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A B S T R A C T  
Host acquired immunity is a critical factor that conditions the survival of parasites. Nevertheless, there is a 
shortage of data concerning inter-individual immunological inequalities in wild mammals. Sarcoptic mange is a 
widespread parasitosis that severely affects mammals such as the Iberian ibex (Capra pyrenaica). Despite some 
work on the subject, the immune response to sarcoptic mange infestation is still a complex and poorly 
understood phenomenon. To improve knowledge of the host-Sarcoptes immunological interaction, 18 Iberian 
ibexes were experimentally infested. IgG levels were assessed using ELISA to test for potential factors determining 
the specific immune response to infestation. Previous exposure and sex appeared to affect the IgG response to 
infestation and our results suggest a sex-biased immune modulation. We discuss the immunological pattern of 
host-Sarcoptes interactions and also suggest further lines of work that may improve the understanding of 
immunological interactions of host-Sarcoptes systems. 
 
Introduction 

Host acquired immunity (immune memory) is a critical factor that conditions the survival of 
parasites (Hudson and Dobson, 1995; Wilson et al., 2002). Available data on inter-individual 
inequalities in host-parasite interactions is uneven and differ according to the host and parasite 
taxa in question. Studies have tended to focus more on birds and endoparasites than on any 
other class of animals (Dobson, 1988; Clayton and Moore, 1997) and data for wild mammals, for 
instance, are scarce and more ambiguous. Some physiological inequalities have been described in 
small mammals (Khokhlova et al., 2004; Kristan, 2004), although for medium and large species 
most data are the product of analogies with human and domestic animals (Lloyd, 1995). Despite the 
many experimental studies that have described uneven clinical and physiological responses, inter-
individual variability is often just acknowledged (e.g. Mörner and Christensson, 1984; Skerratt, 
2003a,b) without being fully characterized. 
Here we present details of an experiment on the immunological interaction between the etiological 
agent of sarcoptic mange (Sarcoptes scabiei, Linnaeus 1758) and one of its wild hosts, the Iberian ibex 
(Capra pyrenaica, Schinz 1838). This sexually dimorphic mountain ungulate is endemic to the 
Iberian Peninsula (Pérez et al., 2002) and is affected by sarcoptic mange (Pérez et al., 1997) 
caused by a submacroscopic mite that burrows into the skin of domestic and wild mammals (Pence 
and Ueckermann, 2002; Gonzalez-Candela et al., 2004). Sarcoptic mange affects animals at a 
broad spectrum of levels ranging from the individual pheno-type (Serrano et al., 2007) to the 
population dynamics of the host species (Pence and Ueckermann, 2002). By the end of the twentieth 
century several Iberian ibex populations had experienced massive mortality rates (in some cases 
over 90%) as a result of increasing epizootic episodes of sarcoptic mange (Fandos, 1991). Conserva-
tion managers and researchers have collaborated (for example, in this experiment) to explore 
strategies aimed at controlling this disease in natura and to prevent the extinction of this endemic 
ungulate, whose populations are only just recovering after centuries of multifactor population 
decline (Pérez et al., 2002). 
Correlative studies of host-Sarcoptes interaction provide multiple trended data on epidemiology; 
nevertheless, these works often report an uneven distribution of sarcoptic mange in host popula-
tions (Pérez et al., 1997; Pence and Ueckermann, 2002). As well, experiments have detected 
inequalities and have sometimes revealed previous exposure to be one of the determining factors 
(Arlian et al., 1994; Skerratt, 2003a). However, a full characterization of inter-individual inequalities has 
not yet been carried out. In particular, few immunological studies have been conducted and, 
despite some available information suggesting the importance of humoral and cellular responses 
(Arlian, 1996), the immune response to sarcoptic mange remains complex and poorly understood 
(Pence and Ueckermann, 2002). 



We employed an experimental approach with different host-parasite interaction sub-classes to test 
the following hypotheses: 

1. According to previous studies on host-Sarcoptes immunological interaction (Falk, 1980; 
Arlian et al., 1994; Bornstein et al., 1995), infested as opposed to control animals are 
expected to develop a specific immunological response. 

2. As immunity and parasitism are reported to vary with sex (Folstad and Karter, 1992; Hughes 
and Randolph, 2001), we expect there to be a lower specific response in males than in 
females. 

3. As immunity is reported to vary with age (Lloyd, 1995), we expect there to be a lower 
specific response in juvenile animals than in adults. 

4. According  to  the  acquired  immunity  principle,   secondary responses should reach 
higher levels (Wikel, 1996; Wakelin and Apanius, 1997) and so we expect there to be greater 
specific response in previously exposed animals than in naïve ones. 

2. Materials and methods 

2.1. General experimental procedure 
The experimental buildings were located in southern Spain (Centro Las Mimbres, Parque Natural de 
las Sierras de Huétor, Granada). Eighteen Iberian ibexes Capra pyrenaica hispanica (Table 1) obtained 
from a stock reservoir protected from exposure to sarcoptic mange (Sierra Nevada National Space, 
36°55'-37°10'N, 2°56'-3°38'W) were kept in small groups in separate enclosures. Special care was 
taken to avoid any transmission of the mites and special protective clothing and footwear were 
worn when visiting and handling the animals. In each enclosure, animals were able to move freely 
and had ad libitum access to food and water. Animals were kept under observation during an 
acclimatisation period of 6 weeks prior to the tests being carried out. 
During the first experimental period (9 weeks, see Table 2), 13 ibexes were infested with low inoculums 
(load 6300 mites), while a group of 5 ibexes were maintained as a control group. At 74 days post 
infestation (dpi), animals were treated using doramectin (Dec-tomax®, 10 mg/50 kg b.w.) and then 
again at 89 dpi. A recovery period of 5 weeks was allowed after the second treatment with 
doramectin. The second experimental period began at 132 dpi and all animals (both those from 
the control group and from the previously-infested group) were infested with low inoculums (load 
6300 mites). On health grounds, animals were subsequently treated with doramectin at 208 and 223 
dpi, as during the first experimental period. 

2.2. Manipulation of parasite loads and sampling 

The ibexes used in the experiment were infested with S. scabiei extracted from the skins of three 
naturally parasitized wild ibexes selected from the neighbouring Sierra Nevada massif. Mites were 
extracted from pieces of mangy skin by means of a thermal gradient induced by a light shone from 
below Petri dishes with black bottoms and transparent central areas (Andrews, 1981). 
Mites were counted with a stereomicroscope and placed on a sterilized metallic support. Next, this 
support was fixed onto the ibex's previously shaved inter-scapular region using adhesive bands, 
thereby inducing contact between the mites and host's skin. 
Blood samples were collected by venipuncture from the day of the first infestation until the end of 
the experiment (Table 2). Sampling followed the same calendar for all individuals (Table 2) as a 
means of creating a standardized data base. After clotting, blood samples were centrifuged at 
200g for 15 min and sera were stored at -20 °C in 1 ml aliquots until required. 
Skin scrapings were also performed to verify the success of mite establishment (Table 2). 

2.3. Immunological response estimates 

IgG antibodies are an essential weapon in acquired immunity since they identify and neutralize 
foreign antigens (Wikel, 1996). IgG levels were estimated using a serological test - a labelled avi-din-
biotin immunosorbent assay (LAB-ELISA) - that was developed to detect the specific humoral 
response to S. scabiei in the Caprinae subfamily (Rambozzi et al., 2004). Antigen was obtained from 
living S. scabiei mites at different stages of development (Rambozzi et al., 2004). The optical density of 
processed samples was read at 405 nm with a spectrophotometer (Anthos 2010, An-thos Labtec 
Instruments, Wals, Austria). Potential cross-reactions were tested for, although there was no evidence 
of any cross-reaction with other potential causes of skin damage in ungulates (see Rambozzi et al., 
2004). 
Our analysis was focused on the quantitative responses to infestations, and not on the qualitative 
classification of healthy/mangy individuals. Consequently, we analysed the optical density of pro-
cessed samples as a continuum and an indicator of increases in the IgG, but did not use any cut-off 
point. 



2.4. Statistical analyses 
The experimental design was uneven in its sex ratio and treatment of the animals tested (Table 1). 
Consequently, we performed a number of different analyses to test each of our predictions with 
each sub-set of experimental individuals. More specifically, we first examined the occurrence of a 
specific immune response in just males. Then, we analysed the factors determining the immune 
response to the first infestation in infested individuals. Next, during the second trial we examined 
the effect of reinfes-tation on immune response in males and analysed the factors determining the 
immune response to reinfestation in only rein-fested individuals. Finally, to contrast with the results of 
the analysis cited above, we examined the factors determining the immune response in reinfested 
females and naïve males. Since data consisted of a longitudinal series of measurements from the 
same host animals, we used generalized additive mixed model analyses (GAMM; Verbeke and 
Molenberghs, 2000; Pater-son and Lello, 2003; Wood, 2006; Zuur et al., 2007). Taking into account the 
characteristics of our data set and in order to apply the most informative method, we used an 
information-theoretic approach (Whittingham et al., 2006) based on the Akaike Information Criterion 
corrected for small sample sizes (AICc; Burn-ham and Anderson, 2002). Variables examined were 
‘‘Group" (infested in the first trial or not), ‘‘Sex" (male or female) and ‘‘Age". Model selection 
identified in our analyses the most parsimonious model (lowest AICc; Burnham and Anderson, 2002) 
from the possible sub-sets, which ranged from the null model to a model with explanatory 
variables and their two-order interactions. The larger the Akaike difference (DAICc), the less plausible it 
is that the fitted model is the best model given the data set (Burnham and Anderson, 2002). Models 
with Akaike differences of less than 2 units and the relative importance of examined variables (RI) 
are commented upon (Burnham and Anderson, 2002), especially when the Akaike weight of the 
best model was moderate or low (Anderson et al., 2000, 2001). RI is measured by the sum of the 
Akaike weights for all models in which the variable appears (Burnham and Anderson, 2002) and ex-
presses the probability that the considered exploratory factor is included in the ‘‘ideal" model 
explaining the variability in the dependent variable given the data set. 
All analyses were performed using the R 2.6.2 statistical package (R Development Core Team, 2008). 

3. Results 

All infested ibexes developed characteristic mange lesions due to the experimental exposition to S. 
scabiei; the success of mite establishment was confirmed by skin scraping and microscopic 
examination. 

3.1. Analysis of the first infestation 

Infested males developed a specific serum antibody response during the first infestation period 
(Fig. 1). Taking into account only males (Table 3a), the model including ‘‘Time", ‘‘Group" and their 
interaction as explanatory factors was the best (WiTime+Group+Time*Group = 1; see Table 3a), suggesting 
that the observed response develops over time. The robustness of those results is highlighted by 
the multimodel inference. Of the explanatory variables, factors ‘‘Time", ‘‘Group" and their 
interaction had relative importances (RI) equal to one (see Table 3a). 

The analysis specifically focusing on the infested individuals of both sexes confirmed that the specific 
response to infestation developed over time (Fig. 1), and that the sex of the host was a further key 
factor determining the response to the first trial (see Table 3b). The model including ‘‘Time", ‘‘Sex" 
and their interaction was the best (WiTime+Sex+Time*Sex = 0.77); other models had Akaike differences greater 
than 4 units (see Table 3b), which underlines the poor support for these models given the data set. 
‘‘Time", ‘‘Sex" and their interaction had very high relative importances in the observed pattern, while 
the age of infested animals only had a low RI (see Table 3b). 

3.2. Analysis of the second infestation 

Previously exposed males had lower responses over time than naïve ones (Fig. 2). Taking into 
account only males, in the second trial (Table 4a) the model including ‘‘Group" ‘‘Time" and their 
interaction was the best (WiTime+Group+Time*Group = 0.76; see Table 4a), suggesting that previous exposure 
to Sarcoptes has a negative effect on the development of the response over time. The multi-model 
inference reinforced these results since the RI of ‘‘Group" ‘‘Time" and their interaction was equal to 
one and the RI of ‘‘Age" and its interactions with other factors had lower values (Table 4a). 

Among reinfested individuals, females had a higher specific response to reinfestation than males (Fig. 
2). In the analyses which took into account reinfested animals of both sexes (see Table 4b), the 
model including ‘‘Time", ‘‘Sex" and their interaction was the best (WiTime+Sex+Time*Sex = 0.58), underlining 
the sex-dependent response to reinfestation. Likewise, of the explanatory variables ‘‘Time", ‘‘Sex" 
and their interaction had a high RI and ‘‘Age" and its interactions with other factors appeared as 
having a low RI (Table 4b). 



Finally, the response of naïve males to infestation seems not to diverge strongly from or to be slightly 
lower than the response of reinfested females (Fig. 2). In the analysis which took into account naïve 
males and reinfested females (see Table 4c), the model including ‘‘Time" was the best (WiTime = 0.48), 
although two other models including ‘‘Sex" had Akaike differences of lower than 2 units, which 
suggests that these other two models could have also substantial support. Likewise, of the 
explanatory variables ‘‘Time" had a higher relative importance than both ‘‘Sex" and their interaction. 

4. Discussion 

4.1. Specific serum antibody responses to S. scabiei in the Iberian ibex 

Iberian ibexes infested with sarcoptic mange produced a specific antibody response, which 
agrees with data from other hosts 
 (Falk, 1980; Arlian et al., 1994; Bornstein et al., 1995) and with our first prediction. This finding 
diverges to some extent from Lastras et al. (2000), who observed no significant differences in IgG 
levels between healthy and infested Iberian ibexes from the same area, and we discuss this 
apparent contrast below. In line with the 3R principles (Russell and Burch, 1959), we limit the control 
group of our experiment to just male Iberian ibexes. However, on the basis of our results, the 
assumption of specific immune response to Sarcoptes in females as well is reasonable. Females are 
normally the immunologically stronger gender (Fols-tad and Karter, 1992); the chromosomal 
localization of the major histocompatibility complex has been reported in autosomes in several 
ungulate species (Ansari et al., 1988; Mäkinen et al., 1989) and there is no support to presuppose 
male-exclusive acquired immunity. 
Uneven responses to Sarcoptes appeared during the first trial and further inequalities appeared 
after the reinfestation, which highlights the complexity of this topic. These inequalities confirm our 
second prediction, since sex appeared as a factor determining the immune response to infestation 
and reinfestation. Females had a higher acquired response to infestation and reinfestation than 
males, but the lack of marked difference between the response of reinfested females and naïve 
males indicates that a composite effect is taking place. Previously exposed males had lower IgG 
responses than naïve males, underlining the importance of experience. This paradoxical result 
contradicts our fourth prediction and the hypothesis of Shrank and Alexander (1967), who consider 
acquired immunity to Sarcoptes as a permanent feature. Arlian et al. (1994) obtained results with a 
similar trend in rabbits reinfested by Sarcoptes. Arlian et al. (1994) suggested that previous exposure 
induces immunoresistance and interpreted the subsequent reduction in humoral response as proof 
of resistance on the basis of the observed recovery from lesions. This, however, is not consistent with 
the acquired immunity principle, which implies that the first trial should have induced a greater 
response during the secondary exposure (Wikel, 1996; Wakelin and Apa-nius, 1997). The observed 
reduction in acquired immunity should be nearer to the effects of immunomodulation (Wikel et 
al., 1996). French et al. (1988) suggested that the experimental environment and probably self-
grooming behaviour are key factors in recovery from mange lesions. The recoveries from lesions ob-
served by Arlian et al. (1994) were probably favoured by factors other than the reduction of 
acquired immunity. Our results suggest that previous exposure to Sarcoptes may induce a sex-
biased modulation of the IgG Sarcoptes-specific response in the Iberian ibex. Alternative hypotheses 
include a possible ineffective exposure to mites in previously infested males or an acquired immu-
nity based on other antibodies isotopes such as IgE, possibly leading to the lack of IgG response in 
these individuals. However, the success of mite establishment was confirmed in all ibexes by the 
development of lesions and the skin scraping. Altered levels in other antibodies isotopes 
(particularly IgE) have been described by other authors as a response to Sarcoptes linked to atopic 
dermatitis, which would imply the development of an allergic response to Sarcoptes rather than 
an specific response able to eliminate the parasite (Falk, 1980). Consequently, the hypothesis of an 
ineffective exposure to mites or of acquired immunity based on other antibodies isotopes such as 
IgE, as confounding factors, have little support. In natura, females are also infested and die from 
sarcoptic mange; compared to males, the modulation of immunity in females might be delayed 
and this uneven immunological interaction will have to be examined in more detail in the future. 
This complex interaction may have led to difficulties in interpreting the results of correlative studies 
(Lastras et al., 2000), since the pathogenic experience of culled free-ranging animals is generally 
unknown. 

4.2. Sample size 

In our experiment, infestations were analysed in 18 Iberian ibexes, a larger sample size than those 
used in previous experiments on the effects of Sarcoptes on wild mammals (Samuel, 1981; Mörner 
and Christensson, 1984; Bornstein et al., 1995; Little et al., 1998; Skerratt, 2003a,b). Nonetheless, our 
experimental design was still a compromise between a manageable and ethically acceptable 
sample size and the number of variables to be examined. Nevertheless, the analysis of a 
longitudinal data set allowed us to identify several effects of the considered variables. The selected 



models generally had good support, as suggested by their Akaike weight, and our results are a 
substantial contribution to more precise knowledge of the complex pattern of inequalities that exist 
in the immunological interaction with Sarcoptes. Experience and sex appeared as key determining 
factors in the immune response to Sarcoptes; age did not seem to be very relevant, although we 
cannot exclude the possibility that additional subtleties may appear in future experiments with 
larger sample sizes or increased numbers of reinfestations. 

4.3. From immune response to the need for an integrated approach 

The effects of Sarcoptes on several components of the immune system were recorded, suggesting 
that unequal changes in the defences of the immune response take place. Sarcoptic mange infes-
tation modulates splenic gene expression (Arlian et al., 2007), skews the Th1/Th2 immune response 
(Lalli et al., 2004), increases IgE antibodies and eosinophils, and decreases levels of IgA antibodies 
(Falk, 1980). These patterns, which resemble somewhat an allergy or an atopic dermatitis (Soothill 
et al., 1976), suggest that Sarcoptes induces complex interactions with host defences and even a 
multifaceted immunomodulation, as occurs in cases of infestation by other arthropod parasites 
(Wikel et al., 1996). Our results constitute the first record of such alteration by Sarcoptes in a wild 
mammal species. More studies will be required if we are to fully understand the impact of single 
and successive infestations on the multidimensional immune response of hosts and their modulation-
allergy balances. 
The modulation of immune responses appears to affect individuals unevenly. The observed male bias 
is especially interesting given that the second trial occurred in September-October, a period that 
coincides with pre-rutting and a season of hormonal changes (e.g. an increase in testosterone 
levels) in Iberian ibex and other Caprinae species (Pelletier et al., 2003; Toledano-Diaz et al., 2007). 
The role of timing (Tinsley, 1990; Robb and Forbes, 2005) has not been studied sufficiently in host-
Sarcoptes systems. Further studies are still needed to highlight the physiological causes of observed 
inequalities and to analyze the possible relationship with reproductive costs in both sexes (Williams, 
1966), and must take into account the seasonal differences of life history and reproductive 
investments. 

5. Conclusion 

Like other parasites (Shaw et al., 1998), the mites causing sarcoptic mange often appear unevenly 
distributed in the host population (Pérez et al., 1997; Pence and Ueckermann, 2002) and our results 
provide us with a better understanding of several of the expected factors that explain observed 
distributions. Nevertheless, since epidemiology only provides a general view of the phenomena, 
supplementary data on factors such as the occurrence of repeated-infestation and sex-specific 
morbidity and mortality rates are still needed to understand and to model observed general pat-
terns (Smith et al., 1995). 
We should note, as well, that, despite being probably an essential part of observed distributions, 
immunological inequalities are not the only mechanisms involved. Parasitism will not occur evenly 
since individuals are genetically different and do not all behave in the same fashion (Barnard and 
Behnke, 1990; Wakelin and Apanius, 1997). The relative effects of these factors, which are related to 
host-compatibility (Combes, 2001) and to the host-encounter probability (Bundy and Blumenthal, 
1990), still need to be fully explored. Like the pieces of a puzzle, data on all dimensions of these 
interactions are required if we are to try to fully understand the causes and consequences of 
parasitism and host-parasite systems. 
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Table 2 - Chronology of experimental phases and sampling. 1, 6, 12, 18, 27, 
39, 51, 63, 74 = Number of days since the first infestation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 

 
Fig. 2. Evolution of Sarcoptes-specific IgG antibody titers during the second infestation in na males, reinfested males and 
reinfested females. Points correspond to the mean optical density (OD) of processed samples within groups. The greater 
the OD, the higher the number of Sarcoptes-specific circulating IgG antibodies. Error bars represent standard error. 

 

Table 1 - Ibexes and experimental sub-classes. 

 
 

 

 

Fig. 1. Evolution of Sarcoptes-specific IgG antibody titers during the first infestation in control males, infested males and 
infested females. Points correspond to the mean optical density (OD) of processed samples within groups. The greater the 
OD, the higher the number of Sarcoptes-specific circulating IgG antibodies. Error bars represent standard error. 



Table 3 - Model selection of the analysis of the first infestation. 

 
 
 
Table 4 - Model selection of the analysis of the second infestation. 
 

 

 

 


