Γ `{s}< P , s : h · (p,Π ,v`↓`′) > . < ∆
′,s[p] : T �Θ ;{s[p] : !〈Π ,S`↓`′〉}> .

This concludes the proof, since

< ∆
′,{s[p] : !〈Π ,S`↓`′〉; T}�Θ > ⇒ < ∆

′,s[p] : T �Θ ;{s[p] : !〈Π ,S`↓`′〉}>.

[Rec]
< s[q]?`(p,x`′).P , s : (p,q,v`↓`′) ·h >−→< P{v`′/x`′} , s : h >

By hypothesis we have

Γ `Σ < s[q]?`(p,x`′).P , s : (p,q,v`↓`′) ·h > . < ∆ �Θ >

which implies by Lemma 4(1)

Γ ``′′ s[q]?`(p,x`′).P.∆ (15)

Γ `Σ s : (p,q,v`↓`′) ·h .Θ . (16)

From (15) by Lemma 2(10) we get ∆ = ∆ ′,s[q] :?(p,S`↓`′);T and `′′ = `′ ≤ ` and

Γ ,x`′ : S`′ ``′ P.∆
′,s[q] : T . (17)

26

From (16) by Lemma 3(5) and (6) we get Σ = {s} and

Γ ` s : (p,q,v`↓`′) ·h.Θ

which implies by Lemma 5(1) Θ = {s[q] : !〈p,S`↓`′
0 〉};Θ ′ and

Γ ` s : h.Θ
′ (18)

Γ ` v` : S`
0 (19)

The coherence of < ∆ �Θ > gives S = S0, and therefore from (17) and (19) by
Lemma 6(1) we have

Γ ``′ P{v`′/x`′}.∆
′,s[q] : T. (20)

Form (18) using rules bQSINITc and bQSUNIONc we derive:

Γ `{s} s : h .Θ
′. (21)

Applying rule bCINITc on (20) and (21) we derive

Γ `{s}< P{v`′/x`′} , s : h > . < ∆
′,s[q] : T �Θ

′ > .

This concludes the proof, since

< ∆
′,s[q] :?(p,S`↓`′);T �{s[q] : !〈p,S`↓`′〉};Θ ′ > ⇒ < ∆

′,s[q] : T �Θ
′ >.

27

B.2 Confinement
The confinement lemma says that a process of level ` can only add or remove messages
of level greater than or equal to ` in the queues. Note that, for any level ` ∈ S , the
complement L = {`′ | ` 6≤ `′} of the upward-closure of ` is a downward-closed set
containing all levels lower than or incomparable with `.

Lemma 7. (Confinement)
Let Γ `` P.∆ and L = {`′ | ` 6≤ `′}. Then, for any Q-set H such that 〈P,H〉 is typable:

(ν r̃)〈P,H〉−→∗(ν r̃′)〈P′,H ′〉 implies H =L H ′.

Proof. We prove the result for a one-step reduction (ν r̃)< P , H >−→ (ν r̃′)< P′ , H ′ >,
by induction on the inference of the transition. Then the general result will follow as a
simple corollary. We consider the most interesting base cases, leaving out the inductive
cases which are easy.

– [Link] In this case, since Γ `` P . ∆ is deduced using the typing rules bMINITc,
bMACCc and bCONCc, we have P = ā`[n] | ∏

n
p=1 a`[p](αp).Qp, with Γ ` a :

〈L,G〉`, and the reduction has the form:
< ā`[n] | ∏

n
p=1 a`[p](αp).Qp , /0 >−→ (νs) < ∏

n
p=1 Qp{s[p]/αp} , s : ε >

for some fresh name s. Then we may conclude, since /0 =L s : ε for any L .

– [Send] In this case, since Γ `` P.∆ is deduced using the typing rule bSENDc, there
exist `1, `2 such that `≤ `2 ≤ `1 and P = s[p]!`2〈Π ,e〉.P′, with Γ ` e : S`1 . Here the
reduction has the form:

< s[p]!`2〈Π ,e〉.P′ , s : h >−→< P′ , s : h · (p,Π ,v`1↓`2) >, where e ↓ v`1 .
Now, `≤ `2 implies `2 /∈L . From this we deduce that s : h =L s : h · (p,Π ,v`1↓`2).

– [Rec] In this case, since Γ `` P . ∆ is deduced using the typing rule bRCVc, there
exist `1, `2,P′′ such that `≤ `2 ≤ `1 and P = s[q]?`1(p,x`2).P′′. Then P′ = P′′{v`2/x`2}
and the reduction is:

< s[q]?`1(p,x`2).P′′ , s : (p,q,v`1↓`2) ·h >−→< P′′{v`2/x`2} , s : h >

As in the previous case, `≤ `2 implies `2 /∈L . Hence s : (p,q,v`1↓`2) ·h =L s : h.

– [DelRec] In this case, since Γ `` P.∆ is deduced by the typing rule bSRECc, there
exists P′′ such that P = s[p]?`((q,α)).P′′. Then P′ = P′′{s′[p′]/α} and the reduction
is:

< s[q]?`((p,α)).P′′ , s : (p,q,s′[p′]`) ·h >−→< P′′{s′[p′]/α} , s : h >

Since ` /∈L , we conclude that s : (p,q,s′[p′]`) ·h =L s : h.

– [Label] In this case, since Γ `` P.∆ is deduced by the typing rule bSELc, we have
P = s[p]⊕` 〈Π ,λ 〉.P′ and the reduction is:

< s[p]⊕` 〈Π ,λ 〉.P′ , s : h >−→< P′ , s : h · (p,Π ,λ `) >

Again, since ` /∈L , we may conclude that s : h =L s : h · (p,Π ,λ `).

28

B.3 Soundness for Access Control

To prove that our type system ensures access control, we introduce a notion of join for
message types and configuration types. The join of message types is always ⊥. Since a
configuration type is a message type, or a session type, or a message type followed by
a session type, the join of a configuration type is defined to be the join of its building
types.

It is convenient to distinguish two classes of operational rules: computational rules,
which apply to a redex and correspond to an actual computation step (these are all
the rules in Table 2, plus the rules [Def], [If-T], [If-F] in Table 4), and contextual rules,
which allow a term to be reduced within a static context (the remaining rules in Table 4)
[14].

Note that the definition of coherence (Definition 6) does not require that each in-
put has a corresponding output, each branching has a corresponding selection and vice
versa. On the other hand, this holds for typable initial configurations (as usual for ses-
sion type systems). This is formally established by the following definition and lemma.

Definition 12. A configuration environment is complete if < ∆ �Θ > (s[p]) � q 6= end

implies s[q] ∈ dom(∆)∪dom(Θ).

Lemma 8. Let C be an initial configuration typable from the standard environment
Γ , and C −→∗ (ν s̃)C′. If Γ `{s̃} C′ . < ∆ �Θ >, then the configuration environment
< ∆ �Θ > is complete.

Proof. The proof is by induction on the length n of the reduction sequence −→∗, and
then by induction on the inference of the last transition. The basic case C −→∗ C is
trivial.

Suppose that C −→∗ (ν s̃′)Cn−1 −→ (ν s̃)C′. By Theorem 1 and Lemma 4(3) we get
Γ `{s̃′} Cn−1 . < ∆n−1 �Θn−1 > for some ∆n−1,Θn−1. Consider the last computational
rule applied to infer the transition (ν s̃′)Cn−1 −→ (ν s̃)C′. We distinguish two cases,
depending on whether the transition creates or not a new queue s.

Suppose s̃ = s̃′ · s. Then the last computational rule applied is [Link], and the result
holds by definition of projection of global type.

Suppose now s̃ = s̃′. Then the last computational rule applied cannot be [Link]. If the
last rule is one of the output rules [Send], [Deleg] or [Sel], then < ∆ �Θ > is obtained
from < ∆n−1 �Θn−1 > by shifting an element of ∆n−1 to Θn−1. Then we conclude by
induction, since s[q]∈ dom(∆)∪dom(Θ) if and only if s[q]∈ dom(∆n−1)∪dom(Θn−1).
If the last rule applied is one of the input rules [Rcv], [Srec] or [Branch], then if an
input type for s[p] involving q, for instance ?(q,S`↓`′), is erased from ∆n−1, a matching
message type !〈p,S`↓`′〉 for s[q] is erased at the same time from Θn−1, and thus we may
conclude using induction.

Lemma 9. Let C be an initial configuration, and suppose Γ ` /0 C . < /0� /0 > for some
standard environment Γ such that a` : 〈L,G〉` ∈ Γ . If C −→∗ (νs)C′ and s is an a-
generated queue of C′, then, assuming Γ `{s} C′ . < ∆ �Θ >, it holds that J(< ∆ �Θ >
(s[p]))≤ J(G � p) for each participant p ∈ dom(L).

29

Proof. The proof is by induction on the length n of the reduction sequence −→∗, and
then by induction on the inference of the last transition.

In the basic case, for n = 1, we have C −→ (νs)C′. Then the last computational rule
applied is necessarily [Link], and since < ∆ �Θ > (s[p]) = G � p, we may immediately
conclude.

Consider now the inductive case. Let C −→∗ Cn−1 −→ (νs)C′. We distinguish two
cases, according to whether the queue s is created in the last step (in which case it does
not appear in Cn−1) or not.

If Cn−1 does not contain the queue s then, as in the basic case, the last computational
rule applied is [Link] and the result follows from the fact that < ∆ �Θ > (s[p]) = G � p.

Otherwise let Cn−1 = (νs)C′′. By Theorem 1 and Lemma 4(3), we have Γ `{s}
C′′ . < ∆ ′ �Θ ′ > for some ∆ ′,Θ ′. Then, by induction, J(< ∆ ′ �Θ ′ > (s[p]))≤ J(G � p).
Now, if the last applied rule does not involve the queue s, we are done by induction.
Otherwise, the last computational rule applied cannot be [Link]. If the last rule is one of
the output rules [Send], [Deleg] or [Sel], then < ∆ �Θ > is obtained from < ∆ ′�Θ ′ > by
shifting an element of ∆ ′ to Θ ′, and thus J(< ∆ �Θ >) = J(< ∆ ′ �Θ ′ >). If the last rule
applied is one of the input rules [Rcv], [Srec] or [Branch], then an input type is erased
from ∆ ′ and a message type is erased from Θ ′, hence J(< ∆ �Θ >) ≤ J(< ∆ ′ �Θ ′ >)
and we may conclude.

Theorem 2 (Access Control)
Let C be an initial configuration, and suppose Γ ` /0 C . < /0 � /0 > for some standard
environment Γ such that a` : 〈L,G〉` ∈ Γ . If C −→∗ (νs)C′, where the queue of name s
in C′ is a-generated and contains the message (p,q,ϑ), then lev↑(ϑ)≤ L(q).

Proof. We only consider the case ϑ = v`↓`′ , since the proof for the other cases is sim-
ilar. By Theorem 1 and Lemma 4(3) we get Γ `{s} C′ . < ∆ �Θ > for some ∆ ,Θ .
Then, by Lemma 3(2) and Lemma 5(1), the queue environment Θ must contain s[p] :
T; !〈q,S`↓`′〉;T′ for some S,T,T′. Lemma 8 ensures completeness of the configura-
tion environment < ∆ �Θ >. Since the typing rules assure coherence, we know that
< ∆ �Θ >is also coherent; this implies that the process environment ∆ will contain
s[q] : T ; ?(p,S`↓`′);T ′ for some T,T ′. By definition of join we have then `≤ J(< ∆ �Θ >
(s[q])) and by Lemma 9 we get J(< ∆ �Θ > (s[q]))≤ J(G � q), where G is the global
type associated with the service a. Then we may conclude, since the well-formedness
of safety global types implies J(G � q)≤ L(q).

30

B.4 Soundness for Noninterference
For each L ⊆ S , it is useful to distinguish the class of typable processes which are
“essentially L -typed”, that is, which can only be typed with levels ` ∈ L . We call
these processes L -bounded.

Definition 13. (L -Boundedness)
A process P is L -bounded in Γ if P is typable in Γ and Γ `` P.∆ implies ` ∈L .

On the set of typable processes, we call syntactic L -highness the complement of non
L -boundedness, which amounts to typability with a level not belonging to L .

A closely related property is that of semantic L -highness, the property of processes
that do not manipulate any messages of level in L during their execution. Formally:

Definition 14 (Semantic L -highness).
The set of semantically high processes with respect to L , denoted H L

sem
, is the largest

set such that P ∈H L
sem

implies:

If (ν r̃)〈P,H〉 −→ (ν r̃′)〈P′,H ′〉 then H =L H ′ and P′ ∈H L
sem

.

Note that a semantically L -high process is not necessarily syntactically L -high. For
instance a conditional whose condition is always true and whose first branch is of level
> will be semantically L -high for all downward-closed L ⊂ S (proper inclusion)
even if its second branch could emit some message of level ⊥. On the other hand syn-
tactic L -highness implies semantic L -highness, as stated next.

Lemma 10. (Syntactic L -highness implies semantic L -highness)
Let Γ `` P.∆ for some ` 6∈L . Then P ∈H L

sem
.

Proof. If Γ `` P . ∆ for some ` 6∈ L then, by the Confinement lemma (Lemma 7), P
may only add or remove Q-set messages of level `′ such that `≤ `′. This means that the
Q-set remains L -equal to itself during the whole execution.

Lemma 11. (Security of semantically L -high processes)
Let P ∈H L

sem
. Then P 'L P.

Proof. We show that the relation R = {(P1,P2) | Pi ∈ H L
sem
} is a L -bisimulation.

Suppose that H1,H2 are such that H1 =L H2 and 〈Pi,Hi〉 are typable for i = 1,2. Let
now (ν r̃)〈P1,H1〉 −→ (ν r̃′)〈P′1,H ′

1〉. By definition of H L
sem

, H1 =L H ′
1 and P′1 ∈H L

sem
.

Then we may choose the empty move as the matching move for (ν r̃)〈P2,H2〉, given
that H ′

1 =L H1 =L H2 and (P′1,P2) ∈R.

We next define the bisimulation relation that will be used in the proof of soundness.

31

Definition 15. (Bisimulation for soundness proof)
Given a downward-closed set of security levels L ⊆S , the relation RL

Γ
on processes

is defined inductively as follows:

P1 RL
Γ

P2 if P1,P2 are typable in Γ and

i) either Pi ∈H L
sem

for i = 1,2
ii) or Pi is L -bounded in Γ for i = 1,2 and one of the following holds:

1. P1 = P2;

2. Pi = ā`[n] | ∏
n
p=1 a`[p](αp).Q

(i)
p , and ∀p, ∀s fresh, Q(1)

p {s[p]/αp}RL
Γ

Q(2)
p {s[p]/αp};

3. Pi = s[p]!`
′〈Π ,ei〉.P′i , where P′1 RL

Γ
P′2 and ∃v, ∃`≥ `′ such that ei ↓ v`;

4. Pi = s[q]?`(p,x`′).P′i , where P′1{v`′/x`′}RL
Γ

P′2{v`′/x`′};

5. Pi = s[p]!`〈〈q,s′[p′]〉〉.P′i , where P′1 RL
Γ

P′2;

6. Pi = s[q]?`((p,αi)).P′i , where ∀p′, ∀s′ fresh, P′1{s′[p′]/α1}RL
Γ

P′2{s′[p′]/α2};

7. Pi = if e then P′i else P′′i where P′1 RL
Γ

P′2 and P′′1 RL
Γ

P′′2 ;

8. Pi = s[p]⊕` 〈Π ,λ 〉.Qi, where Q1 RL
Γ

Q2;

9. Pi = s[p]&`(q,{λ j : Qi
j} j∈J), where Q1

j R
L
Γ

Q2
j for every j ∈ J;

10. Pi = (νr)P′i , where P′1 RL
Γ

P′2;

11. Pi = def D in P′i , where P′1 RL
Γ

P′2;

12. Pi = ∏
n
j=1 Q(i)

j , where ∀ j Q(1)
j RL

Γ
Q(2)

j follows from one of the previous cases
(including the case of semantically high processes).

Theorem 3 (Noninterference)
If P is typable in Γ , then P 'L P for all downward-closed L ⊆S .

Proof. The proof consists in showing that the relation RL
Γ

presented in Definition 15 is
a L -bisimulation containing the pair (P,P). Note that PRL

Γ
P by definition (Clause 1).

We proceed by induction on the definition of RL
Γ

. Suppose that Γ ``i Pi .∆i and H1,H2
are two Q-sets such that H1 =L H2 and 〈Pi,Hi〉 are typable for i = 1,2.We want to show
that each reduction (ν r̃) < P1 , H1 >−→ (ν r̃′) < P′1 , H ′

1 > is matched by a reduction
sequence (ν r̃) < P2 , H2 >−→∗ (ν r̃′) < P′2 , H ′

2 > such that H ′
1 =L H ′

2, 〈P′i ,H ′
i 〉 are

typable for i = 1,2, and P′1 RL
Γ

P′2. Typability of 〈P′i ,H ′
i 〉 follows by Subject Reduction

(which we will use without mentioning it). We distinguish two cases:

i) The Pi are both not L -bounded in Γ ;
ii) The Pi are both L -bounded in Γ ;

Suppose that the Pi’s are not L -bounded. Then by Lemma 10 we have Pi ∈ H L
sem

, for
i = 1,2, and thus the move (ν r̃) < P1 , H1 >−→ (ν r̃′) < P′1 , H ′

1 > can be matched by
the empty move of (ν r̃) < P2 , H2 >, where H ′

1 =L H1 =L H2, and P′1 ∈H L
sem

implies
P′1 RL

Γ
P2 by Clause i) of Definition 15. Suppose now that the Pi’s are L -bounded. We

consider some interesting cases.

32

– If Pi = ā`[n] | ∏
n
p=1 a`[p](αp).Q

(i)
p , then we can only reduce by applying rule [Link],

so we get (ν r̃) < P1 , H1 >−→ (ν r̃)(νs) < ∏
n
p=1 Q(1)

p {s[p]/αp} , H1 ∪{s : ε} >

and (ν r̃) < P2 , H2 >−→ (ν r̃)(νs) < ∏
n
p=1 Q(2)

p {s[p]/αp} , H2 ∪{s : ε} >, where

s is fresh. Since by hypothesis Q(1)
p {s[p]/αp}RL

Γ
Q(2)
p {s[p]/αp} for each p, we

have ∏
n
p=1 Q(1)

p {s[p]/αp}RL
Γ ∏

n
p=1 Q(2)

p {s[p]/αp} by Clause 12 of Definition 15
and moreover H1 =L H2 implies H1∪{s : ε}=L H2∪{s : ε}.

– Suppose Pi = s[p]!`
′〈Π ,ei〉.P′i , where P′1 RL

Γ
P′2 and ∃v, ∃`≥ `′ such that ei ↓ v`. In

this case the reduction is obtained by rule [Send]. Since 〈Pi,Hi〉 are typable for i =
1,2, there will be a queue s : hi in each Hi. Then, assuming Hi = Ki∪ s : hi, we have
H ′

1 = K1∪ s : h1 · (p,Π ,v`↓`′), and the matching move will be (ν r̃) < P2 , H2 >−→
(ν r̃′) < P′2 , H ′

2 >, where H ′
2 = K2 ∪ s : h2 · (p,Π ,v`↓`′). Indeed, if `′ /∈ L then

H ′
1 =L H1 =L H2 =L H ′

2. If `′ ∈L then H ′
1 =L H ′

2 follows from K1 =L K2 and
s : h1 =L s : h2.

– If Pi = s[q]?`((p,αi)).P′i , then the reduction is obtained by rule [DelRec]. Since
Γ ``i Pi .∆i is deduced by the typing rule bSRECc, we know that ` = `i. Moreover
`i ∈L because Pi is L -bounded. Hence `∈L and therefore, given that H1 =L H2,
the same message (p,q,s′[p′]`) must occur at the head of queue s in both H1 and
H2. (Note that the condition H1 =L H2 only guarantees that the message appears in
one queue if and only if it appears in the other, while applicability of rule [DelRec]
ensures that the message actually occurs in both queues.) Then, assuming that s,s′

occur in r̃ and Hi = Ki∪ s : (p,q,s′[p′]`) ·hi, we get:
(ν r̃) < P1 , K1∪ s : (p,q,s′[p′]`) ·h1 >−→ (ν r̃) < P′1{s′[p′]/α1} , K1∪ s : h1 > and
(ν r̃) < P2 , K2∪ s : (p,q,s′[p′]`) ·h2 >−→ (ν r̃) < P′2{s′[p′]/α2} , K2∪ s : h2 >. We
may then conclude since by hypothesis we have P′1{s′[p′]/α1}RL

Γ
P′2{s′[p′]/α2},

and H1 =L H2 implies K1∪ s : h1 =L K2∪ s : h2.
– If Pi = def D in P′i , then either (ν r̃) < P1 , H1 > reduces by applying rule [Def] or

(ν r̃) < P′1 , H1 > reduces.
In the first case let D be X(x`,α) = Q and P′1 = X〈e,s[p]〉 | Q1. From P′1 RL

Γ
P′2, by

Clauses 12 and 1 of Definition 15 we get P′2 = X〈e,s[p]〉 | Q2 and Q1 RL
Γ

Q2. Then,
if e ↓ v` we get
(ν r̃) < P1 , H1 >−→ (ν r̃) < def D in (Q{v`/x`}{s[p]/α} | Q1) , H1 > and
(ν r̃) < P2 , H2 >−→ (ν r̃) < def D in (Q{v`/x`}{s[p]/α} | Q2) , H2 >, and we
may conclude using Clause 12.
In the second case we can apply the induction hypothesis to P′1 RL

Γ
P′2.

– If Pi = ∏
n
j=1 Q(i)

j , where ∀ j Q(1)
j RL

Γ
Q(2)

j follows from one of the previous cases
(including the case of semantically high processes), then we have a reduction:
(ν r̃) < P1 , H1 >−→ (ν r̃) < Q′(1)

1 | ∏
n
j=2 Q(1)

j , H ′
1 >, which is deduced from

(ν r̃) < Q(1)
1 , H1 >−→ (ν r̃) < Q′(1)

1 , H ′
1 >. Since Q(1)

1 RL
Γ

Q(2)
1 we get by induction

(ν r̃) < Q(2)
1 , H2 >−→ (ν r̃) < Q′(2)

1 , H ′
2 > with Q′(1)

1 RL
Γ

Q′(2)
1 and H ′

1 =L H ′
2, and

thus we may conclude using Clause 12 again.

33

