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Clusters Detection in Regression Problems:

a Similarity Test Between Estimated Models

Alessandra Durio1 and Ennio Davide Isaia1

Department of Statistics & Applied Mathematics
University of Torino
Piazza Arbarello, 8
10122 - Torino, Italy
(e-mail: durio@econ.unito.it,isaia@econ.unito.it)

Abstract Purpose of this paper is to investigate on the use of the Minimum In-
tegrated Square Error criterion as a practical tool in building useful regression
models, notably in all those situations involving the study of large data sets where
a substantial number of outliers can be present or data are clustered. We suggest
a technique of regression analysis which consists in comparing the results arising
from L2 estimates with the ones obtained applying some common M -estimators.
A new index of similarity between functions is proposed and a Monte Carlo test of
hypothesis based on it is introduced. Rejecting the hypothesis of similarity between
the estimated regression models implies a careful investigation of data structure.
Results of a simulation study, referring to several experimental scenarios, are pro-
vided to illustrate the approach we propose.
Keywords: M -estimators, Minimum integrated square error, Montecarlo signifi-
cance test, Robust regression.

1 Introduction

In applied statistics regression is one of the most used tool in establish-
ing the relationship between a set of predictor variables and a response
variable. Given that “. . . all models are wrong, but some are useful”
[Box, 1979], in the following we investigate on the use of Integrated
Square Error as practical estimation tool for parametric regression
models. The approach based on minimizing the Integrated Square Er-
ror (L2 criterion) is particularly helpful in all those situations where,
due to large sample size, a careful data preparation is not feasible and
hence data may be heavily contaminated by a substantial number of
outliers [Scott, 2001].

In the following we suggest a technique of regression analysis based
on the comparison of the L2 estimates with the ones obtained apply-
ing some common M -estimators; this comparison is based on a new
index of similarity between functions. Afterwards, a Monte Carlo Sig-
nificance test of hypothesis based on this statistics is introduced in
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order to verify the hypothesis of similarity between the L2 estimated
regression model and the one obtained resorting to an M -estimator.
Whenever the hypothesis of similarity between the two estimated re-
gression models is rejected, we suggest to investigate more carefully
the data structure in order to check about the presence of clusters
or outliers. In this sense L2 criterion can be viewed as a practical
diagnostic tool in building useful models.

Theory is outlined and main results of a simulation study, refer-
ring to several experimental scenarios, are provided to illustrate and
corroborate the approach we propose.

2 Robust estimators in regression models

A problem with regression techniques is the e↵ect of outliers; these
may occur for three main reasons, namely recording errors, inclusion

of cases with special characteristics and modeling errors caused by
choosing the wrong model. An extreme situation arises when the out-
liers are numerous and they underlie a set of clustered data. Data set
with a large proportion of outliers can be found, for instance, if there
is an omitted categorical variable (e.g. gender, species, geographical
location, . . . ) where the data behave di↵erently for each category.

Since outliers can play havoc with standard statistical methods,
many robust techniques have been developed since the early work of
[Huber, 1964] to be less sensitive to outliers, e.g. [Hampel, 2001] and
[Maronna et al., 2006].
Let {(xi1, . . . , xip, yi)}i=1,...,n be the observed data set, where each ob-
servation stems from a random sample drawn from the p + 1 random
variable (X1, . . . ,Xp, Y ). The regression model for the observed data
set we study is yi = m�(xi) + "i for i = 1, . . . , n, where the object of
our interest is the regression mean

m�(xi) = E[Y |xi] = �0 +
pX

j=1

�jxij (1)

and the errors {"i}i=1,...,n are assumed to be independent random vari-
ables with zero mean and unknown finite variances.

The class of M -estimators of the vector � is defined as [Huber, 1981]

�̂M = argmin
�

nX

i=1

⇢ (yi �m�(xi)) (2)
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where ⇢ : R ! R is absolutely continuous, usually a convex function
with derivative  .

The classical least-squares estimator is obtained from equation (2)
simply setting ⇢(yi�m�(xi)) = (yi�m�(xi))2. Assuming that the r.vs
"i are independent and identically distributed as the r.v. " ⇠ N (0,�),
the least-squares estimator gives the Maximum Likelihood Estimate
(MLE) of the vector � in equation (1), i.e.

�̂MLE = argmin
�

nX

i=1

[yi �m�(xi)]2 (3)

For our purpose, since in presence of outliers Maximum Likelihood
estimates are very unstable, in the class of M -estimators we resort to
the robust Huber M-estimator (HME) for which

⇢(yi �m�(xi)) =

8
><

>:

1
2
(yi �m�(xi))2 if

��yi �m�(xi)
��  k

k
��yi �m�(xi)

�� (1� k

2
) if

��yi �m�(xi)
�� > k

where the tuning constant k is set to 1.345 � [Hampel et al., 1986].
As an alternative to the class of M -estimators, we investigate on

parametric linear regression models based on Minimum Integrated
Square Error [Durio and Isaia, 2003]. Our choice can be motivated
by the fact that in the ↵-family of estimators, L2 estimator, briefly
L2E, is the more robust to outliers, even if it is less e�cient than
MLE [Basu et al., 1998].

Given the r.v. X, with unknown density f(x|✓0), for which we
introduce the model f(x|✓), the estimate of the vector ✓0 according
to the minimum Integrated Square Error criterion is given by

✓̂ = argmin
✓

Z

R
[f(x|✓)� f(x|✓0)]2 dx =

= argmin
✓

Z

R
f2(x|✓) dx� 2 E [f(x|✓0)]

�
(4)

The first term of equation (4) may be replaced by [Basu et al., 1998]

Z

R
f2(x|✓) d x =

1
n

nX

i=1

Z

R
f2(xi|✓) d xi (5)
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and if we replace in (4) the so called expected height of the density,
E [f(x|✓0)], with its estimate bE [f(x|✓0)] = n�1 Pn

i=1 f(xi|✓), the esti-
mator for ✓0 minimizing the L2 distance will be

✓̂L2E = argmin
✓

"
1
n

nX

i=1

Z

R
f2(xi|✓) d xi �

2
n

nX

i=1

f(xi|✓)

#
(6)

In the case of parametric regression, assuming that the random
variables Y |x are distributed as a N (m�0

(x),�0), the model becomes

fY |x(y|�0,�0) = �(y|m�0
(x),�0)

and the L2 estimates of the parameters in �0 and �0 are simultaneously
given by equation (6), which in this case becomes

(�̂, �̂)L2E = argmin
�,�

"
1

2�
p
⇡
� 2

n

nX

i=1

�(yi|m�(xi),�)

#
(7)

since from equation (5) we have
R

R �
2(y|m�(x),�) dy = (2�

p
⇡)�1.

Clearly equation (7) is a feasible computationally closed-form ex-
pression so that L2 criterion can be performed by any standard non
linear optimization code, for instance resorting to the nlm routine of
the R library.

3 The similarity index

To compare the L2E performance with respect to some other com-
mon estimators we introduce an index of similarity between regression
models.

To this end, let T0 and T1 be two regression estimators and �̂T0
,

�̂T1
the corresponding vectors of the estimated parameters. In order to

measure the discrepancy between the two estimated regression models,
we resort to an index of similarity which takes into account the space

region between m̂T0(x) and m̂T1(x) with respect to the space region
where the whole data points lay. To this goal, introduced the sets

Ip = [min(xi1); max(xi1)]⇥ . . .⇥ [min(xip); max(xip)]
I = [min(yi); max(yi)]
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Figure1. Data points and two estimated regression models, namely m̂T0(x) and
m̂T1(x). Panel (b) shows the sets C2 (in light gray) and D2 (in dark gray).

we define the similarity index as

sim(T0, T1)
def=

R
Dp+1 dtR
Cp+1 dt

Cp+1 = Ip ⇥ I (8)

Dp+1 =
�
(x, y) 2 Rp+1 : ⇣(x)  y  ⇠(x),x 2 Ip

 
\Cp+1

where ⇣(x) = min (m̂T0(x), m̂T1(x)) and ⇠(x) = max (m̂T0(x), m̂T1(x)).

Figure 1 shows how the similarity index given by equation (8) can
be computed in the simple case when p = 1. In panel (a) data points
and the two estimated models m̂T0(x) and m̂T1(x) are plotted. The
dark-gray shaded area of panel (b) corresponds to

R
Dp+1 dt, while the

integral
R
Cp+1 dt is given by the area of the light-gray rectangle in

which data points lay.
If the vectors �̂T0

and �̂T1
are close to each other, then sim(T0, T1)

will be close to zero On the other hand, if the estimated models
m̂T0(x) and m̂T1(x) are “dissimilar” we are likely to observe a value of
sim(T0, T1) close to unit.

From a computational point of view it is rather onerous to evaluate
the integral present in the numerator of equation (8), since it implies
splitting the domain Dp+1 into “simple regions” with respect to the
variable y. Resorting to this direct method, we are obliged to find the
regions of intersections of both models m̂T0(x) and m̂T1(x) with the
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boundary of Dp+1 as well as the region of intersection between the
two regression models.

We therefore decide, in order to compute the similarity index sim(T0, T1),
to resort to a numerical routine based on he following algorithm

Algorithm 1

1 : move the origin of the system to (min(xi1), . . . ,min(xip),min(yi))
and compute the integrals

A =
Z

Ip

��m̂T0(x)� m̂T1(x)
�� dx

A�
j = 0.5

✓Z

Ip

��m̂Tj (x)
�� dx�

Z

Ip
m̂Tj (x) dx

◆
for j = 0, 1

2 : compute the value of butterfly = A� (A�
0 + A�

1 );
3 : check if both models are negative on the vertexes of the domain Ip

and if so butterfly = butterfly + 2 min (A�
0 , A�

1 );
4 : move the origin of the system to (min(xi1), . . . ,min(xip),max(yi))

and compute the integrals

A+
j = 0.5

✓Z

Ip

��m̂Tj (x)
�� dx +

Z

Ip
m̂Tj (x) dx

◆
for j = 0, 1

5 : compute the value of butterfly = butterfly � (A+
0 + A+

1 );
6 : check if both models are positive on the vertexes of the domain Ip

and finally sim(T0, T1) = butterfly + 2 min (A+
0 , A+

1 ).

Algorithm (1) implies a numerical evaluation of nine integrals of
a p-dimensional function over a simple domain and two checks on the
values of the functions m̂T0(x) and m̂T1(x) on the vertexes of the do-
main Ip.

It is worthwhile to remark that, given two models m̂T0(x) and
m̂T1(x), the results we obtain applying Algorithm (1) are of the same
order as those we can get computing the the integral present in the
numerator of equation (8) with the direct method, i.e. splitting the
domain Dp+1 into “simple regions” with respect to the variable y.

Though the errors rising from numerical integration according to
Algorithm (1) are comparable in magnitude with those arising from
numerical roots finding routines applying the direct method, the ap-
proach outlined by Algorithm (1) is preferable in terms of parsimony
of computing time, notably in high dimension problems.
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4 Monte Carlo significance test

We propose to use the sim(T0, T1) statistics given by equation (8) to
verify the following system of hypothesis

(
H0 : �0 = �̂T0

H1 : �0 6= �̂T0

(9)

Since it seems not reasonable to look for a closed-form of the
sim(T0, T1) distribution, in order to check the above system of hypoth-
esis we resort to the simplified Monte Carlo Significance Test (M.C.S.
test), originally suggested by [Barnard, 1963] and later proposed by
[Hope, 1968].

Let simT0T1 denote the value of the sim(T0, T1) statistic computed
on the observed data. The simplified Monte Carlo Significance Test
consists in rejecting H0 if simT0T1 is the m↵-th most extreme statistic
relative to the corresponding quantities based on the random samples
of the reference set, where the reference set consists in m� 1 random
samples, of size n each, generated under the null hypothesis, i.e. drawn
at random from the model m̂T0(x) with � = �̂T0 . In other words we
generate m � 1 random samples under H0 and for each of them we
compute sim⇤

T0T1
and we shall reject the null hypothesis, at the ↵

significance level, if and only if the value of the test statistic simT0T1

is greater than all the m � 1 values of sim⇤
T0T1

. We remark that if
we set m↵ = 1 and fix ↵ = 0.01, we have m � 1 = 99, while fixing
↵ = 0.05 would yield m� 1 = 19.

The rejection of the hypothesis of similarity between the two es-
timated models must be interpreted as a warning signal suggesting a
more careful investigation of the data structure in order to check about
the presence of clusters or outliers.

5 Main results of a simulation study

At this point it is worthwhile to have a look at some results from a
simulation study we carried out to check the goodness of our procedure
and to illustrate the behaviour of L2 criterion in presence of clustered
data.

To this end, we set up some di↵erent experimental configurations
according to a specified data generating model and for each of them
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Figure2. Main model Y = X for Scenario I and perturbing models (a) Y = (�+1)X
with � = 0.20(0.30, 0.40) and (b) Y = �0.5 � + (� + 1)X with � = 0.40(0.60, 0.80).

we consider, beside L2 estimator, the Maximum Likelihood estimator
and the robust Huber M-estimator. Fixing in equation (8) T1 = L2E,
we shall perform the M.C.S. test two times: the first one fixing T0 =
MLE for sim(MLE,L2E), the second one fixing T0 = HME, for
sim(HME, L2E).

For each scenario, we draw H = 100 random samples of size n =
600 and on each of them we perform both the two M.C.S. tests at
↵ = 0.01 (m = 99) recording the number of times that they lead us to
reject the null hypothesis of system (9) when it is actually false.

In the following we provide and comment three experimental con-
figurations featuring 80% of data point belonging to one (main) cluster
and the remaining 20% to a second cluster. In these situations L2 crite-
rion will fit the heaviest cluster [Durio and Isaia, 2004] and it behaves
di↵erently from the other two estimators as the clusters tend to be
well separated.

More precisely, the three scenarios we provide are

Scenario I (one predictor):
we consider a simulated data set of n1 = 480 points generated accord-
ing to Y = X + ", where X ⇠ U(0, 1) and " ⇠ N (0, 0.1). We then
introduce n2 = 120 points according to the models

(a) Y = (� + 1)X + " with � = 0.20(0.30, 0.40).

(b) Y = �0.5 � + (� + 1)X + " with � = 0.40(0.60, 0.80).
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Scenario II (two predictors):
we consider a simulated data set of n1 = 480 points generated accord-
ing to Y =

P2
i=1 0.5 Xi +", where Xi ⇠ U(0, 1) and " ⇠ N (0, 0.1). We

then introduce n2 = 120 points according to the models

(a) Y =
P2

i=1(� + 0.5)Xi + " with � = 0.10(0.15, 0.20).

(b) Y = �� +
P2

i=1(� + 0.5)Xi + " with � = 0.20(0.30, 0.40).

Scenario III (four predictors):
we consider a simulated data set of n1 = 480 points generated accord-
ing to Y =

P4
i=1 0.25 Xi + ", where Xi ⇠ U(0, 1) and " ⇠ N (0, 0.1).

We then introduce n2 = 120 points according to the models

(a) Y =
P4

i=1(� + 0.25)Xi + " with � = 0.05(0.075, 0.10).

(b) Y = �2 � +
P4

i=1(� + 0.25)Xi + " with � = 0.10(0.15, 0.20).

Figure 2 shows, for Scenario I, the main model and the perturbing
models in both (a) and (b) sub-configurations. Main and perturb-
ing models of Scenario II and Scenario III have the same shape but
obviously in high-dimensions.

If we consider the results displayed in Table 1 as empirical powers
of the M.C.S. tests, we obviously remark that the power of the test
increases as the parameter � increases.

For each configuration the percentage of times we correctly reject
the similarity between L2E and MLE is greater then the correspond-
ing percentage between L2E and HME. This is due to the higher
robustness of HME with respect to MLE and this confirms the prop-
erties of robustness of L2E.

Comparing the (a) cases of the scenarios provided, it follows that
when the number p of predictors increases the behaviour of the three
estimators tends to be similar. However, even in the worst situations
in which clusters are very confounded (low levels of the parameter �),
we had samples for which the M.C.S. test led to reject the hypothesis
of similarity.

For all the scenarios the empirical power of the tests for (b) cases
is lower than the one of the corresponding (a) cases. This is due to
the fact (see Figure 2) that for these configurations the two models
generating the data sets for (b) cases intersect in the centre of mass
of the domain Ip and hence the two clusters are more confused than
those of (a) cases.
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Scenario I

T1 = MLE T1 = HME T1 = MLE T1 = HME T1 = MLE T1 = HME

a � = 0 .20 � = 0 .30 � = 0 .40

14 10 92 82 100 98
b � = 0 .40 � = 0 .60 � = 0 .80

18 11 89 78 100 99
Scenario II

T1 = MLE T1 = HME T1 = MLE T1 = HME T1 = MLE T1 = HME

a � = 0 .10 � = 0 .15 � = 0 .20

6 5 56 50 99 97
b � = 0 .20 � = 0 .30 � = 0 .40

5 5 36 30 86 80
Scenario III

T1 = MLE T1 = HME T1 = MLE T1 = HME T1 = MLE T1 = HME

a � = 0 .05 � = 0 .075 � = 0 .10

6 4 26 24 92 84
b � = 0 .10 � = 0 .15 � = 0 .20

4 3 22 20 48 42

Table1. Main results of the simulation study (values in percentage).

Besides these considerations, it must be pointed out that the esti-
mates of the parameters of the models are, in terms of their standard
deviation, very stable in all the situations, even if L2 estimates show
a somewhat “natural” bigger dispersion.

We finally remark that the empirical powers of the test we obtained
repeating the simulation for the three scenarios with di↵erent percent-
age of data points drawn from the second cluster are higher than those
we provide here when this contamination percentage is 10% and they
are lower when it is 40%.
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