. UNIVERSITA
5/ DEGLI STUDI

[T1S AperTO

DI TORINO
AperTO - Archivio Istituzionale Open Access dell'Universita di Torino
A Theory of Contracts for Web Services
This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/102158 since 2016-11-08T11:48:26Z

Published version:
DOI:10.1145/1538917.1538920
Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

15 May 2024

UNIVERSITA DEGLI STUDI DI TORINO

Thisis an author version of the contribution published on:

G. CASTAGNA; N. GESBERT; L. PADOVANI
A Theory of Contracts for Web Services
ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND
SYSTEMS (2009) 31(5)
DOI: 10.1145/1538917.1538920

The definitive version is available at:
http://portal.acm.org/citation.cfm?doi d=1538917.1538920

http://portal.acm.org/citation.cfm?doid=1538917.1538920

A Theory of Contracts for Web Services

Giuseppe Castagna

CNRS PPS, Université Denis Diderot, Paris, France
and

Nils Gesbert

University of Glasgow, Glasgow, Scotland

and

Luca Padovani

ISTI, Universita degli Studi di Urbino, Urbino, Italy

Contracts are behavioral descriptions of Web services. We devise a theory of contracts that
formalizes the compatibility of a client to a service, and the safe replacement of a service with
another service. The use of contracts statically ensures the successful completion of every possible
interaction between compatible clients and services.

The technical device that underlies the theory is the filter, which is an explicit coercion prevent-
ing some possible behaviors of services and, in doing so, make services compatible with different
usage scenarios. We show that filters can be seen as proofs of a sound and complete subcontracting
deduction system which simultaneously refines and extends Hennessy’s classical axiomatization of
the must testing preorder. The relation is decidable and the decision algorithm is obtained via a
cut-elimination process that proves the coherence of subcontracting as a logical system.

Despite the richness of the technical development, the resulting approach is based on simple
ideas and basic intuitions. Remarkably, its application is mostly independent of the language used
to program the services or the clients. We outline the practical aspects of our theory by studying
two different concrete syntaxes for contracts and applying each of them to Web services languages.
We also explore implementation issues of filters and discuss the perspectives of future research
this work opens.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of
Computation—Parallelism and concurrency; F.3.3 [Logics and Meanings of Programs]: Stud-
ies of Program Constructs—Type structure; H.3.5 [Information Storage and Retrieval]: On-
line Information Services—Web-based services; H.5.3 [Information Interfaces and Presenta-
tion]: Group and Organization Interfaces—Theory and models, Web-based interaction

General Terms: Languages, Standardization, Theory
Additional Key Words and Phrases: Web services, contracts, concurrency theory, ccs, must
testing, type theory, subtyping, explicit coercions.

A preliminary version of this work appeared in the proceedings of POPL '08, the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages 2008.

Nils Gesbert is supported by EPSRC grant EP/F065708/1 (Engineering Foundations of Web
Services: Theories and Tool Support).

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

2 ' Castagna, Gesbert, and Padovani

1. INTRODUCTION

Web services are distributed components that clients can connect to and communi-
cate with by means of standard communication protocols and platform-neutral mes-
sage formats. Remarkably, Web services are equipped with machine-understandable
descriptions of their interface. This aspect permits Web services to be discovered
according to the information encoded in their interface. Among the capabilities
that can be used as search keys are the operations provided by the service, the
format or schema [Fallside and Walmsley 2004] of the exchanged messages, and the
contract required to interact successfully with the service. By contract we mean
the description of the external, observable behavior of a service.

The Web Service Description Language (wsdl) [Chinnici et al. 2007; Chinnici
et al. 2007]is a standard technology for describing the interface exposed by a
service. In wsdl, contracts are basically limited to one-way (asynchronous) and
request/response (synchronous) interactions. The Web Service Conversation Lan-
guage (wscl) [Baneriji et al. 2002] extends wsdl contracts by allowing the descrip-
tion of arbitrary, possibly cyclic sequences of exchanged messages between com-
municating parties. Other languages, such asthe Web Service Business Execution
Language (ws-bpel) [Alves et al. 2007], provide even more detailed descriptions
of services by defining the subprocess structure and more specific details regarding
the service’s internals. Such descriptions, which are excessively concrete and ver-
bose to directly serve as interfaces, can be approximated and compared in terms of
contracts.

Standard technologies are also available for building repositories of Web service
descriptions [Bellwood et al. 2005], making it possible to perform queries for services
according to their contract. Searching immediately calls for a notion of contract
equivalence to perform service discovery in the same way as, say, type isomorphisms
are used to perform library searches [Rittri 1993; Di Cosmo 1995]. Without a
formal characterization of contracts, however, one is left with excessively demanding
equivalences such as syntactical or structural equality. In fact, clients will be equally
satisfied to interact with services that provide more capabilities than those actually
required, so that it makes sense to relax the equivalence into a subcontract preorder
(denoted by @ in this paper).

In this work we develop a formal theory of contracts that defines a coarse sub-
contract preorder. Along the lines of [Carpineti et al. 2006] we describe contracts
by simple ccs-like terms built with just three operators: prefixing, denoted by a
dot, and two infix choice operators + (external choice) and ® (internal choice).
The contract a.0 describes a service that is capable of performing an action a, and
then continues as 0. The contract o + 7 describes a service that lets the client
decide whether to continue as o or as 1. The contract o ® 7 describes a service
that internally decides whether to continue as ¢ or as 7. Following ccs notation,
actions are either write or read actions, the former ones being topped by a bar,
and one being the co-action of the other. Actions can either represent operations
or message types. As a matter of facts, contracts are behavioral types of processes
that do not manifest internal moves and the parallel structure.

Contracts are used to ensure that interactions between clients and services will
always succeed. Intuitively, this happens if whenever a service offers some set of

A Theory of Contracts for Web Services ' 3

actions, the client either synchronizes with one of them (that is, it performs the
corresponding co-action) or it terminates. The service contract allows us to deter-
mine the set of clients that comply with it, that is that will successfully terminate
any session of interaction with the service.

Of course the client will probably be satisfied to interact with services that offer
more than what the searched contract specifies. Intuitively we want to define an
order relation on contracts o € 1 such that every client complying with services
implementing o will also comply with services of contract 7. In particular, we would
like the € preorderto enjoy some basic properties. The first oneis that it should
be safe to replace (the service exposing) a contract with a “more deterministic”
one. For instance, we expecta ® b.c €3, since every client that terminates with
a service that may offer either @ or b.c will also terminate with a service that
systematically offers a. The second desirable property is that it should be safe
to replace (the service exposing) a contract with another one that offers more
capabilities. For instance, we expect a €a+ b.d since a client that terminates with
services that implement a will also terminate with services that leave the client the
choice between a and b.d. If taken together, these two examples show the main
problem of this intuition: it is easy to see that a client that complies with a ® b.c
does not necessarily comply with a+b.d: if client and service synchronize on b, then
the client will try to write on ¢ while the service expects to read from d. Therefore,
under this interpretation, € looks as not being transitive:

aebc®a N a®a+bd =— aebce®a+bd.

The problem can be solved by resorting to the theory of explicit coercions [Bruce
and Longo 1990; Chen 2004; Soloviev et al. 1996]. The flawed assumption of the
approach described so far, which is the one proposed in [Carpineti et al. 2006],
is that services are used carelessly “as they are”. Note indeed that what we are
doing here is to use a service of “type” a + b.d where a service of type a ® b.c
is expected. The knowledgeable reader will have recognized that we are using €
as an inverse subtyping relation for services.! If we denote by => the subtyping
relation for services, then a ® b.c > a+ b.d and so what we implicitly did is
to apply subsumption [Cardelli 1988] and consider that a service that has type
a+ b.d has also type a @ b.c. The problem is not that € (or, equivalently,) is
not transitive. It rather resides in the use of subsumption, since this corresponds
to the use of implicit coercions. Coercions have many distinct characterizations
in the literature, but they all share the same underlying intuition that coercions
are functions that embed objects of a smaller type into a larger type “without
adding new computation” [Chen 2004]. For instance it is well known that for
record types one has {a:s} > {a:s;b:t}. This is sobecause the coercion function

c = Ax{asbt} fa = x.a} embeds values of the smaller type into the larger one.?

1The inversion is due to the fact that we are considering the client perspective: a contract can be
interpreted as the set of clients that comply with services implementing the contract. We decided
to keep this notation rather than the inverse one for historical reasons, since it is the same sense
as used by De Nicola and Hennessy for the may and must preorders [De Nicola and Hennessy
1984]. This inversion corresponds to the duality between simulation and subtyping, viz. between
observers and observed behaviors.

2In typed lambda calculus coercions are formally characterized by the fact that their type erasure

4 ' Castagna, Gesbert, and Padovani

In order to use a term of type {a:s;h:t} where one of type {a:s} is expected, we
first have to embedit in the right type by the coercion function ¢ above, which
erases (masks/shields) the b field so that it cannot interfere with the computation.
Most programming languages do not require the programmer to write coercions,
either because they do not have any actual effect (as in the case of the function c
above since the type system already ensures that the b field will never be used) or
because they are inserted by the compiler (as when converting an integer into the
corresponding float). In this case we speak of implicit coercions. However some
programming languages (e.g. OCaml [OCaml]) resort to explicit coercions because
they have a visible effect and, for instance, they cannot be inferred by the compiler.

Coercions for contracts have an observable effect, therefore we develop their meta-
theory in terms of explicit coercions. However, coercions can be inferred so they
can be kept implicit in the language and automatically computed at static time.
Coming back to our example, the embedding of a service of typeainto a@b.c is the
identity, since we do not have to mask/shield any action of a service of the former
type in order to use it in a context where a service of the latter type is expected.
On the contrary, to embed a service of typea+b.d into a we have to mask (at least)
the b action of the service. In order to use it in a context that expects aa service
we apply to it afilter that will block all'b messages. Transitivity being a logical cut,
the coercion froma+b.d toa ® b.c is the composition of the two coercions, that is
the filter that blocksbh messages. So if we have a client that complies with a® b.c,
then it can be used with a service that implementsa+b.d by applying to this service
the filter that blocks its b messages. This filter will make the previous problematic
synchronization on b impossible, so the client can do nothing but terminate.

Filters thus reconcile two requirements that were hitherto incompatible: On the
one hand we wish to replace an old service by a new service that offers more choices
(that is width subtyping, e.g. o > o+ 1) and/or longer interaction patterns (that
is depth subtyping, e.g. a > a.og) and/or is more deterministic (e.g.c® 1 > g). On
the other hand we want clients of the old service to seamlessly work with the new
one.

Two observations to conclude this brief overview. First, the fact that we apply
filters to services rather than to clients is just a presentational convenience: the
same effect can be obtained by applying to the client the filter that blocks the
corresponding co-actions. Second, filters must be finer-grained in blocking actions
than restriction operators as defined for ccs or 7. These are “permanent” blocks,
while filters are required to be able to modulate blocks along the computation. For
instance the filter that embeds (a.(a + b)) + b.cinto a.b must block b only at the
first step of the interaction and a only at the second step of the interaction.

1.1 Outline of the presentation

We start by presenting the syntax of our contracts (§2.1), by showing how to use
them to express wsdl and wscl descriptions (§2.2), and by defining their semantics
(52.3). We then characterize the set of all clients that are strongly compliant
with a service—that is, clients that successfully complete every direct interaction

is n-equivalent to the identity function, but in general coercions may be different from the identity
function [Chen 2004].

A Theory of Contracts for Web Services ' 5

session with the service—and argue that subcontract relations whose definitions are
naively based on strong compliance are either too strict or suffer the aforementioned
problem of transitivity (§2.4). We argue that subcontracting should not be defined
on all possible interactions, but focus only on interactions based on actions that a
client expects from the services: all the other possible actions should not interfere
with the interaction. We formalize this concept by giving a coinductive definition of
a subcontract relation that focuses on this kind of actions, we study its properties
and describe the relation with the must preorder (§3.1). This subcontract relation
induces a notion of weak compliance suggesting that non-interference of unexpected
actions can be ensured by coercion functions, which we dub filters (§3.2). By
shielding the actions at issue, a filter embeds a service into the “world” of its
expected clients. We prove that our subcontract relation can be expressed in terms
of filters and of the must preorder and we provide a sound and complete deduction
system for the subcontract relation where filters play the role of “proofs” (§3.3).
The subcontract relation is shown to be decidable via the definition of a sound and
complete algorithmic deduction system (§3.4). Next we show how our contracts are
to be used to type Web services programming languages. In particular, we relate
our contract language with a generic class of typed process languages and show
the soundness of our theory of contracts: this is proved by showing that if a client
process is weakly compliant with a service process via a given filter, then the filter
ensures that the client will either synchronize infinitely many times with the service
or it will successfully terminate (§4). We conclude by exploring the more practical
aspects of this work. In particular, since our theory is stated for possibly infinite
regular trees, we introduce two concrete syntaxes to finitely denote these trees and
relate them with the preceding theoretical work (§5.1). Next we apply each syntax
to one language proposed by the two major web standardization bodies (i.e., w3c
and Oasis) (§5.2-5.3), we explore possible ways of implementing filters, and we
outline how the theory can be directly implemented in ws-bpel without requiring
any modification of the ws-bpel specification or of existing ws-bpel processes
(§5.4). A conclusion recaps our work and hints at possible tracks of future research
(86).

1.2 Related work

The contracts used in this presentation draw their inspiration from De Nicola and
Hennessy’s seminal work “ccs without 1's” [De Nicola and Hennessy 1987], as well
as from acceptance trees [Hennessy 1985; 1988] of which they can be considered
an alternative representation. The works that are most closely related to ours are
by Carpineti et al. [2006] and those on session types, especially the one by Gay
and Hole [2005]. In [Carpineti et al. 2006] the subcontract relation exhibits all
the desirable properties illustrated in the introduction, but subcontracting stops at
the problem of transitivity. In that work compliance was a syntactic notion and
contracts lacked a semantic characterization.

Session types were introduced in the context of the mr-calculus [Honda 1993;
Takeuchi et al. 1994; Honda et al. 1998]. These are used to type special channels
through which several different messages may be exchanged in sequence according to
a given protocol. Such a session channel can be seen as a client-service connection,
and the session type is the analogous of our contract as it describes which actions

6 ' Castagna, Gesbert, and Padovani

the processes may perform through this channel. However, session types have the
important restriction, if compared with contracts, that only one part has the floor
at a given time: whenever a process performs an internal choice it hasto indicate
explicitly which path of interaction it has chosen, and the other process hasto be
waiting for this indication. Thus there is no way of mixing internal and external
choices, and two processes like a+ b anda + b do not interact successfully (because
nobody has the floor, so no communication can happen). Subtyping for the session
types has been studied by Gay and Hole [2005], but because of the aforementioned
restriction, the transitivity problem we address in this paper does not exist for
them: internal and external choices can never be related, hence a® b € a+ b does
not hold. However, this looks like a reasonable relation, inasmuch asa ® b models
a scenario where exactly one of two resources a and b is available (and the client
does not know which one), which can be safely related with (and replaced by) a
scenario where both a and b are available and the client can choose whether to use
aorbh.

[Carbone et al. 2007a; 2007b] describe choreographies of Web services by means
of a global calculus, and descriptions of individual processes are obtained as pro-
jections of the global description. Both the global description and the projections
are based on session types. In our approach, the typical application is searching
for a service compatible with a given protocol from the client’s point of view: in
particular, we want depth subtyping (a service that tries to pursue the interaction
after the client has successfully terminated is compatible with this client), which
does not hold for session types. We believe that our theory is more basic than the
theory of session types and that it can be fruitfully used to enrich the latter.

[Fournet et al. 2004] define a conformance preorder on ccs processes with the
property that a process is stuck-free (i.e., it successfully terminates) in every con-
text in which smaller processes are stuck-free. The conformance relation of [Fournet
et al. 2004] differs from our subcontract relation in some important aspects. For
example, in [Fournet et al. 2004] a® 0 € 0, but a ® 0 ;9 a. This essentially de-
rives from the fact that stuck-free conformance is defined without using an explicit
action (denoted by e in our work) expressing in an observationally visible way the
successful termination of a party, but instead by requiring that the party must even-
tually reduce to the idle process 0. Doing so prevents the specification of clients
of the form e +a.e, which attempt to do an action, but that can succeed even if
the action is not available. The lack of the explicit action e has overall important
consequences on the precongruence properties of €. A more important point is that
the conformance relation of Fournet et al. is not complete with respect to stuck-
freedom, in the sense that there are processesthat are stuck-free exactly in the same
contexts but are not related by conformance: for instance, a.(b ® ¢) and a.b + a.c
are stuck-free equivalent but are not conformance equivalent. In our theory the two
processes above are equivalent and, more generally, our subcontracting provides,
mutatis mutandis (cf. actions for successful termination), a complete characteriza-
tion of stuck-freedom. Finally, stuck-freedom does not allow either width or depth

subtyping.
[Bravetti and Zavattaro 2007] propose a contract language equipped with a re-
finement relation. The language is constrained so that output actions can only

A Theory of Contracts for Web Services ' 7

occur in the context of an internal choice. This restriction somehow resembles
the design choice of session types and, not surprisingly, the refinement relation for
this language allows width extensions of contracts without any intervening filter-
ing. However, the refinement relation is determined in a symmetric way for all
the participants of a system, whereas our notion of compliance is asymmetric (in
favor of the client). This makes the refinement relation more demanding than ours.
In particular, all the participants must successfully terminate, meaning that depth
extensions are not entailed by refinement.

[Derrick et al. 1996] provides a thorough overview of refinement relations in the
testing framework that date back to the LOTOS system [Brinksma et al. 1995].
According to the terminology of [Derrick et al. 1996], the relation a ® b.c a is
an instance of so-called reduction refinement, in whicha @ b.c is replaced bya thus
reducing nondeterminism. On the other hand, @ € a+b.d is an instance of so-called
extension refinement, in which aa is replaced by a+b.d which provides further func-
tionalities. The combination of these two refinement relations yields the so-called
implementation refinement, which basically coincides both with the subcontract
relation defined in [Carpineti et al. 2006] and with the € relation we introduce in
this work (see equation (1) in §2.3 and the proof of Theorem 3.4). It is known that
extension refinement is not a precongruence with respect to the contract operators
and that implementation refinement lacks transitivity [Derrick et al. 1996]. As we
already explained in the Introduction, the present paper addresses and solves both
problems: precongruence can be regained under minimal conditions, namely when
filtering does not depend on the internal choices of client and service (see §3.3), and
transitivity stems directly from the ability of composing filters.

A very preliminary version of this work was presented at Plan-X 2007 work-
shop [Castagna et al. 2007] and largely improved in the version presented one year
later at Popl '08 [Castagna et al. 2008]. Although the Plan-X workshop has just
informal proceedings, these are available on the web. Therefore it seems worth
discussing the differences of the present article both with the Plan-X version and
with the improved Popl version. While the overall presentation and structure of
the three papersis the same, both this and the Popl versions improve over the
Plan-X onein several points. Here and in [Castagna et al. 2008] we consider a
slightly different version of strong compliance relation which now coincides with
the must testing preorder, while in Plan-X strong compliance differed from must
testing for some (uninteresting) pathological cases that involved the empty con-
tract. The deduction system of Plan-X was reworked in favor of elegance and
simplicity. The resulting algebraic theory of filters is also cleaner. We present bet-
ter results for language neutrality. Finally, the study of the algorithmic version of
the deduction system, of its logical interpretation, and of the decidability of the
containment relation, was absent from the Plan-X version and introduced in the
Popl one. The article presented here improves the work in Popl for several key
aspects. Foremost, while in Popl work contracts (and filters) were finite, here the
theory is defined for recursive contracts (and filters) by working directly with infi-
nite recursive trees and by proposing two different finite representations for them
(we believe that the in-depth treatment of infinite terms and of the relation with
their finite representations constitutes a nice contribution of our work). This im-

8 ' Castagna, Gesbert, and Padovani

plied a complete reworking of most of the definitions and of the proofs (even though
the latter were not included in the Popl proceedings for space reasons). The finite
representations we introduce here are then used to study wscl and ws-bpel and
possible implementations of filters are explored; in particular we outline how our
theory can be used and implemented in the current specification of ws-bpel with-
out requiring any modification to the language or to existing ws-bpel processes.
All these practical aspects are completely absent in the work presented at Popl.
Finally, the deduction system for filters is here further improved and we also use
a different and (we hope) more elegant syntax for filters, by relying only on the
underlying algebraic operators.

Starting from the Plan-X work the third author and Cosimo Laneve proposed a
simplification where contracts are “statically” filtered [Laneve and Padovani 2007]:
each contract is associated with a static interface (in the sense that it does not
change over the time) declaring the only visible actions of the contract and blocking
all the other ones whenever they happen. As stated in [Laneve and Padovani 2007],
the resulting approach is less general than ours and, consequently, yields a stricter
subcontract relation. For instance, the relation a.b € (a.(a + b)) + b.c, which we
commented on just before §1.1, does not hold in the interface approach (for a
practical example of relation that does not hold for interfaces see the contracts o
and ¢’ in §2.2.2 and the explanation given at the end of §3.2.1). On the other hand,
interfaces allow for simpler algorithmic treatment and implementation.

2. CONTRACTS

2.1 Syntax

Contracts are formally defined as possibly infinite trees that satisfy regularity and
a contractivity condition.

Definition 2.1 (contract). Let N be a countable set of names. The set
of contracts Z is the set of possibly infinite terms coinductively generated by the
following grammar:

a
o

ala a€EN
Olaoc| o®oc|o+o

and satisfying the following conditions:

(1) contract terms are regular,

(2) on every infinite branch of a contract term there are infinitely many occurrences
of the prefix constructor.

In the definition O is the contract of services that do not perform any action while
the other constructions were already explained in the introduction. We follow the
standard convention of omitting trailing 0’s. We also work modulo associativity of
each sum operator and by an aﬂuse of notation we will sometimes denq:tg them as n-
ary operators. We then write ., ., 0 for Qi+ 0O2+:+0y and .
for o, ® 0, @ - -+ ® 0. By conventionwe have ., 0; =0.

Infinite terms account for recursive contracts. This kind of presentation is not
customary in process calculi where finite representations of recursion (essentially,
Kleene star, recursive equations, or rec-notations) are nearly always preferred. This

A Theory of Contracts for Web Services ' 9

is probably due to the fact that the intuition behind a finite representation can be
more easily grasped. However working directly on infinite trees has two clear ad-
vantages. First and foremost all results abstract away from the particular notation
used to represent recursion: it is easy to transpose each result to each particular
representation, while it is much more difficult to move from one representation
to another. Second, working with infinite terms makes it quite straightforward to
transpose the work to finite ones since it just suffices to forget that terms are infinite
and no further modifications are needed; with finite representations of recursion,
instead, definitions and results must be tailored to account for infinite behavior and
thus use constructions (such as environments for recursion variables, memoization
environments in deductions) that are meaningless for finite terms.

Of course not every infinite term constructed by applying “®”, “+”, and
is acceptable. We require the term (i) to be regular, so that the set of terms is
provided with a well-founded order, and (ii) to satisfy a fairly standard contractivity
condition requiring that recursion must be guarded by ani/o operation, which rules
out meaningless terms of the form rec x = x + x.3

2.2 Examples

In this section we relate our contract language to existing technologies for specifying
service protocols.

2.2.1 Message exchange patterns in wsdl. The Web Service Description Lan-
guage [Chinnici et al. 2007; Chinnici et al. 2007] permits to describe and publish
abstract and concrete descriptions of Web services. Such descriptions include the
schema of messages exchanged between client and server, the name and type of
operations that the service exposes, as well as the locations (urls) where the ser-
vice can be contacted. In addition, it defines interaction patterns (called message
exchange patterns or meps in version 2.0 of wsdl) determining the order and di-
rection of the exchanged messages. In particular, wsdl 2.0 predefines four message
exchange patterns for describing services where the interaction is initiated by clients.
Let us shortly discuss how the informal plain English semantics of these patterns
can be formally defined in our contract language. When the mep is inOnly or
robustinOnly, communication is basically asynchronous: the client can only send
an In message containing the request. If the pattern is robustinOnly the service
may optionally send back a Fault message indicating that an error has occurred.
When the mep is inOut or inOptOut, communication is basically synchronous: the
client sends an In message containing the requestand the service sends back ei-
ther an Out message containing the response or a Fault message. If the pattern is
inOptOut, then the Out message is optional. These four patterns can be encoded

3Contractivity was introduced by Courcelle [Courcelle 1983] to rule out e.g. rec x = X, which is
syntactically meaningless because it is satisfied by every regular tree, but it was not meant to rule
out expressions such as rec x = x + X. The latter is syntactically meaningful since it denotes a
particular regular tree, but it is semantically meaningless, because of the the peculiar semantics
of the “+” operator. Here we use contractivity in stricter interpretation, that is as a means for
ruling out also terms that are semantically meaningless.

10 ' Castagna, Gesbert, and Padovani

in our contract language as follows:

inOnly = In
robustinOnly = In.(0 ® Fault)
inOut = In.(Out ® Fault)

inOptOut = In.(0 ® Out ® Fault)

Intuitively, a client that is capable of invoking a service whose mep is inOnly
will also interact successfully with a service whose mep is robustinOnly (depth
subtyping). Conversely, a client that is capable of invoking a service whose mep
inOptOut will also interact successfully with services whose mep is either inOut, or
robustInOnly (since they are more deterministic), or even inOnly. Indeed, such a
client must be able to handle both a communication that terminates and a Fault
or Out message. On the other hand, a client that interacts with a service whose
mep is inOut will not (always) interact successfully with a service whose mep is
inOptOut. The client assumes that it will always receive either an Out or a Fault
message, but inOptOut does not give this guarantee.

2.2.2 Conversations in wscl. The wsdl message exchange patterns cover only
the simplest forms of interaction between a client and a service. More involved
forms of interactions, in particular stateful interactions, cannot be captured if not
as informal annotations within the wsdl interface. The Web service conversation
language wscl [Banerji et al. 2002] provides a more general specification language
for describing complex conversations between two communicating parties, by means
of an activity diagram (Figure 1). The diagram is made of interactions which
are connected with each other by means of transitions. An interaction is a basic
one-way or two-way communication between the client and the server. Two-way
communications are just a shorthand for two sequential one-way interactions. Each
interaction has a name and a list of document types that can be exchanged during its
execution. A transition connects a source interaction with a destination interaction.
A transition may be labeled by a document type if it is active only when a message
of that specific document type was exchanged during the previous interaction.

Below w