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It is well known that in presence of outliers the maximum likelihood estimates are very un-
stable. In these situations an alternative is resorting to the estimators based on the minimum
density power divergence criterion for which feasible computationally closed-form expressions
can be derived, so that solutions can be achieved by any standard non linear optimization
code. But since the function to be minimized is often ill-behaved, the convergence of the al-
gorithm to optimal solutions strongly depends on the choice of the configuration of the initial
values. A new procedure based on an heuristic local search approach is introduced in order to
survey the parameters space and hence obtaining an accurate set of starting guesses for the
gradient-method minimization routine.

Keywords: heuristic optimization; minimum density power divergence estimators; robust
estimators; threshold accepting

AMS Subject Classification: 65C60; 90C59; 62G35.

1. Introduction

There is no doubt that a central role in parametric and Bayesian estimation is
played by the likelihood function, although in presence of outliers its estimates are
very unstable; for this reason alternative robust estimators have been proposed
in literature [see for instance 1–3, and references therein]. In the following, as
an alternative to the Maximum Likelihood criterion, we resort to the Minimum
Density Power Divergence Estimation method, originally proposed by Basu, Harris,
Hjort and Jones [4].

In many cases, for these estimators feasible computationally closed-form expres-
sions are available, so that the solutions can be found applying any standard non
linear optimization code, even if its convergence to optimal solutions strongly de-
pends upon its initial values.

In this paper we focus the attention on the problem of the choice of starting values
for the optimizing routine investigating the possibility to resort to an heuristic
approach to find a subset of the parameters space yielding good initial values.
More precisely, we suggest to explore the parameters surface applying an heuristic
Threshold Accepting method [see 5, 6].

We illustrate the procedure examining the problem of the estimate of the pa-
rameters of Gaussian densities in presence of one cluster of outliers. Theory and
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algorithms are outlined, numerical examples are given and main results of a simu-
lation study featuring several experimental scenarios are provided.

2. The generating model and the estimators

Before introducing our procedure, it is worthwhile to define the scenario we refer
to. We consider the problem of estimating the parameters of a Gaussian density of
dimension d ≥ 1 when sample data, of size n, actually come from a mixture of two
normal densities, i.e.

h(x)
def
= w1 φd(x|µ1,Σ1) + w2 φd(x|µ2,Σ2), (1)

where the weights w1 and w2 are positive and sum to unit and φd(x|µ,Σ) denotes
the density of a d dimensional normal random variable with mean vector µ and
variance-covariance matrix Σ.

We remark that for our purposes data points drawn from the second component
of equation (1) are considered belonging to a cluster of outliers of dimension n w2,
with w2 < w1. For this reason from now on we refer to equation (1) as the generating
model, while we are interested in estimating the parameters of its first component,
i.e. we assume that the sample data come from the Gaussian density φd(x|µ1,Σ1).

Clearly in this situation the estimates based on the Maximum Likelihood cri-
terion are strongly influenced by the presence of outliers. As an alternative we
consider the family of the Minimum Density Power Divergence Estimators.

Given the r.v. X of dimension d ≥ 1 with density ϕ(x|θ0), where θ0 ∈ S ⊆ p

and p ≥ 1, for which we introduce the model f(x|θ), with θ ∈ S, the density power
divergence between f and ϕ is defined, for α > 0, as

dα(f,ϕ) =

∫

d

{

f1+α(x|θ) −

(

1 +
1

α

)

ϕ(x|θ0)f
α(x|θ) +

1

α
ϕ1+α(x|θ0)

}

dx,

while for α = 0 it is defined as the Kullback-Leibler divergence.
Let X1, . . . ,Xn be a random sample from X, the Minimum Density Power Diver-

gence Estimator (MDPDE) for θ0 is the vector θ̂α that minimize the divergence
dα(f,ϕ) between the probability mass function ϕ̂n associated with the empirical
distribution of the sample and f , i.e. for α > 0

θ̂α = arg min
θ∈S

[

∫

d

f1+α(x|θ)dx −

(

1 +
1

α

)

1

n

n
∑

i=1

fα(Xi|θ)

]

. (2)

In general, as α increases, the robustness of the MDPDE increases while its effi-
ciency decreases [e.g. 4]. For α = 0 the MDPDE becomes the maximum likelihood
estimator, while for α = 1 the divergence d1(f,ϕ) is the L2 metric and the estimator
minimizes the L2 distance between the densities [see for instance 7–9].

Since for our purposes we stated that X is a d dimensional Gaussian random
variable with density φd (x|µ1,Σ1), recalling equation (2) the estimates for µ1 and
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Σ1 are given by

argmin
µ,Σ

[

∫

d

φ1+α
d (x|µ,Σ) dx −

(

1 +
1

α

)

1

n

n
∑

i=1

φα
d (X i|µ,Σ)

]

=

=argmin
µ,Σ

[

1

(1 + α)d/2 (2π)αd/2|Σ|α/2
−

(

1 +
1

α

)

1

n

n
∑

i=1

φα
d (X i|µ,Σ)

]

, (3)

since
∫

d φ1+α
d (x|µ,Σ) dx = (1 + α)−d/2 φd(0|0,Σ).

In other words our problem is to minimize the function

gα(µ,Σ) =
1

(1 + α)d/2 (2π)αd/2|Σ|α/2
−

(

1 +
1

α

)

1

n

n
∑

i=1

φα
d (Xi|µ,Σ). (4)

For brevity we refer to function (4) simply as gα(θ) with θ = [µ,σ], where µ is
the vector of the means and σ is the vector containing the elements of the columns

in the lower triangular part of diag
(

Σ
1

2

)

Id×d + R, where R is the correlation

matrix.
Thus, according to equation (3), we have to find, for a given value of α, the

absolute minimum of function gα(θ) with respect to θ in the parameters set S of
dimension p = d (d + 3)/2.

Since we consider situations where sample data are contaminated by a substantial
number of outliers, we choose α so that the absolute minimum of gα(θ) is given by
a vector close to the vector of the true parameters of the first component of the
generating model.

Function (4) appears to be a feasible computationally closed-form expression and
hence the estimate of the parameters of the d dimensional Gaussian density can be
performed by any standard non linear optimization code. From the computational
point of view, we resort to the Newton-type nlm minimizing routine of the R soft-
ware. Since the surfaces described by gα(θ) are often ill-behaved, the solutions of
the routine may become stuck in a local minimum, preventing the proper survey of
the entire surface, hence the importance of an accurate choice of the initial guesses.

3. An heuristic approach for the choice of initial guesses

In simulation field the convergence of the algorithm to optimal solutions, i.e. the
ones minimizing a given function g(θ), can be ensured (almost always) setting
the vector of initial guesses equal to the vector of the true parameters. Dealing
with real data, it is intuitive to resort to some data-driven mechanism to obtain
a vector θ̃ of good initial values to pass to the gradient-method minimization
routine. In literature many solutions to this problem, facing different situations,
have been proposed [see for instance 10–12, and references therein]. In this section
we introduce an alternative method based on an heuristic approach for starting
guesses generation.

Heuristics optimization methods can be applied in all those situations where the
objective function is not always well behaved enough to guarantee a solution to
global optimality using standard gradient methods. Whereas the gradient method
moves from a given point in the direction of the steepest descent of the gradient of
the objective function in this point (assuming that this function is differentiable)
and stops if a descent is no longer possible, iterative improvement chooses a solution
from the neighborhood of a given solution which improves this solution best and
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stops if the neighborhood does not contain an improving solution.
In order to find a minimum of an objective function g : S ∈ p → , an heuristic

local search method consists in moving iteratively through the solutions set S and
choosing a new solution comparing the current solution with one somehow close to
it [see 13]. Depending on the method of choosing solutions from the neighborhood
of the current solution and on the way the stopping criteria are defined, different
local search methods can be applied. For our purposes we resort to the Threshold
Accepting method (TA) introduced by Dueck and Scheuer [14] as a variant of the
simulated annealing proposed in the 50’s by Metropolis et alia [15].

According to the Threshold Accepting method if the difference between the ob-
jective value of the chosen and the current solution is smaller than a threshold t,
then TA moves to the chosen solution. The threshold t is a positive control parame-
ter which decreases with increasing number of iterations and converges to 0. Thus,
at each iteration we allow moves which do not deteriorate the current solution
more than the current threshold t, and finally we only allow improving moves. In
other words, we accept solutions which are worse than the previous ones in order
to be able to escape local minima. Algorithm 1 resumes the main steps of the TA
method for optimization problems.

Algorithm 1 (Threshold Accepting method):

1. Choose a stopping criterion
2. Generate an initial solution sc ∈ S
3. Choose the sequence of thresholds tr (r = 1, . . . , nR)
4. for r = 1 to nR

5. repeat
6. Generate sn ∈ N (sc) # neighborhood to current solution

7. if g(sn) < g(sc) + tr
8. sc = sn # move to a better solution

9. endif
10. until a stopping criterion is met
11. endfor

Applying the TA method, as described by Algorithm 1, requires the setting of
several parameters. The stopping criterion states how many times we explore the
local structure of the objective function for each threshold value; this means fixing
the number (nS) of iterations of the repeat...until loop. Since, in our context, the
solution set S = S1×. . .×Sp corresponds to the subset of p of all acceptable vectors
of parameters values, we propose to choose S in a data-driven way, e.g. based on the
sample moments of X. For any given vector of current solutions s∗ ∈ S, we define
the neighborhood N (s∗) = {s : |si − s∗i | < εi, i = 1, . . . , p} with εi = γ · range(Si),
where γ ∈ ] 0; 1 [. Finally the thresholds sequence {tr}, for r = 1, . . . , nR, can
be computed from the empirical distribution of ∆ = |g(s1) − g(s2)| resorting to
Algorithm 2.

Algorithm 2 (Thresholds sequence):

1. for i = 1 to nT

2. Generate s1
i , s

2
i ∈ S

3. Compute ∆i = |g(s1
i ) − g(s2

i )|
4. endfor
5. Compute the nR−1 quantile Qr of order r/(nR −1) with r = 1, . . . , nR −1

of the λ right trimmed empirical distribution of ∆
6. Compute the thresholds sequence {tr}, for r = 1, . . . , nR−1, corresponding

to the decreasing sorted Qr adding tnR
= 0
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This choice of the thresholds sequence allows Algorithm 1 to accept solutions
which are worse than the previous ones with a given decreasing probability.

Moreover, even if Althöfer and Koschnick [16] show that Algorithm 1 converges
to a solution close to an absolute minimum with probability approaching to unit as
the number of iterations grows to infinity, from a computational point of view the
choice of the values of nS , γ, nR, nT and λ must be made as a trade-off between
the characteristics of the objective function and computing issues.

Since our goal is finding good initial guesses, i.e. in the neighborhood of the abso-
lute minimum of g(θ), it is not so relevant for us to analyze the procedures yielding
the best configuration of the TA parameters, but rather show how the heuristic
approach can be useful in improving the classical methods for starting values gen-
eration. We suggest to use “raw” heuristic solutions as initial configurations for the
gradient-method procedure.

In other words, for a given sample of data, we apply Algorithm 1 and use its
solutions as starting guesses for the nlm routine. Algorithm 3 outlines this approach
simply labelled as TA + nlm.

Algorithm 3 (TA + nlm):

1. Set up the parameters for TA heuristic method
2. Perform the TA method according to Algorithms 1 and 2
3. Use its solutions as initial guesses for the nlm routine

4. Illustrative examples

In this section we provide two examples in order to show how the TA + nlm approach
works in practice when sample data come from the generating model (1) and the
gα(θ) function is given by equation (4).

We shall compare the behaviour of the TA + nlm procedure with a random ap-
proach, labelled Rnd + nlm, which consists in drawing N random sub-samples of
size m from the data, computing the moments estimates and choosing as initial
guesses for the nlm routine the vector of the sample moments which yields, among
the N runs, the minimum value of the objective function gα(θ). We set the size
m of the sub-samples equal to the number of the parameters to be estimated plus
one, i.e. m = p + 1. This choice can be motivated by the intuitive idea that small
sub-samples increase the randomization of the choice of starting values over the
space of the parameters and p + 1 is the minimum number of observations needed
for the moments estimates of θ to exist.

Moreover, for a given sample of data, we estimate B = 1000 times the parameters
of the density applying one of the MDPDE, and we count the percentage of times
that respectively Rnd + nlm and TA + nlm approaches lead to optimal solutions,
eventually dropping the degenerate ones, i.e in our simulation context we discard
all the solutions for which the nlm routine yields a non positive definite variance-
covariance matrix. In other words, for a given set of data we obtain 1000 random
initial values and 1000 TA heuristic starting guesses and we count how many of
these supply, through nlm, the optimal solutions. Obviously optimal solutions will
be those corresponding to the absolute minimum of function gα(θ) which is close
to the true value of the parameters of the first component of the generating model
of equation (1).

Example I: we consider a situation where n = 200 sample data are randomly drawn
from the univariate generating model (1) with w1 = 0.6, µ1 = 0, σ2

1 = 1, w2 = 0.4,
µ2 = 8 and σ2

2 = 1. We perform our procedure considering the estimator defined
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Figure 1. Panel a: contour plot of function g1(θ) showing one absolute and one relative point of minimum.
Panel b: scatter plot of points (δi;∆i) and the thresholds tr .

by equation (4) with α = 1. In this situation the function gα(θ) shows one abso-
lute point of minimum at θ = [0.074, 1.808] and one relative point of minimum at
θ = [2.377, 4.890], as shown in Figure 1, panel (a).
In order to implement the TA method according to Algorithm 1, we roughly
set S = S1 × S2 = [min(X);max(X)] × [0.01; sd(X)], while for N (s∗) we fix
εi = 0.2 · range(Si), and furthermore we set nR = 4, nT = 300 and λ = 0.2.
Figure 2, panel (b), shows how the thresholds sequence is constructed. It displays
the scatter plot of the nT points (δi;∆i), where δi are the euclidean distances be-
tween s1

i and s2
i . The straight lines indicate the thresholds values tr corresponding

to the quantiles {Q1, Q.67, Q.34, 0} of the λ trimmed distribution of ∆.
Applying TA + nlm procedure with nS = 25 we observe no degenerate solutions out
of the B = 1000 runs and all of them, when passed as initial guesses to the nlm

routine, supply the absolute minimum of function g1(θ).
Recalling that each TA run consists in nS × nR = 25× 4 = 100 candidates for ini-
tial guesses, to perform the Rnd + nlm procedure we set N = 100 and m = 3. This
approach yields 995 non degenerate solutions and the 83.0% of them provide the
absolute minimum. These results clearly testify the improvement we benefit resort-
ing to TA + nlm procedure as an alternative to the classical Rnd + nlm approach.
Our rough choice of the values for nS, nT , nR, εi and λ has to be interpreted as
a suitable compromise between the accuracy of TA + nlm solutions and computing
issues.
To have an idea on how the TA algorithm performs with the tuning parameters we
used, Figure 2, panel (b), shows the B = 1000 TA solutions that we used as initial
guesses for nlm. Figure 2, panel (a) displays the B = 1000 random solutions that
we passed to nlm as starting guesses. Only the points belonging to the left-lower
cluster led us to the optimal solution. The means and the standard deviations
of TA estimates for µ and σ are respectively (−0.010, 1.852) and (0.118, 0.169),
while the corresponding means and standard deviations of the random solutions
are respectively (0.482, 2.312) and (0.876, 1.171). If we consider only the random
solutions leading to optimal solutions, i.e. the points of the left-lower cluster of
Figure 2, panel (a), then their means and standard deviations become respectively
(0.093, 1.788) and (0.162, 0.166). We furthermore remark that increasing the size
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Figure 2. Scatter plots of the initial guesses for the nlm routine generated by the Rnd method (panel a)
and by the heuristic TA approach (panel b).

m of the random sub-samples does not improve the goodness of the random initial
guesses generation process. We found that setting for instance m = 6 the number
of the points belonging to the right-upper cluster of Figure 2, panel (a), increases
lowering thus the percentage of good solutions of Rnd + nlm procedure to an un-
satisfactory 26%.
Even if it is beyond the extent of this paper, we observe that optimal solutions can
certainly be reached applying only Algorithms 1 and 2 carefully tuning their pa-
rameters. This implies an accurate study of the solutions set, however rather simple
in the situation we are describing. For our data sample, if we set S1 = [−2; 10],
S2 = [0.01; 3], ε1 = 0.15, ε2 = 0.65, λ = 0.20, nR = 4, nT = 500 and nS = 1200,
we obtain B = 1000 TA solutions that supply the absolute minimum, with means
(0.074, 1.808) equal to the absolute minimum of g1(θ) and standard deviations
(0.007, 0.005) which are acceptably low.

Example II: we consider now a more complex situation where n = 200 sample data
are randomly drawn from the generating model (1) with w1 = 0.75, w2 = 0.25 and

µ1 =









5
4
2
0









Σ1 =









0.12 0.10 0.02 0.01
0.10 0.14 0.01 0.01
0.02 0.01 0.03 0.01
0.01 0.01 0.01 0.01









µ2 =









6
3
5
3









Σ2 =









0.30 0.09 0.18 0.07
0.09 0.10 0.08 0.05
0.18 0.08 0.20 0.08
0.07 0.05 0.08 0.05









In this way we reproduce the subset of Fisher’s iris data [17] for the two species
of iris, namely Setosa and Versicolor, but modifying the weights of the original
clusters.
We observe that, according to our notation, the θ vector of the first component of
model (1) corresponds to

θ = [µ1, µ2, µ3, µ4, σ1, σ2, σ3, σ4, ρ21, ρ31, ρ41, ρ32, ρ42, ρ43]

= [5, 4, 2, 0, 0.35, 0.37, 0.17, 0.10, 0.77, 0.33, 0.29, 0.15, 0.27, 0.58] .

We perform our procedure considering the estimator defined by equation (4) with
α = 0.2. Choosing values α < 0.2 the absolute minimum of gα(θ) is given by a
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vector which is far from the one of the first component of the generating model. On
the other hand, as α increases from 0.2 the absolute point of minimum becomes
more identifiable so that the choice of good initial guess is less critical. For our
generated sample, the absolute minimum of g0.2(θ) is −4.55 given by the vector

θ∗ = [5.03, 4.04, 2.01, 0.01, 0.42, 0.44, 0.17, 0.10, 0.83, 0.39, 0.26, 0.29, 0.27, 0.58] .

For TA initial guesses generation, we consider the set S = S1 × . . . × S14,
where Sj=1,...,4 = [min(Xi);max(Xi)]i=1,...,4, Sj=5,...,8 = [0.01; sd(Xi)]i=1,...,4, and
Sj=9,...,14 = [min(ri,l ∓ 0.8,∓1)]i<l with ri,l = Cov(Xi,Xl)/sd(Xi) sd(Xl).
We remark that on the vectors s ∈ S of the Generate step of Algorithms 1 and
2 we impose the condition that the sj=5,...,14 lead to a positive definite variance-
covariance matrix.
We furthermore decide to keep unchanged (except for nS) the remaining settings,
i.e. we fix εi = 0.2 · range(Sj), nR = 4, nT = 300 and λ = 0.2. Given the high
dimension (p = 14) of the solution set, for all the B = 1000 solutions of Algorithm
3 provide the vectors corresponding to the absolute point of minimum, it is neces-
sary to increase at nS = 300 the number of times we explore the local structure of
the objective function.
In this situation TA + nlm approach shows still an improvement on Rnd + nlm pro-
cedure (with N = 1200 and m = 15), which hits the absolute minimum only 817
times out of 960 non degenerate runs (i.e. 85.1%).
It is interesting to remark that clearly the setting we chose for the TA algorithm
yields solutions to be variable over the B = 1000 runs. In fact, while the means of
the TA estimates for θ are

[5.07, 4.00, 2.31, 0.50, 0.44, 0.44, 0.58, 0.30, 0.24, 0.04, 0.04, 0.15, 0.09, 0.19] ,

their standard deviations are

(0.15, 0.15, 0.06, 0.25, 0.06, 0.06, 0.19, 0.18, 0.29, 0.36, 0.37, 0.37, 0.33, 0.33) .

5. Some results from a simulation study

In this section we provide some of the results of a simulation study we set up to
check the goodness of the TA + nlm procedure described by Algorithm 3. To this
aim, we consider some different experimental configurations given by a specified
generating model of equation (1), with d = 1, 2.

For each scenario, for which function gα(θ) of equation (4) shows, for a given
value of α, one absolute and one relative point of minimum, we draw H = 100
random samples of size n and on each of them we compute B = 100 times the
MDPDE estimates of the parameters of the first component of the generating
model (1) resorting to Rnd + nlm and TA + nlm algorithms.

For each of the 100 samples, we record the percentage of times that nlm routine
initialized with random and heuristic initial guesses detects the absolute point of
minimum (AM) and the number of non degenerate solutions out of the B = 100
runs (ND). The results of the simulation are recorded as the mean and the standard
deviation of AM and we also indicate for completeness the mean percentage of ND.

Scenario I: we consider a simple situation where n = 250 sample data are ran-
domly drawn from the univariate generating model with w1 = 0.60, µ1 = 0, σ2

1 = 1,
w2 = 0.40, µ2 = δ and σ2

2 = 0.25, where the mean of the second component, i.e.
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Table 1. Scenario I: mean percentage of non degenerate solutions (mean(ND)), mean
(mean(AM)) and standard deviation (sd(AM)) of the percentage of times that nlm detects
the absolute point of minimum.

α = 0.8 α = 0.9 α = 1
Rnd+nlm TA+nlm Rnd+nlm TA+nlm Rnd+nlm TA+nlm

mean(ND) 99.3 100.0 98.9 100.0 97.8 100.0
δ = 8 mean(AM) 87.2 97.9 90.3 99.8 91.9 100.0

sd(ND) 4.5 0.8 3.2 0.9 3.9 0

mean(ND) 99.1 100.0 99.3 100.0 98.5 100.0
δ = 10 mean(AM) 81.3 100.0 88.4 100.0 90.7 100.0

sd(ND) 3.8 0 4.2 0 4.1 0

the one describing the distribution of the outliers, is set to δ = 8, 10. We analyze
this situation resorting to three different MDPDE obtained setting α = 0.8, 0.9, 1.
The settings for heuristic and random initial guesses generation are the same as
those outlined in example I.
Table 1 shows the results of the simulation applying Rnd + nlm and TA + nlm ap-
proaches. If we choose at random the starting guesses, then as δ moves from 8 to
10, i.e. the cluster of outliers goes far from the first component of the generating
model, Rnd + nlm procedure gives somewhat worse results while TA + nlm remains
substantially stable.
The results of Table 1 allow us to state that the heuristic method performs better
than the random one for all the experimental configurations, this in terms of per-
centage of non degenerate solutions (mean(ND)) and in terms of percentage of times
that nlm detects the absolute minimum (mean(ND)).

Scenario II: we inspect a situation where n = 250 sample data are randomly
drawn from the bivariate generating model with

µ1 =

[

0
0

]

Σ1 =

[

1 0.3
0.3 1

]

µ2 =

[

7
7

]

Σ2 =

[

1 0
0 1

]

and where the weight of the first component are respectively w1 = 0.55 and
w1 = 0.60. For this scenario we consider the three different MDPDE given by
setting α = 0.8, 0.9, 1.
The settings for heuristic and random initial guesses generation are the same as
those outlined in example II.
Table 2 records the results of the simulation resorting to Rnd + nlm and TA + nlm

approaches.
For each estimator and for all the experimental configurations, it’s clear the advan-
tage we benefit from TA + nlm procedure, in fact the corresponding mean(AM) values
are systematically greater than those we observe resorting to Rnd + nlm. Moreover,
the quite large values of sd(AM) denote in some measure a sample dependence of
the Rnd + nlm procedure .
The behaviour of MDPDE is well outlined if we consider the rows of Table 2 for
a fixed value of w1. As α increases the estimator becomes more robust. Moreover,
if we examine the columns of Table 2, it is clear that, when the components of the
generating model begin to be heavier, the performance of Rnd + nlm improves and
this independently of the value of α.
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Table 2. Scenario II: mean percentage of non degenerate solutions (mean(ND)), mean
(mean(AM)) and standard deviation (sd(AM)) of the percentage of times that nlm detects the
absolute point of minimum.

α = 0.8 α = 0.9 α = 1
Rnd+nlm TA+nlm Rnd+nlm TA+nlm Rnd+nlm TA+nlm

mean(ND) 98.8 99.6 99.5 99.9 100.0 100.0
w1 = 0.55 mean(AM) 31.5 92.3 54.6 96.4 72.2 98.3

sd(AM) 5.7 2.0 6.1 2.6 6.9 2.3

mean(ND) 99.2 100.0 100.0 100.0 100.0 100.0
w1 = 0.60 mean(AM) 63.4 98.7 69.9 100.0 82.6 100.0

sd(AM) 3.9 1.3 4.4 0.0 4.7 0.0

6. Conclusions and final remarks

In presence of outliers robust estimates of the parameters of a multivariate Gaussian
density can proficiently be obtained resorting to the estimators based on the Min-
imum Density Power Divergence criterion, for which computationally closed-form
expressions are available so that solutions can be obtained applying any standard
non linear optimization code. But Since the function to be minimized is in most
cases ill-behaved, the convergence of the algorithm to optimal solutions strongly
depends on the choice of the configuration of the initial guesses.

Usually starting values for gradient based routines are achieved applying (more
or less sophisticated) data-driven random algorithms. In this paper we suggest to
exploit the method of an heuristic local search to identify an optimal subset of the
parameter space yielding good initial values for the optimization code. It seems to
the authors that this approach in exploring the parameters surface behaves very
well featuring a valuable alternative to a basic random technique and this primarily
in terms of parsimony of computing time.

To be certain that the performance of the proposed method remains the same
when considering less basic situations a lot of work must still be done. For instance
we could introduce more components to the generating model (1) and then check
our procedure in finding good initial guesses for nlm routine when considering
MDPD estimators for a mixture of densities. In this case the results of the heuristic
approach could be compared with the one yielded by more opponent strategies,
such as EM algorithm, Kmeans procedure or other similar techniques.
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[5] M. Gilli, E. Këllezi, and H. Hysi, A Data-Driven Optimization Heuristic for Downside Risk Mini-

mization, Journal of Risks 8 (2006), pp. 1–19.
[6] P. Winker Optimization Heuristics in Econometrics, John Wiley, 2001.

Page 10 of 11

URL: http:/mc.manuscriptcentral.com/gscs

Journal of Statistical Computation and Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

July 10, 2009 17:9 Journal of Statistical Computation & Simulation durio˙isaia

REFERENCES 11

[7] G.R. Terrell, Linear Density Estimates, Proceedings of the Statistical Computing Section, American
Statistical Association (1990), pp. 297–302.

[8] D.W. Scott, Parametric Statistical Modeling by Minimum Integrated Square Error, Technometrics 43
(2001), pp. 274–285.

[9] A. Durio and E.D. Isaia, On Robustness to Outliers of Parametric L2 Estimate Criterion in the Case
of Bivariate Normal Mixtures: a Simulation Study, in Theory and Applications of Recent Robust
Methods, A.S. M. Hubert G. Pison and S.V. Aelst, eds., Birkhäuser, 2004, pp. 93–104.
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