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Abstract 

The biological activity of peroxisome proliferators (PPs) is mediated by a class of receptors, 

known as PPARs (PP-Activated Receptor), belonging to the nuclear receptor superfamily. Upon 

ligand binding, PPARs dimerize with retinoid receptors, translocate to the nucleus, recognize 

specific PP-responsive elements on DNA and transactivate a number of genes. Several processes 

are regulated by PPARs, such as mitochondrial and peroxisomal fatty acid uptake and β-oxidation, 

inflammation, intracellular lipid trafficking, cell proliferation and death. In addition, PPARs have 

been proposed to act as tumor suppressors or as tumor promoters, depending on the 

circumstances. In particular, PPs have been extensively studied for their hepatocarcinogenic action 

in rodents, most often ascribed to their antiapoptotic action. Recent evidence, however, has been 

provided about the antiproliferative, proapoptotic, and differentiation-promoting activities displayed 

by PPAR ligands.  The present review will focus on the cytotoxic effects exerted by several PPs, 

among which clofibrate, on different types of tumor cells, with particular reference to the 

mechanisms of cell death and to their relevance to cancer induction and progression 
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Introduction 

Peroxisome proliferators (PPs) are structurally unrelated chemicals known for their ability to 

increase peroxisome number and size. The biological effects of PPs are mediated by the PP-

activated receptors (PPARs), that belong to the nuclear hormone receptor superfamily. Three 

molecular forms of PPARs are known, namely PPAR, /, and , differentially expressed in adult 

and embryonic tissues [1]. 

Among PPs, particular attention was given to fibrate derivatives, which include agents that 

have been and still are largely used as hypolipidemic drugs in view of their ability to lower plasma 

triglyceride levels by accelerating mitochondrial fatty acid -oxidation through PPAR activation 

[2]. As well as other PPs, fibrate derivatives, among which clofibrate, were largely studied as 

hepatocarcinogens in rodents, also with reference to their antiapoptotic action. In this regard, 

however, several studies reported that clofibrate treatment induces massive apoptotic death in 

hepatoma cells [3, 4]. In different cell lines similar observation were also reported for other PPs 

such as nafenopin, perfluorooctanoic acid, and BR931 [3, 5, 6]. PP cytotoxicity is not restricted to 

cells of hepatic origin, since similar effects were observed in breast or lung cancer cell lines [7, 8] 

as well as in human keratinocytes, and normal or neoplastic T lymphocytes [9, 10; Penna et al., 

unpublished data]. In spite of these reports, however, the precise mechanisms whereby PP trigger 

apoptosis still remain to be elucidated.  

 

PPs 

Peroxisomes are single-membrane intracellular organelles, particularly abundant in the 

liver, but also detectable in other organs, including lung, muscle, nervous system, and kidney [11]. 

They contain several enzymes (catalase, oxidases, dehydrogenases), and are involved in essential 

cell functions such as respiration, gluconeogenesis, thermogenesis, and lipid metabolism. There 

are significant differences among species and tissues with regard to the levels of peroxisomal 

enzymes, the highest activities being reported for rat liver [11]. Peroxisome number and size can 



be increased (from about 2% up to 25% of hepatocyte volume; [12]) by exposure to several 

compounds, including natural molecules (prostaglandins and long-chain fatty acids), synthetic 

compounds, among which fibrates, thiazolidinediones, and non-steroidal anti-inflammatory drugs, 

pesticides (diclofop-methyl, haloxyfop, lactofen, oxidiazon, 2,4,5-T), solvents (perchloroethylene, 

trichloroethylene), phthalate ester plasticizers [di(2-ethylhexyl)adipate (DEHA), di(2-

ethylhexyl)phthalate (DEHP), butyl benzyl phthalate (BBP), or 2-ethylhexanol (2-EH)]. The 

structure of most PPs is characterized by a carboxyl group that can be already present in the 

native form or derive from its metabolism; however, also molecules without such a group can act 

as potent PPs. In this regard, these compounds could be divided into two groups: (i) molecules that 

become activated by forming either CoA or sulphate derivatives, and (ii) molecules that do not 

need  activation to exert their bioactivity [reviewed in 13]. The effectiveness of these compounds  in 

causing peroxisome proliferation may vary considerably.  In addition, PPs cause a huge number of 

extraperoxisomal effects, such as hepatomegaly, altered activity of mitochondrial, microsomal, and 

cytosolic enzymes, as well as modulation of both hormonal and intracellular iron homeostasis 

[reviewed in 13, and 14].  

PP effectiveness shows marked species differences, rodents being the most sensitive, 

while guinea pigs, monkeys, and humans appear relatively insensitive or nonresponsive at all 

[reviewed in 15]. Despite this low sensitivity, however, since humans are constantly exposed to 

PPs, because of therapeutic regimens, or in force of the contact  with plasticizers, solvents, etc., 

the risk assessment becomes very important [16]. Epidemiological studies do not show 

peroxisome proliferation in patients treated with hypolipidemic fibrates [17], although contrasting 

evidence has also been provided [18, 19]. In general, most of the studies reported in the literature 

show the occurrence of beneficial, but not adverse, effects of PPs in humans. 

Despite their structural diversity (Figure 1), PPs share the ability to induce pleiotropic 

effects that are generally reversible upon their withdrawal, provided that the exposure is not too 

prolonged (see below). The main target of these compounds is the liver, where they induce 

hypertrophy and hyperplasia, peroxisome proliferation, and enhanced activity of several classes of 



enzymes, especially those associated with peroxisome and lipid metabolism [20, 21]. Among the 

enzymes induced by PP treatment, those involved in the peroxisomal -oxidation show the most 

prominent increase, at both  transcriptional and activation level [22].  

While most of PP effects are mediated through the above cited three PPARs (, /, and ), 

the observation that PP administration may also exert side effects such as angina crisis and 

increased serum levels of aminotransferase, creatine phosphokinase, or creatinine, suggest that 

PPs may also act by extra-receptor pathways. As an example, fibrates have been shown to freely 

enter the erythrocyte membrane and to bind hemoglobin, reducing its affinity for oxygen [23]. Other 

studies demonstrate that fibrates can disrupt mitochondrial respiration at the level of NADH 

cytochrome c reductase [13, 24]. Fibrates share the effect on the mitochondrial electron respiratory 

chain with a class of synthetic PPAR ligands, the thiazolidinediones. However, fibrates specifically 

inhibit NADH cytochrome c reductase activity, leading cells to a metabolic shift towards anaerobic 

glycolysis and -oxidation, resulting in significant hypotriglyceridemic and slight hypoglycemic 

effects. By contrast, thiazolidinediones, that are potent complex I inhibitors, reduce -oxidation 

through the inhibition of NADH dehydrogenase activity, resulting in hypoglycemia associated with 

weak or absent hypolipidemic effect [24].  

 

PPARs 

PPAR was firstly discovered by Isseman and Green [25]. Soon after, two additional 

isoforms (/ and ) were identified [reviewed in 12]. As for PPAR, three variants have been 

described, namely PPAR1, 2 and 3. PPARs are encoded by separate genes and exhibit different 

patterns of tissue distribution: PPAR is found in liver, kidney, heart, pancreas, skeletal muscle, 

brown adipose tissue, PPAR mainly in brown and white adipocytes, while PPAR/ is ubiquitously 

expressed. They are involved in regulating energy expenditure, carbohydrate and lipid metabolism, 

tissue remodeling, inflammation, cell differentiation and proliferation. The physiologic ligands of 

PPARs were initially unknown, and the function of PPAR, in particular, was studied by means of 



synthetic ligands, ranging from trichloroacetic acid to fibrates (clofibrate, bezafibrate, gemfibrozil) 

and plasticizers such as phtalates [25]. 

 As for their structure, PPARs are similar to other nuclear receptors. Indeed, they contain a 

ligand binding domain, two transactivation domains (AF-1 and AF-2, in the N-terminal and in the 

DNA-binding regions, respectively), and a DNA-binding domain that interacts with the PP-response 

elements (PPREs). Upon ligand binding, a conformational modification in the transactivation 

domain allows dimerization with the obligate partner retinoid receptor (RXR) and improves the 

activation kinetics by favoring the release and recruitment of co-repressor and  co-activator 

molecules, respectively. PPAR co-activators include the steroid receptor coactivator, PPAR 

coactivator-1 (PGC-1), and CREB (cAMP-Response Element binding protein-Binding protein), 

while the Nuclear Receptor Corepressor (N-CoR) and Silencing Mediator for Retinoid and Thyroid 

hormone Receptors (SMRT) act as co-repressors (26, 27). The complex formed by the 

heterodimer PPAR/RXR and one of the co-activators interacts with DNA in correspondence of the 

PPREs, direct repeats of the hexanucleotide AGGTCA (but also AGGNCA or AGGTCA-3’), known 

as Direct Repeat (DR)-1 response element, separated by a single nucleotide [2] PPREs have been 

found in genes encoding molecules that regulate lipid metabolism and energy homeostasis as well 

as in genes coding for proteins involved in pathways relevant to cell survival, differentiation and 

proliferation [29]. 

Ligand-dependent PPAR activation may result not only in gene induction, but also in gene 

repression. As an example, DNA binding is inhibited by the interaction of co-repressors with 

PPAR [30]. After ligand binding, the receptor dissociates from the co-repressor, leaving it 

available to bind and inhibit the STAT3 transcription factor [31]. In addition, PPAR may directly 

mediate transrepression, through a mechanism that has been recently proposed to involve PPAR 

sumoylation, leading to stabilization of co-repressor recruitment [32]. By contrast, interaction of the 

co-repressor SMRT with PPAR/ does not result in interference with DNA binding [33]. In 

macrophages PPAR/ is involved in the regulation of MCP-1 expression by sequestering the 

transcriptional repressor B-cell lymphoma-6 (Bcl-6; [34]): PPAR/ ligand interaction results in Bcl-



6 release, which would inhibit MCP-1 transcription. Finally, PPARs have also been proposed to 

repress genes lacking PPREs. In this regard, PPAR has been shown to interact with the NF-κB 

p65 subunit, inhibiting gene transactivation [35], although not all NF-κB target genes are inhibited 

by PPAR activators. Generally speaking, PPAR-dependent transcriptional modulation is a 

dynamic process that involves the interaction of several proteins to form complexes in which both 

co-activators and co-repressors are rapidly exchanged [36]. In this regard, a finely tuned 

mechanism involving the cytosolic proteolytic system dependent on ubiquitin and proteasome 

ensures both assembly and turnover of these regulatory complexes. Although the three PPAR 

isotypes all are short-lived proteins degraded by the ubiquitin-proteasome system, their turnover is 

differently regulated. Upon ligand binding, PPAR is ubiquitylated and degraded in a negative 

feedback loop, likely aimed at exerting a sort of autoregulation. By contrast PPAR ubiquitylation is 

prevented by ligand interaction, increasing receptor stability for a few hours, before a subsequent 

rapid proteasomal degradation [reviewed in 37]. Also PPAR/ levels are regulated by the 

ubiquitin-proteasome proteolytic system. Indeed, in the presence of proteasome inhibitors 

PPAR/ accumulates in the nucleus retaining transcription competence. In addition, PPAR/  

half-life is significantly prolonged, in a reversible manner, by interaction with its ligands [reviewed in 

37]. Such stabilization appears to rely on a selective block of PPAR/  ubiquitylation likely due to 

a conformational change caused by ligand binding that may inhibit the interaction with an ubiquitin 

ligase or favor the action of a deubiquitylating enzyme [37]. In addition to ligand-dependent 

receptor turnover, the ubiquitin-proteasome proteolytic system contributes to control PPAR activity 

in response to upstream signal transduction pathways. As an example, PPAR phosphorylation by 

tyrosine or serine-threonine kinases enhances its proteasomal degradation [38]. Furthermore, 

PPARs appear to control the level of specific proteins by modulating the activity of the ubiquitin-

proteasome system [reviewed in 37].  

 

PPARs in physiology 



 PPAR is mainly involved in mediating the biological effects of both natural and synthetic 

PPs.  In this regard, the hypotriglyceridemic effect exerted by fibrates appears to result from 

PPAR-mediated transcription of genes involved in lipid oxidative metabolism [39], and mice 

knock-out for PPAR are resistant to PP treatment in terms of hepatomegaly and peroxisome 

proliferation. PPAR induces lipoprotein lipase (LPL) expression, reduces the expression levels of 

apolipoprotein C-III (ApoC-III), a natural LPL inhibitor, stimulates the uptake of fatty acids and their 

conversion to acyl-CoA derivatives [40]. In addition, PPAR increases the expressions of ApoA-I 

and ApoA-II, raising HDL cholesterol levels in humans [41]. Among PPAR target genes, those 

involved in the peroxisomal -oxidation were first identified [42]. Peroxisomal -oxidation results 

from two distinct metabolic pathways, one inducible by PPs that utilizes straight-chain acyl-CoAs 

as substrates and one constitutive, mainly at least, that catalyzes the oxidation of branched fatty 

acyl-CoA esters. The genes coding for the enzymes involved in the first pathway (fatty acyl-CoA 

oxidase, enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase) 

are regulated at the transcriptional level by PPAR [42]. In addition, PPAR also regulates the 

transcription of the gene encoding the sterol carrier protein x, an enzyme endowed with thiolase 

activity, involved in the non-inducible peroxisomal -oxidation pathway [43]. Other metabolic routes 

are under the control of PPAR, including mitochondrial -oxidation, microsomal -oxidation, 

ketogenesis and lipoprotein metabolism [reviewed in 44]. PPAR activation has also been shown 

to reduce the inflammatory response, mainly through down-regulation of cyclooxygenase-2 

expression/activity or decreased activation of NF-B. Finally, activated PPAR also appears to 

improve cardiovascular risk factor and cardiovascular outcome [reviewed in 44]. 

  PPAR plays a pivotal role in adipocyte differentiation, modulates metabolism and 

inflammation, and displays marked antiproliferative effects. PPAR activation by both natural or 

synthetic ligands regulates fat storage in the adipose tissue, results in improved insulin sensitivity 

and atherosclerosis, and in the control of cell proliferation, macrophage function, and immunity 

[45]. Similar to PPAR, PPAR attenuates the inflammatory response by forming a complex with 

nuclear NF-B p65 subunit, causing its export to the cytoplasm and reducing the expression of 



proinflammatory genes [46]. PPAR can be activated by various dietary ligands such as 

polyunsaturated fatty acids, eicosanoids, glutamine, spicy food or flavonoids. In addition, also anti-

inflammatory properties of probiotics may be mediated through this receptor [47]. PPAR is the 

main target of the thiazolidinedione class of insulin-sensitising drugs, and besides these synthetic 

ligands, it is activated by naturally occurring compounds, such as prostaglandin J2 derivatives and 

polyunsaturated fatty acids [48]. When phosphorylated by extracellular signal-regulated kinases 

(ERK)-1/2 and c-Jun N-terminal kinase (JNK), PPAR affinity for ligands is reduced [49]. PPAR 

activation may be impaired also by binding of the ERK-activating kinase MEK to the AF-2 motif, 

leading to release from PPREs and nuclear exit [50]. In this regard, polyunsaturated fatty acids and 

their metabolites result in direct activation of PPAR, but being able to activate the MEK/ERK 

pathway, they also contribute to events leading to PPAR inhibition.  

PPAR/ is a powerful regulator of fatty acid utilization and energy homeostasis in several 

tissues. Consistent with such a role, PPAR/ protein content is increased during physiological 

conditions characterised by elevated fatty acid utilization, such as physical exercise or fasting. 

Recent evidence indicates that PPAR/ can promote lipid accumulation by increasing the 

expression of genes involved in lipid uptake, and by repressing genes involved in lipid metabolism, 

inflammation, atherosclerosis, obesity and cancer [51]. PPAR/ is characterised by a large size 

ligand-binding pocket, which allows interaction with a greater variety of activators when compared 

with other nuclear hormone receptors. PPAR/ is activated by polyunsaturated fatty acids, 

prostacyclin and synthetic molecules, such as phenoxyacetic acid derivatives (e.g. GW 501516 

and GW 0742; [48]), and has been proposed to act as a lipid sensor, being activated by fatty acids 

derived from very-low-density lipoprotein [52]. The PPAR/ specific agonist GW501516 reduces 

hypertriglyceridemia and raises high-density lipoprotein levels in obese subjects. In addition, both 

weight gain and insulin resistance induced in mice by assumption of a high-fat diet can be reduced 

by administration of GW501516 [53]. Finally, as reported for the other PPARs, also PPAR/ 

agonists are endowed with anti-inflammatory properties, leading to inhibition of LPS-inducible 

genes in murine peritoneal macrophages [54]. 



  

PPs and PPARs in carcinogenesis 

In 1976, Reddy and coworkers described for the first time the development of hepatic 

tumors in mice treated with nafenopin. The subsequent observation that liver carcinogenesis could 

be obtained also by using other PPs, led to include these compounds among the non-genotoxic 

carcinogens [21], admittedly able to promote cancer development in force of their mitogenic effect, 

without causing direct DNA damage. The role of PPs and their receptors, PPAR in particular, in 

rodent hepatocarcinogenesis has been clearly defined by experiments showing that treatment of 

mice with Wy-14,643 increased hepatocyte proliferation and development of liver tumors, while 

PPAR-null mice were refractory to these effects [55].  

Several mechanisms have been proposed to explain PP-induced carcinogenesis in rodents. 

The increase in peroxisome volume and number caused by PPs results in high H2O2 levels [56], 

likely due to the enhanced expression/activity of peroxisomal enzymes [42]. The role of oxidative 

stress in PP carcinogenicity is confirmed by the observation that ciprofibrate-induced 

hepatocarcinogenesis is inhibited by antioxidant treatments [57].  

Increased hepatocyte proliferation in response to PPAR activation likely contributes to PP-

induced carcinogenesis. In this regard, chronic administration of nafenopin to mice has been 

shown to significantly increase liver weight, and hepatic DNA synthesis, eventually resulting in the 

development of hepatocellular carcinomas [20]. Similarly, liver hyperplasia and increased levels of 

mRNAs encoding proteins involved in cell cycle regulation, such as cyclin-dependent kinase (CDK) 

1 and 4, cyclins B1 and D1, c-myc and proliferating cell nuclear antigen (PCNA), were observed in 

mice treated with Wy-14,643 or bezafibrate [55, 58]. Finally, inhibition of apoptosis may also play a 

role in PP-induced hepatocarcinogenesis. The importance of apoptosis in the process of 

carcinogenesis has been well established since the functional characterization of the Bcl-2 

oncogene, and defective apoptosis is now commonly accepted to contribute to cancer 

development not less than deregulated cell production. In this regard, the tightly controlled 



homeostatic mechanisms that link cell proliferation and apoptosis in normal liver are disrupted 

during hepatocarcinogenesis. Apoptosis is a rare event in the normal rodent liver [59], but it is 

rapidly activated during the regression of liver hyperplasia elicited by different stimuli [60] and can 

be experimentally induced by the administration of agonist anti-Fas antibodies in vivo [61]. Low or 

undetectable apoptotic rates occur in preneoplastic or early neoplastic liver lesion of animals 

treated with different tumor promoters, such as PPs. Consistently, nafenopin has been shown to 

promote cell survival in hepatocyte cell cultures [62, 63]. PPARα activation due to different PPs 

results in inhibition of liver apoptosis, especially in the presence of TNFα [64].  

Despite the observations that PPs act as hepatocarcinogens in rodents, epidemiological 

studies suggest that they are unlikely to exert carcinogenic effects in humans [15]. Indeed, long 

term exposure of dyslipidemic patients to fibrates, used as hypolipidemic drugs, does not reveal 

any increase in the incidence of hepatocellular carcinomas [65]. Such difference in the 

susceptibility to carcinogenesis may rely on the lower PPAR expression in human liver with 

respect to mouse (less than one tenth; [15, 66]). This could increase the availability of PPREs for 

other members of the nuclear receptor superfamily, resulting in down-regulation of both 

peroxisome proliferation and the related consequences. This consideration apart, several PPAR 

variants have been detected in human cells that can act as dominant negative regulators of 

receptor activity [15, 67]. The expression of one of these PPAR variants prevents the suppression 

of apoptosis exerted by nafenopin in FAO hepatoma cells [67]. In addition to PPAR  variants, also 

sequence differences in PPREs have been discovered, introducing another possible mechanism to 

explain the different sensitivity to PP carcinogenic effect between humans and rodents. Indeed, the 

occurrence of differences on PPREs may well interfere with the affinity of PPAR binding to DNA, 

resulting in inefficient gene transcription [68]. An interesting approach to investigate the 

mechanisms underlying the different response to PPs among species has been developed by 

generating mice genetically deficient for PPAR, while able to specifically express the human 

PPAR under the control of tetracycline [69]. These mice exposed to Wy-14,643 or fenofibrate 

show a response comparable to wild-type animals as for the effects on lipid metabolism. By 



contrast, no changes could be observed in the expression of genes involved in cell cycle regulation 

or in the development of hepatocarcinomas [70].  Recently, Wy-14,643 has been shown to inhibit, 

by an unknown mechanism, the expression of mice hepatic microRNA let-7C, which appears to act 

as a tumor suppressor. Indeed, let-7C degrades c-myc mRNA by binding to 3’-UTR of the c-myc 

gene: thus, the reduced expression of let-7C induced by Wy-14,643 results in increased levels of 

c-myc as well as of the oncogenic mir-17 cluster [71]. Comparable results have been obtained on a 

different model based on PPAR knock-out mice expressing the complete human PPARα gene on 

a P1 phage artificial chromosome genomic clone [72].  

 A number of studies showed that PPAR is expressed in different types of tumor cells, and 

that PPAR ligand-dependent activation results in inhibition of cell proliferation, promotion of 

differentiation and induction of apoptosis [44 and refs. therein]. In addition, similarly to PPAR, 

PPAR down-regulates the activity of a variety of transcription factors. Evidence has been provided 

that PPAR is involved in the regulation of neoplastic growth, while in some types of cancer it has 

been proposed to act as a tumor suppressor. Indeed, PPAR exerts antiproliferative effects on 

gastric, bladder, prostate, colon and breast cancer, and is involved in regulating cell proliferation in 

malignant melanoma [reviewed in 44]. PPAR ligands down-regulate the expression of 

cyclooxygenase-2, an enzyme that has been involved in tumorigenicity and invasiveness in human 

colon cancer [73]. In this regard, thiazolidinediones such as troglitazone and rosiglitazone have 

been shown to inhibit cell proliferation and to induce cell cycle arrest of rat intestinal epithelial cells, 

mainly by reducing cyclin D1 expression [74]. Treatment of MCF7 cells with troglitazone also 

inhibits cell proliferation by decreasing the expression of several regulators of pRb 

phosphorylation, such as cyclin D1, CDK2, CDK4, and CDK6  [75]. In addition, treatment of HCT15 

colon cancer cells with troglitazone induces the expression of p21Cip1/Waf1, a negative regulator 

of cell cycle progression [76]. Similar inhibition of cell proliferation has been reported for CaCo2 

cells exposed to rosiglitazone [77]. PPAR activation inhibits tumor growth also by blocking 

angiogenesis [78] and by inducing apoptosis in cancer cells [73]. Finally, administration of the 

PPAR synthetic agonist GW7845 has been shown to prevent the development of chemically-



induced mammary tumors [79]. In contrast, however, a recent study reports that the development 

of mammary tumors is significantly enhanced in transgenic mice expressing a constitutively active 

PPAR [80], while PPAR activation by thiazolidinediones appears to increase tumor development 

in a genetic model of colon cancer [81]. In addition, PPAR has been found to induce the 

production of hepatocyte growth factor, thus favoring tumor growth [82]. 

 Also PPAR/, similarly to PPAR, has been reported to play opposite roles in 

carcinogenesis. Recent evidence supports the hypothesis that PPAR/ promotes tumor 

progression: HCT116 PPAR/-null cell lines grow more slowly than wild-type cells, and exhibit a 

decreased ability to form tumors when inoculated into nude mice [83]. The promotion of 

tumorigenesis exerted by PPAR/ appears to rely on increased cell proliferation. Indeed, a few 

years ago this receptor has been proposed to be involved in the progression of colon cancer, being 

a potential target of the adenomatous polyposis coli (APC)/β-catenin pathway [84]. In this regard, 

exposure of mice carrying a mutated form of the APC gene to a selective agonist of PPAR/ 

(GW501516) causes a significant increase in polyp number in the small intestine [83]. This 

observation appears in contrast with another report showing that  PPAR/ is not required for polyp 

formation in the same mouse model [85]. However, since the most prominent effect of GW501516 

is on polyp size, PPAR/ activation is likely to affect primarily the rate of polyp growth rather than 

to initiate polyp formation. The same PPAR/ agonist accelerates mammary carcinogenesis 

induced chemically or by hormone stimulation in mouse [86]. 

PPAR/ is a downstream target gene of Ras/Raf/MAPK and extracellular signal-regulated 

kinase (ERK) kinase (MEK)/ERK pathways, both involved in the stimulation of cell proliferation 

[87]. Finally, PPAR/ also appears to inhibit apoptosis and promote keratinocyte survival. In this 

regard, in cells undergoing apoptotic death PPAR/ expression levels decrease [88].  

On the other side, stimulation of differentiation has been reported in keratinocytes exposed 

to PPAR/ ligands [89], and consistently, PPAR/ deficient mice exhibit a marked hyperplastic 

response when treated with TPA [90]. 



 

PP cytotoxicity: relevance to cancer progression 

Many PPs are known to modulate carcinogenesis by directly interfering with the rate of cell 

proliferation and death. Particularly intriguing in this regard is the observation that, depending on 

cell type and experimental conditions, PPs exert opposite effets on cell survival, inhibiting cell 

death or triggering apoptosis, a mechanism activated to get rid of excess, damaged, or infected 

cells, fundamental for the maintenance of tissue homeostasis. This process is controlled largely by 

pro-apoptotic and pro-survival factors generated by signal transduction pathways, starting with the 

initiation of death signals at the plasma membrane or intracellularly, and proceeding through 

complex cytoplasmic networks before reaching the end point [91, 92]. Apoptotic signaling mainly 

converges in the activation of intracellular proteinases known as caspases, which propagate death 

signals by cleavage of key substrates [93]. In mammalian cells, two well-characterized apoptotic 

pathways activate initiator caspases, which then cleave and activate effector caspases to execute 

cell death [94]. Death receptor-dependent apoptosis (extrinsic pathway) follows ligand binding to 

one of the six known death receptors (Fas, TNFR1, DR3, DR4/TRAIL-R1, DR5/TRAIL-R2, and 

DR6). This leads to recruitment of adaptor proteins [Fas-Associated Death Domain (FADD) and 

TNF Receptor-Associated Death Domain (TRADD)] and of procaspase-8. In force of 

autoproteolytic mechanisms, the latter becomes activated, eventually resulting in effector caspase 

activation and cell death [95]. On the other hand, stress pathways may culminate in the release to 

the cytosol of mitochondrial proteins such as cytochrome c and Smac-Diablo, leading to formation 

of the apoptosome complex and sequential activation of caspases 9 and 3. This mitochondrial 

dependent (intrinsic) pathway is negatively regulated by several antiapoptotic factors such as Bcl-2 

and Bcl-xL. Intrinsic and extrinsic apoptotic pathways can be strictly interconnected since the 

former can also be activated by death receptors through caspase-8 mediated cleavage of the pro-

apoptotic factor Bid: cleaved Bid translocates to mitochondria where it facilitates cytochrome c 

release and caspase-9 activation [96].   



Ligands specifically acting on the different PPAR moieties have been reported to activate 

apoptotic cell death (Table 1). In this regard, a conspicuous number of studies is  focused on 

PPAR activation [97],  while just few have investigated the mechanisms of cytotoxicity exerted by 

PPAR ligands. The present review is an attempt to fill this gap providing a comprehensive report 

on the state of the art in PPAR ligand-induced apoptosis, with particular reference to clofibrate.     

A number of studies indicate that treatment with clofibrate promptly induces massive and 

typical apoptosis in hepatoma cells of both murine (Yoshida AH-130) and human origin (HepG2; 

[3]). Such observations have been extended also to other PPs: nafenopin is able to induce 

apoptotic death in the AH-130 cells [3], while perfluorooctanoic acid and BR931 exert cytotoxic 

effects on the HepG2 hepatoma cell line [5, 6]. A recent study shows that in clofibrate-treated pigs 

the expression of the pro-apoptotic protein Bax is up-regulated, while the levels of the anti-

apoptotic factor Bcl-xL are reduced, which may provide the basis for an increase of apoptotic cell 

death. In agreement with this report, treatment of mice with Wy-14,643 has been shown to up-

regulate the expression of pro-apoptotic genes and to down regulate that of anti-apoptotic factors 

in the liver, while PPARα-null mice appear protected against these modifications [98]. The same 

study shows that PPARα activation by Wy-14643 also increases liver sensitivity to apoptosis 

induced by treatment with agonist anti-Fas antibodies.  

The apparent contradiction existing in terms of PP effects on apoptosis (inhibition or 

induction) probably depends on cell type, ligand type and concentration, duration of treatment. As 

an example, monoethylhexylphthalate at low or high doses, respectively, exerts anti- and 

proapoptotic effects on hepatocyte cultures [64]. On this line, data reported on cultured guinea-pig 

hepatocytes show suppression, no effect, or promotion of apoptosis [99-101]. Comparable results 

have been obtained on human hepatocytes [102, 103]. PP cytotoxicity is not restricted to cells of 

hepatic origin, since similar effects have been observed in breast or lung cancer cell lines [7, 8] as 

well as in human keratinocytes, lymphocytes, and monocyte-derived macrophages [9, 10, 104, 

105].  



Irrespective of the mechanisms leading to PP-induced cell death, the observation that 

clofibrate and other PPs exert a marked lethal action on cells of both rodent and human origin 

leads to the conclusion that these agents should be carefully reevaluated for their potential use as 

antineoplastic drugs. This suggestion is further supported by previous reports showing that PP 

action as tumor promoters is characterized by two apparently contradictory events. In this regard, 

reduced number and size of preneoplastic lesions have been reported after short term PP 

treatment, while, in the same models of chemical hepatocarcinogenesis, prolonged exposure 

results in the appearance of large and numerous tumors [106]. The protective effect exerted by PP 

short term treatment is likely due to a selective advantage of certain cell populations over others. 

Indeed, during hepatocellular carcinoma progression, preneoplastic lesions are characterized by 

extensive remodeling and marked cell turnover [106-108]. Stimulation with PPs may interfere with 

the balance of signals regulating cell survival and death, potentiating the latter, thus resulting in 

preneoplastic lesion regression.  

 

Mechanisms of PPAR ligands cytotoxicity 

The mechanisms involved in apoptosis induced by PPAR ligands, and by clofibrate in 

particular, are far from being elucidated. In cells of hepatic origin clofibrate is apoptogenic at 0.5-1 

mM concentration, which is apparently quite high. However, similar or even higher concentrations 

have been used in biochemical studies on tissue cultures [109] and 200-300 mg/kg b.w. per day is 

the usual dose in protocols for  chemical hepatocarcinogenesis in the rat [see 110]. In 

pharmacological terms, optimal therapeutic plasma levels of clofibrate have been reported to be 

around 0.5 mM [111, 112].  

Many of the pleiotropic effects of clofibrate may be relevant to the induction of apoptosis. As 

an example, this type of cell death may be caused by inhibition of macromolecular synthesis: in 

this regard, PPs have been demonstrated to suppress both DNA and RNA synthesis [113], as well 

as to inhibit the activity of HMGCoA reductase, a key enzyme in the process of isoprenoid 

biosynthesis [114]. Consistently, previous results obtained in our laboratory show that the mRNA 



level and enzymatic activity of HMGCoA reductase as well as the cholesterol content in 

mitochondria are reduced in Yoshida AH-130 hepatoma cells soon after clofibrate treatment, while 

cell death can be attenuated by supplementing cells with mevalonate, the reaction product of 

HMGCoA reductase [115]. In addition to cholesterol synthesis, inhibition of this enzyme affects the 

biosynthesis of isoprenoid units. In this regard, some studies show that inhibition of mevalonate 

synthesis exerted by lovastatin, a bona fide inhibitor of HMGCoA reductase, impairs Ras 

isoprenylation and activation of the MAP kinase cascade [116], or RhoA geranylgeranylation [117], 

resulting in down-regulation of cell proliferation. Consistently, lovastatin has been shown to 

suppress cell growth and to induce apoptosis in several tumor types [118]. No alterations of protein 

farnesylation could be observed in clofibrate-induced AH-130 apoptosis, since the localization of 

p21ras remains comparable between control and treated cells. In addition, clofibrate-induced 

apoptosis still occurs in the presence of a farnesyltransferase inhibitor. These results suggest that 

inhibition of protein farnesylation is not involved in clofibrate cytotoxicity, the more so because it 

requires a prolonged time to produce cell death [115]. Similar observations have been made on 

human keratinocytes exposed to clofibrate [9].  

PPAR induction appears to play a crucial role in the modulation of apoptosis.  In JM2 rat 

hepatoma cells, characterized by very low levels of PPARα, clofibrate treatment inhibits cell 

proliferation, without inducing apoptosis [119]. By contrast, in human HepG2 hepatoblastoma cells, 

clofibrate-induced apoptosis is associated with increased PPAR levels [115]. Another study 

reported that PPAR activation enhances hepatocyte apoptosis [98]. By contrast, in FAO 

hepatoma cells PPAR has been shown to be required for the protection against nafenopin-

induced death [120]. Results obtained in our laboratory show that, at least in clofibrate-induced 

AH-130 cell death, PPAR does not seem to be involved, consistently with the rapidity of the 

apoptotic response [115]. Where occurring, PPARα expression is enhanced early, well before the 

decrease in HMGCoA reductase [9, 121, 122]. However, when keratinocytes are treated with 

MK886, an inhibitor of PPARα,  clofibrate-induced apoptosis is not completely prevented, 

suggesting the involvement of other mechanisms [88]. 



 One of the effects exerted by PPs is the increase in number and size of peroxisomes, 

associated with increased production of reactive oxygen species (see above). Cell death by 

oxidative stress may pertain to apoptosis or necrosis, depending on the extent of cell damage. As 

for apoptosis, reactive oxygen species play a critical role, directly, in force of their macromolecule 

damaging activity, but also indirectly. Results obtained in our laboratory show that lipid 

peroxidation is not modified in clofibrate-treated AH-130 cells with respect to controls [123]. 

Consistently, both the AH-130 or the Jurkat T cells cannot be rescued from clofibrate-induced 

death by antioxidants such as BHA, BHT or N-acetyl-cysteine [Penna et al., unpublished data]. 

Clofibrate-induced apoptosis is caspase-dependent. This has been reported by studies on 

L6 rat skeletal myoblasts and IM-9 human lymphoblasts, where 2 to 24h clofibrate exposure results 

in caspase activation [10, 124]. Caspases 3, 8, and 9 are very rapidly activated by clofibrate in AH-

130 hepatoma cells, and pretreatment with different caspase inhibitors affords a significant 

protection against apoptosis. The extent of the protective effect is limited with inhibitors of 

caspases 8 or 9, extensive with the caspase-3 inhibitor DEVD-cho, and virtually complete with the 

poly-caspase inhibitor z-VAD-fmk [4]. Results quite similar, although with a markedly different 

kinetic of activation as for caspases 8 and 9, have been obtained on Jurkat cells [Penna et al., 

unpublished data].  

 The observation that caspase 9 is activated by clofibrate, at least in the AH-130 and in the 

Jurkat cell lines, suggests that the mitochondrial apoptotic pathway is activated in clofibrate-

induced cell death. Indeed, soon after clofibrate exposure mitochondrial membrane potential 

rapidly falls down, and pro-apoptotic factors such as cytochrome c and, at least in the AH-130 

cells, Smac-Diablo are released [4, 115, Penna et al., unpublished data). Despite these 

observations, however, a causal relation between the intrinsic pathway of apoptosis and clofibrate 

cytotoxicity could not be convincingly unproven. Indeed, caspase-9 inhibition or treatment with 

cyclosporin A, a drug that inhibit both mitochondria depolarization and cytochrome c release, only 

partially prevent apoptosis in the AH-130 cells, and are completely uneffective in the Jurkat cell line 

[4, Penna et al., unpublished data].  



Although clofibrate-induced apoptosis involves a marked activation of caspase 3, the apical 

caspase(s) remain to be identified since caspases 8 and 9 are unlikely to play such a role. In this 

regard, clofibrate has been reported to inhibit the transport of newly synthesized proteins from 

endoplasmic reticulum (ER) to Golgi, causing the retrograde movement of Golgi constituents back 

to the ER [125]. These findings suggest that clofibrate may induce ER stress. In the last years ER 

stress has been proposed to trigger apoptosis through a mechanism depending on caspase 12 

[126], involving both initiator (2, 8, 9) and effector (3, 4, 7) caspases [127]. ER-induced cell death 

appears associated with recruitment of TNF receptor-associated factor 2 (TRAF2) and JNK 

phosphorylation [128]. In addition, proteins of the Bcl2 family are involved in the regulation of 

apoptosis by ER stress [129]. Finally, ER stress is associated with inhibition of protein synthesis, 

and enhanced phosphorylation of eIF2 is a reliable marker of such condition [130]. An early and 

marked  increase in eIF2 and JNK phosphorylation can be observed after clofibrate treatment in 

both AH-130 and Jurkat cells. These changes are not associated with procaspase 12 cleavage, 

while a marked activation of caspase 2 occurs. Although these findings may suggest a role of 

apical caspase for  caspase 2, pre-treatment with an inhibitor selective for this caspase only 

partially rescues both cell lines from clofibrate-induced death [4, Penna et al., unpublished data], 

leaving the ‘apical caspase matter’ still unclear.  

Both ER stress and mitochondrial depolarization induce Ca2+ mobilization that may result in 

activation of calpains, a class of Ca2+-dependent proteases that in the last years, have been 

associated with procaspase 12 processing and activation [131]. More recently, clofibrate treatment 

of L6 murine skeletal myocytes has been reported to induce apoptotic death due to Ca2+-

dependent caspase 12 activation [124]. Calpain activation in vivo can be detected by estimating 

the cleavage of specific physiological substrates such as fodrin, the 130 kDa Ca2+-ATPase, and 

calpastatin. Clofibrate treatment of both AH-130 or Jurkat cells results in extensive fodrin cleavage 

[4, Penna et al., unpublished data]. However, the involvement of calpains in clofibrate-induced 

apoptosis is questioned by the observation that pre-treatment of Jurkat cells with a specific calpain 

inhibitor does not afford any protection against cell death [Penna et al., unpublished data].  



 

Conclusions  

 PPs and PPARs are crucially involved in the regulation of several metabolic pathways, such 

as lipogenesis and fatty acid oxidation. In addition, they play a role in cell processes including 

proliferation, differentiation and death. Particularly intriguing in this regard is their cytotoxic activity, 

that may be relevant to negatively interfere with tumor progression. The precise mechanisms 

underlying the cytotoxicity of PPs, PPAR ligands in particular, remain to be elucidated in part. 

Indeed, while the caspase-dependency of the process is clear, the molecular trigger leading to 

caspase activation remains to be determined. In this regard, activation of the intrinsic apoptotic 

pathway and occurrence of ER stress appear to play a potential role. 

 Induction of apoptosis is certainly one of the main reasons underlying the therapeutic 

potential of PPAR ligands in oncology. However, other PP bioactivitites may be equally relevant. In 

this regard, down-regulation of the inflammatory response, obtained by inhibition of both COX2 and 

NFB activity, appear of particular interest. In addition, the observation that PPARα exerts both 

antiangiogenic and antitumorigenic activities [reviewed in 132] suggests that this class of receptors 

could be considered as tumor suppressors.  

In view of the above reported observations, PPs may be proposed as new antiblastic drugs, 

characterized by both low toxicity and cost. PPAR ligands might also be used in association with 

other drugs, such as COX2 inhibitors or statins [10, 133]. As for the latter, however, caution should 

be used in view of the potential muscle toxicity [134, 135]. Finally, PPAR-dependent signal 

transduction pathway may be effectively modulated in the future by means of siRNA or antisense 

methodologies, or by selective PPAR modulators, able to exert most of the benefits, while reducing 

the adverse effects displayed by full PPAR agonists [136]. 
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Table 1. Apoptosis induction by PPAR ligands 

PPAR  

 

Clofibrate, clofibric acid 

B and T-lymphocytes, keratinocytes, liver and 

ovarian cancer, T-cell leukemia [3, 9, 105, 137, 

Penna et al., unpublished) 

Wy-14,643 hepatocytes [98] 

perfluoroctanoic acid liver cancer cells [5] 

Nafenopin liver cancer cells [3] 

BR931 liver cancer cells [6] 

conjugated linoleic acid liver cancer cells [138] 

TDZ18 lymphocytic leukemia [139] 

MCC-555 colon cancer cells [140] 

PPAR/  

GW0742 colon cancer cells [141] 

PPAR  

TDZ (troglitazone, rosiglitazone, ciglitazone, 

pioglitazone, TDZ18, MCC-555) 

osteoblasts, promyelocytic leukaemia, lymphocytic 

leukaemia, colon, breast, liver, thyroid, ovarian, 

and lung cancer [7, 8, 139, 140, 142-144] 

15d-PGJ2 neurons, B-lymphocytes, B-

lymphoma,promyelocytic leukaemia, colon, breast, 

thyroid and lung cancer (142, 143, 145-147] 

DEHP Sertoli cells [148] 

DHEP = Di(2-ethylhexyl) phthalate; TDZ = thiazolidindione;  

15d-PGJ2 = 15-Deoxy-Delta(12,14)-prostaglandin J2. 

 

 



 


