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LOCAL WAVE-FRONT SETS OF BANACH AND
FRÉCHET TYPES, AND PSEUDO-DIFFERENTIAL

OPERATORS

SANDRO CORIASCO, KAROLINE JOHANSSON, AND JOACHIM TOFT

Abstract. Let !,!0 be appropriate weight functions and B be
an invariant BF-space. We introduce the wave-front set WFB(f)
with respect to the weighted Fourier Banach space B = FB(!).
We prove that the usual mapping properties for pseudo-differential
operators Opt(a) with symbols a in S(!0)

⇢,0 hold for such wave-
front sets. In particular we prove WFC(Opt(a)f) ✓ WFB(f) and
WFB(f) ✓ WFC(Opt(a)f)

S
Char(a). Here C = FB(!/!0) and

Char(a) is the set of characteristic points of a.

0. Introduction

In this paper we consider (local) wave-front sets with respect to ap-
propriate Banach and Fréchet spaces. Especially we focus on the case
when these spaces agree with Fourier images of translation invariant
Banach function spaces (BF-spaces). The family of such wave-front sets
contains the wave-front sets of Sobolev type, introduced by Hörmander
in [24], the classical wave-front sets (cf. Sections 8.1 and 8.2 in [23]), and
wave-front sets of Fourier Lebesgue types, introduced in [29]. Roughly
speaking, for any given distribution f and for appropriate Banach (or
Frechét) space B of temperate distributions, the wave-front set WFB(f)
of f consists of all pairs (x0, ⇠0) in Rd ⇥ (Rd \ 0) such that no localiza-
tions of the distribution at x0 belongs to B in the direction ⇠0.

We also establish mapping properties for a quite general class of
pseudo-differential operators on such wave-front sets, and show that
the micro-local analysis in [29] in background of Fourier Lebesgue
spaces can be further generalized. It follows that our approach gives
rise to flexible micro-local analysis tools which fit well to the most
common approach developed in e.g. [23, 24]. In particular, we prove
that usual mapping properties, which are valid for classical wave-front
sets (cf. Chapters VIII and XVIII in [23]), also hold for wave-front sets
of Fourier BF-types. For example, we show that for an appropriate
space C which is completely determined by B and the symbol class for
a we have

WFC(Op
t

(a)f) ✓ WFB(f) ✓ WFC(Op
t

(a)f)
S

Char(a). (0.1)
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That is, any operator Op
t

(a) shrinks the wave-front sets and opposite
embeddings can be obtained by including Char(a), the set of charac-
teristic points of the operator symbol a.

The symbol classes for the pseudo-differential operators are given
by S

(!0)
⇢,�

(R2d), the set of all smooth functions a on R2d such that
a/!0 2 S

0
⇢,�

(R2d). Here ⇢, � 2 R and !0 is an appropriate smooth func-
tion on R2d. We note that S(!0)

⇢,�

(R2d) agrees with the Hörmander class
S

r

⇢,�

(R2d) when !0(x, ⇠) = h⇠ir, where r 2 R and h⇠i = (1 + |⇠|2)1/2.
The set of characteristic points Char(a) of a 2 S

(!0)
⇢,�

is the same
as in [29], and depends on the choices of ⇢, � and !0 (see Definition
1.8 and Proposition 2.3). We recall that this set is smaller than the
set of characteristic points given by [23]. It is empty when a satisfies
a local ellipticity condition with respect to !0, which is fulfilled for
any hypoelliptic partial differential operator with constant coefficients
(cf. [29]). As a consequence of (0.1), it follows that such hypoelliptic
operators preserve the wave-front sets, as expected (cf. Example 4.9
in [29]).

In view of their definition, the information about regularity of dis-
tributions in background of the wave-front sets of Fourier BF-types
might be more detailed compared to classical wave-front sets, because
the family of Fourier BF-spaces is broad and such spaces can locally
be chosen to be "arbitrary close" to C

1, the set of smooth functions.
In this context, the classical wave-front set is exactly the wave-front
set with respect to C

1. For example, the space FB(!) = FL

1
(!)(R

d),
with !(⇠) = h⇠iN for some integer N � 0, is locally close to C

N(Rd)
(cf. the introduction of [29]). Consequently, the wave-front set with re-
spect to FL

1
(!) can be used to investigate a sort of regularity which is

close to smoothness of order N .
Furthermore, we are able to apply our results on pseudo-differential

operators in the context of modulation space theory, when discussing
mapping properties of pseudo-differential operators with respect to
wave-front sets. The modulation spaces were introduced by Feichtinger
in [6], and the theory was developed in [9–11, 14]. The modulation
space M(!,B), where ! is an appropriate weight function (or time-
frequency shift) on the phase space R2d, appears as the set of temperate
(ultra-) distributions whose short-time Fourier transform belong to the
weighted Banach space B(!). This family of modulation spaces con-
tains the (classical) modulation spaces M

p,q

(!)(R
2d) as well as the space

W

p,q

(!)(R
2d) related to the Wiener amalgam spaces. In fact, these spaces

which occur frequently in the time-frequency community are obtained
by choosing B = L

p,q

1 (R2d) or B = L

p,q

2 (R2d) (see Remark 6.1).
Parallel to this development, modulation spaces have been incorpo-

rated into the calculus of pseudo-differential operators, in the sense
2



of the study of continuity of (classical) pseudo-differential operators
acting on modulation spaces (cf. [5, 27, 28, 35–37]), and the study of
operators of non-classical type, where modulation spaces are used as
symbol classes. We refer to [15–19, 21, 22, 27, 32, 33, 38–40, 42] for more
facts about pseudo-differential operators in background of modulation
space theory.

In the last part of the paper we define wave-front sets with respect
to weighted modulation spaces, and prove that they coincide with the
wave-front sets of Fourier BF-types.

The paper is organized as follows. In Section 1 we recall the defini-
tions and basic properties for pseudo-differential operators, translation
invariant Banach function spaces (BF-spaces) and (weighted) Fourier
Banach spaces. Here we also define sets of characteristic points for a
broad class of pseudo-differential operators. In Section 2 we prove some
properties for the sets of characteristic points, which shows that our
definition coincide with the sets of characteristic points defined in [29].
These sets might be smaller than "the classical" characteristic sets
in [23] (cf. [29, Example 3.9]).

In Section 3 we define wave-front sets with respect to (weighted)
Fourier BF-spaces, and prove some of their main properties. Thereafter,
in Section 4 we show how these wave-front sets propagate under the
action of pseudo-differential operators. In particular, we prove (0.1),
when B and C are appropriate spaces and a belongs to S

(!0)
⇢,0 with ⇢ > 0.

In Section 5 we consider wave-front sets obtained from sequences of
Fourier BF-spaces. These types of wave-front sets contain the classical
ones (with respect to smoothness), and the mapping properties for
pseudo-differential operators also hold in this context (cf. Section 18.1
in [23]).

In Section 6 we define wave-front sets with respect to modulation
spaces, and prove that they can be identified with wave-front sets
of Fourier BF-types. This part can also be considered as a starting
point for discussions of global wave-front sets of modulation space
types, which are investigated in [3]. Here we remark that a notion of
global wave-front sets with respect to smoothness and weighted Sobolev
spaces was introduced and investigated in [4, 25].

1. Preliminaries

In this section we recall some notations and basic results. The proofs
are in general omitted. In what follows we let � denote an open cone in
Rd \ 0. An open cone which contains ⇠ 2 Rd \ 0 is sometimes denoted
by �

⇠

.
Let !, v 2 L

1
loc

(Rd) be positive functions. Then ! is called v-moderate
if

!(x+ y)  C!(x)v(y) (1.1)
3



for some constant C which is independent of x, y 2 Rd. If v in (1.1)
can be chosen as a polynomial, then ! is called polynomially moderate.
We let P(Rd) be the set of all polynomially moderated functions on
Rd. We say that v is submultiplicative when (1.1) holds with ! = v.
Throughout, we assume that the submultiplicative weights are even.
If !(x, ⇠) 2 P(R2d) is constant with respect to the x-variable (⇠-
variable), then we sometimes write !(⇠) (!(x)) instead of !(x, ⇠). In
this case we consider ! as an element in P(R2d) or in P(Rd) depend-
ing on the situation.

We also need to consider classes of weight functions, related to P.
More precisely, we let P0(Rd) be the set of all ! 2 P(Rd)

T
C

1(Rd)
such that @↵!/! 2 L

1 for all multi-indices ↵. For each ! 2 P(Rd),
there is an equivalent weight !0 2 P0(Rd), that is, C�1

!0  !  C!0

holds for some constant C (cf. [40, Lemma 1.2]).
Assume that ⇢, � 2 R. Then we let P

⇢,�

(R2d) be the set of all !(x, ⇠)
in P(R2d) \ C

1(R2d) such that

h⇠i⇢|�|��|↵| (@
↵

x

@

�

⇠

!)(x, ⇠)

!(x, ⇠)
2 L

1(R2d),

for every multi-indices ↵ and �. Note that in contrast to P0, we do not
have an equivalence between P

⇢,�

and P when ⇢ > 0. On the other
hand, if s 2 R and ⇢ 2 [0, 1], then P

⇢,�

(R2d) contains !(x, ⇠) = h⇠is,
which are one of the most important type of weights in the applications.

For any weight ! in P(Rd), we let L

p

(!)(R
d) be the set of all f 2

L

1
loc

(Rd) such that f · ! 2 L

p(Rd). We also set L

p

s

(Rd) = L

p

(!) when
!(x) = hxis and s 2 R.

The Fourier transform F is the linear and continuous mapping on
S 0(Rd) which takes the form

(Ff)(⇠) = b
f(⇠) ⌘ (2⇡)�d/2

Z

Rd

f(x)e�ihx,⇠i
dx

when f 2 L

1(Rd). We recall that F is a homeomorphism on S 0(Rd)
which restricts to a homeomorphism on S (Rd) and to a unitary oper-
ator on L

2(Rd).
Next we recall the definition of Banach function spaces.

Definition 1.1. Assume that B is a Banach space of complex-valued
measurable functions on Rd and that v 2 P(Rd) is submultiplicative.
Then B is called a (translation) invariant Banach function space (BF-

space) on Rd (with respect to v), if there is a constant C such that the
following conditions are fulfilled:

(1) S (Rd) ✓ B ✓ S 0(Rd) (continuous embeddings).
(2) If x 2 Rd and f 2 B, then f(·� x) 2 B, and

kf(·� x)kB  Cv(x)kfkB. (1.2)

4



(3) if f, g 2 L

1
loc

(Rd) satisfy g 2 B and |f |  |g| almost everywhere,
then f 2 B and

kfkB  CkgkB.

(4) if f 2 B and ' 2 C

1
0 (Rd), then f ⇤ ' 2 B, and

kf ⇤ 'kB  k'k
L

1
(v)
kfkB.

Assume that B is a translation invariant BF-space. If f 2 B and
h 2 L

1, then it follows from (3) in Definition 1.1 that f · h 2 B and

kf · hkB  CkfkBkhkL1
. (1.3)

The last condition in the definition of BF-spaces is natural in view of
Lebesgue spaces. It is also convenient to assume that the convolution
map ⇤ can be continuously extended to a continuous mapping from
B ⇥ L

1
(v)(R

d) to B, such that

k' ⇤ fkB  Ck'k
L

1
(v)
kfkB, (1.4)

holds for some constant C, when ' 2 L

1
(v)(R

d) and f 2 B. In fact, if
f, g 2 S , then f ⇤g 2 S ✓ B for B = L

p, and Minkowski’s inequality
gives

kf ⇤ gkB =
���
Z

f( · � y)g(y) dy
���

B


Z

kf( ·�y)kB|g(y)| dy  C

Z
kfkB|g(y)v(y)| dy = CkfkBkgk

L

1
(v)
.

From now on we assume that each translation invariant BF-space B
is such that the convolution map ⇤ on S (Rd) is uniquely extendable
to a continuous mapping from B⇥L

1
(v)(R

d) to B, and that (1.4) holds
when ' 2 L

1
(v)(R

d) and f 2 B. We note that B can be any mixed and
weighted Lebesgue space.

Remark 1.2. Assume that !0, v, v0 2 P(Rd) are such that v and
v0 are submultiplicative, !0 is v0-moderate, and assume that B is a
translation-invariant BF-space on Rd with respect to v. Also let B0

be the Banach space which consists of all f 2 L

1
loc

(Rd) such that
kfkB0 ⌘ kf !0kB is finite. Then B0 is a translation invariant BF-space
with respect to v0v.

Remark 1.3. Let B be an invariant BF-space. Then it is easy to find
Sobolev type spaces which are continuously embedded in B. In fact,
for each p 2 [1,1] and integer N � 0, let Q

p

N

(Rd) be the set of all
f 2 L

p(Rd) such that kfk
Q

p

N

< 1, where

kfk
Q

p

N

⌘
X

|↵+�|N

kx↵

D

�

fk
L

p

.
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Then for each p fixed, the topology for S (Rd) can be defined by the
semi-norms f 7! kfk

Q

p

N

, for N = 0, 1, . . . . A combination of this fact
and (1) and (3) in Definition 1.1 now shows that for each p 2 [1,1]
and each translation invariant BF-space B, there is an integer N � 0
such that Qp

N

(Rd) ✓ B. This proves the assertion.
In particular it follows that h · i�N 2 B, provided N � 0 is chosen

large enough. This gives
kfkB = kh · i�N(fh · iN)kB  C1kh · i�NkBkfh · iNkL1 = C2kfkL1

N

,

for some costants C1 and C2. Hence L

1
N

✓ B for some N � 0.

For each translation invariant BF-space B on Rd, and each pair of
vector spaces (V1, V2) such that V1 � V2 = Rd, we define the projection
spaces B1 and B2 of B by the formulae

B1 ⌘ { f 2 S 0(V1) ; f ⌦ ' 2 B for every ' 2 S (V2) } (1.5)

and

B2 ⌘ { f 2 S 0(V2) ; '⌦ f 2 B for every ' 2 S (V1) }. (1.6)

Proposition 1.4. Assume that f 2 S 0
, B is a translation invariant

BF-space on Rd

, and let B1 and B2 be the same as in (1.5) and (1.6).
Then

B1 = { f 2 S 0(V1) ; f ⌦ ' 2 B for some ' 2 S (V2) \ 0 } (1.5)0

and

B2 = { f 2 S 0(V2) ; '⌦ f 2 B for some ' 2 S (V1) \ 0 }. (1.6)0

In particular, if '

j

2 S (V
j

) \ 0 for j = 1, 2 are fixed, then B1 and

B2 are translation invariant BF-spaces under the norms

kfkB1 ⌘ kf ⌦ '1kB and kfkB2 ⌘ k'2 ⌦ fkB

respectively.

Proof. We only prove (1.6)0. The equality (1.5)0 follows by similar ar-
guments and is left for the reader. We may assume that V

j

= Rd

j with
d1 + d2 = d.

Let B0 be the right-hand side of (1.6)0. Then it is obvious that
B2 ✓ B0. We have to prove the opposite inclusion.

Therefore, assume that f 2 B0, and choose '0 2 S (Rd1) \ 0 such
that '0 ⌦ f 2 B. Also let ' 2 S (Rd1) be arbitrary. We shall prove
that '⌦ f 2 B.

First we assume that ' 2 C

1
0 (Rd). Let Q ✓ Rd1 be an open ball

and c > 0 be chosen such that |'0(x)| > c when x 2 Q. Also let the
lattice ⇤ ✓ Rd1 and '1 2 C

1
0 (Q) be such that 0  '1  1 and

X

{x
j

}2⇤

'1( · � x

j

) = 1,

6



and let J be a finite set such that
P

j2J '1( · � x

j

) = 1 on supp'.
Then |'1'( · + x

j

)|  C|'0|, for some constant C > 0, which gives
('1( · � x

j

)')⌦ f 2 B and

k('1( · � x

j

)')⌦ fkB  C1k'0( · � x

j

)⌦ fkB  C2v(xj

, 0)k'0 ⌦ fkB,

for some constants C1 and C2. From this fact together with the formula

'⌦ f =
X

j2J

('1( · � x

j

)')⌦ f,

with finite sum on the right-hand side, it follows that '⌦ f 2 B, and

k'⌦ fkB 
X

k('1( · � x

j

)')⌦ fkB


X

v(x
j

, 0)k('1'( · + x

j

))⌦ fkB

 C

⇣X
v(x

j

, 0)k'( · + x

j

)k
L

1(Q)

⌘
k'1 ⌦ fkB, (1.7)

where the sums are taken over all j 2 J . Since v 2 P and ' 2 S ,
it follows that the sum in the right-hand side of (1.7) is finite. Hence
f 2 B2, and we have proved the assertion in the case ' 2 C

1
0 . The

result now follows for general ' 2 S from (1.7) and the fact that C

1
0

is dense in S . The proof is complete. ⇤
Remark 1.5. We note that the last sum in (1.7) is the norm

k'k
W(v)

⌘
X

v(x
j

, 0)k'( · + x

j

)k
L

1(Q)

for the weighted Wiener space

W(v)(R
d) = { f 2 L

1
loc

(Rd) ; kfk
W(v)

< 1 }

(cf. [15]). The results in Proposition 1.4 can therefore be improved in
such way that we may replace S by W(v) in (1.5), (1.6), (1.5)0 and
(1.6)0.

Assume that B is a translation invariant BF-space on Rd, and that
! 2 P(Rd). Then we let FB(!) be the set of all f 2 S 0(Rd) such
that ⇠ 7! b

f(⇠)!(⇠) belongs to B. It follows that FB(!) is a Banach
space under the norm

kfkFB(!) ⌘ k bf !kB. (1.8)

Remark 1.6. In many situations it is convenient to permit an x de-
pendency for the weight ! in the definition of Fourier BF-spaces. More
precisely, for each ! 2 P(R2d) and each translation invariant BF-space
B on Rd, we let FB(!) be the set of all f 2 S 0(Rd) such that

kfkFB(!) = kfkFB(!),x ⌘ k bf !(x, · )kB
7



is finite. Since ! is v-moderate for some v 2 P(R2d) it follows that
different choices of x give rise to equivalent norms. Therefore the con-
dition kfkFB(!) < 1 is independent of x, and it follows that FB(!)
is independent of x although k · kFB(!) might depend on x.

Recall that a topological vector space V ✓ D 0(X) is called local if
V ✓ V

loc

. Here X ✓ Rd is open, and V

loc

consists of all f 2 D 0(X) such
that 'f 2 V for every ' 2 C

1
0 (X). We also let V

comp

= V \ E 0(X).
This gives V

comp

✓ V . For future references we note that if B is a
translation invariant BF-space on Rd and ! 2 P(R2d), then it follows
from (1.4) that FB(!) is a local space, i. e.

FB(!) ✓ FB(!)
loc

⌘ (FB(!))
loc

. (1.9)

Next we recall some facts from Chapter XVIII in [23] concerning
pseudo-differential operators. Let a 2 S (R2d), and t 2 R be fixed.
Then the pseudo-differential operator Op

t

(a) is the linear and contin-
uous operator on S (Rd), defined by the formula

(Op
t

(a)f)(x) = (2⇡)�d

ZZ
a((1� t)x+ ty, ⇠)f(y)eihx�y,⇠i

dyd⇠. (1.10)

For general a 2 S 0(R2d), the pseudo-differential operator Op
t

(a) is
defined as the continuous operator from S (Rd) to S 0(Rd) with dis-
tribution kernel

K

t,a

(x, y) = (2⇡)�d/2(F�1
2 a)((1� t)x+ ty, x� y). (1.11)

Here F2F is the partial Fourier transform of F (x, y) 2 S 0(R2d) with
respect to the y-variable. This definition makes sense, since the map-
pings F2 and

F (x, y) 7! F ((1� t)x+ ty, x� y)

are homeomorphisms on S 0(R2d). We also note that the latter defini-
tion of Op

t

(a) agrees with the operator in (1.10) when a 2 S (R2d).
If t = 0, then Op

t

(a) agrees with the Kohn-Nirenberg representation
Op(a) = a(x,D).

If a 2 S 0(R2d) and s, t 2 R, then there is a unique b 2 S 0(R2d) such
that Op

s

(a) = Op
t

(b). By straight-forward applications of Fourier’s
inversion formula, it follows that

Op
s

(a) = Op
t

(b) () b(x, ⇠) = e

i(t�s)hD
x

,D

⇠

i
a(x, ⇠). (1.12)

(Cf. Section 18.5 in [23].)
Next we discuss symbol classes which we use. Let r, ⇢, � 2 R be fixed.

Then we recall from [23] that S

r

⇢,�

(R2d) is the set of all a 2 C

1(R2d)
such that for each pair of multi-indices ↵ and �, there is a constant
C

↵,�

such that

|@↵
x

@

�

⇠

a(x, ⇠)|  C

↵,�

h⇠ir�⇢|�|+�|↵|
.

Usually we assume that 0  �  ⇢  1, 0 < ⇢ and � < 1.
8



More generally, assume that ! 2 P
⇢,�

(R2d). Then we recall from the
introduction that S(!)

⇢,�

(R2d) consists of all a 2 C

1(R2d) such that

|@↵
x

@

�

⇠

a(x, ⇠)|  C

↵,�

!(x, ⇠)h⇠i�⇢|�|+�|↵|
. (1.13)

We note that S

(!)
⇢,�

(R2d) = S(!, g
⇢,�

), when g = g

⇢,�

is the Riemannian
metric on R2d, defined by the formula

�
g

⇢,�

�
(y,⌘)

(x, ⇠) = h⌘i2�|x|2 + h⌘i�2⇢|⇠|2

(cf. Section 18.4–18.6 in [23]). Furthermore, S(!)
⇢,�

= S

r

⇢,�

when !(x, ⇠) =
h⇠ir, as remarked in the introduction.

The following result shows that pseudo-differential operators with
symbols in S

(!)
⇢,�

behave well. We refer to [23] or [29] for the proof.

Proposition 1.7. Let ⇢, � 2 [0, 1] be such that 0  �  ⇢  1 and � <

1, and let ! 2 P
⇢,�

(R2d). If a 2 S

(!)
⇢,�

(R2d), then Op
t

(a) is continuous

on S (Rd) and extends uniquely to a continuous operator on S 0(Rd).

If a 2 S

(!0)
⇢,�

(R2d), then it follows from the definitions that there is a
constant C > 0 such that

|a(x, ⇠)|  C!0(x, ⇠).

On the other hand, a necessary and sufficient condition for a to be
invertible, in the sense that 1/a is a symbol in S

(1/!0)
⇢,�

(R2d), is that for
some constant c > 0 we have

c!0(x, ⇠)  |a(x, ⇠)|. (1.14)
In the following we discuss more local invertibility conditions for

symbols in S

(!0)
⇢,�

(R2d) in terms of sets of characteristic points of the
involved symbols. We remark that our definition of such sets is slightly
different compared to [23, Definition 18.1.5] in view of Remark 2.4 in
the next section.

Definition 1.8. Assume that 0  � < ⇢  1, !0 2 P
⇢,�

(R2d) and that
a 2 S

(!0)
⇢,�

(R2d). Then a is called  -invertible or  -elliptic with respect
to !0 at the point (x0, ⇠0) 2 Rd⇥(Rd\0), if there exist a neighbourhood
X of x0, an open conical neighbourhood � of ⇠0 and positive constants
R and c such that (1.14) holds for x 2 X, ⇠ 2 � and |⇠| � R.

The point (x0, ⇠0) is called  -characteristic for a with respect to !0

if a is not  -invertible with respect to !0 at (x0, ⇠0).
The set of  -characteristic points (the  -characteristic set), for a

symbol a 2 S

(!0)
⇢,�

(R2d) with respect to !0, is denoted by Char(a) =
Char(!0)(a).

Remark 1.9. In the case !0 = 1 we exclude the phrase "with respect
to !0" in Definition 1.8. The symbol a 2 S

0
⇢,�

(R2d) is  -invertible at
(x0, ⇠0) 2 Rd⇥(Rd\0) if (x0, ⇠0) /2 Char(!0)(a) with !0 = 1. This means

9



that there exist a neighbourhood X of x0, an open conical neighbour-
hood � of ⇠0 and R, c > 0 such that (1.14) holds for !0 = 1, x 2 X and
⇠ 2 � satisfies |⇠| � R.

We note that (x0, ⇠0) /2 Char(!0)(a) means that a is elliptic near x0

in the direction ⇠0.
It will also be convenient to have the following definition of different

types of cutoff functions.

Definition 1.10. Let X ✓ Rd be open, � ✓ Rd \ 0 be an open cone,
x0 2 X and let ⇠0 2 �.

(1) A smooth function ' on Rd is called a cutoff function with
respect to x0 and X, if 0  '  1, ' 2 C

1
0 (X) and ' = 1 in

an open neighbourhood of x0. The set of cutoff functions with
respect to x0 and X is denoted by C

x0(X);
(2) A smooth function  on Rd is called a directional cutoff function

with respect to ⇠0 and �, if there is a constant R > 0 and open
conical neighbourhood �1 ✓ � of ⇠0 such that the following is
true:

• 0    1 and supp ✓ �;
•  (t⇠) =  (⇠) when t � 1 and |⇠| � R;
•  (⇠) = 1 when ⇠ 2 �1 and |⇠| � R.
The set of directional cutoff functions with respect to ⇠0 and

� is denoted by C dir
⇠0

(�).

Remark 1.11. We note that if ' 2 C
x0(X) and  2 C dir

⇠0
(�) for some

(x0, ⇠0) 2 Rd ⇥ (Rd \ 0), then c ⌘ ' ⌦  belongs to S

0
1,0(R

2d) and is
 -invertible at (x0, ⇠0).

2. Pseudo-differential calculus with symbols in S

(!)
⇢,�

In this section we make a review of basic results for pseudo-differential
operators with symbols in classes of the form S

(!)
⇢,�

(R2d), when 0  � <

⇢  1 and ! 2 P
⇢,�

(R2d). For the standard properties in the pseudo-
differential calculus we only state the results and refer to [23] for the
proofs.

Some investigations concerns establishment of convenient properties
for sets of characteristic points. Such questions are closely related to
invertibility of symbols. Similar properties have earlier been proved for
such sets (see e. g. [23,29]). However, in order to be more self-contained
we include proofs of such properties here.

We start with the following result concerning compositions and in-
variance properties for pseudo-differential operators. Here we set

�

s

(x, ⇠) = h⇠is,
10



where h⇠i = (1 + |⇠|2)1/2 as before. We also recall that
S

�1
⇢,�

(R2d) = S

�1
1,0 (R2d) = S

�1(R2d)

consists of all a 2 C

1(R2d) such that for each N 2 R and multi-index
↵, there is a constant C

N,↵

such that
|@↵a(x, ⇠)|  C

N,↵

h⇠i�N

.

Proposition 2.1. Let 0  � < ⇢  1, µ = ⇢ � � > 0 and !,!1,!2 2
P

⇢,�

(R2d). Also let {m
j

}1
j=0 be a sequence of real numbers such that

m

j

! �1 as j ! 1. Then the following is true:

(1) if a1 2 S

(!1)
⇢,�

(R2d) and a2 2 S

(!2)
⇢,�

(R2d), then Op(a1) �Op(a2) =

Op(c), for some c 2 S

(!1!2)
⇢,�

(R2d). Furthermore,

c(x, ⇠)�
X

|↵|<N

i

|↵|(D↵

⇠

a1)(x, ⇠)(D
↵

x

a2)(x, ⇠)

↵!
2 S

(!1!2��Nµ

)
⇢,�

(R2d) (2.1)

for every N � 0;

(2) if M = sup
k�0(mk

), M
j

= sup
k�j

(m
k

) and a

j

2 S

(!�
m

j

)

⇢,�

(R2d),

then it exists a 2 S

(!�
M

)
⇢,�

(R2d) such that

a(x, ⇠)�
X

j<N

a

j

(x, ⇠) 2 S

(!�
M

N

)

⇢,�

(R2d); (2.2)

for every N � 0;

(3) if a, b 2 S 0(R2d) and s, t 2 R are such that Op
s

(a) = Op
t

(b),

then a 2 S

(!)
⇢,�

(R2d), if and only if b 2 S

(!)
⇢,�

(R2d), and

b(x, ⇠)�
X

k<N

(i(t� s)hD
x

, D

⇠

i)ka(x, ⇠)
k!

2 S

(!��Nµ

)
⇢,�

(R2d) (2.3)

for every N � 0.

As usual we write
a ⇠

X
a

j

(2.2)0

when (2.2) is fulfilled for every N � 0. In particular it follows from
(2.1) and (2.3) that

c ⇠
X

i

|↵|(D↵

⇠

a1)(D
↵

x

a2)

↵!
(2.1)0

when Op(a1) �Op(a2) = Op(c), and

b ⇠
X (i(t� s)hD

x

, D

⇠

i)ka
k!

(2.3)0

when Op
s

(a) = Op
t

(b).
In the following proposition we show that the set of characteristic

points for a pseudo-differential operator is independent of the choice of
pseudo-differential calculus.
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Proposition 2.2. Assume that s, t 2 R, 0  � < ⇢  1, !0 2 P
⇢,�

and that a, b 2 S

(!0)
⇢,�

(R2d) satisfy Op
s

(a) = Op
t

(b). Then

Char(!0)(a) = Char(!0)(b). (2.4)

Proof. Let µ and �
s

be the same as in Proposition 2.1. By Proposition
2.1 (3) we have

b = a+ h,

for some h 2 S

(!0��µ

)
⇢,�

.
Assume that (x0, ⇠0) /2 Char(!0)(a). By the definitions, there is a

neighbourhood X of x0, an open conical neighbourhood � of ⇠0, C > 0
and R > 0 such that

|a(x, ⇠)| � C!0(x, ⇠) and |h(x, ⇠)|  C!0(x, ⇠)/2,

as x 2 X, ⇠ 2 � and |⇠| � R. This gives

|b(x, ⇠)| � C!0(x, ⇠)/2, when x 2 X, ⇠ 2 �, |⇠| � R,

and it follows that (x0, ⇠0) /2 Char(!0)(b). Hence Char(!0)(b) ✓ Char(!0)(a).
By symmetry, the opposite inclusion also holds. Hence Char(!0)(a) =
Char(!0)(b), and the proof is complete. ⇤

The following proposition shows different aspects of set of charac-
teristic points, and is important when investigating wave-front proper-
ties for pseudo-differential operators. In particular it shows that Op(a)
satisfy certain invertibility properties outside the set of characteristic
points for a. More precisely, outside Char(!0)(a), we prove that

Op(b)Op(a) = Op(c) + Op(h), (2.5)

for some convenient b, c and h which take the role of inverse, identity
symbol and smoothing remainder respectively.

Proposition 2.3. Let 0  � < ⇢  1, !0 2 P
⇢,�

(R2d), a 2 S

(!0)
⇢,�

(R2d),

(x0, ⇠0) 2 Rd⇥(Rd\0), and let µ = ⇢��. Then the following conditions

are equivalent:

(1) (x0, ⇠0) /2 Char(!0)(a);

(2) there is an element c 2 S

0
⇢,�

which is  -invertible at (x0, ⇠0),

and an element b 2 S

(1/!0)
⇢,�

such that ab = c;

(3) there is an element c 2 S

0
⇢,�

which is  -invertible at (x0, ⇠0),

and elements h 2 S

�µ

⇢,�

and b 2 S

(1/!0)
⇢,�

such that (2.5) holds;

(4) for each neighbourhood X of x0 and conical neighbourhood �
of ⇠0, there is an element c = ' ⌦  where ' 2 C

x0(X) and

 2 C dir
⇠0

(�), and elements h 2 S and b 2 S

(1/!0)
⇢,�

such that

(2.5) holds. Furthermore, the supports of b and h are contained

in X ⇥Rd

.
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For the proof we note that µ in Proposition 2.3 is positive, which in
turn implies that \

j�0S
(!0��jµ

)
⇢,�

(R2d) agrees with S

�1(R2d).

Proof. The equivalence between (1) and (2) follows by letting b(x, ⇠) =
'(x) (⇠)/a(x, ⇠) for some appropriate ' 2 C

x0(R
d) and  2 C dir

⇠0
(Rd \

0).
(4) ) (3) is obvious in view of Remark 1.11. Assume that (3) holds.

We shall prove that (1) holds, and since |b|  C/!0, it suffices to prove
that

|a(x, ⇠)b(x, ⇠)| � 1/2 (2.6)

when

(x, ⇠) 2 X ⇥ �, |⇠| � R (2.7)
holds for some conical neighbourhood � of ⇠0, some open neighbour-
hood X of x0 and some R > 0.

By Proposition 2.1 (1) it follows that ab = c+h for some h 2 S

�µ

⇢,�

. By
choosing R large enough and � sufficiently small conical neighbourhood
of ⇠0, it follows that c(x, ⇠) = 1 and |h(x, ⇠)|  1/2 when (2.7) holds.
This gives (2.6), and (1) follows.

It remains to prove that (1) implies (4). Therefore assume that (1)
holds, and choose an open neighbourhood X of x0, an open conical
neighbourhood � of ⇠0 and R > 0 such that (1.14) holds when (x, ⇠) 2
X⇥� and |⇠| > R. Also let '

j

2 C
x0(X) and  

j

2 C dir
⇠0

(�) for j = 1, 2, 3
be such that '

j

= 1 on supp'
j+1,  j

= 1 on supp 
j+1 when j = 1, 2,

and  
j

(⇠) = 0 when |⇠|  R. We also set c
j

= '

j

⌦  

j

when j  2 and
c

j

= c2 when j � 3.
If b1(x, ⇠) = '1(x) 1(⇠)/a(x, ⇠) 2 S

(1/!0)
⇢,�

, then the symbol of Op(b1)Op(a)

is equal to c1 mod (S�µ

⇢,�

). Hence

Op(b
j

)Op(a) = Op(c
j

) + Op(h
j

) (2.8)

holds for j = 1 and some h1 2 S

�µ

⇢,�

.
For j � 2 we now define eb

j

2 S

(1/!0)
⇢,�

by the Neumann serie

Op(eb
j

) =

j�1X

k=0

(�1)k Op(er
k

),

where Op(er
k

) = Op(h1)
k Op(b1) 2 Op(S

(��kµ

/!0)
⇢,�

). Then (2.8) gives

Op(eb
j

)Op(a) =

j�1X

k=0

(�1)k Op(h1)
k Op(b1)Op(a)

=

j�1X

k=0

(�1)k Op(h1)
k(Op(c1) + Op(h1)).
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That is
Op(eb

j

)Op(a) = Op(c1) + Op(eh1,j) + Op(eh2,j), (2.9)
where

Op(eh1,j) = (�1)j�1 Op(h1)
j 2 Op(S�jµ

⇢,�

) (2.10)

and

Op(eh2,j) = �
j�1X

k=1

(�1)k Op(h1)
k Op(1� c1) 2 Op(S�µ

⇢,�

).

By Proposition 2.1 (1) and asymptotic expansions it follows that

Op(eh2,j) = �
j�1X

k=1

(�1)k Op(1� c1)Op(h1)
k

+Op(eh3,j) + Op(eh4,j), (2.11)

for some e
h3,j 2 S

�µ

⇢,�

which is equal to zero in supp c1 and e
h4,j 2 S

�jµ

⇢,�

.
Now let b

j

and r

k

be defined by the formulae

Op(b
j

) = Op(c2)Op(eb
j

) 2 Op(S
(1/!0)
⇢,�

),

Op(r
k

) = Op(c2)Op(er
k

) 2 Op(S
(��kµ

/!0)
⇢,�

).

Then

Op(b
j

) =

j�1X

k=0

(�1)k Op(r
k

)

and (2.9)–(2.11) give

Op(b
j

)Op(a) = Op(c2)Op(c1) + Op(c2)Op(eh1,j)

�
j�1X

k=1

(�1)k Op(c2)Op(1�c1)Op(h1)
k+Op(c2)Op(eh3,j)+Op(c2)Op(eh4,j).

Since c1 = 1 and e
h3,j = 0 on supp c2, it follows that

Op(c2)Op(c1) = Op(c2) mod Op(S�1),

Op(c2)Op(eh1,j) 2 Op(S�jµ

⇢,�

),

j�1X

k=1

(�1)k Op(c2)Op(1� c1)Op(h1)
k 2 Op(S�1),

Op(c2)Op(eh3,j) 2 Op(S�1)

and

Op(c2)Op(eh4,j) 2 Op(S�jµ

⇢,�

).
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Hence, (2.8) follows for some h

j

2 S

�jµ

⇢,�

.
By choosing b0 2 S

(1/!)
⇢,�

such that

b0 ⇠
X

r

k

,

it follows that Op(b0)Op(a) = Op(c2) + Op(h0), with
h0 2 S

�1
.

The assertion (4) now follows by letting
b(x, ⇠) = '3(x)b0(x, ⇠), c(x, ⇠) = '3(x)c2(x, ⇠),

and h(x, ⇠) = '3(x)h0(x, ⇠),

and using the fact that if '3 2 C

1
0 (Rd) and h0 2 S

�1(R2d), then
'3(x)h0(x, ⇠) 2 S (R2d). The proof is complete. ⇤
Remark 2.4. By Proposition 2.3 it follows that Definition 2.3 in [29] is
equivalent to Definition 1.8. We also remark that if a is an appropriate
symbol, and Char0(a) the set of characteristic points for a in the sense
of [23, Definition 18.1.5], then Char(!0)(a) ✓ Char0(a). Furthermore,
strict embedding might occur, especially for symbols to hypoelliptic
partial operators with constant coefficients, which are not elliptic (cf.
Example 4.9 in [29]).

3. Wave front sets with respect to Fourier BF-spaces

In this section we define wave-front sets with respect to Fourier BF-
spaces, and show some basic properties.

Let ! 2 P(R2d), � ✓ Rd \ 0 be an open cone and let B be a
translation invariant BF-space on Rd. For any f 2 E 0(Rd), let

|f |FB(!,�) = |f |FB(!,�)
x

⌘ k bf!(x, · )��kB. (3.1)

Here �� is the characteristic function on �. We note that b
f!(x, · )�� 2

B
loc

for every f 2 E 0. If b
f!(x, · )�� /2 B, then we set |f |FB(!,�) = +1.

Hence | · |FB(!,�) defines a semi-norm on E 0 which might attain the
value +1. Since ! is v-moderate for some v 2 P(R2d), it follows that
different x 2 Rd gives rise to equivalent semi-norms. Furthermore, if
� = Rd \ 0 and f 2 FB(!)\E 0, then |f |FB(!,�) agrees with kfkFB(!).

For the sake of notational convenience we set
| · |B(�) = | · |FB(!,�)

x

(3.2)

when

B = FB(!). (3.3)

We let ⇥B(f) = ⇥FB(!)(f) be the set of all ⇠ 2 Rd \ 0 such that
|f |B(�) < 1, for some � = �

⇠

. We also let ⌃B(f) be the complement of
⇥B(f) in Rd \ 0. Then ⇥B(f) and ⌃B(f) are open respectively closed
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subsets in Rd \ 0, which are independent of the choice of x 2 Rd in
(3.1).

Definition 3.1. Let B be a translation invariant BF-space on Rd,
! 2 P(R2d), B be as in (3.3), and let X be an open subset of Rd. The
wave-front set of f 2 D 0(X), WFB(f) ⌘ WFFB(!)(f) with respect to
B consists of all pairs (x0, ⇠0) in X ⇥ (Rd \ 0) such that ⇠0 2 ⌃B('f)
holds for each ' 2 C

1
0 (X) such that '(x0) 6= 0.

We note that WFB(f) in Definition 3.1 is a closed set in X⇥(Rd\0),
since it is obvious that its complement is open. We also note that if
x 2 Rd is fixed and !0(⇠) = !(x, ⇠), then WFFB(!)(f) = WFFB(!0)(f),
since ⌃B is independent of x.

The following theorem shows that wave-front sets with respect to
FB(!) satisfy appropriate micro-local properties. It also shows that
such wave-front sets decreases when the local Fourier BF-spaces in-
creases, or when the weight ! decreases.

Theorem 3.2. Let X ✓ Rd

be open, B1,B2 be translation invariant

BF-spaces, ' 2 C

1(Rd), !1,!2 2 P(R2d) and f 2 D 0(X). Also let

B
j

= FB
j

(!
j

) for j = 1, 2. If B1,loc ✓ B2,loc, then

WFB2('f) ✓ WFB1(f).

Proof. It suffices to prove

⌃B2('f) ✓ ⌃B1(f). (3.4)

when B
j

= FB
j

(!
j

), ' 2 S (Rd) and f 2 E 0(Rd). The local properties
and Remark 1.2 also imply that it is no restriction to assume that
!1 = !2 = 1.

Let ⇠0 2 ⇥B1(f), and choose open cones �1 and �2 in Rd such that
�2 ✓ �1. Since f has compact support, it follows that | bf(⇠)|  Ch⇠iN0

for some positive constants C and N0. The result therefore follows if
we prove that for each N , there are constants C

N

such that

|'f |B2(�2)  C

N

⇣
|f |B1(�1) + sup

⇠2Rd

�
| bf(⇠)|h⇠i�N

�⌘

when �2 ✓ �1 and N = 1, 2, . . . . (3.5)

By letting F (⇠) = | bf(⇠)| and  (⇠) = |b'(⇠)|, it follows that  turns
rapidly to zero at infinity and

|'f |B2(�2) = |'f |FB2(�2) = kF ('f)��2kB2

= C

���
⇣Z

Rd

b'( · � ⌘) bf(⌘) d⌘
⌘
��2

���
B2

 C(J1 + J2)
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for some positive constant C, where

J1 =
���
⇣Z

�1

b'( · � ⌘) bf(⌘) d⌘
⌘
��2

���
B2

(3.6)

and

J2 =
���
⇣Z

{�1

b'( · � ⌘) bf(⌘) d⌘
⌘
��2

���
B2

(3.7)

and ��2 is the characteristic function of �2. First we estimate J1. By
(3) in Definition 1.1 and (1.4), it follows for some constants C1, . . . , C5

that

J1  C1

���
Z

�1

b'( · � ⌘) bf(⌘) d⌘
���

B2

= C1kb' ⇤ (��1
b
f)kB2

= C2k'F�1(��1
b
f)kFB2  C3k'F�1(��1

b
f)kFB1

= C4kb' ⇤ (��1
b
f)kB1  C5kb'k

L

1
(v)
k��1

b
fkB1 = C|f |FB1(�1), (3.8)

where C = C5kb'k
L

1
(v)

< 1, since b' turns rapidly to zero at infinity. In
the second inequality we have used the fact that (FB1)loc ✓ (FB2)loc.

In order to estimate J2, we note that the conditions ⇠ 2 �2, ⌘ /2 �1

and the fact that �2 ✓ �1 imply that |⇠ � ⌘| > cmax(|⇠|, |⌘|) for some
constant c > 0, since this is true when 1 = |⇠| � |⌘|. This implies that
for every s, t 2 R, there is a constant C � 1 such that

C

�1h⇠ish⌘it  h⇠ � ⌘is+t  Ch⇠ish⌘it, (3.9)

when ⇠ 2 �2 and ⌘ 62 �1. We also note that if N1 is large enough,
then h · i�N1 2 B2, because S is continuously embedded in B2. Since
 turns rapidly to zero at infinity, it follows that for each N0 > d+N1

and N 2 N such that N > N0, and (3.9) gives

J2  C1

���
⇣Z

{�1

h · � ⌘i�(2N0+N)
F (⌘) d⌘

⌘
��2

���
B2

 C2

���
⇣Z

{�1

h · i�N0h⌘i�N0(h⌘i�N

F (⌘)) d⌘
⌘
��2

���
B2

 C2

Z

{�1

kh · i�N0
��2kB2h⌘i�N0(|h⌘i�N

F (⌘)|) d⌘

 C sup
⌘2Rd

|h⌘i�N

F (⌘)|, (3.10)

for some constants C1 and C2 > 0, where

C = C2kh · i�N0kB2kh · i�N0k
L

1
< 1.

This proves (3.5), and the result follows. ⇤
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4. Mapping properties for pseudo-differential operators

on wave-front sets

In this section we establish mapping properties for pseudo-differential
operators on wave-front sets of Fourier Banach types. More precisely,
we prove the following result (cf. (0.1)):

Theorem 4.1. Let t 2 R, ⇢ > 0, ! 2 P(R2d), !0 2 P
⇢,0(R2d),

a 2 S

(!0)
⇢,0 (R2d), and f 2 S 0(Rd). Also let B be a translation invariant

BF-space on Rd

, B = FB(!) and C = FB(!/!0). Then

WFC(Op
t

(a)f) ✓ WFB(f) ✓ WFC(Op
t

(a)f)
S

Char(!0)(a). (4.1)

We shall mainly follow the proof of Theorem 4.1 in [29]. The fol-
lowing restatement of Proposition 4.2 in [29] shows that (x0, ⇠) 62
WFC(Op(a)f) when x0 62 supp f , for any ⇠ 2 Rd \ 0.

Proposition 4.2. Let ! 2 P(R2d), !0 2 P
⇢,�

(R2d), 0  � < ⇢  1,

and let a 2 S

(!0)
⇢,�

(R2d). Also let B be a translation invariant BF-space,

and let the operator L

a

on S 0(Rd) be defined by the formula

(L
a

f)(x) ⌘ '1(x)(Op(a)('2f))(x), f 2 S 0(Rd), (4.2)

where '1 2 C

1
0 (Rd) and '2 2 S

0
0,0(R

d) are such that

supp'1

\
supp'2 = ;.

Then the kernel of L

a

belongs to S (R2d). In particular, the following

is true:

(1) L

a

= Op(a0) for some a0 2 S (R2d);

(2) WFFB(!/!0)(La

f) = ;.

Next we consider properties of the wave-front set of Op(a)f at a
fixed point when f is concentrated to that point.

Proposition 4.3. Let ⇢, a, B and C be as in Theorem 4.1. Also let

f 2 E 0(Rd). Then the following is true:

(1) if �1,�2 ✓ Rd \ 0 are open cones such that �2 ✓ �1, and

|f |B(�1) < 1, then |Op(a)f |C(�2) < 1;

(2) WFC(Op(a)f) ✓ WFB(f).

We note that Op(a)f in Proposition 4.3 makes sense as an element
in S 0(Rd), by Proposition 1.7.

Proof. We shall mainly follow the proof of Proposition 4.3 in [29]. We
may assume that !(x, ⇠) = !(⇠), !0(x, ⇠) = !0(⇠), and that supp a ✓
K⇥Rd for some compact set K ✓ Rd, since the statements only involve
local assertions.
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Let F (⇠) = | bf(⇠)!(⇠)|, and let F1a denote the partial Fourier trans-
form of a(x, ⇠) with respect to the x-variable. By straightforward com-
putation, it follows that for every N � 0, there is a constant C such
that

|F (Op(a)f)(⇠)!(⇠)/!0(⇠)|  C

Z

Rd

h⇠ � ⌘i�N

F (⌘) d⌘ (4.3)

(cf. (4.6) and (4.8) in [29]).
We have to estimate

|(Op(a)f)|C(�2) = kF (Op(a)f)!/!0��2kB.

By (4.3) we get

kF (Op(a)f)!/!0��2kB  C

���
⇣Z

h·� ⌘i�N

F (⌘) d⌘
⌘
��2

���
B

 C(J1 + J2),

where C is a constant and

J1 =
���
⇣Z

�1

h·� ⌘i�N

F (⌘) d⌘
⌘
��2

���
B

and

J2 =
���
⇣Z

{�1

h·� ⌘i�N

F (⌘) d⌘
⌘
��2

���
B
.

In order to estimate J1 and J2 we argue as in the proof of (3.5). More
precisely, by (1.4) we get

J1 
���
Z

�1

h · � ⌘i�N

F (⌘) d⌘
���

B
= kh · i�N ⇤ (��1F )kB

 Ckh · i�Nk
L

1
(v)
k��1FkB < 1.

Next we estimate J2. Since �2 ✓ �1, we get

|⇠ � ⌘| � cmax(|⇠|, |⌘|), when ⇠ 2 �2, and ⌘ 62 �1

for some constant c > 0. (Cf. the proof of Proposition 3.3.)
Since f has compact support, it follows that F (⌘)  Ch⌘iN0 for some

constants C and N0. By combining these estimates and (3.9) we obtain

J2 
���
⇣Z

{�1

F (⌘)h · � ⌘i�N

d⌘

⌘
��2

���
B

 C

���
⇣Z

{�1

h⌘iN0h · i�N/2h⌘i�N/2
d⌘

⌘
��2

���
B

 Ckh · i�N/2
��2kB

Z

{�1

h⌘i�N/2+N0
d⌘.
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Hence, if we choose N sufficiently large, it follows that the right-hand
side is finite. This proves (1).

The assertion (2) follows immediately from (1) and the definitions.
The proof is complete. ⇤
Proof of Theorem 4.1. By Proposition 2.1 it is no restriction to assume
that t = 0. The remaining part of the proof is similar to the proof
of Theorem 4.1 in [29]. In order to be self contained and to put the
previous results in appropriate context, we here present a full proof.
We start to prove the first inclusion in (4.1). Assume that (x0, ⇠0) /2
WFB(f), let ' 2 C

x0(R
d), and set  = 1�' and a0(x, ⇠) = '(x)a(x, ⇠).

Then it follows from Proposition 4.2 that

(x0, ⇠0) /2 WFC(Op(a)( f)).

Furthermore, by Proposition 4.3 we get

(x0, ⇠0) /2 WFC(Op(a0)('f)),

which implies that

(x0, ⇠0) /2 WFC(Op(a)('f)),

since Op(a)('f) is equal to Op(a0)('f) near x0. The result is now a
consequence of the inclusion

WFC(Op(a)f) ✓ WFC(Op(a)('f))
S

WFC(Op(a)( f)).

It remains to prove the last inclusion in (4.1). By Proposition 4.2 it
follows that it is no restriction to assume that f has compact support.
Assume that

(x0, ⇠0) /2 WFC(Op(a)f)
S

Char(!0)(a),

and choose b, c and h as in Proposition 2.3 (4). We shall prove that
(x0, ⇠0) /2 WFB(f). Since

f = Op(1� c)f +Op(b)Op(a)f �Op(h)f,

the result follows if we prove

(x0, ⇠0) /2 S1

S
S2

S
S3,

where

S1 = WFB(Op(1� c)f), S2 = WFB(Op(b)Op(a)f),

S3 = WFB(Op(h)f),

and c0(x, ⇠) = '(x)(1� c(x, ⇠)).
By the first embedding in (4.1) it follows that

S2 = WFB(Op(b)Op(a)f) ✓ WFC(Op(a)f).

Since (x0, ⇠0) /2 WFC(Op(a)f), it follows that (x0, ⇠0) /2 S2.
Since h 2 S , it follows that Op(h)f 2 S , giving that S3 is empty.
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Finally we consider S1. By the assumptions it follows that c0 is zero
in �, and by replacing � with a smaller cone, if necessary, we may
assume that c0 = 0 in a conical neighborhood of �. Hence, if � ⌘ �1,
�2, J1 and J2 are the same as in the proof of Proposition 4.3, then it
follows from that proof and the fact that c0(x, ⇠) 2 S

0
⇢,0 is compactly

supported in the x-variable, that J1 < +1, and that for each N � 0,
there are constants C

N

and C

0
N

such that

|Op(c0)f |C(�2)  C

N

(J1 + J2)

 C

0
N

⇣
J1 +

���
Z

{�1

h · i�Nh⌘i�N

d⌘ ��2

���
B

⌘
. (4.4)

By choosing N large enough, it follows that

|Op(c0)f |C(�2) < 1.

This proves that (x0, ⇠0) /2 S1, and the proof is complete. ⇤
Remark 4.4. We note that the statements in Theorems 4.1 are not true
if !0 = 1 and the assumption ⇢ > 0 is replaced by ⇢ = 0. (Cf. Remark
4.6 in [29].)

In the following result we apply Theorem 4.1 on elliptic operators.

Theorem 4.5. Let ! 2 P(R2d), !0 2 P
⇢,0(R2d), ⇢ > 0, B = FB(!),

C = FB(!/!0) and let a 2 S

(!0)
⇢,0 (R2d) be elliptic with respect to !0.

Also let B be a translation invariant BF-space. If f 2 S 0(Rd), then

WFC(Op(a)f) = WFB(f).

5. Wave-front sets of sup and inf types and

pseudo-differential operators

In this section we put the micro-local analysis in a more general
context compared to previous sections, and define wave-front sets with
respect to sequences of Fourier BF-spaces.

Let !
j

2 P(R2d) and B
j

be translation invariant BF-space on Rd

when j belongs to some index set J , and consider the array of spaces,
given by

(B
j

) ⌘ (B
j

)
j2J , where B

j

= FB
j

(!
j

), j 2 J. (3.3)0

If f 2 S 0(Rd), and (B
j

) is given by (3.3)0, then we let ⇥sup
(B

j

)(f) be
the set of all ⇠ 2 Rd \ 0 such that for some � = �

⇠

and each j 2 J it
holds |f |B

j

(�) < 1. We also let ⇥inf
(B

j

)(f) be the set of all ⇠ 2 Rd\0 such
that for some � = �

⇠

and some j 2 J it holds |f |B
j

(�) < 1. Finally we
let ⌃sup

(B
j

)(f) and ⌃inf
(B

j

)(f) be the complements in Rd \ 0 of ⇥sup
(B

j

)(f) and
⇥inf

(B
j

)(f) respectively.
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Definition 5.1. Let J be an index set, B
j

be translation invariant
BF-space on Rd, !

j

2 P(R2d) when j 2 J , (B
j

) be as in (3.3)0, and
let X be an open subset of Rd.

(1) The wave-front set of f 2 D 0(X), WF sup
(B

j

)(f) = WF sup
(FB

j

(!
j

))(f),
of sup-type with respect to (B

j

), consists of all pairs (x0, ⇠0) in
X⇥(Rd\0) such that ⇠0 2 ⌃sup

(B
j

)('f) holds for each ' 2 C

1
0 (X)

such that '(x0) 6= 0;
(2) The wave-front set of f 2 D 0(X), WF inf

(B
j

)(f) = WF inf
(FB

j

(!
j

))(f),
of inf-type with respect to (B

j

), consists of all pairs (x0, ⇠0) in
X⇥(Rd\0) such that ⇠0 2 ⌃inf

(B
j

)('f) holds for each ' 2 C

1
0 (X)

such that '(x0) 6= 0.

Remark 5.2. Let !
j

(x, ⇠) = h⇠i�j for j 2 J = N0 and B
j

= L

q

j , where
q

j

2 [1,1]. Then it follows that WF sup
(B

j

)(f) in Definition 5.1 is equal to
the standard wave-front set WF(f) in Chapter VIII in [23].

The following result follows immediately from Theorem 4.1 and its
proof. We omit the details.

Theorem 4.10. Let ⇢ > 0, !
j

2 P(R2d) for j 2 J , !0 2 P
⇢,0(R2d),

t 2 R, a 2 S

(!0)
⇢,0 (R2d) and f 2 S 0(Rd). Also let B

j

be a translation

invariant BF-space on Rd

for every j, and let B
j

= FB
j

(!
j

) and

C
j

= FB
j

(!
j

/!0). Then

WF sup
(C

j

)(Op
t

(a)f) ✓ WF sup
(B

j

)(f)

✓ WF sup
(C

j

)(Op
t

(a)f)
S

Char(!0)(a), (4.1)0

and

WF inf
(C

j

)(Op
t

(a)f) ✓ WF inf
(B

j

)(f)

✓ WF inf
(C

j

)(Op
t

(a)f)
S

Char(!0)(a). (4.1)00

The following generalization of Theorem 4.5 is an immediate conse-
quence of Theorem 4.10, since Char(!0)(a) = ;, when a is elliptic with
respect to !0.

Theorem 4.50. Let ⇢ > 0, !
j

2 P(R2d) for j 2 J , !0 2 P
⇢,0(R2d),

t 2 R and let a 2 S

(!0)
⇢,0 (R2d) be elliptic with respect to !0. Also let

B
j

be a translation invariant BF-space on Rd

for every j, and let

B
j

= FB
j

(!
j

) and C
j

= FB
j

(!
j

/!0). If f 2 S 0(Rd), then

WF inf
(C

j

)(Op
t

(a)f) = WF inf
(B

j

)(f)

and

WF sup
(C

j

)(Op
t

(a)f) = WF sup
(B

j

)(f).
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Remark 5.3. We note that many properties valid for the wave-front sets
of Fourier BF-type also hold for wave-front sets in the present section.
For example, the conclusion in Remark 4.4 holds for wave-front sets of
sup- and inf-types.

Finally we remark that there are some technical generalizations of
Theorem 4.1 which involve pseudo-differential operators with symbols
in S

(!0)
⇢,�

(R2d) with 0  � < ⇢  1. From these generalizations it follows
that

WF(Op
t

(a)f) ✓ WF(f) ✓ WF(Op
t

(a)f)
S

Char(!0)(a),

when 0  � < ⇢  1, !0 2 P
⇢,�

(R2d), a 2 S

(!0)
⇢,�

(R2d) and f 2 S 0(Rd).
(Cf. Theorem 5.30 and Theorem 5.5 in [29].)

6. Wave front sets with respect to modulation spaces

In this section we define wave-front sets with respect to modulation
spaces, and show that they coincide with wave-front sets of Fourier BF-
types. In particular, all micro-local properties for pseudo-differential
operators in the previous sections carry over to wave-front sets of mod-
ulation space types.

We start with defining general types of modulation spaces. Let (the
window) � 2 S 0(Rd)\0 be fixed, and let f 2 S 0(Rd). Then the short-
time Fourier transform V

�

f is the element in S 0(R2d), defined by the
formula

(V
�

f)(x, ⇠) ⌘ F (f · �(·� x))(⇠).

We usually assume that � 2 S (Rd), and in this case the short-time
Fourier transform (V

�

f) takes the form

(V
�

f)(x, ⇠) = (2⇡)�d/2

Z

Rd

f(y)�(y � x)e�ihy,⇠i
dy,

when f 2 S (Rd).
Now let B be a translation invariant BF-space on R2d, with respect

to v 2 P(R2d). Also let � 2 S (Rd)\0 and ! 2 P(R2d) be such that !
is v-moderate. Then the modulation space M(!) = M(!,B) consists
of all f 2 S 0(Rd) such that V

�

f · ! 2 B. We note that M(!,B) is a
Banach space with the norm

kfk
M(!,B) ⌘ kV

�

f!kB (6.1)

(cf. [9]).

Remark 6.1. Assume that p, q 2 [1,1], ! 2 P(R2d) and let Lp,q

1 (R2d)
and L

p,q

2 (R2d) be the sets of all F 2 L

1
loc

(R2d) such that

kFk
L

p,q

1
⌘

⇣Z ⇣Z
|F (x, ⇠)|p dx

⌘
q/p

d⇠

⌘1/q
< 1
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and
kFk

L

p,q

2
⌘

⇣Z ⇣Z
|F (x, ⇠)|p d⇠

⌘
q/p

dx

⌘1/q
< 1,

respectively (with obvious modifications when p = 1 or q = 1).
Then M(!,B) is equal to the usual modulation space M

p,q

(!)(R
d) when

B = L

p,q

1 (R2d). If instead B = L

p,q

2 (R2d), then M(!,B) is equal to
the space W

p,q

(!)(R
d), related to Wiener-amalgam spaces.

In the following proposition we list some important properties for
modulation spaces. We refer to [15] for the proof.

Proposition 6.2. Assume that B is a translation invariant BF-space

on R2d
with respect to v 2 P(R2d), and that !0, v0 2 P(R2d) are such

that ! is v-moderate. Then the following is true:

(1) if � 2 M

1
(v0v)

(Rd) \ 0, then f 2 M(!,B) if and only if V

�

f! 2
B. Furthermore, (6.1) defines a norm on M(!,B), and differ-

ent choices of � gives rise to equivalent norms;

(2) M

1
(v0v)

✓ M(!,B) ✓ M

1
(1/(v0v))

.

The following generalization of Theorem 2.1 in [31] shows that mod-
ulation spaces are locally the same as translation invariant Fourier BF-
spaces. We recall that if ' 2 S (Rd)\0 and B is a translation invariant
BF-space on R2d, then it follows from Proposition 1.4 that

B0 ⌘ { f 2 S 0(Rd) ; '⌦ f 2 B } (6.2)

is a translation invariant BF-space on Rd which is independent of the
choice of '.

Proposition 6.3. Let ' 2 S (Rd) \ 0, B be a translation invariant

BF-space on R2d
, and let B0 be as in (6.2). Also let ! 2 P(R2d), and

!0(⇠) = !(x0, ⇠), for some fixed x0 2 Rd

. Then

M(!,B)
comp

= FB0(!0)comp

and M(!,B)
loc

= FB0(!0)loc.

Furthermore, if K ✓ Rd

is compact, then

C

�1kfkFB0(!0)  kfk
M(!,B)  CkfkFB0(!0), f 2 E 0(K), (6.3)

for some constant C.

We need the following lemma for the proof.

Lemma 6.4. Assume that f 2 E 0(Rd). Then the following is true:

(1) if � 2 C

1
0 (Rd), then there exists 0  ' 2 C

1
0 (Rd) such that

(V
�

f)(x, ⇠) = '(x)( bf ⇤ (F (�(·� x))))(⇠) ; (6.4)

(2) if ' 2 C

1
0 (Rd), then there exists � 2 C

1
0 (Rd) such that

('⌦ b
f)(x, ⇠) = '(x)V

�

f(x, ⇠). (6.5)
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Proof. (1) From the support properties it follows that there is a com-
pact set K ✓ Rd such that suppV

�

f ✓ K ⇥ Rd. The assertion now
follows from Fourier’s inversion formula, by choosing ' 2 C

1
0 such that

'(x) = (2⇡)d/2 when x 2 K.
The assertion (2) follows in a similar way by choosing � 2 C

1
0 such

that � = 1 on supp f � supp'. ⇤
Proof of Proposition 6.3. First we recall that B0 is independent of the
choice of ' 2 S \ 0 in view of Proposition 1.4. Furthermore, we may
assume that ! = !0 = 1 in view of Remark 1.2. Assume that f 2 E 0.
First, let ' 2 C

1
0 (Rd). From (2) in Lemma 6.4 it follows that there

exists � 2 C

1
0 (Rd) such that

kfk
M(B) = kV

�

fkB � k' · V
�

fkB = k'⌦ b
fkB = k bfkB0 .

This proves that
M(B)

comp

✓ (FB0)comp

and M(B)
loc

✓ (FB0)loc (6.6)
Now, let � 2 C

1
0 (Rd). Then by (1) in Lemma 6.4 it follows that

there exists 0  ' 2 C

1
0 (Rd) such that

kfk
M(B) = kV

�

fkB = k'⌦ ( bf ⇤ (F (�(·� x))))kB.

Since
| bf ⇤ (F (�(·� x)))(⇠)|  (| bf | ⇤ |b�|)(⇠)

it follows, by use of Lemma 6.4 again, that

kfk
M(B) = kV

�

fkB  C1k'⌦ (| bf | ⇤ |b�|)kB

 C2k'⌦ | bf |kB  C3k'⌦ b
fkB,

which gives opposite inclusions compared to (6.6), and the assertion
follows. The proof is complete. ⇤

Let B be a translation invariant BF-space on R2d, � 2 S (Rd) \ 0
be fixed, ! 2 P(R2d), � ✓ Rd \ 0 be an open cone, and let �� be the
characteristic function of �. For any f 2 S 0(Rd) we set

|f |B(�) = |f |
M (!,�,B) = |f |

M

�(!,�,B) ⌘ k(V
�

f)! (1⌦ ��)kB

when B = M(!,B). (6.7)
We note that | · |B(�) defines a semi-norm on S 0 which might attain
the value +1. If � = Rd \ 0, then |f |B(�) = kfk

M(!,B).
The sets ⇥B(f) and ⌃B(f), and the wave-front set WFB(f) of f with

respect to B = M(!,B) are now defined in the same way as in Section
3, after replacing the semi-norms of Fourier BF-types in (3.2) with the
semi-norms in (6.7).

In Theorem 6.9 below we prove that wave-front sets of Fourier BF-
spaces and modulation spaces agree with each others. As a first step
we prove that WF

M (!,B)(f) is independent of � in (6.7).
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Proposition 6.5. Let X ✓ Rd

be open, f 2 D 0(X), ! 2 P(R2d) and

let B = M(!,B). Then ⇥B(f), ⌃B(f) and WFB(f) are independent of

the window function � 2 S (Rd) \ 0 in (6.7).

We need some preparations for the proof, and start with the following
lemma. We omit the proof, since the result can be found in [2].

Lemma 6.6. Let f 2 E 0(Rd) and � 2 S (Rd). Then for some constant

N0 and every N � 0, there are constants C

N

such that

|V
�

f(x, ⇠)|  C

N

hxi�Nh⇠iN0
.

The following result can be found in [15]. Here b⇤ is the twisted con-
volution, given by the formula

(F b⇤G)(x, ⇠) = (2⇡)�d/2

ZZ
F (x� y, ⇠ � ⌘)G(y, ⌘)e�ihx�y,⌘i

dyd⌘,

when F,G 2 S (R2d). The definition of b⇤ extends in such way that one
may permit one of F and G to belong to S 0(R2d), and in this case it
follows that F

b⇤G belongs to S 0 \ C

1.

Lemma 6.7. Let f 2 S 0(Rd) and �

j

2 S (Rd) for j = 1, 2, 3. Then

(V
�1f)b⇤(V�2�3) = (�3,�1)

L

2 · V
�2f.

Proof of Proposition 6.5. We may assume that f 2 E 0(Rd) and that
!(x, ⇠) = !(⇠), since the statements only involve local assertions. As-
sume that �,�1 2 S (Rd) \ 0 and let �1 and �2 be open cones in Rd

such that �2 ✓ �1. The assertion follows if we prove that

|f |B(�2)  C(|f |B1(�1) + 1) (6.8)

for some constant C, where B(�2) = M

�(!,�2,B) and B1(�1) =
M

�1(!,�1,B).
When proving (6.8) we shall mainly follow the proof of (3.5). Let

v 2 P be chosen such that ! is v-moderate, and let

⌦1 = Rd ⇥ �1 ✓ Rd ⇥ (Rd \ 0) and ⌦2 = {⌦1,

with characteristic functions �1 and �2 respectively. Here the comple-
ment is taken with respect to Rd ⇥ (Rd \ 0). Also set

F

k

(x, ⇠) = |V
�1f(x, ⇠)!(⇠)�k

(x, ⇠)| and G = |V
�

�1(x, ⇠)v(⇠)|.
By Lemma 6.7, and the fact that ! is v-moderate we get

|V
�

f(x, ⇠)!(x, ⇠)|  C((F1 + F2) ⇤G)(x, ⇠),

for some constant C, which implies that

|f |B(�2)  C(J1 + J2), (6.9)

where
J

k

= k(F
k

⇤G)(1⌦ ��2)kB
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and ��2 is the characteristic function of �2. Since G turns rapidly to
zero at infinity, (1.4) gives

J1  kF1 ⇤GkB  kGk
L

1
(v)
kF1kB = C|f |B1(�1), (6.10)

where C = kGk
L

1
(v)

.
Next we consider J2. Since, for each N � 0, there are constants C

N

such that

F2(x, ⇠) = 0, and h⇠ � ⌘i�2N  C

N

h⇠i�Nh⌘i�N

when ⇠ 2 �2 and ⌘ /2 �1, Lemma 6.6 and the computations in (3.10)
give

(F2 ⇤G)(x, ⇠)  C

N

hxi�Nh⇠i�N

, ⇠ 2 �2.

Hence (F2 ⇤G) 2 B in view of Remark 1.3, which implies J2 < 1. The
estimate (6.8) is now a consequence of (6.9) and (6.10). This completes
the proof. ⇤

We are now able to prove the following.

Proposition 6.8. Let B be a translation invariant BF-space on R2d
,

B0 be given by (6.2), ! 2 P(R2d), B = FB0(!) and C = M(!,B).
Also let f 2 E 0(Rd). Then

⇥B(f) = ⇥C(f) and ⌃B(f) = ⌃C(f). (6.11)

Proof. Let �
j

and ��
j

for j = 1, 2 be the same as in the proof of
Proposition 6.5. Also let ' and � be chosen such that (1) in Lemma
6.4 is fulfilled. We may assume that ! = 1 in view of Lemma 1.2.

By (6.4) it follows that

|V
�

f(x, ⇠)|  '(x)(| bf | ⇤ |F �̌|)(⇠),

where �̌(x) = �(�x). This gives

|f |C(�2) = kV
�

f (1⌦ ��2)kB  Ck
�
'⌦ (| bf | ⇤ |F �̌|)

�
(1⌦ ��2)kB

= Ck(| bf | ⇤ |F �̌|)��2kB0  C(J1 + J2),

for some constant C, where J1 and J2 are the same as in (3.6) and (3.7)
with B2 = B0,  = |F �̌| and F = | bf |.

A combination of the latter estimate, (3.8) and (3.10) now gives that
for each N � 0, there is a constant C

N

such that

|f |C(�2)  C

N

⇣
|f |B(�1) + sup

⇠

| bf(⇠)h⇠i�N |
⌘
.

Hence, by choosing N large enough it follows that |f |C(�2) is finite when
|f |B(�1) < 1. Consequently,

⇥B(f) ✓ ⇥C(f). (6.12)
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In order to get a reversed inclusion we choose ' and � such that
Lemma 6.4 (2) is fulfilled. Then (6.5) gives

|f |B(�1) = k'⌦ ( bf��1)kB

= k('⌦ 1)(V
�

f (1⌦ ��1))kB  C1k'kL1kV
�

f(1⌦ ��1)kB

= C2|f |C(�1),

for some constants C1, C2 > 0. This proves that (6.12) holds with
reversed inclusion. The proof is complete. ⇤

The following result is now an immediate consequence of Proposition
6.8.

Theorem 6.9. Let B be a translation invariant BF-space on R2d
, B0

be given by (6.2), X ✓ Rd

be open, ! 2 P(R2d), B = FB(!) and

C = M(!,B). If f 2 D 0(X), then

WFB(f) = WFC(f).
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