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Contracts  are behavioral  descriptions  of Web  services.  We  devise a theory  of contracts  that 
formalizes the compatibility of a client  to a service, and the safe replacement  of a service with 
another service. The use of contracts statically ensures the successful completion of every possible 
interaction between compatible clients and services. 

The technical device that underlies the theory is the filter,  which is an explicit  coercion prevent- 
ing some possible behaviors of services and, in doing so, make services compatible  with  different 
usage scenarios. We show that filters can be seen as proofs of a sound and complete subcontracting 
deduction system which simultaneously refines and extends Hennessy’s classical axiomatization of 
the must testing preorder.  The relation  is decidable and the decision algorithm  is obtained via a 
cut-elimination process that  proves the coherence of subcontracting  as a logical system. 

Despite the richness of the technical  development, the resulting  approach is based on simple 
ideas and basic intuitions. Remarkably, its application  is mostly independent of the language used 
to program the services or the clients.  We outline the practical  aspects of our theory by studying 
two different concrete syntaxes for contracts and applying each of them to Web services languages. 
We also explore implementation issues of filters  and discuss the perspectives of future  research 
this work opens. 

 
Categories and Subject Descriptors:  F.1.2 [Computation by  Abstract Devices]:   Modes of 
Computation—Parallelism and concurrency; F.3.3 [Logics and Meanings of Programs]: Stud- 
ies of Program Constructs—Type  structure;  H.3.5 [Information Storage  and  Retrieval]:  On- 
line Information Services—Web-based services; H.5.3 [Information Interfaces and  Presenta- 
tion]:  Group and Organization  Interfaces—Theory  and models, Web-based interaction 

General Terms:  Languages, Standardization, Theory 
Additional Key  Words  and  Phrases:  Web  services, contracts,  concurrency  theory,  ccs,  must 
testing, type theory, subtyping,  explicit  coercions. 
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1.   INTRODUCTION 
 

Web services are distributed components that clients can connect to and communi- 
cate with by means of standard communication protocols and platform-neutral mes- 
sage formats. Remarkably, Web services are equipped with machine-understandable 
descriptions of their interface. This aspect permits Web services to be discovered 
according to the information encoded in their interface.  Among the capabilities 
that  can be used as search keys are the operations provided  by the service, the 
format or schema [Fallside and Walmsley 2004] of the exchanged messages, and the 
contract required to interact successfully with the service. By contract we mean 
the description of the external, observable behavior of a service. 

The Web Service Description Language (wsdl) [Chinnici et al. 2007; Chinnici 
et al. 2007] is a standard  technology for describing the interface exposed  by a 
service. In wsdl, contracts are basically limited  to one-way (asynchronous) and 
request/response (synchronous) interactions. The Web Service Conversation Lan- 
guage (wscl) [Banerji et al. 2002] extends wsdl contracts by allowing the descrip- 
tion of arbitrary,  possibly cyclic sequences of exchanged  messages between com- 
municating parties. Other languages, such as the Web Service Business Execution 
Language (ws-bpel) [Alves et al. 2007], provide even more detailed descriptions 
of services by defining the subprocess structure and more specific details regarding 
the service’s internals.  Such descriptions, which are excessively concrete and ver- 
bose to directly serve as interfaces,  can be approximated and compared in terms of 
contracts. 

Standard technologies are also available for building repositories of Web service 
descriptions [Bellwood et al. 2005], making it possible to perform queries for services 
according to their contract.  Searching immediately calls for a notion of contract 
equivalence to perform service discovery in the same way as, say, type isomorphisms 
are used to perform library  searches [Rittri 1993; Di  Cosmo 1995].  Without  a 
formal characterization of contracts, however, one is left with excessively demanding 
equivalences such as syntactical or structural equality. In fact, clients will be equally 
satisfied to interact with services that provide more capabilities than those actually 
required, so that it makes sense to relax the equivalence into a subcontract preorder 
(denoted by � in this paper). 

In this work we develop a formal theory of contracts that defines a coarse sub- 
contract preorder. Along the lines of [Carpineti et al. 2006] we describe contracts 
by simple ccs-like terms built  with just three operators: prefixing, denoted by a 
dot, and two  infix  choice operators + (external choice) and ⊕ (internal  choice). 
The contract α.σ describes a service that is capable of performing an action α, and 
then continues as σ.  The contract σ + τ  describes a service that  lets the client 
decide whether to continue as σ or as τ .  The contract σ ⊕ τ  describes a service 
that internally decides whether to continue as σ or as τ . Following ccs notation, 
actions are either  write or read actions, the former ones being topped by a bar, 
and one being the co-action of the other. Actions can either represent operations 
or message types.  As a matter of facts, contracts are behavioral types of processes 
that do not manifest internal moves and the parallel structure. 

Contracts are used to ensure that interactions between clients and services will 
always succeed.  Intuitively, this happens if whenever a service offers some set of 
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actions, the client either synchronizes with one of them (that  is, it performs the 
corresponding co-action) or it terminates. The service contract allows us to deter- 
mine the set of clients that comply with it, that is that will successfully terminate 
any session of interaction with the service. 

Of course the client will probably be satisfied to interact with services that offer 
more than what the searched contract specifies. Intuitively we want to define an 
order relation on contracts σ � τ  such that  every client complying with services 
implementing σ will also comply with services of contract τ . In particular, we would 
like the � preorder to enjoy some basic properties. The first one is that it should 
be safe to replace (the service exposing) a contract with  a “more deterministic” 
one. For instance, we expect a ⊕ b.c � a, since every client that terminates with 
a service that  may offer either a or b.c will  also terminate with  a service that 
systematically offers  a.  The second desirable property is that  it should be safe 
to replace  (the service exposing) a contract with  another one that  offers more 
capabilities. For instance, we expect a � a + b.d since a client that terminates with 
services that implement a will also terminate with services that leave the client the 
choice between a and b.d. If taken together, these two  examples show the main 
problem of this intuition:  it is easy to see that a client that complies with a ⊕ b.c 
does not necessarily comply with a + b.d: if client and service synchronize on b, then 
the client will try to write on c while the service expects to read from d. Therefore, 
under this interpretation, � looks as not being transitive: 

 

a ⊕ b.c � a ∧ a � a + b.d =⇒  a ⊕ b.c � a + b.d . 
 

The problem can be solved by resorting to the theory of explicit coercions [Bruce 
and Longo 1990; Chen 2004; Soloviev et al. 1996]. The flawed assumption of the 
approach described so far, which is the one proposed in [Carpineti et al. 2006], 
is that  services are used carelessly “as they are”.  Note indeed that  what we are 
doing here is to use a service of “type”  a + b.d where a service of type  a ⊕ b.c 
is expected. The knowledgeable reader will have recognized that we are using � 
as an inverse subtyping relation  for services.1 If we denote by :>  the subtyping 
relation for services, then a ⊕ b.c  :>   a + b.d and so what we implicitly  did is 
to apply subsumption [Cardelli 1988] and consider that  a service that  has type 
a + b.d has also type a ⊕ b.c. The problem is not that � (or, equivalently, :>) is 
not transitive.  It rather resides in the use of subsumption, since this corresponds 
to the use of implicit  coercions. Coercions have many distinct  characterizations 
in the literature,  but they all share the same underlying intuition  that  coercions 
are functions that  embed objects of a smaller type  into  a larger type  “without 
adding new computation”  [Chen 2004].  For instance it is well known that  for 
record types one has {a:s} :> {a:s; b:t}.  This is so because the coercion function 
c = λx{a:s;b:t}.{a = x.a} embeds values of the smaller type into the larger one.2 

 
1 The inversion is due to the fact that  we are considering the client perspective: a contract  can be 
interpreted  as the set of clients that  comply with  services implementing the contract.  We decided 
to keep this notation  rather  than the inverse one for historical  reasons, since it is the same sense 
as used by De Nicola and Hennessy for the may and must  preorders [De Nicola and Hennessy 
1984]. This inversion corresponds to the duality between simulation  and subtyping,  viz. between 
observers and observed behaviors. 
2 In typed lambda calculus coercions are formally  characterized by the fact that  their type erasure 
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In order to use a term of type {a:s; b:t} where one of type {a:s} is expected, we 
first have to embed it in the right  type  by the coercion function c above, which 
erases (masks/shields) the b field so that it cannot interfere with the computation. 
Most programming languages do not require the programmer to write coercions, 
either because they do not have any actual effect (as in the case of the function c 
above since the type system already ensures that the b field will never be used) or 
because they are inserted by the compiler (as when converting an integer into the 
corresponding float).  In this case we speak  of implicit  coercions. However some 
programming languages (e.g. OCaml [OCaml]) resort to explicit coercions because 
they have a visible effect and, for instance, they cannot be inferred by the compiler. 

Coercions for contracts have an observable effect, therefore we develop their meta- 
theory in terms of explicit coercions. However, coercions can be inferred so they 
can be kept implicit  in the language and automatically computed at static time. 
Coming back to our example, the embedding of a service of type a into a ⊕ b.c is the 
identity, since we do not have to mask/shield any action of a service of the former 
type in order to use it in a context where a service of the latter type is expected. 
On the contrary, to embed a service of type a + b.d into a we have to mask (at least) 
the b action of the service. In order to use it in a context that expects a a service 
we apply to it a filter that will block all b messages.  Transitivity being a logical cut, 
the coercion from a + b.d to a ⊕ b.c is the composition of the two coercions, that is 
the filter that blocks b messages.  So if we have a client that complies with a ⊕ b.c, 
then it can be used with a service that implements a+b.d by applying to this service 
the filter that blocks its b messages.   This filter will make the previous problematic 
synchronization on b impossible,  so the client can do nothing but terminate. 

Filters thus reconcile two requirements that were hitherto incompatible: On the 
one hand we wish to replace an old service by a new service that offers more choices 
(that  is width subtyping, e.g. σ :> σ + τ ) and/or longer interaction patterns (that 
is depth subtyping, e.g. a :> a.σ) and/or is more deterministic (e.g. σ ⊕ τ :> σ). On 
the other hand we want clients of the old service to seamlessly work with the new 
one. 

Two observations to conclude this brief overview. First, the fact that we apply 
filters to services rather than to clients is just a presentational convenience:  the 
same effect  can be obtained by applying to the client  the filter  that  blocks the 
corresponding co-actions. Second, filters must be finer-grained in blocking actions 
than restriction operators as defined for ccs or π. These are “permanent” blocks, 
while filters are required to be able to modulate blocks along the computation. For 
instance the filter that embeds (a.(a + b)) + b.c into a.b must block b only at the 
first step of the interaction and a only at the second step of the interaction. 

 
1.1   Outline of the presentation 
We start by presenting the syntax of our contracts (§2.1), by showing how to use 
them to express wsdl and wscl descriptions (§2.2), and by defining their semantics 
(§2.3).   We  then characterize the set of all clients that  are strongly compliant 
with a service—that is, clients that successfully complete every direct interaction 

 
is η-equivalent to the identity function,  but in general coercions may be different from the identity 
function  [Chen 2004]. 
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session with the service—and argue that subcontract relations whose definitions are 
naively based on strong compliance are either too strict or suffer the aforementioned 
problem of transitivity (§2.4). We argue that subcontracting should not be defined 
on all possible interactions, but focus only on interactions based on actions that a 
client expects from the services: all the other possible actions should not interfere 
with the interaction. We formalize this concept by giving a coinductive definition of 
a subcontract relation that focuses on this kind of actions, we study its properties 
and describe the relation with the must preorder (§3.1). This subcontract relation 
induces a notion of weak compliance suggesting that non-interference of unexpected 
actions can be ensured by coercion functions, which we dub filters  (§3.2).   By 
shielding the actions at issue, a filter  embeds a service into  the “world” of its 
expected clients. We prove that our subcontract relation can be expressed in terms 
of filters and of the must preorder and we provide a sound and complete deduction 
system for the subcontract relation where filters play the role of “proofs”  (§3.3). 
The subcontract relation is shown to be decidable via the definition of a sound and 
complete algorithmic deduction system (§3.4). Next we show how our contracts are 
to be used to type Web services programming languages.  In particular, we relate 
our contract language with  a generic class of typed  process languages  and show 
the soundness of our theory of contracts: this is proved by showing that if a client 
process is weakly compliant with a service process via a given filter, then the filter 
ensures that the client will either synchronize infinitely many times with the service 
or it will successfully terminate (§4). We conclude by exploring the more practical 
aspects of this work.  In particular, since our theory is stated for possibly infinite 
regular trees, we introduce two concrete syntaxes to finitely denote these trees and 
relate them with the preceding theoretical work (§5.1). Next we apply each syntax 
to one language proposed by the two major web standardization bodies (i.e., w3c 
and Oasis)  (§5.2-5.3), we explore possible ways of implementing filters, and we 
outline how the theory can be directly implemented in ws-bpel without requiring 
any modification of the ws-bpel specification or of existing ws-bpel processes 
(§5.4). A conclusion recaps our work and hints at possible tracks of future research 
(§6). 

 
1.2   Related work 
The contracts used in this presentation draw their inspiration from De Nicola and 
Hennessy’s seminal work “ccs without τ’s” [De Nicola and Hennessy 1987], as well 
as from acceptance trees [Hennessy 1985; 1988] of which they can be considered 
an alternative representation. The works that are most closely related to ours are 
by Carpineti et al. [2006] and those on session types, especially  the one by Gay 
and Hole [2005].  In [Carpineti et al. 2006] the subcontract relation exhibits all 
the desirable properties illustrated in the introduction, but subcontracting stops at 
the problem of transitivity.  In that  work compliance was a syntactic notion and 
contracts lacked a semantic characterization. 

Session  types  were introduced in the context of the π-calculus [Honda 1993; 
Takeuchi et al. 1994; Honda et al. 1998]. These are used to type special channels 
through which several different messages may be exchanged in sequence according  to 
a given protocol. Such a session channel can be seen as a client-service connection, 
and the session type is the analogous of our contract as it describes which actions 
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the processes may perform through this channel. However,  session types have the 
important restriction, if compared with contracts, that only one part has the floor 
at a given time: whenever a process performs an internal choice it has to indicate 
explicitly which path of interaction it has chosen, and the other process has to be 
waiting for this indication.  Thus there is no way of mixing internal and external 
choices, and two processes like a + b and a + b do not interact successfully (because 
nobody has the floor, so no communication can happen). Subtyping for the session 
types has been studied by Gay and Hole [2005], but because of the aforementioned 
restriction,  the transitivity problem we address in this  paper does  not exist for 
them: internal and external choices can never be related, hence a ⊕ b � a + b does 
not hold. However, this looks like a reasonable relation, inasmuch as a ⊕ b models 
a scenario where exactly one of two resources a and b is available (and the client 
does not know which one), which can be safely related with (and replaced by) a 
scenario where both a and b are available and the client can choose whether to use 
a or b. 

[Carbone et al. 2007a; 2007b] describe choreographies of Web services by means 
of a global calculus, and descriptions of individual processes are obtained as pro- 
jections of the global description. Both the global description and the projections 
are based on session types.  In our approach, the typical application is searching 
for a service compatible with a given protocol from the client’s point of view :  in 
particular, we want depth subtyping (a service that tries to pursue the interaction 
after the client has successfully terminated is compatible with this client), which 
does not hold for session types.  We believe that our theory is more basic than the 
theory of session types and that it can be fruitfully used to enrich the latter. 

[Fournet et al. 2004] define a conformance preorder on ccs processes with the 
property that a process is stuck-free (i.e., it successfully terminates) in every con- 
text in which smaller  processes are stuck-free. The conformance relation of [Fournet 
et al. 2004] differs from our subcontract relation in some important aspects.  For 
example, in [Fournet et al. 2004] a ⊕ 0 � 0, but a ⊕ 0 ;� a.  This essentially  de- 
rives from the fact that stuck-free conformance is defined without using an explicit 
action (denoted by e in our work) expressing in an observationally visible way the 
successful termination of a party, but instead by requiring that the party must even- 
tually  reduce to the idle process 0.  Doing so prevents the specification of clients 
of the form e + a.e, which attempt to do an action, but that can succeed even if 
the action is not available. The lack of the explicit action e has overall important 
consequences on the precongruence properties of �. A more important point is that 
the conformance relation of Fournet et al. is not complete with respect to stuck- 
freedom, in the sense that there are processes that are stuck-free exactly in the same 
contexts but are not related by conformance: for instance, a.(b ⊕ c) and a.b + a.c 
are stuck-free equivalent but are not conformance equivalent. In our theory the two 
processes above  are equivalent and, more generally, our subcontracting provides, 
mutatis mutandis (cf. actions for successful termination), a complete characteriza- 
tion of stuck-freedom. Finally, stuck-freedom  does not allow either width or depth 
subtyping. 

[Bravetti  and Zavattaro 2007] propose a contract language equipped with a re- 
finement  relation.   The language is constrained so that  output  actions can only 
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occur in the context of an internal choice.  This restriction  somehow resembles 
the design choice of session types and, not surprisingly, the refinement relation for 
this language allows width extensions of contracts without  any intervening filter- 
ing.  However, the refinement  relation is determined in a symmetric way for all 
the participants of a system, whereas our notion of compliance is asymmetric (in 
favor of the client). This makes the refinement relation more demanding than ours. 
In particular, all the participants must successfully terminate, meaning that depth 
extensions are not entailed by refinement. 

 

[Derrick et al. 1996] provides a thorough overview of refinement relations in the 
testing framework that  date back to the LOTOS system [Brinksma et al. 1995]. 
According to the terminology of [Derrick et al. 1996], the relation a ⊕ b.c � a is 
an instance of so-called reduction refinement, in which a ⊕ b.c is replaced by a thus 
reducing nondeterminism. On the other hand, a � a + b.d is an instance of so-called 
extension refinement, in which a a is replaced by a+b.d which provides further func- 
tionalities.  The combination of these two refinement relations yields the so-called 
implementation refinement, which basically coincides both with  the subcontract 
relation defined in [Carpineti et al. 2006] and with the � relation we introduce in 
this work (see equation (1) in §2.3 and the proof of Theorem 3.4). It is known that 
extension refinement is not a precongruence with respect to the contract operators 
and that implementation refinement lacks transitivity [Derrick et al. 1996]. As we 
already explained in the Introduction, the present paper addresses and solves both 
problems: precongruence can be regained under minimal conditions, namely when 
filtering does not depend on the internal choices of client and service (see §3.3), and 
transitivity stems directly from the ability  of composing filters. 

 

A very preliminary version of this work was presented at Plan-X 2007 work- 
shop [Castagna et al. 2007] and largely improved in the version presented one year 
later at Popl ’08 [Castagna et al. 2008]. Although the Plan-X workshop has just 
informal proceedings, these are available on the web.  Therefore it seems worth 
discussing the differences of the present article both with the Plan-X version and 
with the improved Popl version. While the overall presentation and structure of 
the three papers is the same, both this and the Popl versions improve over the 
Plan-X one in several points.  Here and in [Castagna et al. 2008] we consider a 
slightly different  version of strong compliance relation which now coincides with 
the must testing preorder, while in Plan-X strong compliance differed from must 
testing for some (uninteresting) pathological cases that  involved the empty con- 
tract.   The deduction system of Plan-X was reworked in favor of elegance and 
simplicity.  The resulting algebraic theory of filters is also cleaner. We present bet- 
ter results for language neutrality.  Finally, the study of the algorithmic version of 
the deduction system, of its logical interpretation,  and of the decidability  of the 
containment relation, was absent from the Plan-X version and introduced in the 
Popl one. The article presented here improves the work in Popl for several key 
aspects. Foremost, while in Popl work contracts (and filters) were finite, here the 
theory is defined for recursive contracts (and filters) by working directly with infi- 
nite recursive trees and by proposing two different finite representations for them 
(we believe that the in-depth treatment of infinite terms and of the relation with 
their finite representations constitutes a nice contribution of our work).  This im- 
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plied a complete reworking of most of the definitions and of the proofs (even though 
the latter were not included in the Popl proceedings for space reasons).  The finite 
representations  we introduce here are then used to study wscl and ws-bpel and 
possible implementations of filters are explored; in particular we outline how our 
theory can be used and implemented in the current specification of ws-bpel with- 
out requiring any modification to the language or to existing ws-bpel processes. 
All  these practical aspects are completely absent in the work presented at Popl. 
Finally, the deduction system for filters is here further improved and we also use 
a different  and (we  hope) more elegant  syntax for filters, by relying only on the 
underlying algebraic operators. 

Starting from the Plan-X work the third author and Cosimo Laneve proposed a 
simplification where contracts are “statically” filtered [Laneve and Padovani 2007]: 
each contract is associated with  a static interface  (in the sense that  it does not 
change over the time) declaring the only visible actions of the contract and blocking 
all the other ones whenever they happen. As stated in [Laneve and Padovani 2007], 
the resulting approach is less general than ours and, consequently, yields a stricter 
subcontract relation.  For instance, the relation a.b � (a.(a + b)) + b.c, which we 
commented on just  before §1.1, does  not hold in the interface approach (for  a 
practical example of relation that does not hold for interfaces  see the contracts σ 
and σl in §2.2.2 and the explanation given at the end of §3.2.1). On the other hand, 
interfaces allow for simpler algorithmic treatment and implementation. 

 
2.   CONTRACTS 
2.1   Syntax 
Contracts are formally defined  as possibly infinite trees that satisfy regularity and 
a contractivity  condition. 

 

Definition 2.1 (contract). Let N   be  a countable set of names.  The set 
of contracts Σ is the set of possibly infinite  terms coinductively generated by the 
following grammar: 

 

α  ::=  a | a a ∈ N 
σ ::=  0 | α.σ |  σ ⊕ σ | σ + σ 

 

and satisfying the following conditions: 
 

(1 ) contract terms are regular, 
(2 ) on every infinite branch of a contract term there are infinitely many occurrences 

of the prefix constructor. 
 

In the definition 0 is the contract of services that do not perform any action while 
the other constructions were already explained in the introduction.  We follow the 
standard convention of omitting trailing 0’s. We also work modulo associativity of 
each sum operator and by an abuse of notation we will sometimes denote them as n- 
ary operators. We then write 

L
i∈{1,...,n} σi  for σ1 + σ2 + · · · + σn and 

EB
i∈{1,...,n} σi 

for σ1 ⊕ σ2 ⊕ · · · ⊕ σn . By convention we have 
L

i∈∅ σi  = 0. 
Infinite  terms account for recursive contracts. This kind of presentation is not 

customary in process calculi where finite representations of recursion (essentially, 
Kleene star, recursive equations, or rec-notations) are nearly always preferred. This 
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is probably due to the fact that the intuition  behind a finite representation can be 
more easily grasped. However working directly on infinite trees has two clear ad- 
vantages. First and foremost all results abstract away from the particular notation 
used to represent recursion:  it is easy to transpose  each result to each particular 
representation, while it is much more difficult  to move from one representation 
to another. Second, working with infinite terms makes it quite straightforward to 
transpose the work to finite ones since it just suffices to forget that terms are infinite 
and no further modifications are needed; with finite representations of recursion, 
instead, definitions and results must be tailored to account for infinite behavior and 
thus use constructions (such as environments for recursion variables, memoization 
environments in deductions) that are meaningless for finite terms. 

Of course not every infinite  term constructed by applying “⊕”,  “+”, and “.” 
is acceptable. We require the term (i) to be regular, so that  the set of terms is 
provided with a well-founded order, and (ii) to satisfy a fairly standard contractivity 
condition requiring that recursion must be guarded by an i/o operation, which rules 
out meaningless terms of the form rec x = x + x.3 

 

 
2.2   Examples 
In this section we relate our contract language to existing technologies for specifying 
service protocols. 

 
2.2.1   Message exchange patterns in wsdl. The Web Service Description Lan- 

guage [Chinnici et al. 2007; Chinnici et al. 2007] permits to describe and publish 
abstract and concrete descriptions of Web services. Such descriptions include the 
schema of messages exchanged  between client  and server, the name and type  of 
operations that the service exposes, as well as the locations (urls) where the ser- 
vice can be contacted. In addition, it defines interaction patterns (called message 
exchange patterns or meps in version 2.0 of wsdl) determining the order and di- 
rection of the exchanged messages. In particular, wsdl 2.0 predefines four message 
exchange patterns for describing services where the interaction is initiated by clients. 
Let us shortly discuss how the informal plain English semantics of these patterns 
can be formally defined in our contract language. When the mep is inOnly  or 
robustInOnly, communication is basically asynchronous : the client can only send 
an In  message containing the request. If the pattern is robustInOnly the service 
may optionally send back a Fault message indicating that an error has occurred. 
When the mep is inOut or inOptOut, communication is basically synchronous : the 
client sends an In  message containing the request and the service sends back ei- 
ther an Out message containing the response or a Fault message. If the pattern is 
inOptOut, then the Out message is optional. These four patterns can be encoded 

 

 
 

3 Contractivity was introduced  by Courcelle [Courcelle 1983] to rule out e.g. rec x = x, which is 
syntactically  meaningless because it is satisfied by every regular tree, but it was not meant to rule 
out expressions such as rec x = x + x.  The latter  is syntactically meaningful since it denotes a 
particular regular tree, but  it is semantically  meaningless, because of the the peculiar semantics 
of the “+” operator.  Here we use contractivity in stricter  interpretation, that  is as a means for 
ruling  out also terms that  are semantically  meaningless. 
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in our contract language  as follows: 
 

inOnly  = In 
robustInOnly = In.(0 ⊕ Fault) 

inOut  = In.(Out ⊕ Fault) 
inOptOut  = In.(0 ⊕ Out ⊕ Fault) 

 

Intuitively, a client that  is capable of invoking a service whose mep is inOnly 
will  also interact  successfully with  a service whose mep is robustInOnly  (depth 
subtyping).  Conversely, a client that is capable of invoking a service whose mep 
inOptOut will also interact successfully with services whose mep is either inOut, or 
robustInOnly (since they are more deterministic), or even inOnly.  Indeed, such a 
client must be able to handle both a communication that terminates and a Fault 
or Out message.  On the other hand, a client that interacts with a service whose 
mep is inOut  will  not (always) interact successfully with a service whose mep is 
inOptOut.  The client assumes that it will always receive either an Out or a Fault 
message, but inOptOut does not give this guarantee. 

 

2.2.2   Conversations in wscl. The wsdl message exchange patterns cover only 
the simplest forms of interaction between a client  and a service. More involved 
forms of interactions, in particular stateful interactions, cannot be captured if not 
as informal annotations within  the wsdl interface. The Web service conversation 
language wscl [Banerji et al. 2002] provides a more general specification language 
for describing complex conversations between two communicating parties, by means 
of an activity  diagram (Figure  1).   The  diagram is made of interactions  which 
are connected with each other by means of transitions.  An interaction is a basic 
one-way or two-way communication between the client and the server.  Two-way 
communications are just a shorthand for two sequential one-way interactions. Each 
interaction has a name and a list of document types that can be exchanged during its 
execution. A transition connects a source interaction with a destination interaction. 
A transition may be labeled by a document type if it is active only when a message 
of that specific document type was exchanged during the previous interaction. 

Below we encode the contract of a simplified e-commerce service (Figure 1) where 
the client is required to login before it can select and buy items from the store. If 
the login is successful, the client can issue one or more queries and add items to 
the shopping cart.  The client  can buy the items in the shopping cart using one 
of two payment methods, either with credit card or with a bank transfer. At any 
time, the client can choose to logout and leave the store. In case of purchase, the 
service reports whether the purchase was valid.  We can represent the contract of 
Figure 1 (without  the dashed part, which represents an extension discussed later), 
as the regular contract σ1 defined by the equations: 

def σ1   =  Login.(InvalidLogin ⊕ ValidLogin.σ2 ) 
σ   d=ef   Query.Catalog.(σ  + Logout + AddToCart.(σ + Buy.σ )) 
σ   d=ef   Logout + CreditCard.(Valid ⊕ Invalid) + BankTransfer.(Valid ⊕ Invalid) 

 

Unlabeled transitions in Figure 1 correspond to external choices in the contract, 
whereas labeled transitions correspond to internal choices. The use of recursion in 
the definition of σ2 , corresponds to the presence of (two) cycles in the wscl graph. 
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out:  Invalid 
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·� 

 
 
 

Fig. 1.   Contract  of an e-commerce service as a wscl diagram. 
 
 
 
 

Let us recast in this setting the three forms of subtyping we described  in the 
introduction.   First,  it is clear that  clients compliant  with  the service above will 
always be happy with  more deterministic servers that,  for instance, never deny 
the access (InvalidLogin ⊕ ValidLogin � ValidLogin) as well as with  servers 
that  offer longer interactions, such as the fact of proposing an invoice after the 
payment (Valid � Valid.Invoice). Now assume that the service is extended (by 
width subtyping) with “1-click ordering” capability, so that if the client has already 
bought items, perhaps in some previous sessions, it is allowed to buy further items 
without  adding them to the shopping cart, and without  the need to re-send the 
payment information (dashed part in Figure 1). The contract σ2 would change to 
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σ2 as follows: 

σl   d=ef Query.Catalog.(σl  + Logout + AddToCart.(σl  + Buy.σ ) + σ ) 2   2 
def 

2  3  4 

σ4   = Buy.(Valid ⊕ Invalid) 
 

It would be desirable for clients that are compliant with the former service to be 
compliant with this service as well. After all, the extended service offers more than 
the old one. However, the transitivity problem we pointed out in the introduction 
might arise. Indeed, assume to have a client that does actually account for a Buy 
message  right  after receiving a catalog from the service and that  such a client 
is compliant with the former service for the simple reason that,  since the former 
service did not provide a “1-click ordering” capability, whatever contract ρB  the 
client provided after the Buy action was irrelevant to establish compliance. In the 
extended service this is no longer the case and, since the ρB  may be incompatible 
with the continuation of σ4 after Buy, the client can safely interact with the extended 
service only if the new Buy action is filtered out (see §3.2.1). 

 
2.3   Semantics 
Contracts describe the behavior of the processes that implement them.  This be- 
havior is determined by the actions that are offered by a process and the way in 
which they are offered (note that both σ ⊕ τ and σ + τ offer the same actions). This 
is formally stated by the Definitions 2.2 and 2.4 given below. 

 

Definition 2.2 (transition). Let σ −α    be the least relation such that: 
 

α α α α 
α α ;= β σ −f → τ −f → σ −f → τ −f → 

0 −f →  

β.σ α −f → σ ⊕ τ −α
 σ + τ −α

 
 

The transition relation of contracts, noted  α
 

 
, is the least relation satisfying the 

rules: 
 
 
 

σ  α 

 
 

α.σ   α   σ 
 
α α α α α α α 

−→ σl τ −→ τ l σ −→ σl τ −f → σ −→ σl τ −→ τ l σ −→ σl τ −f → 
σ + τ   α

 σl ⊕ τ l σ + τ   α   σl σ ⊕ τ −→ σl ⊕ τ l σ ⊕ τ −→ σl 
 

and closed under mirror cases for the external and internal choices. We write σ  α 

if there exists σl  such that σ  α
 σl. 

 

The relation  α
 

 
is different from standard transition relations for ccs processes [Mil- 

ner 1982]. For example, there is always at most one contract σl such that σ  α
 σl, 

while this is not the case in ccs (the process a.b + a.c has two different a-successor 
states: b and c). This mismatch is due to the fact that contract transitions define 
the evolution of conversation protocols from the perspective of an external com- 
municating party.  Thus a.b + a.c   a

 b ⊕ c because, once the action a has been 
performed, the communicating party is not aware of which branch has been cho- 
sen. On the contrary,  ccs transitions define the evolution of processes from the 
perspective of the process itself. 
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Notation 2.3.  We use init(σ) to denote the set of actions that can be immedi- 
ately emitted by σ, that is init(σ) = {α | σ  α  . 

Let σ   α . We write σ(α) for the unique continuation of σ after α, that is, the 
contract σl  such that σ  α

 σl. We extend the notion of continuation to sequences 
of actions. Let ϕ denote a possibly empty, finite string of actions. If ϕ = ε, then 

ϕ ϕ α ϕ  

σ −→ σ and we have σ(ϕ) = σ; if ϕ = αϕl, then σ −→ σl  if σ −→ σl  −→ σll and 
we have σ(ϕ) = σll. 

 
The labeled transition  system above  describes the actions offered by (a service 
implementing) a contract, but does not show how these actions are offered.  In 
particular the actions offered by an external choice are all available at once while the 
actions offered by different components of an internal choice are mutually exclusive. 
Such a description is given by the ready sets that are observable for a given contract: 

 

Definition 2.4 (observable ready sets). Let Pf (N  ∪ N ) be the set of fi- 
nite parts of N  ∪ N , called ready sets. Let also σ ⇓ r be the least relation between 
contracts σ in Σ and ready sets r in Pf (N  ∪ N ) such that: 

 

σ ⇓ r τ ⇓ s σ ⇓ r τ ⇓ r 
0 ⇓ ∅ α.σ ⇓ {α}  

σ + τ 
 

⇓ r ∪ s 
 

σ ⊕ τ ⇓ r 
 

σ ⊕ τ ⇓ r 
 

Notation 2.5.  We use the convention that the bar operation is an involution, 
a = a, and for a given ready set r we define its complementary ready set as co(r) = 
{α | α ∈ r}. 

 
2.4   The problem 
We  now possess  all the technical instruments to formally state the problem we 
described in the introduction and recalled at the end of §2.2. This first requires the 
precise definition of compliance .  Recall that,  intuitively, the behavior of a client 
complies with the behavior of a service if for every set of actions that the service may 
offer, the client either synchronizes with one of them, or it terminates successfully. 
The behavior of clients, as well as the one of services, is described by contracts. 
Therefore we need to define when a contract ρ describing the behavior of a client 
complies with a contract σ describing the behavior of a service. For this we reserve 
a special action e (for “end”) that can occur in client contracts and that represents 
the ability  of the client to successfully terminate. Then we require that, whenever 
no further interaction is possible between the client and the service, the client be 
in a state where this action is available. 

 

Definition 2.6 (strong compliance). C is a strong compliance relation if 
(ρ, σ) ∈ C implies that: 

 
(1 ) ρ ⇓ r and σ ⇓ s implies either e ∈ r or co(r) ∩ s ;= ∅, and 

(2 ) ρ  α
 ρl  and σ  α

 σl  implies (ρl, σl) ∈ C . 
 

We use -- to denote the largest strong compliance relation. 
 

In words the definition above states that a client of contract ρ is compliant with a 
service of contract σ if (1) for every possible combination s and r of the independent 
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choices of the service and the client, either there is an action in the client choice that 
can synchronize with an action among those offered by the service (co(r) ∩ s ;= ∅) 
or the client terminates successfully (e ∈ r), and (2) whenever a synchronization 
happens, the continuation of the client after it is compliant with the continuation 
of the service ((ρl, σ l) ∈ C ). 

Once we have such a definition it is natural to define the subcontract relation in 
terms of compliance. Intuitively, (client) contracts are seen as “tests” for comparing 
(service) contracts. Two (service) contracts are related if so are the sets of (client) 
contracts compliant with them [De Nicola and Hennessy 1984]. 

 

Definition 2.7 (strong subcontract). The contract σ is a strong subcon- 
tract of the contract τ , written σ ç τ , if and only if for all ρ we have ρ -- σ implies 
ρ -- τ . We write σ ':: τ if σ ç τ and τ ç σ. 

 

This definition corresponds to giving a set theoretic semantics to service contracts 
which are thus interpreted as the set of their compliant clients. Thus ç is inter- 
preted as set-theoretic inclusion. 

As usual with  testing semantics, it is hard to establish a relationship between 
two contracts because the set of clients that are strongly compliant is infinite.  A 
direct definition of the preorder is therefore preferred: 

 

Definition 2.8 (coinductive strong subcontract). S  is  a coinductive 
strong subcontract relation if (σ, τ ) ∈ S implies that 

 

(1 ) τ ⇓ r implies that there exists s ⊆ r such that σ ⇓ s, and 
(2 ) τ   α

 τ l implies σ  α σl  and (σl, τ l) ∈ S . 
 

Theorem 2.9.  ç is the largest coinductive strong subcontract relation. 
 

Proof. First of all we prove that ç is a coinductive subcontract relation.  As- 
sume σ ç τ . As regards condition (1) in the definition of coinductive strong sub- 
contract relation, let r1 , . . . , rn be the ready sets of σ. By contradiction, assume 
that there exists rl  such that τ ⇓ rl  and for every 1 ≤ i ≤ n there exists αi  ∈ ri 

def    
such that  αi  ;∈ rl.  Let ρ = 

L
1≤i≤n αi .e.  Then ρ -- σ but ρ ;-- τ , which is not 

possible. Hence condition (1) is satisfied. As regards condition (2) in the defini- 
tion of coinductive strong subcontract relation, assume τ  α .  By contradiction, 

α     
−→ 

α 
assume σ −f →.  Then e + α -- σ but e + α ;-- τ , which is not possible.  Hence σ 
−→. Now we have to prove  that  σ(α)  ç τ (α).   Let ρl  be such that  ρl  -- σ(α).   
Then e + α.ρl -- σ hence e + α.ρl -- τ , thus ρl -- τ (α) by definition of strong 
compliance. Hence σ(α) ç τ (α) because ρl  is arbitrary. 

Now we prove  that  ç is indeed the largest coinductive  subcontract relation, 
namely that every coinductive subcontract relation is included in ç.  Let S be a 
coinductive strong subcontract relation and let (σ, τ ) ∈ S . Let ρ -- σ, then there 
exists a strong compliance relation C such that  (ρ, σ) ∈ C .  To get  ρ -- τ  it is 
sufficient to prove that 

 
d=ef  {(ρ , τ ) | ∃σ , (ρ , σ ) ∈ C ∧ (σ , τ ) ∈ S }

 
C l l l l l l l l 

 

is a strong compliance relation, since (ρ, τ ) ∈ C l.  Let (ρl, τ l) ∈ C l and let σl  be 
the corresponding contract given by the definition of C l. As regards condition (1) 
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in Definition 2.6, let ρl ⇓ r and τ l ⇓ s. If e ∈ r there is nothing to prove. Assume 
e ;∈ r.  From (σl, τ l) ∈ S there exists sl ⊆ s such that σl ⇓ sl.  From (ρl, σl) ∈ C we 
know co(r) ∩ sl ;= ∅, hence we conclude co(r) ∩ s ;= ∅.  As regards condition (2) 
in 
Definition 2.6, assume ρl    α and τ l  α . From (σl, τ l) ∈ S we know that σl −→ 
and (σl(α), τ l(α)) ∈ S . From (ρl, σl) ∈ C we know that (ρl(α), σl(α)) ∈ C , hence 
we conclude (ρl(α), τ l(α)) ∈ C l by definition of C l. 

 
It turns out that the relation ç is the must testing preorder as defined by [De 

Nicola and Hennessy 1984] (a proof can be found in [Laneve and Padovani 2007], 
where a different albeit equivalent notion of strong compliance is used). This rela- 
tion is well studied and it enjoys interesting properties, in particular it is a precon- 
gruence with respect to prefixing, internal and external choices, and also a ⊕ b ç a, 
which is one of the desirable properties for �, holds. However ç is stronger than 
� since, for example, a ;ç a + b. Indeed a.e + b -- a but a.e + b ;-- a + b. In general, 
the must preorder allows neither width nor depth extensions of contracts. 

In previous work [Carpineti et al. 2006] an attempt was made to directly relate 
two contracts σ and τ  depending on their form, rather than on the sets of their 
clients.  Let dual(σ)  denote the dual contract of σ which, roughly, is obtained 
by replacing in σ every action by its coaction, 0 by e, every internal choice by 
an external one, and viceversa (the formal definition is slightly more involved and 
requires first  to transform σ into  the normal form of Definition  3.14 and then 
apply the transformation described above; see [Carpineti et al. 2006] for details). 
Intuitively dual(σ)  denotes the contract of a “canonical” client complying with σ 
services. Then using this intuition  one can informally  define a new relation on 
service contracts as: 

⇐⇒ dual(σ) -- τ  (1) 

In words, a contract σ is a subcontract of τ if and only if its canonical client complies 
with τ (see the proof of Theorem 3.4 for a formal definition of � and a more precise 
characterization of dual). 

This relation is nearly what we are looking for. For instance now we have a⊕b.c � 
a and a � a + b.d, since dual(a ⊕ b.c) = a.e + b.c.e -- a and dual(a) = a.e -- a + b.d. 

Unfortunately, � is not a preorder since transitivity does not hold: a.e + b.c.e ;-- 
a + b.d implies that a ⊕ b.c ;� a + b.d. The reason for such a failure is essentially 
due to the fact that in establishing a ⊕ b.c � a and a � a + b.d we are restricting 
compliance to conversations in which no synchronization on the name b happens. 
While contracts account for non-determinism that is internal to each process—being 
it a client or a service—, they cannot handle the “system” non-determinism that 
springs from process synchronization. In the example above, the failure results from 
the interaction of two external choices, a.e + b.c.e and a + b.d, which yields non- 
determinism at system level and which does not prevent a priori  a synchronization 
on the name b. By preventing the synchronization on the name b, the client a.e + 
b.c.e can terminate successfully. 

In summary, the strong subcontract relation implements a safe substitutability 
relation for services that are compatible, but is excessively demanding because it 
takes into  account  every possible synchronization.  Our theory of contracts will 
define a safe substitutability relation for services that can be made compatible. 
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3.   THEORY OF CONTRACTS 
At the end of the previous section we said that we wanted a subcontract relation 
σ � τ such that a service with contract τ can be made compatible with a service 
with contract σ. The keypoint of the discussion is the “can be made”. 

Of course we do not want to consider arbitrary transformations of the service, e.g. 
transformations that alter the semantics of the service. In fact, we cannot hope to 
affect in any way the internal non-determinism of a service as the service is typically 
considered  as an unmodifiable black box. Instead we look for transformations that 
embed a τ service in a world of clients of σ servers so that such clients will perceive 
their interaction as being carried over a service with contract σ (or possibly a more 
deterministic one). Roughly speaking we want to filter out all behaviors of the τ 
contract that do not belong to the possible behaviors of σ world, and leave the others 
unchanged. This is, precisely, the characterization of an explicit coercion from τ to 
σ (recall that the subcontract relation is the inverse of a service subtyping relation; 
cf. Footnote 1 page 3): an embedding function that maps possible behaviors of τ 
into the same behaviors of σ (thus, it does not add new computation). 

 
3.1   Weak subcontract relation 
The idea is that σ � τ if there exists some (possibly empty) set of actions belonging 
to the world of τ that, if shielded, can make a τ service appear as a σ service. This 
is formalized by the following definition: 

 

Definition 3.1 (weak subcontract).  W  is a weak subcontract relation if 
(σ, τ ) ∈ W implies that if τ ⇓ r, then there exists sr  ⊆ r such that (1) σ ⇓ sr  and 
(2) for all α ∈ sr  we have (σ(α), τ (α)) ∈ W . 

We denote by � the largest weak subcontract  relation. 
 

The basic intuition  about the weak subcontract relation is that  a client  that 
interacts successfully with  a service with  contract σ must be  able to complete 
whatever ready set is chosen from σ. If we want to replace the service with another 
one whose contract is τ , we require  that  whatever ready set r is chosen from τ 
there is a smaller one sr  ⊆ r in σ such that all of the continuations with respect to 
the actions in sr  are in the weak subcontract relation. However, in order to avoid 
interferences we might need to filter out the actions in r \ sr . 

First  of all notice that  the weak subcontract relation includes  the strong one 
(condition  (1) is essentially the same and condition (2) is weaker), so that,  for 
example, a ⊕ b.c � a holds. Additionally,  we also have a � a + b.d since a service 
with contract a + b.d can be made to behave as a service with contract a by filtering 
out the b action.  On the other hand, a ;� a ⊕ b.c since there is no way to make 
a ⊕ b.c behave  as a by simply filtering out actions (filtering out the b action from 
a ⊕ b.c yields a ⊕ 0, not a). Finally, we also have a ⊕ b.c � a + b.d, again by filtering 
out the b action. In this case, the filtered service (a + b.d) is not made equivalent 
to the smaller service (a ⊕ b.c) but rather to one of its more deterministic behaviors 
(a). 

 

3.1.1   Weak compliance. In contrast with the “strong”  case, for the weak sub- 
contract relation it was more intuitive to provide its coinductive characterization 
first.  We now face the problem of understanding which notion of compliance in- 



A Theory of Contracts for Web Services 17 · 

 

 

 

i 

i 

i 

i i 

D 

i 

i 
l 

def    

 

duces the weak subcontract relation. As we will see, this is an essential intermediate 
step as it provides the necessary insight for devising the practical solution to the 
problems described in §2.4. 

 

Definition 3.2 (weak compliance). D is a weak compliance relation if (ρ, σ) ∈ 
D implies that there exists a finite set of actions a ⊆ N  ∪ N   such that: 

 

(1 ) ρ ⇓ r and σ ⇓ s implies e ∈ r or co(r) ∩ a ∩ s ;= ∅, and 
α α 

(2 ) α ∈ a, ρ −→ ρl  and σ −→ σl  implies (ρl, σl) ∈ D . 
 

We denote by -- the largest weak compliance  relation. 
 

The existence of the set a in the above definition is independent of the ready sets of 
the client and of the service. This reflects the fact that the internal non-determinism 
of the interacting parties cannot be affected. 

The following theorem proves that  -- is the compliance relation inducing �. 
 

Theorem 3.3.  σ � τ if and only if for all ρ, ρ -- σ implies ρ -- τ . 
 

Proof. (⇒) Let W be a weak subcontract relation such that (σ, τ ) ∈ W and 
assume ρ -- σ. Let D be a weak compliance relation such that (ρ, σ) ∈ D . To get 
ρ -- τ it suffices to prove that 

 
d=ef  {(ρ , τ ) | ∃σ , (ρ , σ ) ∈ D ∧ (σ , τ ) ∈ W }

 
D l l l l l l l l 

 

is a weak compliance relation since (ρ, τ ) ∈ D l. Let (ρl, τ l) ∈ D l, and let σl  be the 
corresponding contract given by the definition of D l. Let al be the set of actions 
given by (ρl, σl) ∈ D . Let s1 , . . . , sn be the ready sets of τ l. Because (σl, τ l) ∈ W , 
for each si   there exists a ready set sl ⊆ si   of σl  which satisfies the conditions 
of Definition 3.1. Let a d=ef  al ∩ 

U
 n 
i=1 sl .  We now prove that  this a satisfies the 

).  As regards condition (1), assume ρl  ⇓ r 
and τ l ⇓ s.  Then s = si  for some i.  If e ∈ r there is nothing to prove. Assume 
e ;∈ r.   Then from (ρl, σl) ∈ D  we know that  co(r) ∩ al ∩ sl ;=  ∅.   We  have 
al ∩ sl = a ∩ sl ⊆ a ∩ si , hence we conclude co(r) ∩ a ∩ si   ;=  ∅.   As regards 

α α α 
condition (2), assume α ∈ a and ρl  −→ and τ l −→. Then σl  −→, because α is 
in some sl ; and α is also in al, thus (ρl(α), σl(α)) ∈ D by definition of al. From 
α ∈ sl  we also have that (σl(α), τ l(α)) ∈ W .  We conclude (ρl(α), τ l(α)) ∈ D l by 
definition of . 

(⇐) We prove that 
 

W d=ef  {(σ, τ ) | ∀ρ, ρ -- σ ⇒ ρ -- τ } 
 

is a weak subcontract relation.  Let (σ, τ ) ∈ W .  As regards condition (1) in Def- 
inition  3.1, let r1 , . . . , rn be all the (distinct)  ready sets of σ.  By contradiction, 
suppose that there exists a ready set rl  such that τ ⇓ rl  and for every 1 ≤ i ≤ n 
we have ri ;⊆ rl, namely there exists αi  ∈ ri \ rl.  Let ρ = 

L
1≤i≤n αi .e. By con- 

struction we have ρ -- σ but ρ -- τ , which is not possible. As regards condition (2) 
in Definition 3.1, let τ  ⇓ rl  and k ∈ {1, . . . , n} be such that  rk   ⊆ rl  and rk   is 
minimal among the ri ’s. We take rk  as the ready set sr   in the definition of weak 
subcontract relation. If rk  = ∅, then condition (2) trivially holds. Assume rk  ;= ∅. 
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d=ef   {(
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For every α ∈ rk , let ρα be a client contract such that ρα  -- σ(α).  Notice that for 
every i ∈ {1, . . . , n} \ {k}, we have ri \ rk  ;= ∅ because the ri ’s are all distinct and 
rk  is minimal. Let 

ρ d=ef  L  
i∈{1,...,n}\{k},β∈ri \rk β

  
.e + 

EB
 
 
α∈rk 

 
α.ρα . 

By construction ρ -- σ, hence ρ -- τ by definition of W . Furthermore, the set a 
in ρ -- σ must be at least as large as rk  because, by construction of ρ, ρ cannot 
be (weakly) compliant with σ if any of the actions in rk  is filtered out. Thus, for 
every α ∈ rk , from ρ -- σ we derive ρα  -- σ(α), hence ρα  -- τ (α).  Because the ρα ’s 
are arbitrary, we conclude (σ(α), τ (α)) ∈ W by definition of W . 

3.1.2   Comparison with other relations. In §2.4 we said that the relation � de- 
fined by equation (1) was nearly what we sought for, but for the lack of transitivity 
it was not a preorder.  The following theorem shows that � obviates this problem. 

Theorem 3.4.  The subcontract relation � is the transitive closure of �. 
 

Proof. We did not define dual(σ)  formally here, so we will give an equivalent 
definition of � not based on the notion of dual contract, which was also the defi- 
nition used in [Carpineti et al. 2006], and just give the intuition  of how we obtain 
it using dual(σ).  The important property about dual(σ)  is that its ready sets are 
defined as all the possible sets obtained by picking one action in each ready set of σ, 
and taking their co-actions. This can be seen by looking at the definition of observ- 
able ready sets and thinking that we just exchange internal and external choices. 
Now if we look at Definition 2.6 and assume (dual(σ), τ ) ∈ C where C is a strong 
compliance relation, then the first condition says that any ready set of τ contains 
at least one action from each ready set of dual(σ),  which is equivalent to the fact 
that it contains a ready set of σ. Translation of condition (2) is straightforward, so 
we get that � is the largest relation R such that (σ, τ ) ∈ R implies: 

 

(1) τ ⇓ r implies σ ⇓ s for some s ⊆ r, and 
(2) σ  α

 and τ   α
 implies (σ(α), τ (α)) ∈ R. 

 

Now let us prove  that  � is the transitive  closure of the relation thus defined. 
Note that the condition (1) is the same in both relations, and that condition (2) 
in Definition 3.1 is a weakened version of condition (1) for R, so obviously � ⊆ � 
and so does the transitive closure of �, � being itself transitive. So what we have 
to show is that two contracts related by � are also related by the transitive closure 
of �. Let W be a weak subcontract relation such that (σ, τ ) ∈ W . Let 

 
def R1    = {(σ, 

EB
τ ⇓r 

L
α∈sr  

α.σ(α)) | (σ, τ ) ∈ W } 
R2  τ ⇓r α∈sr  

α.σ(α), τ ) | (σ, τ ) ∈ W } 

where, for each ready set r of τ , we write sr  for the ready set of σ such that sr  ⊆ r 
that satisfies condition (2) in Definition 3.1. It is trivial  to verify that R1 ∪ R2  ⊆ �, 
from which we conclude that W is included in the transitive closure of �. 

 

For what concerns the inclusion of the strong relation in the weak one note that 
if we compare Definition 3.1 with Definition 2.8, we see that they differ on the set 
of α’s considered in condition (2).  The latter  requires that  whatever interaction 
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f → 

f → f → f → 

−→ 

−→ f α −→ −→ 

−→ 
−→ 

f f g f f g 

 

may happen between a client and a server, the relation must be satisfied by the 
continuations. The former instead requires this to happen only for interactions on 
actions that are expected for the smaller contract. This means that with the weak 
subcontract relation all the actions that are not expected by the smaller contract 
must not take part in the client-server interaction. If we want to replace a server by 
a different server with a (weak) super-contract, then we must ensure that the client 
is shielded from these unexpected actions. The technical instrument to ensure it 
are the filters we define next. 

 
3.2   Filters 
A filter is the specification of a (possibly infinite) prefix-closed regular set of traces : 

 
Definition 3.5 (filters).  A filter is a possibly infinite term coinductively gen- 

erated by the following grammar. 
 

f ::= 0 | α.f | f ∨ f | f ∧ f 
 

and satisfying the following conditions: 
 

(1 ) filter terms are regular, 
(2 ) on every infinite  branch of a filter term there are infinitely many occurrences 

of the prefix constructor. 
 

The filter  0 is the  one that  allows no actions; the filter  α.f allows those traces 
beginning with action α and followed by the traces allowed by f ; the filter f ∨ g 
represents the disjunction of f and g and it allows those traces that  are allowed 
either by f or by g; finally, the filter  f ∧ g represents the conjunction of f and 
g and it allows those traces that are allowed by both f and g. The conditions of 
regularity and contractivity  are standard. The latter also provides a well-founded 
order for the induction used in the next definitions. 

α α 
Much like contracts, filters too are equipped with the relations −f → and −→. 

Definition 3.6 (filter transition). Let f −α   be the least relation such that: 
 

α α α α 
α α ;= β f −f → g −f → f −f → g −f → 

0 −f →  

β.f α −f → f ∨ g −α
 f ∧ g −α

 f ∧ g −α
 

 

The transition relation of filters, noted  α
 

 
, is the least relation satisfying the rules: 

 
α α α α α α 

α.f  α
 

f −→ f l g −→ gl 

f ∨ g −→ f l ∨ gl 

f −→ f l g −f → 
f ∨ g  α   f l 

f −→ f l g −→ gl 

f ∧ g  α   f l ∧ gl 
 

and closed under mirror  cases for the disjunction.  We write f  α 
 
if there exists 

f l such that f  α
 f l. 

 
This transition relation allows us to state more formally what we said above about 
sets of traces:  the semantics of a filter is the prefix-closed regular language defined 

f def α f l
 

on the alphabet of actions by [ ] = {ε} ∪ {αϕ | f −→ f l, ϕ ∈ [ ]}.  Then it can 
be easily checked that [ ∨ g] = [ ] ∪ [ ] and [ ∧ g] = [ ] ∩ [ ] (notice that the 
intersection and the union of prefix-closed  sets is again prefix-closed). 
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f → 
−→ 

−→ α 

−→ α 

−→ 

−→} 

α  −→  α 

 
 We consider two filters to be equal if they have the same semantics and adopt a 

notation similar to the one for contracts: we write 
V

i∈{1,...,n} fi for f1 ∨ f2 ∨ · · · ∨ fn 

and 
1\

i∈{1,...,n} fi for f1  ∧ f2  ∧ · · · ∧ fn . By convention we have 
V

i∈∅ fi = 0. The 
application of a filter f to a contract σ, written  f (σ), produces another contract 
where only the allowed actions are visible: 

Definition 3.7 (filter application). The application of a filter f to a con- 
tract σ, written f (σ), is inductively defined as follows: 

 

f (0)  = 0 
f (α.σ)  = 0  if f −α

 

f (α.σ)  = α.f l(σ)  if f  α  f l 
f (σ + τ ) = f (σ) + f (τ ) 
f (σ ⊕ τ ) = f (σ) ⊕ f (τ ) 

 

Filter  application is monotone with  respect to the strong subcontract preorder. 
This property, which is fundamental in proving most of the results that  follow, 
guarantees that equivalent contracts remain equivalent if filtered in the same way. 

Proposition 3.8.  σ ç τ implies f (σ) ç f (τ ). 

Proof. It is sufficient to show that 
def S = {(f (σ), f (τ )) | σ ç τ } 

 

is a strong subcontract relation. Let (f (σ), f (τ )) ∈ S . As regards condition (1) in 
the definition of strong subcontract relation, assume f (τ ) ⇓ s.  Then there exists 
sl  such that τ ⇓ sl  and s = f (sl). From σ ç τ we derive that there exists r such 
that σ ⇓ r and r ⊆ sl.  We observe f (r) ⊆ f (sl) = s and we conclude by observing 
that  f (σ) ⇓  f (r).   As regards condition (2), assume f (τ )  α  .  Then f −→ f l 
and τ  α

 .  From the hypothesis  σ ç τ  we derive  σ −→ and σ(α) ç τ (α).   We 
conclude f (σ)   α

 

f (τ )(α) = f l(τ (α)). 
and (f (σ)(α), f (τ )(α))  ∈ S because f (σ)(α)  = f l(σ(α)) and 

 

Filters allow us to express the weak subcontract relation in terms of the strong 
one: 

Theorem 3.9.  σ � τ if and only if there exists a filter f such that σ ç f (τ ). 
Proof. With  an abuse of notation we write f (r), the application of a filter f 

to a set of actions r, for the set {α ∈ r | f  α . 
(⇐) Let S be a coinductive strong subcontract relation. We show that 

 
def W  = {(σ, τ ) | ∃f, (σ, f (τ )) ∈ S } 

 

is a weak subcontract relation. Let (σ, τ ) ∈ W and let f be the corresponding filter. 
Regarding condition (1) in Definition 3.1, assume τ ⇓ r.  From (σ, f (τ )) ∈ S we 
know that there exists s ⊆ f (r) such that σ ⇓ s and we conclude s ⊆ f (r) ⊆ r. 
Regarding condition (2) in Definition 3.1, take α ∈ s. From (σ, f (τ )) ∈ S we know 
(σ(α), f (τ (α))) ∈ S where f  α  f . Hence we conclude (σ(α), τ (α)) ∈ W . 

(⇒) Let W be a weak subcontract relation. For every (σ, τ ) ∈ W , let 

a(σ, τ ) d=ef  U 
 

τ ⇓r sr 
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(σ,τ ) 

α 

 

where sr  ⊆ r is such that σ ⇓ sr  and sr  satisfies condition (2) in Definition 3.1. 
Basically a(σ, τ ) is the  set of actions that  need not be shielded for proving that 

α α 
σ � τ . Notice that α ∈ a(σ, τ ) implies σ −→ and τ −→. 

For every (σ, τ ) ∈ W , let 
 

f(σ,τ ) 
d=ef  V  

α∈a(σ,τ ) α.f(σ(α),τ (α)) . 
ϕ 

Notice that,  for every contract σ, the set {σ(ϕ)  | σ −→}  is finite because σ is 
ϕ ϕ 

regular. Hence, for every (σ, τ ) ∈ W , the set of pairs {(σ(ϕ), τ (ϕ)) | σ −→, τ −→} 
is also finite, hence each f(σ,τ ) is well defined, regular, and, by construction, also 
contractive. Now we prove that 

 

S d=ef  {(σ, f (τ )) | (σ, τ ) ∈ W } 
 

is a strong subcontract relation.  Let (σ, f(σ,τ ) (τ )) ∈ S .  As regards condition (1) 
in the definition of coinductive  strong subcontract relation, assume τ  ⇓  r.   By 
definition of a(σ, τ ) there exists sr  ⊆ r such that σ ⇓ sr  and also sr  ⊆ a(σ, τ ), so 
we conclude sr  ⊆ f(σ,τ ) (r).  As regards condition (2) in the definition of coinductive 

α α 
strong subcontract relation, assume f(σ,τ ) (τ ) −→. Then τ −→ and there exists sr 

such that σ ⇓ sr  and α ∈ sr , hence we obtain σ −→ and a(σ, τ ) ;= ∅.  From (σ, τ ) ∈ 
W we derive (σ(α), τ (α))  ∈ W so we conclude (σ(α), f(σ(α),τ (α)) (τ (α)))  ∈ S by 
definition of S . 

 
In terms of compliance this theorem yields the following corollary: 

Corollary 3.10. ρ -- σ if and only if there exists a filter f such that ρ -- f (σ) 

Since -- ensures that  a client will  either continuously interact or successfully ter- 
minate with  a strongly compliant  service, this corollary tells us that  filters are 
the operational device that ensures the same property in case of weak compliance. 
Properties of client/service interactions are formally stated in §4. 

 

3.2.1   Examples of filters. Let us consider again our example of a ⊕ b.c and 
a + b.d. These contracts are not related by the strong subcontract relation, but 
any client  complying with  the  first  one has to be ready to read on a and then 
terminate. Then, we see that the second one can be made  compliant with any such 
client, because it is ready to write on a:  so we are sure that  synchronization on 
a is possible, and that if it occurs the client will terminate.  The point is then to 
ensure that this synchronization will indeed occur and that the channel  b will not 
be selected instead, which would lead to a deadlock. This is done by applying to 
a + b.d the filter f = a, which lets the sole action a pass. Formally, we have that 
f (a + b.d) = a, and a ⊕ b.c ç a holds. 

We have already hinted in the introduction  that  to prove an inclusion such as 
a.b � (a.(a + b)) + b.c filters must be able to selectively block along the computation, 
as b must be blocked only at the first step of the interaction and a only at the second 
step of the interaction. In this case the sought behavior is obtained by the single- 
threaded filter f = a.b which when applied to the contract on the right yields the one 
on the left. Such fine-grainedness of filters is useful also in practice. Consider again 
the last example of §2.2.2, where we extended the service by a “1-click ordering” 
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σ  σ 

l 

 

 
Table I.   Deduction system for the weak subcontract relation. 

 
f : σ ≤ τ  g ∧ I (τ )    f 

(e1)  σ + σ = σ 
(e2)  σ + τ = τ + σ 
(e3)  σ + (σl + σll) = (σ + σl) + σll 
(e4)  σ + 0 = σ 

 
(i1)  σ ⊕ σ = σ 
(i2)  σ ⊕ τ = τ ⊕ σ 

(weak) 
 
 
 
(trans) 

 

f ∨ g : σ ≤ τ 
 
f : σ ≤ σl g : σl ≤ σll 

f ∧ g : σ ≤ σll 

 
f : σ ≤ τ 

(i3)  σ ⊕ (σl ⊕ σll) = (σ ⊕ σl) ⊕ σll 
 

(d1)  σ + (σl ⊕ σll) = (σ + σl) ⊕ (σ + σll) 

(Prefix) 
α.f : α.σ ≤ α.τ 

(d2)  σ ⊕ (σl + σll) = (σ ⊕ σl) + (σ ⊕ σll) (IChoice)  
f : σ ≤ σ f : τ ≤ τ l 

(d3)  α.σ + α.τ = α.(σ ⊕ τ ) 
(d4)  α.σ ⊕ α.τ = α.(σ ⊕ τ ) 

f : σ ⊕ τ ≤ σl ⊕ τ l 
 

f : σ ≤ σl f : τ ≤ τ l 
(Must) I (σ) : σ ⊕ τ ≤ σ 

 
(Depth) 0 : 0 ≤ σ 

(EChoice) 
f : σ + τ ≤ σl + τ l 

 
 

capability.  We said that backward compatibility  can be obtained by filtering out 
the newly added Buy action. But if we slightly expand the resulting contract σl 

 

. . . Catalog.(Logout+Buy.σB +AddToCart.(Logout+Buy.(. . . ))) 
 

we notice that  there is also a Buy action after AddToCart.  In order  to make a 
service of contract σl  implement the contract σ defined in §2.2.2, one must block 
the Buy action offered right after the Catalog action, but allow the old Buy action 
in the continuation of AddToCart to pass through. This is performed by the filter 
obtained from σ by replacing ∨ for every sum (either internal or external) occurring 
in it. 

 
3.3   Deduction system for the weak subcontract relation 
Filters can also be used as proofs (in the sense of the Curry-Howard isomorphism) 
for the weak subcontract relation. More specifically, the idea is to devise a deduction 
system within which a derivable judgment of the form f : σ ≤ τ implies that σ � τ , 
and f is a filter that embeds services with contract τ into the world of σ-compliant 
clients. 

The definition of such a deduction system requires a few auxiliary notions. First 
we have to define the “identity” filter, that is the one that proves isomorphic (with 
respect to an interpretation of filters as morphisms) contracts. 

 

Definition 3.11. The identity filter for a contract σ, denoted by I (σ), is defined 
as 

I (σ) d=ef  V   
α 

−→ 

 
α.I (σl) 

It is easy to see that I (σ)(σ) ':: σ. 
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−→ −→ 

 

Then, we need a way for comparing filters.  Filters can be compared  according 
to the actions that they let pass. In the deduction system the need for comparing 
filters arises naturally in the weakening rule, where we want to replace a filter with 
a “larger” one (a filter that allows more actions). This can be done safely only if the 
larger filter does not thwart the functionality of the original filter by re-introducing 
actions that must be kept hidden. The filter pre-order will also be fundamental in 
§3.4, in order to define the “best” filter that proves σ � τ . 

 
Definition 3.12 (filter order). The ordering relation  on filters  is the 

largest relation  such that f g and f  α
 f l implies g α

 gl  and f l gl. 
We write f = g for f g and g f .  

 
f g .  This

 
In terms of filter semantics we have that f g if and only if [ ] ⊆ [ ] 

set-theoretic interpretation  gives us the relation between operators ∨ and ∧ and 
filter  ordering:  the conjunction of two  filters is their greatest lower bound, and 
their disjunction is their least upper bound. 

Table I defines the deduction system for �.  In the table we use a single axiom 
σ = τ as a shorthand for two axioms I (τ ) : σ ≤ τ and I (σ) : τ ≤ σ. The equalities 
and rule (Must) are well known since they fully characterize the strong subcontract 
relation, which coincides with  the must preorder [De Nicola and Hennessy 1984; 
Hennessy 1988]. Notice that  in the rule (Must) no action needs to be actually 
filtered out and the filter  I (σ) ∨ I (τ ) would work as well.   In  fact, this is the 
only axiom for safely enlarging a contract without  the intervention of any filter 
(which is expected since this axiom characterizes strong compliance, where filters 
are not needed). Rule (Depth) formalizes depth extension of contracts, where 
a contract can be prolonged if no action is made visible from the continuation. 
Rule (Weak) shows how to safely enlarge a filter  f to f ∨ g:  the premise g ∧ 
I (τ )      f states that  g may allow actions not allowed  by f , provided that  such 
actions are not those that have been hidden for the purposes of proving f : σ ≤ τ . 
Rule (Trans) is standard and the resulting filter is the composition filter.  Three 
forms of (limited)  pre-congruence follow.  Rule (Prefix) is standard and poses 
no constraints. Rules (IChoice) and (EChoice) state the limited precongruence 
property for internal and external choices, respectively. The fundamental constraint 
is that two contracts combined by means of ⊕ or + can be enlarged, provided that 
they can be filtered in the same way. This requirement has an intuitive explanation: 
the filter that mediates the interaction of a client with a service is unaware of the 
internal choices that have been taken by the parties at a branching point.  So, it 
must be possible to use the same filter that works equally well in all branches in 
order for the branches to be enlarged. 

 

3.3.1   Properties. First of all notice that the deductions of the system we devised 
in the previous section may be infinite.  However valid deductions are regular and 
contractive. This is a direct consequence of the regularity and contractivity  of both 
contracts and filters. This is easily seen by observing that every deduction rule on 
the right hand side of Table I deconstructs in its premises either the filter or the 
contracts that occur in its consequence. This implies that infinite valid derivations 
are regular and that on every infinite branch of the derivation there are infinitely 
many applications of the rule (Prefix). 
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f → 

f → 

−→ 
g  α

 

σ   α 

f → 
α 

−→ −→ −→ 
−→ α 

−→ −→ 

 

The deduction system is sound and complete with respect to � and the set of 
filters, in the sense that it proves all and only the pairs of contracts that are related 
according to Definition 3.1, and for any such pair it deduces all and only the filters 
that validate the pair according to Theorem 3.9. 

Theorem 3.13 (soundness). If f : σ ≤ τ , then σ ç f (τ ). 
Proof. Let S be the least relation such that  if f : σ ≤ τ  is derivable, then 

(σ, f (τ )) ∈ S . It is sufficient to prove that S is a coinductive strong subcontract 
relation.  Suppose f : σ ≤ τ  is derivable, then (σ, f (τ )) ∈ S .  We have to prove 

α α 
that  f (τ ) ⇓ r implies σ ⇓ rl  and rl  ⊆ r and that  f (τ ) −→ implies σ −→ and 
(σ(α), f (α)(τ (α))) ∈ S . We do so by induction on the maximum depth of an axiom 
or of an unnested instance of rule (Prefix) in the derivation tree of f : σ ≤ τ and 
by cases on the last rule applied. Such depth is always finite because contracts are 
contractive (hence, any infinite branch of the derivation tree must contain infinitely 
many instances of rule (Prefix)).  In the following we only show the nontrivial 
cases. 

Assume the last rule was (Prefix).  Then σ ≡ α.σl, f ≡ α.f l, τ  ≡ α.τ l, and 
f l : σl ≤ τ l is derivable (we use ≡ to denote syntactic equality). Suppose f (τ ) ⇓ r. 

α α 
Then r = {α} and we notice that σ ⇓ {α}. We also notice that τ −→ and σ −→ 
and that this is the only possible transition for σ and τ . Furthermore, σ(α) ≡ σl, 
f (α)  ≡ f l, and τ (α)  ≡ τ l, and we conclude  because f l : σl  ≤ τ l is derivable by 
hypothesis,  hence (σ(α), f (α)(τ (α))) ∈ S by definition of S . 

Assume the last rule was (Must). Then σ ≡ σl ⊕τ and f ≡ I (τ ). Suppose f (τ ) ⇓ 
α α 

r.  Then τ ⇓ r and σ ⇓ r.  Suppose f (τ ) −→. We have two subcases: if σl −→, then 
σ(α) ≡ σl(α) ⊕ τ (α) and we conclude f (α) : σl(α) ⊕ τ (α) ≤ τ (α) by (Must).  If 
σl −α  , then σ(α) ≡ τ (α), hence we conclude by reflexivity of ≤ (indeed σ = σ ⊕ σ 
and I (σ) : σ ⊕ σ ≤ σ). 

Assume the last rule was (Depth). Then σ ≡ 0 and f ≡ 0.  The condition on 
ready sets of f (τ ) trivially holds because σ ⇓ ∅.  Furthermore f (τ ) −α   for every α. 

Assume the last rule was (Weak). Then f ≡ f l ∨ g, f l : σ ≤ τ , and g ∧ I (τ ) f l. 
Suppose f (τ ) ⇓ r.  Since by definition f is less restrictive than f l, there is a rl ⊆ r 
such that  f l(τ ) ⇓ rl.   By induction hypothesis, σ has a ready set rll such that 
rll ⊆ rl, hence we conclude rll ⊆ r.  Suppose f (τ )   α  . We have two subcases.  If 

−→, then f (α) ≡ f l(α)∨g(α) and g(α)∧I (τ (α))  f l(α). By induction hypothesis 
−→ and f l(α) : σ(α) ≤ τ (α)  is derivable, hence we derive f (α) : σ(α) ≤ τ (α) 

by (Weak), so we conclude (σ(α), f (α)(τ (α)))  ∈ S by definition of S . If g −α  , 
then f (α) ≡ f l(α). By induction hypothesis σ −→ and f l(α) : σ(α) ≤ τ (α), hence 
(σ(α), f (α)(τ (α))) ∈ S by definition of S . 

Assume the last rule was (Trans).  Then f ≡ f l ∧ g, f l : σ ≤ σl, g : σl  ≤ τ . 
Suppose τ ⇓ r.  By induction hypothesis σl  has a ready set rl  such that rl ⊆ g(r). 
By induction hypothesis σ has a ready set rll such that rll ⊆ f l(rl) ⊆ f l(g(r)) = 
f (r).   Suppose f (τ )   α

 .  Then g(τ )   α
 .  By induction hypothesis σl α

 and 
g(α)  : σl(α) ≤ τ (α)  is derivable.  From f (τ )  α   we also derive  f l −→, hence 
f l(σl)  α

 .  Again by induction hypothesis, σ α
 and f l(α) : σ(α)  ≤ σl(α) is 

derivable. By (Trans) we conclude that f (α) : σ(α) ≤ τ (α) is derivable. 
Assume the last rule was (IChoice). Then σ ≡ σl ⊕ τ l, τ ≡ σll ⊕ τ ll, f : σl ≤ σll, 
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−→ 

−→ −→ −→ −→ 

−→ 
−→ 

ϕ 

 

and f : τ l ≤ τ ll.  Suppose f (τ ) ⇓ r and assume, without  loss of generality, that 
f (τ ll) ⇓  r.   By induction hypothesis we obtain rl  such that  τ l ⇓  rl  and rl  ⊆ 
r.   We  conclude by observing that  σ ⇓  rl.   Suppose f (τ )   α  .  We  have three 
subcases, depending  on which contracts between σll and τ ll admit α-successors. 
Assume σll  α

 and τ ll α
 .   By induction  hypothesis σl α

 and τ l α
 and 

f (α)  : σl(α) ≤ σll(α) is derivable and f (α)  : τ l(α) ≤ τ ll(α) is derivable.  Then 
we conclude  f (α)  : σ(α)  ≤ τ (α)  is also derivable because σ(α)  ≡ σl(α) ⊕ τ l(α) 

α α 
and τ (α) ≡ σ ll(α) ⊕ τ ll(α). On the other hand, suppose σll −→ but τ ll −f →.  By 
induction hypothesis σl    α and f (α) : σl(α) ≤ σll(α) is derivable. We distinguish 
two  further  subcases. Either  (i) τ l α

 or (ii) τ l α −f → .  In subcase (i) we have 
σ(α) ≡ σl(α) ⊕ τ l(α). By (Must) we derive I (σl(α)) : σ(α) ≤ σl(α), from f (α) ∧ 
I (σl(α))  I (σl(α)) and (weak) we obtain f (α)  : σ(α)  ≤ σl(α) and now we 
conclude f (α)  : σ(α)  ≤ τ (α)  by (trans) and noticing that  τ (α)  ≡ σll(α).  In 
subcase (ii) we have σ(α)  ≡ σl(α) and now f (α)  : σ(α)  ≤ τ (α)  is derivable by 
hypothesis. 

Assume the last rule was (EChoice). Then we can proceed as for the previous 
case, the only thing that changes being the reasoning on ready sets. The details 
are left to the reader. 

 

While the soundness of the deduction system can be easily established, its com- 
pleteness is less immediate, but the proof of this fact follows a standard pattern: 
completeness is proved for a restricted class of contracts which are said to be in some 
normal form and then it is shown that it is always possible to rewrite an arbitrary 
contract to an equivalent one which is in normal form by using the axioms. 

As regards the actual definition of the normal form, we notice that it is always 
possible to add new ready sets to a given contract σ without altering its semantics 
(according to '::), so long as I (σ) does not change and the new ready sets contain 
older ones: for example, σ ⊕ τ ':: σ ⊕ τ ⊕ (σ + τ ).  If we saturate the set of ready 
sets of a contract by adding to it every possible ready set meeting the conditions 
above, we can build a unique (up to commutativity  and associativity) normal form 
for each equivalence class. This normal form is defined  as follows: 

 

Definition 3.14 (normal form [Hennessy  1988]).  For any contract σ, we 
define its saturated set of ready sets: 

 

R(σ) d=ef  {r ⊆ init(σ) | ∃s, σ ⇓ s ∧ s ⊆ r} 
 

The normal form of σ is then defined up to associativity and commutativity of 
the choices by the following recursive expression: 

nf(σ)  d=ef  EB
 
 
r∈R(σ) 

L 
α∈r 

 
α.nf(σ(α)) 

the empty external choice being defined as 0 (it is not necessary to define the empty 
internal choice,  because any contract has at least one ready set). Notice that nf(σ) 
is well defined  because σ is regular, hence {σ(ϕ) | σ −→} is finite. 

 

The normal form enjoys the following properties: (1) In a given mix of internal 
and external choices (either at top-level or under a given sequence of prefixes), a 
prefix α is always followed by the exact same continuation. (2) If σ and τ are two 
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Table II.   Derived rules. 
 

(s1)  σ ⊕ τ = σ ⊕ τ ⊕ (σ + τ ) 
(s2)  σ ⊕ (σ + τ + ρ) = σ ⊕ (σ + τ ) ⊕ (σ + τ + ρ) 

 
(C-Prefix) 

 
σ = σ  

α.σ = α.σ  

(α.σ  + τ  ) ⊕ (α.σ    + τ  ) = 
 

σ = σ 
(C-EChoice) 

 
τ = τ 

(co) (α.(σ   ⊕ σ  ) + τ  ) ⊕ (α.(σ   ⊕ σ  ) + τ  ) σ + τ = σ  + τ   
 
 

(Width) 
I (σ) ∧ I (τ )     0 
I (σ) : σ ≤ σ + τ 

 
(C-IChoice) 

σ = σ     τ = τ   
σ ⊕ τ = σ  ⊕ τ   

 
 

normal form contracts such that  σ ç τ , condition (1) of the strong subcontract 
relation holds if and only if every ready set of τ is also a ready set of σ. These two 
properties lead to the fact that two equivalent normal forms are syntactically equal 
up to commutativity  and associativity of the choice operators. 

To prove that every contract can be rewritten to an equivalent one in normal form 
it is useful to derive a handful of auxiliary  axioms and rules (Table II) that  will 
be fundamental in the following. Axioms (s1) and (s2) will be used for saturating 
ready sets as required by the definition of normal form. Axiom (co) shows that it is 
possible to rewrite a contract so that all the continuations under the same prefix α 
are equal. Rules (C-Prefix), (C-IChoice), and (C-EChoice) are strengthened 
versions of rules (Prefix),  (IChoice), and (EChoice) showing the congruence 
properties of = with respect to the prefix and the two choices. Such rules will allow 
us to replace equivalent  contracts in arbitrary  contexts.  Finally,  rule (Width) 
states that  a service can be extended with  additional capabilities, provided that 
such capabilities are disjoint from those that were available before the extension. 

 
Lemma 3.15. The axioms and rules in Table II are derivable from those in Ta- 

ble I. 
 

Proof. In the rewritings that  follow we indicate only the most relevant  laws 
that are applied. As regards (s1): 

 
σ ⊕ τ  = (σ ⊕ τ ) + (σ ⊕ τ ) (1) 

= σ ⊕ τ ⊕ (σ + τ )  (2) 
 

where (1) is justified by (e1) and (2) is justified by (d1). 
As regards (s2): 

 
σ ⊕ (σ + τ + ρ) = σ + (σ ⊕ τ ) + (σ ⊕ ρ) (1) 

= σ + (σ ⊕ (σ + τ ) ⊕ (σ + ρ) ⊕ (τ + ρ))  (2) 
= σ ⊕ (σ + τ ) ⊕ (σ + ρ) ⊕ (σ + τ + ρ) (3) 
= σ ⊕ (σ + τ ) ⊕ (σ + τ ) ⊕ (σ + ρ) ⊕ (σ + τ + ρ) (4) 
= σ ⊕ (σ + τ ) ⊕ (σ + τ + ρ) (5) 

 
where (1) is justified by (d2),  (2) is justified by (d1),  (3) is justified by (d2),  (4) 
is justified by (i1)  and finally (5) is justified by rewriting the subterm of step (3) 
with the original one. 
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−→} 

1 2 1 2 1 2 

 

As regards (co): 
(α.σ + τ ) ⊕ (α.σl + τ l) 

= (α.σ + τ ) ⊕ (α.σl + τ l) ⊕ (α.σ + α.σl + τ + τ l)  (1) 
= (α.σ + τ ) ⊕ (α.σl + τ l) ⊕ (α.σ + α.σl + τ + τ l) 

⊕ (α.σ + α.σl + τ ) ⊕ (α.σ + α.σl + τ l)  (2) 
= (α.σ + τ ) ⊕ (α.σl + τ l) ⊕ (α.σ + α.σl + τ + τ l) 

⊕ (α.(σ ⊕ σl) + τ ) ⊕ (α.(σ ⊕ σl) + τ l)  (3) 
= (α.σ + τ ) ⊕ (α.σl + τ l) ⊕ (α.(σ ⊕ σl) + τ ) ⊕ (α.(σ ⊕ σl) + τ l) (4) 
= ((α.σ ⊕ α.(σ ⊕ σl)) + τ ) ⊕ ((α.σl ⊕ α.(σ ⊕ σl)) + τ l)  (5) 
= (α.(σ ⊕ σl) + τ ) ⊕ (α.(σ ⊕ σl) + τ l)  (6) 

 

where (1) is justified by (s1), (2) is justified by (s2), (3) is justified by (d3),  (4) is 
justified by (s1), (5) is justified by (d1),  and (6) is justified by (d4)  and (i1). 

Proving (C-Prefix) is trivial.    As regards (C-EChoice), observe that  from 
I (σl) : σ ≤ σl  and I (τ l) ∧ I (σl)     I (σl) we derive  I (σl) ∨ I (τ l) : σ ≤ σl  by an 
application of (Weak).  Similarly we can derive I (σl) ∨ I (τ l) : τ ≤ τ l, hence we 
can apply (EChoice) and derive  I (σl) ∨ I (τ l) : σ + τ  ≤ σl + τ l.  By a similar 
argument we can also derive I (σ) ∨ I (τ ) : σl + τ l ≤ σ + τ , hence σ + τ = σl + τ l. 
Rule (C-IChoice) is analogous. 

As regards (Width), from the axiom 0 : 0 ≤ τ and the hypothesis I (σ)∧I (τ )    0 
we derive I (σ) : 0 ≤ τ . From I (σ) : σ ≤ σ and applying (EChoice) we conclude 
I (σ) : σ + 0 ≤ σ + τ , hence I (σ) : σ ≤ σ + τ . 

 

We  are now ready to prove  that  every contract can be rewritten  into its own 
normal form. 

 

Lemma 3.16 (normal form).  The judgment σ = nf(σ)  is derivable. 

Proof. We define the head normal form of σ as hnf(σ) d=ef  EB
 
 
r∈R(σ) 

L 
α∈r 

 
α.σ(α). 

It is sufficient to prove that  σ = hnf(σ)  is derivable because then what remains 
to prove is σ(α) = hnf(σ(α)), but since σ is regular the number of these proofs is 
the same as the cardinality of {σ(ϕ) | σ   ϕ   , which is finite, hence the (possibly 
infinite) proof of σ = nf(σ)  is regular. 

We prove σ = hnf(σ)  by induction on the maximum depth of a topmost prefix 
in σ and by cases on the structure of σ. If σ ≡ 0, then σ is already in head normal 
form. 

If σ ≡ α.σl, then σ is already in head normal form because σ(α) is σl. 
If σ ≡ σ1 + σ2 , then 

σ = (
EB

r  ∈R(σ ) 
L

α∈r
 α.σ1 (α)) + (

EB
r  ∈R(σ ) 

L
β∈r

 β.σ2 (β))  (1) 
1  1  1 2  2  2 

= 
EB

r  ∈R(σ ),r  ∈R(σ ) (
L

α∈r
 α.σ1 (α) + 

L
β∈r

 β.σ2 (β))  (2) 
1  1  2  2  1  2 

= 
EB

r  ∈R(σ ),r  ∈R(σ ) 
L

α∈r  ∪r
 α.σ(α)  (3) 

1  1  2  2  1  2 

= 
EB

r∈R(σ) 
L

α∈r α.σ(α)  (4) 
where (1) is justified  by the induction  hypothesis and congruence rules, (2) is 
justified  by the repeated use of (d1),  (3) is justified  by (co), and (4) follows 
from  R(σ)  = {r1  ∪ r2   |  r1   ∈ R(σ1 ), r2   ∈ R(σ2 )}.   Indeed, if  r ∈ R(σ), 
then there exist rl and rl such that  σ1   ⇓  rl and σ2   ⇓  rl and rl ∪ rl   ⊆ 
r.   Now

 
1   ⊆ r ∩ init(σ1 )  ⊆ init(σ1 ) and r2   ⊆ r ∩ init(σ2 )  ⊆ init(σ2 ),  hence

 
rl l 
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1 2 

rl 

−→ −→ 

−→ α 

r α∈f (r)  r 

2 

 

r ∩ init(σ1 ) ∈ R(σ1 ) and r ∩ init(σ2 ) ∈ R(σ2 ).  We  conclude by observing that 
(r ∩ init(σ1 )) ∪ (r ∩ init(σ2 )) = r because r ⊆ init(σ1 ) ∪ init(σ2 ).  On the other 
hand, let r1  ∈ R(σ1 ) and r2  ∈ R(σ2 ).  Then there exist ready sets rl and rl   of 
respectively

 
and σ

 
such that rl  ⊆ r1  ⊆ init(σ1 ) and rl  ⊆ r2  ⊆ init(σ2 ). Hence

 
σ1 2  1  2 

1 ∪ rl  ⊆ r ∪ r ⊆ init(σ ) ∪ init(σ ) and we conclude r ∪ r ∈ R(σ) by observing 
1  2  1  2  1  2 

σ rl rl  and init (σ) = init(σ ) ∪ init(σ ). 1  2 
Finally, if σ ≡ σ1 ⊕ σ2 , then 

σ = (
EB

r  ∈R(σ ) 
L

α∈r
 α.σ1 (α)) ⊕ (

EB
r  ∈R(σ ) 

L
β∈r

 β.σ2 (β))  (1) 
1  1  1 2  2  2 

= (
EB

r  ∈R(σ ) 
L

α∈r
 α.σ(α)) ⊕ (

EB
r  ∈R(σ ) 

L
β∈r

 β.σ(β))  (2) 
1  1  1 2  2  2 

= 
EB

r∈R(σ) 
L

α∈r α.σ(α)  (3) 

where (1) is justified by the induction hypothesis and congruence rules, (2) is jus- 
tified by (co), and (3) is justified by the repeated  use of (s1) and (s2). 

We now possess all the technical tools to prove that the deduction system shown 
in Table I is complete for � and the sets of filters that prove it. 

Theorem 3.17 (completeness). If σ ç f (τ ), then f : σ ≤ τ . 
 

Proof. By Lemma 3.16 we can assume that σ and τ are in normal form. Ad- 
ditionally,  for the sake of simplicity  we identify  σ(α),  τ (α),  and f (τ ) with  their 
corresponding normal forms (indeed nf(σ(α)), nf(τ (α)),  and nf(f (τ (α)))  can be 
obtained from σ(α), τ (α), and f (τ ) by repeated  use of (i1)). 

Let P (f, σ, τ ) stand for the proof tree whose conclusion is f : σ ≤ τ . Below we will 
show that P (f, σ, τ ) can be built provided that proof trees P (f (α), σ(α), τ (α)) are 
available for all α such that σ  α

 and f (τ )   α . However, the set {(f (ϕ), σ(ϕ), τ (ϕ)) | 
ϕ ϕ ϕ 

f −→, σ −→, τ  −→} is finite because f , σ, and τ  are regular.  Hence, we overall 
need to show how to build a finite number of proofs P (f (ϕ), σ(ϕ), τ (ϕ))  and so the 
possibly infinite proof of P (f, σ, τ ) is also regular. 

If  τ  ≡ 0, then σ must have an empty ready set hence by (Must) we have 
0 : σ ≤ 0 and we conclude f : σ ≤ τ by (Weak) because f ∧ I (0)  0. 

For the remaining cases, assume 

σ ≡ 
EB

r∈R(σ) 
L

α∈r α.σ(α)  and τ ≡ 
EB

s∈R(τ ) 
L

α∈s α.τ (α) 

and assume f (τ )   α 
 

. From σ ç f (τ ) we have σ −→ 
 

and from the proof P (f (α), σ(α), τ (α)) 
we derive 

 
 

then, by (Prefix), 

 
 

f (α) : σ(α) ≤ τ (α) 
 
 
α.f (α) : α.σ(α) ≤ α.τ (α) . 

 
Now assume τ ⇓ r.  From σ ç f (τ ) and the fact that σ and τ are in head normal 

form we have σ ⇓ f (r).  Let f d=ef  V  
α.f (α) and notice that f ∧ α.I (τ (α)) 

α.f (α).  Hence, by (Weak), 
 
 

and, by (EChoice), 

 

fr : α.σ(α) ≤ α.τ (α) 
 
fr : 

L
α∈f (r) α.σ(α) ≤ 

L
α∈f (r) α.τ (α) . 
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−→ 

 

From f (r) ⊆ r and by applying (Width), 

fr : 
L

α∈f (r) α.σ(α) ≤ 
L

α∈r α.τ (α) . 

Let f l d=ef  V 
 
τ ⇓r fr . From 

U 
 
τ ⇓r f (rl) ∩ r = f (

U 
 
τ ⇓r rl) ∩ r ⊆ f (r) we observe 

that f l ∧ 
V

α∈r α.I (τ (α))  fr . Hence, by (Weak), by iterating over all the ready 
sets of τ , and by (IChoice), we obtain 

f l : 
EB

τ ⇓r 
L

α∈f (r) α.σ(α) ≤ τ . 
Now  

f l : σ ≤ 
EB

τ ⇓r 
L

α∈f (r) α.σ(α) 
 

by possibly applying (Must) for removing all the ready sets of σ that  have dis- 
appeared in f (τ ) hence, by (Trans), we conclude f l : σ ≤ τ .  In order to prove 
f : σ ≤ τ it is sufficient to apply (Weak). This is possible because f ∧ I (τ )     f l. 
Indeed, assume f (τ )   α

 .  Then α ∈ r for some τ ⇓ r, hence σ ⇓ f (r) and now 
α α 

α ∈ f (r).  So, it must be fr −→ from which we conclude f l −→. 
 

3.4   Algorithmic deduction system 
We introduced a device, filters, that allows us to transform a weak subcontract or 
compliance relation into a strong one by shielding the incompatible actions. The 
next step is to infer filters algorithmically, so that the weak relations can be used 
in practice. 

As usual finding a decision algorithm for a containment relation corresponds to 
a cut-elimination process (the cut here being the (trans) rule in Table I), which 
amounts to finding a canonical proof for each provable relation.  In other terms, 
we have to associate every provable weak subcontracting relation with a canonical 
filter that represents all other possible proofs. In order to choose a canonical filter, 
we have to solve two potential problems. First, there usually are several filters that 
work with a given relation. For example, to show that a ⊕ b � a + b, we can either 
let pass only a, only b, or both. The best solution here is to let pass both, because 
we do not want to shield out actions that cannot cause any harm.  This example 
suggests the definition of a notion of “better  filter”,  that is, of a partial order on 
filters that determines which filter is better to use, and such partial order is exactly 

(Definition 3.12). The second problem is that in the example above a filter that 
lets a, b, and, say, c pass will work as well. The intuition  here is that the filter that 
lets just a and b pass  is better since the fact of allowing any action besides a and 
b is useless. This suggests the definitions of a notion of “filter  relevance”, to single 
out filters that do not contain useless actions. 

The subcontracting algorithm will  pick up, among all the possible filters for a 
given relation, the “best relevant” filter that proves it. 

 

3.4.1   Filter  relevance. In order to determine the property of “relevance” we 
have to better understand the role played by the identity  filters we introduced 
in Definition 3.11. It may be noted that the identity filter of a given contract is 
exactly the tree (prefix-closed set of traces) of all possible sequences of actions that 
the contract can do before reducing to 0, without distinguishing between internal 
and external choices. This is embodied by the ∨ operator on filters which is a 
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unique choice operator representing both kinds of choice, as the following relation 
shows: 

I (σ ⊕ τ ) = I (σ + τ ) = I (σ) ∨ I (τ )  (2) 

Note that if σ and τ share common actions in their outermost prefixes, the contin- 
uations of both filters after this action are correctly merged by the semantics of the 
disjunction operator. 

The tree of an identity filter accurately represents the idea we mentioned in the 
introduction  of a contract’s “world”:  the sets of actions the contract knows of 
at each step of an interaction.  Filter  application can be seen as a projection of 
the contract onto the “world” represented by the filter.  In the case of a relation 
f : σ ≤ τ , f is used to restrict the “world” of τ : then the intuition  is that in order 
to be relevant, f should be defined (only) on that world, which is represented by 
I (τ ). Indeed, applying to τ the filter f or the filter f ∧ I (τ ) gives the same result, 
thus the part of f that is not in f ∧ I (τ ) is irrelevant (and this is why there is no 
greatest filter corresponding to a given relation in the absolute). Thus we will say 
that a filter f is relevant with respect to a relation σ � τ if it is smaller than I (τ ) 
according to    . 

Now if we restrict ourselves to relevant filters we can have another interesting 
upper bound:  by looking at condition (2) of the coinductive  strong subcontract 
relation we see that, at each step, every action available in the greater contract has 
to be available also in the smaller one. This exactly means that the greater contract 
has a smaller tree, and thus we have (by noticing that I (f (σ)) = (f ∧ I (σ))(σ)): 

if σ ç f (τ ) and f I (τ ) then f I (σ)  (3) 

Thus relevant filters that prove a relation have to be smaller than the identity filters 
of both contracts. This corresponds to the intuition  that f embeds τ services into 
the “world” of σ: it projects them on something that is included in that world. 

We now would like to find the greatest relevant filter that proves a given relation. 
Note that  projecting on I (σ) ∧ I (τ ) itself is not necessarily enough to make the 
relation work, because of ready sets: it might be necessary to project on something 
smaller to prevent  a wrong branch to be taken.  For example in a ⊕ b.(a + b)  � 
a + b.(a ⊕b), the initial b has to be filtered out even if the trees are the same, because 
its continuation in the right contract has incompatible ready sets. However, the 
following important relation holds: 

 
if σ ç f (τ ) and σ ç g(τ ) then σ ç (f ∨ g)(τ )  (4) 

 
meaning that if we can make the relation work either by selecting some branches or 
by selecting some other branches, then it will still work if we take all these branches 
at once. This shows that, if σ � τ holds, there will be a greatest subtree of τ that 
makes the relation work: even if there is no greatest filter in the absolute, we can 
take the disjunction of all filters less than I (τ ) that work (there are a finitely many). 
This filter, which is the least upper bound of all relevant filters that prove σ � τ , 
is the one we choose as canonical. 

 

3.4.2   Algorithm.  The last step is to define an algorithm for building the canon- 
ical filter of a relation. In this respect we have to solve two technical problems: the 
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Table III.   Algorithmic deduction system for the weak subcontract  relation. 

(σ, τ ) ∈ Γ 
(a1) 

 
 
 
 

(a2) 

Γ    ∅ : σ     τ 
 

∀s ∈ R(τ ) : s ∩ a ∈ R(σ) 

a = {α ∈ init(σ) ∩ init(τ ) | ∃Fα  : Γ ∪ {(σ, τ )}   Fα : σ(α)     τ (α)} S 
Γ      α∈a Fα ∪ {(σ, τ ) 1→ a} : σ     τ 

 
 

first problem is due to the fact that, although the algorithm works on infinite terms, 
it must always be able to report success or failure in finite time. Since contracts are 
assumed to be regular, we use the well-known technique of memoization for record- 
ing pairs of contracts that we deem related, so that they are not processed if found 
again. To this end we equip judgments with a context Γ storing pairs of contracts 
already examined. The second problem regards the computation of the canonical 
filter that proves a relation: it is clear that, in general, such a filter will not be finite 
and nonetheless we currently have no finite representation for filters.  However, a 
filter is nothing but the specification, at any given time during an interaction, of 
a (finite)  set of actions that are not shielded, namely the set a in Definition 3.1. 
In particular,  because of the  regularity of the contracts being related, the set of 
such a’s is necessarily finite. From this set of a’s it is trivial  to produce a possibly 
infinite, regular filter.  We use F to range over (finite) maps from pairs of contracts 
to finite sets of actions.  For any given contracts σ and τ  such that  σ � τ , the 
algorithm infers a map F , defined on every pair (σl, τ l) reachable from (σ, τ ) after 
some sequence of interactions, which associates with such a pair the finite set of 
actions a that are not shielded at that point. 

 
Definition 3.18. We define the relation Γ t- F : σ ::: τ  by the inference rules 

in Table III. We write F : σ ::: τ for ∅ t- F : σ ::: τ . 
 

Rule (a1) applies when the contracts being processed have already been encoun- 
tered and assumed to be related. In this case the inferred map F is empty, because 
the set a of actions that need not be shielded for relating σ and τ is already com- 
puted by the instance of the rule where σ and τ  occurred for the first time.  In 
rule (a2),  the set a represents the largest set of actions leading to continuations 
which are in the relation, namely a is the largest set of (relevant) actions that need 
not be shielded for two  contracts to be related.  The condition on the first line 
requires a to be large enough, so that when τ is restricted to the actions in a, τ 
manifests a behavior that is (more deterministic than) that of σ. 

It is trivial  to see  that  if F  is synthesized by the algorithm  and {(σl, τ l)  
1→ 

a, (σl, τ l) 1→ al} ⊆ F , then we have a = al. Hence F is indeed a map and 
from 
now on we will write F (σ, τ ) for the set a associated with (σ, τ ) in F . Additionally, 
F : σ ::: τ implies the following properties 

 
(1) (σ, τ ) ∈ dom(F ); 
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(2) (σl, τ l) ∈ dom(F ) and α ∈ F (σl, τ l) implies (σl(α), τ l(α)) ∈ dom(F ). 
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−→ 
ϕ 

α 

 

Overall if F  : σ ::: τ , then the map F  represents the (possibly infinite)  filter 
F [σ, τ ] defined by the equation 

F [σ, τ ] = 
V

α∈F (σ,τ ) α.F [σ(α), τ (α)] . 
The regularity of such filter is a direct consequence of the regularity of σ and τ 

while contractivity  stems from the finiteness of the init(σ) and init(τ ) sets (thus of 
the α’s) and from the construction of F [σ, τ ]. 

 

Remark 3.19. The rule (a2)  in Table III is more an algorithmic specification 
than a deduction rule, insofar as it describes how to compute the set a, rather than 
how to build a proof tree.  The following rule 

 

(a2)  
∀α ∈ a  Γ ∪ {(σ, τ )} t- Fα : σ(α) ::: τ (α) ∀β ∈ 

Γ 
(init(σ) ∩ init(τ )) \ a 

Γ t- 
U

α∈a Fα ∪ {(σ, τ ) 1→ a} : σ ::: 
τ 

is its proof theoretic counterpart. 

∪ {(σ, τ )}    F : σ(β)  τ (β) ∀s ∈ R(τ ) : s ∩ a ∈ R(σ) 

 

3.4.3   Properties. The algorithm described in Definition 3.18 enjoys fundamen- 
tal properties, namely (i) it proves only (soundness) and all (completeness) weak 
subcontract relations, (ii) in case of success it returns the largest relevant filter that 
proves the relation and (iii) it always terminates, which implies the decidability of 
the weak subcontract relation. 

 

Lemma 3.20 filter relevance. If F : σ ::: τ , then F [σ, τ ] I (τ ). 

Proof. By definition of F [σ, τ ] it is trivial  to verify that  F [σ, τ ]   ϕ
 

 
implies 

τ −→, from which relevance follows immediately. 
 

Before proving soundness, we need an auxiliary (cut-elimination)  result stating 
that an hypothesis σ � τ that is necessary for proving σl � τ l can be discharged if 
σ � τ is itself provable. 

 

Proposition 3.21. If (1) Γ t- F : σ ::: τ  and (2) Γ ∪ {(σ, τ )} t- F l : σl  ::: τ l, 
then there exists F ll such that F l ⊆ F ll and Γ t- F ll : σl ::: τ l. 

 
Proof. We reason by induction on the derivation tree of (2) and by cases on the 

last rule applied. Assume the last rule was (a1).  Then (σl, τ l) ∈ Γ ∪ {(σ, τ )} and 
F l = ∅.  We distinguish two subcases: if (σl, τ l) ∈ Γ, then we conclude immediately 
by (a1)  and by taking F ll = ∅;  if  σl  ≡ σ and τ l ≡ τ , then we conclude by 
hypothesis (1) and by taking F ll = F . Assume the last rule was (a2)  and let a be 
the set determined in the premises of the rule. For every α ∈ a we have that there 
exists Fα such that Γl ∪ {(σ, τ )} t- Fα : σl(α) ::: τ l(α) where Γl = Γ ∪ {(σl, τ l)} and 
F l = 

U
α∈a Fα ∪ {(σl, τ l) 1→ a}. From (1) and Γ ⊆ Γl we derive Γl t- F : σ ::: τ .  By 

induction hypothesis there exists F l such that Fα ⊆ F l and Γl t- F l : σl(α) ::: τ l(α) α α α 
for every α ∈ a. Hence we can apply rule (a2)  and conclude that Γ t- F ll : σl ::: τ l 
where F ll = 

U
α∈a F l ∪ {(σl, τ l) 1→ a}, observing that F l ⊆ F ll. 

Theorem 3.22 (soundness). If F : σ ::: τ then σ ç F [σ, τ ](τ ). 
 

Proof. We prove that S d=ef  {(σ, F [σ, τ ](τ )) | F : σ 
 
τ } is a coinductive strong ::: 

subcontract relation. Let (σ, τ l) ∈ S , then there exist F and τ such that F : σ ::: τ 
and τ l ≡ F [σ, τ ](τ ). As regards condition 1 in the definition of coinductive strong 
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subcontract relation, let τ ⇓ s. Then F [σ, τ ](τ ) ⇓ s ∩ F (σ, τ ) and from s ∩ F (σ, τ ) ∈ 
R(σ) we conclude that there exists r such that σ ⇓ r and r ⊆ s∩F (σ, τ ). As regards 
condition 2, assume F [σ, τ ](τ )   α . By definition of F [σ, τ ] we also have σ  α

 and, 
for every α ∈ F (σ, τ ), there exists Fα such that {(σ, τ )} t- Fα : σ(α) ::: τ (α).  By 
Proposition 3.21 there exists F l such that Fα ⊆ F l and F l : σ(α) ::: τ (α).  Notice 
also that  F l ⊆ F  since the former proves σ(α)  ::: τ (α),  the latter  σ ::: τ , and 
by the uniqueness of the filters derived by the algorithm 

(α
 Fα  must correspond to 

S by observing that
 

)) ∈ 
τ l(α) ≡ F [σ, τ ](τ )(α) ≡ F l [σ(α), τ (α)](τ (α)) and by definition of S . 

 
Theorem 3.23 (completeness). If  σ ç g(τ ),  then there exists F  such that 

F : σ ::: τ , and F [σ, τ ]    g ∧ I (τ ). 
 

Proof. First note that if σ ç g(τ ), then also σ ç (g ∧ I (τ ))(τ ) (applying the 
conjunction of two  filters is like  applying one then the other, it projects on the 
part of the tree common to both), thus we can assume g     I (τ ) without  loss of 
generality. 

The theorem is stated for a memoization environment Γ = ∅ (recall that F : σ ::: τ 
stands for ∅ t- F : σ ::: τ and that a memoization environment is a finite set of pairs 
of contracts).  To integrate memoization environments in our proof we generalize 
the statement and prove that if σ ç g(τ ) and g    Iτ , then for all Γ: 

 
(1) there exists F such that Γ t- F : σ ::: τ ; 
(2) (σ, τ ) ;∈ Γ ⇒ init(g) ⊆ F (σ, τ ); 

Completeness then follows immediately from (1) by taking Γ = ∅, and maximality 
of the inferred filter is easily deduced from (2). 

Let R(Γ, σ, τ ) d=ef  {(σ(ϕ), τ (ϕ))  | σ   ϕ 
ϕ 

, τ −→} \ Γ, and note that by regularity 
of σ and τ , the set is finite. We can thus reason by induction on R(Γ, σ, τ ) to show 
the more general property. 

Assume (σ, τ ) ∈ Γ. Note that if R(Γ, σ, τ ) = ∅ this is the only possible case. Then 
we conclude immediately by rule (a1) and by taking F = ∅.  Assume (σ, τ ) ;∈ Γ and 
let Γl d=ef  Γ ∪ {(σ, τ )}. Suppose g(τ )   α . From the hypothesis σ ç g(τ ) we derive 

−→ and σ(α)  ç g(α)(τ (α)).   We  have R(Γl, σ(α), τ (α))  ç R(Γ, σ, τ ) because 
(σ, τ ) is in the latter and not in the former, hence by induction hypothesis there 
exists Fα  such that Γl t- Fα  : σ(α) ::: τ (α).  We can do this for any α such that 
g(τ )   α

 , thus because of the  hypothesis that  g Iτ we have that  the set a in 
the premises of rule (a2)  is such that init(g) ⊆ a.  Therefore the F appearing in 
the conclusion of that rule satisfies property (2) and we just have to check that the 
condition on the first line of the premises is satisfied.  Let s ∈ R(τ ). It contains a 
ready set sl  of τ . Since σ ç g(τ ), there exists r ⊆ sl ∩ init(g) such that σ ⇓ r.  As 
init(g) is included in a and sl  in s, we also have r ⊆ s ∩ a.  Then s ∩ a ∈ R(σ), 
because a is included in init(σ) by definition. 

 
Corollary 3.24. If σ and τ are two contracts, there exists at most one F such 

that F : σ ::: τ . Furthermore, if F : σ ::: τ , then 
 

F [σ, τ ] = max{g I (τ ) | σ ç g(τ )} = max{g I (τ ) | g : σ ≤ τ } . 
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The corollary above describes the logical interpretation of the algorithm as the result 
of a cut-elimination process.  The “cut” in the system of Table I is given by the 
rule (trans).  This rule intersects filters, that is it minimizes the proofs: therefore 
in order to eliminate cuts we have to find a proof with a maximum filter.  However we 
have also to avoid useless applications of the (weak) rule, which instead maximizes 
proofs: therefore we have to set an upper bound to filter maximization, which is 
embodied by the definition of relevance (therefore it would be more precise to speak 
of a cut-weakening-elimination process). 

 
Proposition 3.25 (decidability). Given two contracts σ and τ , we can de- 

cide whether there exists F such that F : σ ::: τ . 
 

Proof. Trivial  consequence of the regularity of σ and τ . 
 

4.   PROCESSES 
In this section we relate contracts (which are behavioral types) with processes that 
implement clients and services. We do not consider any particular process language, 
nor do we require that clients and services be implemented  using the same language. 
We just require that the observable behavior of processes be described  by a labeled 
transition system and abstracted by a static type system. More precisely we assume 
that a process language is equipped with a labeled transition system  so that 

 
µ 

P −→ P l 
 

describes the evolution of a process P that performs a µ action thus becoming the 
process P l. Here, µ can either be a visible action of the form a or a, which is meant 
to synchronize with  the corresponding co-action in the process P  is interacting 
with,  or it can be an internal, invisible action τ (not to be confused with τ  that 
we used to range over contracts) that the process P executes autonomously. It is 
understood that the relation   µ

 is not necessarily deterministic. As usual, we let 
α range over visible actions and we write P µ

 if P µ
 P l for some process P l. 

Also, we say that  P diverges  if there exists an infinite  sequence P0 , P1 , . . . , such 
τ τ 

that P = P0 −→ P1 −→ · · · . 
Definition 4.1 (strong process compliance).  Let P   Q −→ P l  Ql be the 

least relation defined by the rules: 
 

P   τ  τ  α α 
−→ P l 

P   Q −→ P l   Q 
Q −→ Ql 

P   Q −→ P   Ql 

P −→ P l Q −→ Ql 

P   Q −→ P l  Ql 
 

We write =⇒ for the reflexive, transitive closure of −→; we write P   Q −→ if 
P   Q  −→ P l  Ql for  some P l and Ql;  we write  P   Q −f → if  not P   Q  −→. 
A computation of P   Q is a sequence P   Q = P0   Q0  −→ P1   Q1  −→ · · · .  A 
computation of P   Q is maximal if either it is infinite or there exists Pn   Qn  such 
that P   Q =⇒ Pn  Qn −f →. 

The client P  is strongly compliant  with the service Q, written  P  -- Q, if  for 
every configuration Pi   Qi  of every maximal computation there exists j ≥ i such 

α τ  e 
that either Pj  −→ Pj+1  for some α or Pj  −f → and Pj  −→. 
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The intuition  of this definition is that P   Q represents a client P and a service 
Q interacting with each other.  When P -- Q every interaction between P and Q is 
such that either P and Q interact infinitely often, or the client invariably reaches a 
state in which it is able to emit e, denoting the successful completion of P ’s task. 

We also assume that a type system is given to check that a process P implements 
the contract σ. This is expressed by the judgment 

 

t- P : σ 
 

While we do not give details on the particular typing rules, we require typing and 
the reduction relation to satisfy some basic properties: essentially, contracts must 
describe the observational behavior of processes and reduction must decrease non- 
determinism (entropy must always increase). In this respect, it makes sense to be 
able to apply the strong subcontract relation  to client  contracts too, where the 
action e is treated like any other action (recall that, according to Theorem 2.9, the 
relation ç can be defined without any notion of “successful action” e). 

 

Definition 4.2.  The type system is consistent if, whenever t- P : σ, we have 
 

(1 ) P   τ P l implies t- P l : σl  and σ ç σl; 
(2 ) P   α P l implies t- P l : σl, σ −→ , and σ(α) ç σl; 
(3 ) P diverges implies σ ⇓ ∅; 

τ  α 
(4 ) P −f → implies σ ⇓ r and r ⊆ {α | P −→}. 

 

Intuitively, condition (1) states that  a process performing internal actions can 
only make its contract more deterministic.  Condition (2) states that if a process 
performs a visible action α, then its contract must account for that action and the 
contract of the resulting process P l is (more deterministic than) the contract σ(α), 
which accounts for all the possible behaviors of P after α.  Condition (3) states 
that a divergent process may be observationally invisible, namely its contract must 
account for an empty ready set (the process may never be “ready” to perform any 
action).  Finally, condition (4) states that the contract of a stable process should 
have at least one ready  set that  provides no more capabilities than those of the 
process. 

The following lemma states that it is possible to replace a client contract ρ with 
another one which is more deterministic, still preserving the compliance property. 
The lemma is fundamental in proving the soundness of the type system. 

Lemma 4.3.  If ρ -- σ and ρ ç ρl  then ρl -- σ. 
 

Proof. Let C be a compliance relation such that  (ρ, σ) ∈ C and let S be a 
strong subcontract relation such that (ρ, ρl) ∈ S . It is sufficient to prove that 

 
d=ef  {(ρ , σ) | ∃ρ : (ρ, σ) ∈ C ∧ (ρ, ρ ) ∈ S }

 
C l l l 

 

is a strong  compliance relation.  Assume (ρl, σ) ∈ C l.  Then there exists ρ such 
that (ρ, σ) ∈ C and (ρ, ρl) ∈ S . As regards condition (1) in Definition 2.6, assume 
ρl  ⇓ r and σ ⇓ s. If e ∈ r, then the condition is satisfied. Assume e ;∈ r.  From 
(ρ, ρl) ∈ S there exists rl  ⊆ r such that  ρ ⇓ rl.   In particular,  e ;∈ rl.   From 
(ρ, σ) ∈ C we have co(rl) ∩ s ;= ∅, hence co(r) ∩ s ;= ∅. 
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As regards condition (2) in Definition  2.6, assume ρl α
 

 

and σ α
 

 
.   From 

(ρ, ρl) ∈ S we derive ρ   α   and (ρ(α), ρl(α))  ∈ S .  From (ρ, σ) ∈ C we derive 
(ρ(α), σ(α)) ∈ C . Hence we conclude (ρl(α), σ(α)) ∈ C l by definition of C l. 

 
Given a consistent  type  system, the following result states that,  given a pair 

of processes P   Q whose respective contracts comply, and given any two residual 
processes P l   Ql resulting from P   Q, the respective contracts of P l and Ql comply 
as well. 

 
Lemma 4.4 (subject reduction). If  t- P  : ρ and t- Q : σ and ρ -- σ and 

P   Q −→ P l   Ql, then t- P l : ρl  and t- Ql : σl  and ρl -- σl. 
 

Proof. We  need to  consider all  the  possibilities by which P   Q reduces  to 
τ 

P l   Ql, namely P   Q −→ P l   Ql.  If  P −→ P l, then from consistency  condi- 
tion (1) we have t- P l : ρl  and ρ ç ρl  and by Lemma 4.3 we conclude ρl  -- σ.  If 

−→ Ql, then from consistency condition (1) we have t- Ql : σl and σ ç σl and by 
α α 

definition of ç we conclude ρ -- σl.  Finally, if P −→ P l and Q −→ Ql, then from 
consistency condition (2) we have that t- P l : ρl  and t- Ql : σl  and ρ(α) ç ρl  and 
σ(α) ç σl.  By Lemma 4.3 and by definition of ç we conclude ρl -- σl. 

 
The soundness of a consistent  type  system is ensured by the following result, 

stating that if the contracts of two processes comply, the corresponding processes 
comply as well, guaranteeing that  either the two  processes synchronize  infinitely 
many times or the client successfully terminates. 

 
Theorem 4.5.  If t- P : ρ and t- Q : σ and ρ -- σ then P -- Q. 

 
Proof. Because of Lemma 4.4 we only need to consider the cases when P   Q −f → 

or P −f → and Q diverges. Indeed, from ρ -- σ we derive that ρ ⇓ r implies r ;= 
∅, hence P cannot diverge, for otherwise we would have ρ ⇓  ∅ by consistency 
condi- tion (3). Let P   Q −→ and assume, by contradiction, that P −e   . From P   
Q −→ 
we have that whenever P   α we have Q α −f → . From consistency condition (4) there 
exist r and s such that ρ ⇓ r and σ ⇓ s and co(r) ∩ s = ∅  and e ;∈ r, but this is 
absurd from the hypothesis that ρ -- σ. Hence P −e   . Assume that P −→ and Q 
diverges. By consistency condition (3) we derive σ ⇓ ∅, hence ρ ⇓ r implies e ∈ r. 
From consistency condition (4) we conclude P −e   . 

 
The soundness theorem holds when the client’s contract and the service’s contract 

are strongly compliant. To be able to use a service for which we only have a weakly 
compliant client, we need to shield potentially dangerous service actions by means 
of a filter.  Thus, we enrich the process language with an operator 

 
f [P ] 

 
that applies a filter f to a process P , the idea being that the filter constraints the 
set of visible actions of P , that is its capabilities to interact with the environment, 
still not altering its ability to evolve autonomously.  The labeled transition system 
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of the language is consequently enriched with the following two inference rules: 
 

(Filter1) 

P   α
 

 
(Filter2) 

α τ 
−→ P l f −→ f l P −→ P l 
f [P ]  α

 f l[P l] f [P ]  τ f [P l] 
 

The introduction  of filters into the process language  has consequences on the 
type system as well. Since our discussion is parametric in the process language and 
in the type system, we only need to show that the typing rule 

 
(TypeFilter) 

t- P : σ 
t- f [P ] : f (σ) 

 

preserves the consistency of the type system. 
 

Proposition 4.6.  A consistent type system enriched with rule (TypeFilter) 
results in another consistent type system. 

 

Proof. Let t- P : σ.  As regards consistency condition (1), assume P −→ P l 
and t- P : σl.  Then σ ç σl  implies f (σ) ç f (σl) by Proposition 3.8. As regards 
consistency condition (2), assume that  P α

 P l and t- P l : σl.   There are two 
α α α 

possibilities: if f −f →, then f [P ] −f → and there is nothing to prove.  If f −→ f l, then 
σ(α) ç σl.  Now we conclude f (σ)(α) = f l(σ(α)) ç f l(σl). As regards consistency 
condition (3), assume that f [P ] diverges. Then P diverges and we must have σ ⇓ ∅. 
We immediately conclude f (σ) ⇓ ∅.  Finally, as regards consistency condition (4), 
assume that  f [P ] −τ   .  Then P τ −→  ⇓ ⊆ { | 

α 
−→}, 

hence f (σ) ⇓ f (r) and we conclude by observing that f (r) ⊆ {α | f [P ] −→}. 
 

The following result summarizes the contribution of our work:  the adoption of 
filters enlarges the number of services that satisfy a client. 

 

Corollary 4.7.  If t- P : ρ, t- Q : σ, and ρ -- f (σ), then P -- f [Q]. 
 

5.   PRACTICE OF CONTRACTS 
Hitherto we developed our theory by working on infinite trees, for both types and 
filters.   The main advantage of this approach is that  the resulting theory  does 
not depend on a particular concrete syntax used to finitely  denote infinite  trees. 
Of course, the use of infinite  trees is infeasible in practice and as soon as one 
wants to devise typing systems and algorithms for actual languages (or just process 
calculi) it is necessary  to introduce a concrete finite  syntax to denote possibly 
infinite trees. Remarkably, the results stated for infinite trees easily carry over to 
whatever (reasonable) concrete syntax we choose to denote them, by using classic 
techniques dating back to Bruno Courcelle’s seminal work [Courcelle 1983]. This 
contrasts with  the fact that  transposing the  results stated for one syntax onto 
another can be quite hard, since one has to sieve  the properties that  hold for 
infinite trees from those that are meaningful only for the particular syntax at issue, 
whence the interest of our approach. 

Choosing a particular concrete syntax neither is without  consequences nor is it 
just a matter of taste.  Two concrete syntaxes are quite popular in the process 
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algebras literature:  the first one uses explicit recursion variables while the second 
uses the Kleene star to denote an unbound number of occurrences of some subtree. 
Each of them fits different applications. In the rest of this section we first introduce 
these two concrete syntaxes and we show how the main properties we studied in 
the previous sections for infinite trees (compliance, subcontracting, . . . ) transpose 
to them. Next we apply each syntax them to a Web service description language: 
we show that wscl diagrams (§2.2) can be straightforwardly encoded by resorting 
to recursion variables and that ws-bpel so-called activities can be naturally typed 
using Kleene notation.  In this latter case, we define a contract based type system 
and, above all, show how to use filters to trim down the case explosion  introduced 
by the use of parallel compositions of activities. 

 
Terminology.   In the rest of this section we introduce the two concrete 
syntaxes for contracts and filters we hinted above: the one based on re- 
cursive variables and the other on Kleene’s stars. In order not to clutter 
the notation, in the concrete syntax we will use the same metavariables 
for contracts and filters that we used for the corresponding possibly infi- 
nite terms of the previous sections. To avoid any ambiguity we will use 
the terminology unfolded contract/filter when referring to the possibly 
infinite terms used so far, recursive contract/filter for terms generated by 
using explicit recursion variables, and regular  contract/filter for terms 
using the Kleene star. We will omit the qualifying adjectives only when 
no confusion can arise. 

 
5.1   Concrete syntax for contracts 
The first  concrete syntax for regular contracts is the  same as given in §2.1 for 
unfolded contracts/terms, extended with the well-known recursion operator rec x = 
σ which binds the recursion variable x in σ. The idea is that an occurrence of x 
in σ stands for the whole rec x = σ term.  A recursive  contract is a finite term 
generated by the following grammar: 

 

σ ::=  0 | α.σ | σ + σ | σ ⊕ σ | rec x = σ | x 
 

Similarly a recursive filter  is a finite term inductively generated by the grammar 
 

f ::=  0 | α.f | f ∨ f | f ∧ f | rec x = f | x 
 

As usual we write fv(σ) and bv(σ) for denoting the free and the bound variables 
occurring in σ, respectively (their definition is standard); we say that σ is closed 
if fv(σ) = ∅; we write σ{τ /x} for the contract obtained from σ by replacing every 
free occurrence of x with  τ ; we proceed similarly  for filters.  Using this syntax, 
contractivity  corresponds to requiring that  in a subterm rec x = σ (respectively, 
rec x = f ) every free occurrence of x in σ (respectively, in f ) be guarded by at least 
one prefix. Thus we rule out terms such as e.g. rec x = x + x or rec x = x ∨ x. 

Intuitively, every recursive contract corresponds  to the (possibly infinite)  un- 
folded contract obtained by repeatedly unfolding every rec x = σ to σ{rec x = σ/x} 
(and similarly for filters).  Consequently, the semantics of a term above is equal to 
the semantics of the infinite tree it denotes. More rigorously, let a system of regular 
equations  be a finite set {x1 = σ1 , . . . , xn = σn } of equations where x1 , . . . , xn are 
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the unknowns and σ1 , . . . , σn are recursive contracts such that fv(σi ) ⊆ {x1 , . . . , xn } 
for every 1 ≤ i ≤ n. We associate each closed recursive  contract with a pair (E, x) 
where E  is a system of regular equations and x one of its unknowns called the 
initial  unknown. If the σi ’s of E are such that every free occurrence of a variable 
is guarded by at least a prefix, then the system of equations satisfies the so-called 
Greibach condition [Courcelle 1983] and, by Theorem 4.3.1 of [Courcelle 1983], 
the system admits a unique solution of unfolded contracts (τ1 , . . . , τn ) such that 
τi  = σi {τ1 /x1 } · · · {τn /xn } for every 1 ≤ i ≤ n. Then, we define the semantics of a 
closed recursive contract as the τi  component corresponding to the initial unknown 
associated with it. 

Let σ be a closed recursive  contract such that  bv(σ) = {x1 , . . . , xn }.  Without 
loss of generality, assume that every xi  is bound exactly once in σ.  Let E (σ) be 
the function inductively defined by the rules: 

 
E (0) = 0 : ∅ E (x) = x : ∅ 

E (σ) = σl : E 
E (α.σ) = α.σl : E 

 
E (σ) = σl : E  E (τ ) = τ l : El 

E (σ + τ ) = σl + τ l : E ∪ El 
 

E (σ) = σl : E  x ;∈ fv(σ) 
E (rec x = σ) = σl : E 

E (σ) = σl : E  E (τ ) = τ l : El 

E (σ ⊕ τ ) = σl ⊕ τ l : E ∪ El 
 

E (σ) = σl : E  x ∈ fv(σ) 
E (rec x = σ) = x : E ∪ {x = σl} 

 

The pair composed of the system of regular equations and the initial  unknown 
associated with σ, denoted by R(σ), is defined  as follows: 

  
(E, xi )  if E (σ) = xi  : E 

R(σ) d=ef
 (E ∪ {x0 = σl}, x0 )   otherwise 

 

The semantics [ 
 

] of the recursive contract σ is the unfolded contract τi , where 
(τ0 , τ1 , . . . , τn ) is the unique solution of the system E such that R(σ) = (E, xi ). 

The following proposition formalizes the fact that a recursive contract rec x = σ 
and its unfolding σ{rec x = σ/x} are equivalent, namely that they are associated 
with the same regular system and hence they denote the same regular contract. 

Proposition 5.1.  Let E (rec x = σ) = x : E ∪ {x = σl}.  Then E (σ{rec x = 
σ/x}) = σl : E ∪ {x = σl}. 

 

Proof. We prove a more general statement. Let dom(E) be the set of unknowns 
in a regular system E; let E{τ /x}  = {y = σ{τ /x} | x = σ ∈ E}, where we assume 
that dom(E) ∩ fv(τ ) = ∅; let σ and τ be two contracts such that bv(σ) ∩ fv(τ ) = ∅. 
We  prove  that  if x ∈ fv(σ), then E (σ{τ /x})  = σl{τ l/x}  : E{τ l/x} ∪ F , where 
E (σ) = σl : E and E (τ ) = τ l : F . If this holds, the proposition follows immediately 
by posing τ = rec x = σ. Indeed, if x ;∈ fv(σ), then E (τ ) = E (σ) = E (σ{τ /x}).  On 
the other hand, if x ∈ fv(σ), then E (σ{τ /x}) = σl{x/x} : E{x/x} ∪ E ∪ {x = σl} 
and we conclude immediately since σl{x/x} ≡ σl  and E{x/x} = E. 

As regards the more general statement, we prove it by induction on σ (recall that 
σ is a recursive contract, hence it is finite). 
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1 

σ 

 

(σ ≡ 0).  Trivial  since x ;∈ fv(σ). 
(σ ≡ x).  We have σl  ≡ x and E = ∅.  Now E (σ{τ /x}) = E (τ ) = τ l : F and we 

conclude by observing that σl{τ l/x} ≡ τ l and E{τ l/x} = ∅. 
(σ ≡ y, y ;= x).  Trivial  since x ;∈ fv(σ). 
(σ ≡ α.σ1 ).  We have σl  ≡ α.σl , where E (σ1 ) = σl : E.  From x ∈ fv(σ) we de- 1  1 

duce x ∈ fv(σ1 ), hence by induction hypothesis we derive E (σ1 {τ /x}) = σl {τ l/x} : 
E{τ l/x} ∪ F .  Now E (σ{τ /x}) = E (α.σ1 {τ /x}) = α.σl {τ l/x} : E{τ l/x} ∪ F and 
we conclude by observing that

 
{τ /x} ≡ α.σ1 {τ /x}.

 
σl l l l 

(σ ≡ σ1 + σ2 ).  We have σl ≡ σl +σl  and E = E1 ∪E2 , where E (σ1 ) = σl  : E1 and 
1  2  1 

E (σ2 ) = σl  :
 

. We examine only one interesting case, when x ∈ fv(σ ) \ fv(σ ).
 

2     E2  1  2 
By induction hypothesis  we derive E (σ1 {τ /x}) = σl {τ l /x} : E1 {τ l/x} ∪ F .  Now 

1 
E (σ{τ /x}) = E (σ1 {τ /x}+σ2 ) = σl {τ l/x}+σl  : E1 {τ l/x}∪E2 ∪F and we conclude 

1  2 
by observing that

 
{τ /x} ≡ σ1 {τ /x} + σ2 and E{τ /x} = E1 {τ /x} ∪ E2 .

 
σl l l l l l l 

(σ ≡ σ1 ⊕ σ2 ).  Similar to the previous case. 
(σ ≡ rec x = σ1 ).  Trivial  since x ;∈ fv(σ). 
(σ ≡ rec y = σ1 , y ;= x).  If x ∈ fv(σ), then x ∈ fv(σ1 ) because x ;= y.  We 

dis- tinguish two  subcases.  Assume  y ;∈ fv(σ1 ).  Then E (σ) = E (σ1 ) = σl  : E.   
By induction  hypothesis we derive  E (σ1 {τ /x})  = σl{τ l/x}  : E{τ l/x} ∪ F .   
From 
bv(σ) ∩ fv(τ ) = ∅ we obtain y ;∈ fv(τ ), hence we conclude  E (σ{τ /x}) = E (rec y = 
σ1 {τ /x})  = σl{τ l/x}  : E{τ l/x} ∪ F .   Assume y ∈ fv(σ1 ).   Then σl  ≡ y and 
E = E l ∪ {y = σl } where E (σ1 ) = σl : E l.  By induction hypothesis we derive 

1 
E (σ1 {τ /x}) = σl {

 1 
/x} : E {τ /x} ∪ F . Now E (σ{τ /x}) = E (rec y = σ1 {τ /x}) =

 
1  τ l l l 

y : E
 {τ /x} ∪ F ∪ {y = σ1 {τ /x}} and we conclude by observing that σ {τ /x} ≡ y l l l l l l 

and E{τ l/x} = E l{τ l/x} ∪ {y = σl {τ l /x}}. 1 
 

Now that we have defined the semantics of a recursive contract in terms of un- 
folded contracts, we can extend to recursive contracts all the definitions introduced 
for recursive contracts. For example, if σ is a recursive contract, then σ ⇓ r if and 
only if [ ] ⇓ r. 

By Theorem 4.2.1 of [Courcelle  1983] we also know that the syntax of recursive 
contracts is complete with respect to the set of unfolded contracts. In particular, 
every unfolded contract is a component  of the unique  solution of some regular 
system. A regular system is nothing but a flattened recursive contract, in which 
every recursion has been turned into an equation. 

The second syntax we consider is reminiscent  of regular expressions, with  the 
remarkable difference that we have two different sum operators + and ⊕ for external 
and internal choice, respectively. Correspondingly  we also have two different Kleene 
star operators ∗ and ®. This yields to the definition of regular contracts and filters 
as the finite terms inductively generated by the following grammars 

σ ::=  0 | α | σ; σ | σ + σ | σ ⊕ σ | σ∗ | σ@ 

f ::=  0 | α | f ; f | f ∨ f | f ∧ f | f ∗ 
 

The semantics of a regular contract τ  can be indirectly  given by translating it 
into a recursive contract.  The main issue of this translation is handling sequen- 
tial composition, which must be reduced to action prefixes. We parameterize the 
translation with  a continuation  on which we accumulate actions while scanning 
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the regular contract from right  to left.  We  write [ ]σ  for the  recursive contract 
resulting from the encoding of the regular contract τ , when the continuation is the 
recursive contract σ. We must ensure that the translation does not yield degener- 
ate recursive contracts in which some bound variable occurs unguarded,  since such 
terms do not have a proper semantics. To this purpose  we inductively  define a 
guardedness predicate G(σ) guaranteeing that  in the recursive contract [ ]x the 
variable x always occurs under a prefix. The G(σ) predicate is inductively defined 
as follows: 

 
—G(0) and G(α); 
—if G(σ) or G(τ ), then G(σ; τ ); 
—if G(σ) and G(τ ), then G(σ + τ ) and G(σ ⊕ τ ). 

 
and [ 

 
]σ is inductively defined thus: 

 

0  = 0 [ ]σ 
α]σ  = α.σ 

τ 
[  

=  τ
 

[ ; τ l]σ [ ][  ]σ 

τ + τ l]σ  = [
 
]σ + [  ]σ

 
[ τ  τ l 
τ ⊕ τ l]σ  = [

 
]σ ⊕ [  ]σ

 
[ τ  τ l 

τ ∗]σ   = rec x = σ + [ ]x (x fresh and G(τ )) 
τ @ ]σ  = rec x = σ ⊕  τ ]x (x fresh and G(τ )) 

 
We write   τ [ 

 
for  τ [ ]0 .  Note that neither  τ ∗ 

 

]σ nor  τ @ ]σ are defined if x occurs 
unguarded in [ ]x . Similarly to what happens to the external choice operator +, 
the external Kleene star may hide an internal Kleene star if the  contract being 
iterated shares an action with the continuation. For instance, 

α∗]α  = rec x = α + α.x ':: rec x = α ⊕ α.x = α@ ]α 
 

It is well known that  (nondeterministic) regular expressions  are not complete 
with respect to nondeterministic finite state automata. In our context this means 
that there are recursive contracts that cannot be generated by any regular contract. 
For instance, there is no regular contract whose translation is the recursive contract 
rec x = (a.x + b) ⊕ (c.x + d).  Roughly speaking, the reason lies in the fact that 
the same recursion variable x is shared among two different “loops” in the recur- 
sive contract. Characterizations of recursive contracts admitting equivalent regular 
contracts can be found in [De Nicola and Labella 2003; Baeten et al. 2007]. 

 
5.2   Encoding wscl activity diagrams 
A  wscl activity  diagram [Banerji et al. 2002] is a tuple (Q, a, δ, x1 , xn ) where 
Q = {x1 , . . . , xn } is a finite set of interactions, a = {α1 , . . . , αm } is a finite set 
of actions representing ingoing and outgoing document types,  δ ⊆ Q × a × Q is 
the transition  relation, x1  ∈ Q is the initial  interaction  and xn  ∈ Q is the final 
interaction.  We write x   α y if (x, α, y) ∈ δ; we write x −→ if there exists y ∈ Q 
such that x   α y; we write x α −f → if not x   α  . 

According to the wscl specification, the following well-formedness  conditions 
must hold: 
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n n  f → 

def  
 

 

(1) every interaction must be reachable from x1 , namely for every y ∈ Q and y ;= x1 
α1  αk

 
there exist α1 , . . . , αk  such that x1  −→ · · · −→ y; 

a 
(2) for every x ∈ Q, if there exist a ∈ a such that x −→, then for every b ∈ a we 

have that x −b   ; 
(3) x   must not have any outgoing transition, that is x   −α   for every α ∈ a. 

 

The encoding of an interaction x in a wscl activity diagram when the interactions 
Q have not been encoded yet is denoted by E(x, Q) and is defined  as follows: 

x  if x ;∈ Q  rec x = 
EB 

E(x, Q) = 
a∈a,δ(x,a)l=∅ 

EB 
y∈δ(x,a) a.E(y, Q \ {x}) 

a 
 if x ∈ Q and x −→ for some a ∈ a  rec x = 

L
a∈a,δ(x,a)l=∅ 

L
y∈δ(x,a) a.E(y, Q \ {x}) otherwise 

Because of well-formedness condition (1), the whole activity  diagram is encoded; 
because of well-formedness condition (2), the last two  cases  in the definition of 
E(x, Q) are mutually exclusive;  because of well-formedness condition (3), we have 
E(xn , Q) ':: 0. The encoding of a wscl activity diagram is now defined as E(x1 , Q). 

 
5.3   Typing ws-bpel activities 
ws-bpel [Alves et al. 2007] is an Oasis standard language for the description of 
business processes. It builds on top of standard Web service technologies, such as 
wsdl, for providing a detailed, structured description of Web services behavior, 
including exception and compensation handlers.  Being a concrete Web service 
specification language, ws-bpel is hard to formalize thoroughly.  In our setting, 
however, we are merely concerned with the observable behavior of a Web service, 
hence we can disregard any detail that is not directly related with the interactions 
of the Web service  with  the external world.  Furthermore, we gain in clarity  by 
getting rid of the heavyweight xml  syntax used in ws-bpel and by preferring a 
streamlined algebraic presentation,  which the reader will  easily match with  the 
original language. 

 

A  ::=  action(α) 
| pick(a1 .A1 , . . . , an .An )  n ≥ 0 
| sequence(A1 , . . . , An )  n ≥ 0 
| if(A1 , . . . , An )  n ≥ 1 
| flow(A1 , . . . , An )  n ≥ 0 
| while(A) 

 

The above grammar describes ws-bpel so-called activities (i.e., processes).  The 
activity action(a) denotes the invocation of operation a or, more generally, the act 
of sending a message on a channel identified by a; it can be used for representing 
both invoke and reply activities in ws-bpel. The activity  action(a) denotes the 
act of waiting for an interaction on a channel identified by a; it can be used for 
representing receive activities.  The pick  activity  allows the service to provide 
multiple operations, among which the client can choose which one to execute. Each 
action ai denotes an operation that, when invoked, causes the corresponding activity 
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Table IV.    Type system for ws-bpel activities. 
 

(action) 

 
(pick)  

A1  : σ1  · · · An : σn 
action(α) : α  

pick a .A  , . . . , a  .A  

: a ; σ  +  

+ a  ; σ ( 1     1 n    n ) 1     i · · · n   n 
 

(sequence) 
A1  : σ1  · · · An : σn 

(if)  
A1  : σ1  · · · An : σn 

sequence(A1 , . . . , An ) : σ1 ; . . . ; σn if(A1 , . . . , An ) : σ1 ⊕ · · · ⊕ σn 
 

(flow) 
A1  : σ1  · · · An : σn    actions(σi ) ∩ co(actions(σj )) = ∅ i,j∈1..n 

flow(A1 , . . . , An ) : σ1   · · ·  σn 

(while) 
A : σ 

while(A) : σ® 
 
 

Ai  to be executed; the sequence activity  sequentially activates the specified sub- 
activities, Ai+1  starting only when Ai  is completed;  the if activity  performs an 
internal choice among the specified sub-activities according to the result of some 
Boolean conditions that  we leave unspecified  in the syntax; the while  activity 
sequentially executes the specified sub-activity as long as some Boolean condition 
(once more left unspecified) is verified; the flow  denotes the parallel composition of 
the specified sub-activities; it completes when all the sub-activities have completed. 
We write empty for sequence(), for pick(), and for flow(). 

Table IV shows the type system for ws-bpel activities, where a judgment t- A : σ 
associates an activity  A with its contract σ. Most rules are completely straightfor- 
ward as ws-bpel activities map very naturally to the contract operators described 
in §5.1. The only rules that deserve some explanation are (flow) and (while). 
Regarding (while), the choice as to whether the sub-activity A must be executed 
once more or the repetition has ended is made internally, by evaluating some un- 
specified condition.  Hence the use of the internal Kleene star ® in the resulting 
contract.  Because of the side-condition in the semantics of σ@ , not every while 
activity  is well typed.  For instance, while(if(empty, action(a))) is not well typed 
because the contract of the repeated activity  has an empty ready set.  Regard- 
ing (flow), the sub-activities are allowed to run concurrently and independently 
of each other.   Thus, the contract of a flow  activity  is given by all the possible 
interleaving of actions in the contracts of the sub-activities.  This  interleaving is 
computed by the    operator, which is defined  as follows: 

σ  τ d=ef  EB  
σ⇓r,τ ⇓s ( 

L
α∈r α; (σ(α)   τ ) + 

L
β∈s β; (σ   τ (β))) 

It is easy to verify that σ  τ  is well defined (it  is a regular contract) and that 
is a commutative, associative operator whose neutral element is 0.  The premise 
actions(σi ) ∩ co(actions(σj )) = ∅ (we use actions(σ) to denote the set of all actions 
occurring in σ) imposes that no message exchange is allowed within the same ws- 
bpel  business process.4    This allows us to express   as a simplified form of the 
expansion law as it is found, for instance, in [Hennessy 1988]. 

 

 
4 In ws-bpel, actions used for synchronizing activities  of a flow must be invisible outside the flow. 



A Theory of Contracts for Web Services 45 · 

 

 

 

 

We do not define any operational semantics for the activities. As a matter of fact 
this is already given by the type systems of Table IV:  contracts being behavioral 
types, they faithfully  describe the operational semantics of activities. More impor- 
tantly,  our theory of contracts provides us with a formal tool for reasoning about 
safe replacement and upgrade of ws-bpel activities, by comparing the correspond- 
ing contracts. For instance, the depth and width subtyping properties enjoyed by � 
tell us that it is safe to replace an activity  A with an activity  sequence(A, Al) and 
also that it is safe to replace pick(α1 .A1 , . . . , αm .Am ) with pick(α1 .A1 , . . . , αn .An ) 
where n ≥ m. In the first case, we are appending additional functionalities to some 
business process; in the second case, we are providing additional alternative func- 
tionalities to a business process. 

The following result shows that we can also derive interesting substitution prop- 
erties for sequence and flow: 

Proposition 5.2.  Let actions(σ) ∩ actions(τ ) = ∅.  Then σ; τ � σ  τ . 
 

Proof. It is sufficient to prove that W d=ef  {(σ, σ  τ ) | actions(σ) ∩ actions(τ ) = 
∅} ∪ {(σ; τ, σ  τ ) | actions(σ) ∩ actions(τ ) = ∅} is a weak subcontract relation. Let 
(σ, σ  τ ) ∈ W and assume σ  τ ⇓ r.  By definition of σ  τ there exist rl and s such 
that σ ⇓ rl and τ ⇓ s and r = rl ∪s, from which we derive rl ⊆ r. Let α ∈ rl. Then 
(σ   τ )(α) ≡ σ(α)   τ by definition of σ  τ and we conclude (σ(α), σ(α)   τ ) ∈ W by 
definition of W . Let (σ; τ, σ  τ ) ∈ W and assume σ  τ ⇓ r.  Then there exist rl and 
s such that σ ⇓ rl  and τ ⇓ s and r = rl ∪ s. We have two cases: (1) if rl ;= ∅, then 
σ; τ ⇓ rl  and we derive rl  ⊆ r; (2) if rl  = ∅, then σ; τ ⇓ s and we derive s ⊆ r. 
In case (1), assume α ∈ rl.   From the encoding of σ; τ  and from the hypothesis 
actions(σ) ∩ actions(τ ) = ∅  we have (σ; τ )(α)  ≡ σ(α); τ  and by definition of    we 
have (σ   τ )(α) ≡ σ(α)   τ and we conclude (σ(α); τ, σ(α)   τ ) ∈ W by definition of 
W . In case (2), assume α ∈ s. From the encoding of σ; τ and from the hypothesis 
actions(σ) ∩ actions(τ ) = ∅  we obtain (σ; τ )(α)  ≡ τ (α)  and by definition of    we 
have (σ   τ )(α) ≡ σ  τ (α) so we conclude (τ (α), σ  τ (α)) ∈ W again by definition 
of W . 

 

As a corollary of Proposition 5.2 observe that σ � σ  τ when σ and τ share no 
common action. Let f : σ; τ ≤ σ  τ and let t- A : σ and t- B : τ . Proposition 5.2 can 
be interpreted in two different ways: when reading σ; τ � σ  τ from left to right, the 
proposition gives us sufficient conditions by which we can replace sequence(A, B) 
with flow(A, B) when A and B are independent activities and we want to increase 
the service throughput by taking advantage of parallelism (for instance,  because the 
machine hosting the Web service has been upgraded and is now multiprocessor). In 
this case the clients of the old, sequential Web service can still interact successfully 
with the upgraded, parallel one, provided that the interaction is shielded by f . 

On the other hand, when reading σ; τ  � σ  τ  from right  to left, the proposi- 
tion gives us sufficient  conditions by which we can approximate  the behavior of 
flow(A, B) with  that  of sequence(A, B).  Indeed, the size of contract σ  τ  may 
grow exponentially with respect to the size of σ and τ because of the use of contin- 
uations σ(α) and τ (α) and of the interleaving semantics in the definition of  . For 
instance, we have 

 

a.b   c.d = a.(b.c.d + c.(b.d + d.b)) + c.(a.(b.d + d.b) + d.a.b) 
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and it might  be desirable to approximate a.b   c.d with  a.c.b.d. However, doing 
so without  filters can be dangerous,  as the following example shows.  Consider 
the client contract ρ d=ef  a.(b.b.e + c.b.d.e). Then ρ -- a.c.b.d, hence a client having 
contract ρ would be declared compliant with the service whose approximate contract 
is a.c.b.d. However, by inspecting the expansion of a.b   c.d we realize that  the 
behavior of the service does actually account for a b action right after the action a, 
so the client (process) might get stuck trying to read a second  b after the first one. 
By applying the filter a.c.b.d, we prevent any synchronization on b to happen during 
the second interaction, thus guaranteeing that the client successfully terminates. 

 
5.4   On implementing filters 
We have presented filters as behavioral coercions that enlarge the set of Web ser- 
vices a client is compliant with.  Basically, the filter mediates the interaction be- 
tween client and service by forbidding actions that can potentially lead the client 
to a deadlock. The filter,  however, has no power over the internal choices made 
independently by client and service. In our theory, this latter  fact is remarkably 
rendered by rules (IChoice) and (EChoice) (see Table I on page 22), in which the 
same filter must be applicable for all the branches of internal and external choices, 
in order to work correctly. Do filters actually play a role in real-world Web services? 
If so, do they admit effective, and hopefully efficient, implementations?  As regards 
the first question, we notice that a filter is actually a well known actor in the Web 
service scenario: it is an example of Web service orchestrator. An orchestrator is 
simply a process whose task is to coordinate other processes in such a way so as to 
guarantee that their interaction eventually leads to the achievement of a goal (in 
our setting, the goal being client satisfaction). 

As regards the implementation of filters, we discuss it in the rest of the section. 
 

5.4.1   Implementing filters as join  patterns. A first  observation is that  filters 
can be rendered  by means of binary join patterns (in the style of the Join calcu- 
lus [Fournet and Gonthier 1996; Fournet et al. 1996]) of the form α & β, which 
can be thought of as an atomic action that can be executed provided that α and β 
are simultaneously available in the execution environment. Then, a filter f may be 
implemented  as a (finite-state) process C[ ] as follows 

f  = 
L  

α [ −→f 
α & αl.C[   ] 

where we use αl to distinguish the action α performed by the filtered service, so 
that it is not confused with the action α as it is seen by the client. Then a client 
P  and a service Q safely interact with  each other under the supervision of the 
filter/orchestrator: 

 

P   C[
 
]  Q{αl /α1 , . . . , αl /αn }

 
f 1  n 

where α1 , . . . , αn are the actions occurring in Q and denotes the usual parallel 
composition of processes. 

The problem then reduces to the effective implementation of join patterns. It is 
well known that implementations of the Join calculus all pose strong requirements 
over the channels being joined together, namely that  they must all be created 
simultaneously with the patterns in which they are involved, and that they must all 
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be local to the host that created them. However, it has also been shown in [Laneve 
and Padovani 2006] how to partly  relax these constraints so that  only locality 
is actually required in order to avoid a global consensus problem, and that  join 
patterns can be dynamically attached to the site hosting the channels being joined. 

 
5.4.2   Filters  as one-position buffers. The second  observation is that,  for an 

interesting subclass of processes, join patterns are not necessary at all. If we assume 
that, at any time, the service can only (internally)  decide to send messages, or can 
only (externally) wait for messages, then the compilation scheme sketched  above 
reduces to the straightforward process 

C[  ] = 
L

f a

 

a.al.C[
 

] + 
L

f  a

  
a .a.C[   ]

 
f −→f f l l f l −→f 

 

in which, for every f , at most one of the two sums is nonempty. This subclass is 
interesting because it exactly characterizes  processes behaving  according  to session 
types [Honda 1993; Takeuchi et al. 1994; Honda et al. 1998], in which at any time 
only one process,  either the client  or the service, decides the next action to be 
executed.  In  this respect, the generality of our contract language may at first 
appear excessive, since it allows a mixture of input and output actions irrespective 
of the choice operators with  which they are combined.  In  particular,  it seems 
natural to restrict output actions to internal choices, and input actions to external 
choices. However, it is clear from Table IV and from the definition of the   operator 
given earlier that  input  and output actions can occur as guards in both internal 
and external choices of real world Web services contracts. 

 
5.4.3   Implementing filters in ws-bpel. The language of filters we have adopted 

is very simple.  Given f : σ ≤ τ , the structure of f tells us very little  about 
the actual behavior of σ and τ .  It is reasonable to expect that, by enriching the 
language of filters with  constructs  that  more faithfully  describe the structure  of 
the proof that relates σ and τ , one is able to provide efficient implementations in 
a wider range of situations. Nevertheless  even if we want to implement just these 
“simple”  filters by means of ws-bpel processes, we cannot hope to obtain much 
more than what we did with  one-position buffers.  The point  of the encoding in 
§5.4.1 is to exploit join patterns for detecting the simultaneous  presence, on the 
server and on its client, of an action and its coaction. This cannot be expressed (at 
least not straightforwardly)  in a ccs-like formalism nor in ws-bpel, which solely 
relies on low-level communication primitives.  Consequently we must restrict our 
attempt of encoding filters as ws-bpel processes to staged computations in which 
just one of the partners has the floor. This, combined with the fact that the syntax 
of pick forces external choices to be performed on inputs, yields to a subcontracting 
hierarchy very close to the one relating session types [Gay and Hole 2005]. 

In what follows we outline a formalization of this hierarchy and its benefits in 
ws-bpel. The point is not to study the expressivity of ws-bpel but to show that 
the theory presented in this paper can be applied to ws-bpel and to ws-bpel 
processes  in the current  form.   In a nutshell, if we want  to check whether two 
ws-bpel processes are or can be made compliant, then what we have to do is (i) 
to extract their contracts by means of the type system in Table IV, (ii) to check 
whether the extracted contracts are compatible with  a staged computation (see 
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Definition 5.3 below), and (iii) to automatically synthesize the ws-bpel process 
implementing the filter that makes the client compliant with the service. Thus the 
theory is immediately applicable to existing ws-bpel processes to combine them 
more flexibly (thanks to the width subtyping that allows us to update services with 
new features) without the need of adding new primitives or constructors (such as 
session types labels and labeled selections) to ws-bpel nor of modifying the code 
of existing processes. 

More precisely, the filters that we can reasonably  encode in ws-bpel are those 
that never filter out output messages and that relate staged contracts, having the 
following form. 

 Definition 5.3 (staged contract). We say that the (service) contract σ is 
staged if either (1) σ ':: 

L
i∈I ai ; σi  and for every i, j ∈ I such that i ;= j we have 

ai  ;=  aj   and each σi   is staged or (2) σ ':: 
EB

i∈I (ai1     · · ·  aini ); σi   and for every 
i, j ∈ I such that i ;= j we have ai1  ;= aj1  and each σi  is 
staged. 

 

In case (1) we say that σ is staged if it describes a service that  lets the client 
decide which message to send. In case (2) we say that σ is staged if it describes a 
service that can be in one of |I | different states and in each state i ∈ I the service 
sends a message ai1  that  distinguishes that  state from all the others, along with 
possibly more messages ai2 , . . . , aini   (observe that |I | > 1 implies ni  > 0 for every 
i ∈ I ). Then, the service continues behaving as a staged contract σi . 

A filter that never filters out output messages is called input filter and is formally 
defined below. 

 

Definition 5.4 (input filter).  We say that f is an input filter for the (ser- 
vice) contract σ if σ  ϕa

 and f  ϕ
 f l implies f l  a   . 

 
Namely, an input filter never filters out any output action, unless this is guarded 

by an input action that has been filtered out. Given an input filter f for a staged 
(service) contract σ, the ws-bpel process that implements f , denoted by F (f, σ), 
can be defined  as follows: 

 
pick(ai .action(al ); F (f (ai ), σi ), . . . ) 

ai 
(i∈I ,f −→) 

 
if σ 

 
':: 

L 
i∈I 

 
ai .σi  

pick(al  .sequence(action(al ), . . . , action(al    ), 
F (f, σ) d=ef i1 i2 ini 

flow(action(ai1 ), . . . , action(aini )),  
F (f (ai1 · · · ain  ), σi )), . . . )(i∈I )   if σ ':: 

EB
i I (ai1     · · ·  aini ); σi 

If  σ is an external choice of input  actions, then the filter  simply waits  for a 
message on one of those input actions ai  that have not been filtered out (f  −→). 
Once such a message is received, the filter  delivers it to the service. If σ is an 
internal choice of (possibly concurrent) output actions, then the filter waits for a 
message ai1  from the service. Since σ is staged, all the ai1 ’s are distinct hence the 
pick  activity  is well formed. When a message is received, the filter unambiguously 
knows the state the service is in, hence it collects all the other messages produced 
by the service in that state. Then, all the collected messages are delivered to the 
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client, because f is an input filter. 
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6.   CONCLUSION AND FUTURE WORK 
This paper provides a foundation for behavioral  typing  of Web services and it 
promotes service reuse and/or  redefinition by the introduction  of a subcontract 
relation. 

Our approach reconciles two hitherto apparently incompatible requirements. On 
the one hand a subcontract relation must allow a service to be replaced or upgraded 
by offering more operations (width subtyping), longer interaction patterns (depth 
subtyping) and/or more deterministic ones. On the other hand this must be done 
without disrupting the behavior of clients. 

Filters provide the technical device that makes it possible. Although we initially 
defined filters essentially  as technical mechanism to couple clients and services, fil- 
ters turn  out to have an elegant  logical justification:  they are explicit coercions 
between related contracts. Following the Curry-Howard isomorphism filters can be 
interpreted as proofs of a sound and complete deduction system for the subcontract 
relation.   Such deduction system simultaneously refines and extends Hennessy’s 
classical axiomatization of the must testing preorder. Its algorithmic counterpart 
is obtained as a cut elimination process, which proves the coherence of subcontract- 
ing as a logical system. The canonical proof, the one produced by the algorithmic 
deduction system, is characterized in terms of an order relation on filters, and the 
algorithmic presentation allows us to show the decidability both of the subcontract- 
ing relation and of filter inference. 

The theory of subcontracting is independent of the language used to implement 
services and clients. We do not rely on a particular language nor on a particular 
paradigm (objects, process algebras,  functions, . . . ).   By defining some minimal 
requirements on the language (in a nut-shell, the observable behavior of its programs 
must be faithfully captured by contracts), we establish the soundness of our contract 
system: clients always terminate interactions with any, possibly filtered, compliant 
service.  We have also shown that we do not need either to extend ws-bpel syntax 
or to reprogram existing ws-bpel processes in order to apply to them the theory 
presented in this paper and thus reuse them in more contexts. 

Filters thus play the double role of a proof tool and of programming glue between 
clients and services. As an aside it is nice to notice that filters can encode ccs and 
π-calculus restrictions: (νa)P = faP [P ] where 

faP  = 
V

α∈(fn(P )∪co(fn(P ))\{a,a} α.faP  . 
 

That is, a restriction is nothing but a recursive filter that allows all actions apart 
from the restricted one. 

Even if in this presentation we applied filters to services, in practice it is the 
client’s responsibility to apply them. A client searching for a service with a given 
contract will receive as answer to its query the reference of a service together with 
a filter that allows the client to use the service. Thus the filter must be computed 
by the query engine, which is why the algorithmic inference of filters is crucial for 
a practical application. 

Actually, it is more realistic to imagine that a query will be answered with several 
different  contracts requiring filters that  may be unrelated to each other.  There- 
fore a second use of filters could be that of refining the search space, by specify- 
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ing in a query a minimum acceptable filter.   In this way the client could specify 
which of the possible behaviors of its “canonical” service are considered mandatory 
and not to be filtered out.  For instance, when searching for services implement- 
ing the behavior described  in Figure 1 we could specify, along with  the query, 
the filter Login.ValidLogin.Query.Catalog.AddToCart. Buy.(CreditCard.Valid ∨ 
BankTransfer.Valid) thus obtaining only services that may complete a sale, avoid- 
ing useless services such as those with contract Login.InvalidLogin. 

Several future research directions stem from this work.  The following is a non- 
exhaustive list: 

 
—Higher-order contracts: In the current formalism synchronization does not carry 

any information.  Thus a natural next step is the introduction  of higher order 
channels à la π-calculus. 

—Asymmetric choices: The choice operators are commutative.  We  could try  to 
relax this property in order to give the summands different priorities, which is 
impossible with the current definitions. For instance, there is no way for a client 
that  has to use a service with contract (a + b) ⊕ a to specify that  it wants to 
connect with b if this action is available, and with a otherwise (in order to be 
compliant  it must accept a possible synchronization with  a).  It is unclear to 
which extent such constructs would affect the � preorder over contracts. 

—Contract morphisms: The only morphisms between contracts we have consid- 
ered are filters. Since filters are coercions, then by definition they essentially do 
not alter the semantics of objects. One could try  to consider more expressive 
morphisms (e.g. renaming or reordering of actions) and to perform service dis- 
covery modulo such morphisms: when searching for services of a given contract 
a client could be returned a service and a conversion function that  adapts the 
interaction pattern of the client to the service at issue (somewhat similar to, but 
less stringent than, libraries searches modulo type isomorphisms [Rittri 1993; Di 
Cosmo 1995]). This could set the basis of a new theory of orchestration where 
light and highly distributed orchestrators would be implemented by filters and 
contract morphisms. 
This could later be extended to richer  query/discovery languages obtained by 
adding union, intersection and negation types on the basis of the set-theoretic 
interpretation presented here and of the work on semantic subtyping [Castagna 
and Frisch 2005]. 

—Relation with other formalisms: Finally, connection with other formalisms such as 
linear logic, session types, and game semantics must surely be deeply investigated. 
In particular,  as regards the semantic aspects, it is interesting  to notice  that 
clients and services introduce a notion of orthogonality which suggests that  a 
realizability semantics for contracts is worth exploring. 
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