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Genetic and genomic glimpses of the elusive arbuscular mycorrhizal fungi 

Luisa Lanfranco , J Peter W Young 

Arbuscular mycorrhizal fungi (AMF), which form an ancient and widespread mutualistic symbiosis with 
plants, are a crucial but still enigmatic component of the plant microbiome. Nowadays, their obligate 
biotrophy is no longer an obstacle to deciphering the role played by AMF in this fascinating symbiosis. The 
first genome-wide transcriptomic analysis of an AMF showed a metabolic complexity with no sign of 
massive gene loss, and the presence of genes for meiotic recombination suggests that AMF are not simple 
clonal organisms, as originally thought. New findings on suppression of host defenses and nutrient 
exchange processes have shed light on the mechanisms that contribute to such an intimate and long-lasting 
integration between living plant and fungal cells. 

Arbuscular mycorrhizal fungi (AMF) are among the most abundant organisms on Earth: on a very 
conservative estimate, they represent 5 10% of soil microbial biomass [1]. They establish an intimate 
association with the roots of most land plants in which the fungi supply mineral nutrients from the soil 
while acquiring C compounds from the photosynthetic host [2]. AMF are obligate biotrophs: they have 
adopted plant tissues as a preferential, perhaps a mandatory, niche for the successful completion of their 
life cycle [3]. Despite their importance in ecology and agriculture, AMF have been slow to reveal their 
secrets. However, our knowledge of AMF genes has increased markedly recently, leading to significant 
progress on various fronts. Many of these advances have depended on studies at the level of genes. 

The diversity and classification of AMF 

All known AMF belong to a single fungal clade, the phylum Glomeromycota, which appears to be a sister 
group of Ascomycota and Basidiomycota on the basis of nuclear ribosomal RNA phylogeny [4 and 5]. 
However, this taxonomic position has been called into question. Phylogenetic reconstructions based on 
mitochondrial [6 , 7 and 8] or protein-coding nuclear [9 and 10] sequences suggest a closer relationship with 
Mucorales or Mortierellales (Zygomycetes). This is intriguing because a coenocytic mycelium, which is a 
morphological hallmark of Zygomycetes, is also characteristic of AMF. 

The classification of AMF has been hampered by the paucity of morphological features, but it has long been 
clear that the names needed revision. The genus name Glomus, in particular, has been used for fungi that 
are so diverse that they should be in several different families. A major new molecular phylogenetic study, 
based on ribosomal RNA genes of almost all available AMF cultures, provides the support for a radical 
rationalization of AMF names [ 5]. For example, the frequently studied Glomus intraradicesDAOM197198, 
which was recently reidentified as G. irregulare [ 11] has now become Rhizophagus irregularis. 
Meanwhile, G. mosseae becomes Funneliformis, and G. claroideum and G. 
etunicatumbecome Claroideoglomus. In this review, we will keep the old  names. In the short term, 
these name changes will cause confusion, but the important message is that these fungi are very different 
from each other, and we can expect that their functional properties will be equally diverse. In the long run, 
it will not be sufficient just to study one model AMF. 

For more than a decade, much of our information about the diversity of field communities of AMF has 
come from studies of ribosomal genes amplified from roots or, less frequently, soil. They have shown that 
natural communities of AMF are complex with an average of 20 30 taxa in a single habitat sample, but 
numbers exceeding 50 have been recorded [12, 13 and 14]. AMF researchers were therefore well placed 
when the wave of next-generation sequencing hit environmental microbiology, and recent papers have 



 

2 
 

used massive sequencing to reveal yet more diversity [15, 16 and 17]. In the light of these data, the 230 
morphospecies described so far in the Glomeromycota [5] appear as a sensational underestimate. 

The mysterious genetic processes of AMF 

AMF are multinucleate throughout their life cycle, with many nuclei sharing a common cytoplasm in the 
spores as well as the hyphae [18 ]. No sexual cycle has ever been seen, but nuclei can be transferred from 
one mycelium to a genetically different one of the same species via anastomoses (hyphal fusions), at least 
in laboratory controlled conditions, with a frequency inversely related to the genetic distance [19]. Genetic 
markers from both parents are found in the resulting mycelium, which is presumably a heterokaryon with 
more than one coexisting type of nucleus. Such a process could explain the frequent observation of 
multiple allelic  forms of many genes within a single isolate, and also the apparent recombination of 
variants at different loci seen when multiple isolates are compared [20, 21 and 22]. In a very interesting 
recent study, Angelard et al. [ 23] created hybrids of G. intraradices by anastomosis and observed 
subsequent segregation of genetic markers and substantial changes in symbiotic effects on host plant 
(growth increase and enhanced mRNA abundance of specific genes) compared to the parental isolates. In 
related papers, the same group also documented changes in fungal phenotype [ 24] and in plant gene 
expression [ 25]. None of these phenomena provide direct evidence of genetic exchange between nuclei 
within the heterokaryon, but the finding of a conserved catalog of genes known to be required for correct 
meiotic recombination within a genome survey of 4 Glomus species [ 10] suggests that AMF are, in 
principle, able to undergo a conventional meiosis. Interestingly, many corresponding transcripts were 
found within a collection of expressed sequences [ 26 ]. It is clear that AMF are not simple clonal 
organisms, which has implications both for the stability of inoculant strains and for the eventual possibility 
of deliberate strain improvement. 

The colonization process: a fungal perspective 

A major discovery of 2011 was the identification of the Myc factors , the signal molecules released by 
AMF and detected by the host plant. Maillet et al. [ 27] demonstrated that the signals in G. 
intraradices exudates were sulfated and nonsulfated lipochitooligosaccharides, very similar to the Nod 
factors produced by nitrogen-fixing rhizobia. This has been a central topic in mycorrhizal research and the 
subject of recent authoritative reviews [ 28 and 29]. 

The invasion of plant tissues is still a black box, although an emerging model suggests that AM and 
pathogenic fungi might use some conserved pathways [30 and 31]. Suppression of host defences, which 
guarantees the long-lasting interactions between living plant and fungal cells, is considered the first 
component of obligate biotrophism. Small secreted proteins (SSPs) from many plant-interacting 
microorganisms act as effectors, that is, proteins delivered to the plant cells to subvert host metabolism 
and modulate defence responses [32]. Indeed, the first SSP characterized from an AMF, named SP7, was 
shown to enter the plant cell nucleus and to interact with the Medicago truncatula transcription factor 
MtERF19 [ 33 ]. This interaction leads to inhibition of MtERF19-mediated defence gene upregulation. The 
crucial role of SP7 is witnessed by the observation that roots constitutively expressing SP7 showed an 
accelerated mycorrhizal colonization. Interestingly, a fungal control over MtERF19 transcription is also likely 
to occur: G. intraradices crude extract, in analogy to crude extract from pathogens, strongly induces 
MtERF19 expression while the presence of AMF hyphae only led to a mild MtERF19 activation. 
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Given the huge number of putative SSPs implied by the transcriptome of arbuscules [26 ], exploring the 
repertoire of effectors and their mechanism of action seems a crucial step towards understanding plant
AMF compatibility. 

The transcriptome opens a window on the genome 

Much of our knowledge of AMF genetics, molecular biology and physiology is restricted to the species G. 
intraradices. The isolate DAOM197198 ( Figure 1) was chosen for the first genome sequencing project on 
AMF [ 34]. The production of an assembled genome has proven to be an arduous challenge due to a gene 
space larger than expected, abundant transposons and a high level of polymorphism [ 34], as well as the 
difficulty of preparing sufficient pure genomic DNA. Initial sequence data [ 34] provided an indirect 
estimate of genome size of about 150 Mb, a value that has recently been confirmed experimentally [ 35]. 
Nevertheless, the determination of the mitochondrial genome sequence of a G. intraradices isolate based 
on whole-genome shotgun sequencing [ 6 ], and the recent publication of the mitochondrial genome of 
twoGigaspora isolates [ 7 and 8], demonstrate that there is no longer any technical obstacle to obtaining 
sequence data from AMF. 

 

 

(A)In vitro culture of Agrobacterium rhizogenes-transformed roots of Cichorium intybus colonized by the AM fungus Glomus sp. DAOM 
197198. ERM: extraradical mycelium; S: spores. (B) Confocal microscopy image showing a germinated spore stained with Nile Red, 
highlighting lipid bodies in bright yellow (arrowhead). An area where the cytoplasm is depleted of lipid bodies is evident (dotted line) 
around the emergence of the germination hypha (asterisk). (C) Nile Red-stained spore developing from extraradical hyphae, containing 
smaller lipid bodies (arrowhead). (D) An arbuscule stained by acid fuchsin inside a root cortical cell. The fine branches (b) surround the 
arbuscule trunk (t) and fill most of the host cell lumen. Bars = 300 m in A, 10 m in B D. 
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The G. intraradices isolates that have been examined have no intracellular bacteria. While this simplifies 
the genome project somewhat, it is actually unusual for AMF. Fungi in most other genera of the 
Glomeromycota appear to have bacteria as permanent intracellular residents [ 36 and 37]. The genome 
sequence of one such bacterium, Candidatus Glomeribacter gigasporarum has recently been published [38
]: it reveals its metabolic dependence on the fungal host for both energy and nutrition. Interestingly, while 
phylogenetic analyses placed Ca. G. gigasporarum in the Burkholderiaceae, metabolic network analyses 
clustered it with insect endobacteria, indicating convergent evolution towards an intracellular lifestyle. 

In the absence of a complete sequence, our knowledge of the G. intraradices DAOM197198 genome has 
recently been dramatically expanded by the publication of genome-wide transcriptomic data [ 26 ] ( Table 
1). A rather large and highly diversified gene repertoire was inferred. The uniqueness of Glomus, and most 
probably of the AMF lineage, is reflected in the fact that 58.2% of the transcripts have no match in public 
nucleotide databases. A striking feature of the Glomus transcript data set is an abundance of sequence 
polymorphisms ( Table 1). This was not unexpected, since sequence variants have been described for a 
number of genes [ 18 ], but the fact that these variants appear as expressed sequences implies the 
possibility of divergent functional roles. 

 

Although certainly not exhaustive, these transcriptomic data are a valuable tool to infer Glomus metabolic 
complexity. Given that most metabolic pathways are represented, the obligate biotrophy of AMF cannot be 
ascribed to massive gene loss. This view is also emerging from the study of obligate biotrophic pathogens 
such as the fungus Blumeria graminis [ 39] and the oomycetes Albugo laibachii and Hyaloperonospora 
arabodopsis [ 40]. The loss of certain pathways (i.e. thiamine biosynthesis, which is also, curiously, missing 
in Glomus transcriptome) has been interpreted as a secondary phase, while the evolution of ways to 
circumvent host defences and to develop a sophisticated exchange interface with the host is considered 
the primary step towards obligate biotrophy [ 40]. Indeed, recurrent themes in biotrophs (and Glomus fits 
perfectly) include a decrease of the enzymatic arsenal against plant cell wall polymers and the presence of 
SSPs mainly expressed in planta, all changes that are presumably aimed to elude plant immunity. 
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The abundance of transposable elements (TE) seems also common to some biotrophs and possibly the 
main explanation for the expansion of genome size, at least in the ectomycorrhizal fungus Tuber 
melanosporum and the pathogen B. graminis [ 39, 41 and 42]. Based on the partial genome 
data, Glomusalso fits this pattern (J Lee and JPWY, unpublished data). In pathogens such as Phytophthora, 
TE may also contribute to the diversification of effectors to overcome host resistance [ 43]. Can we 
envisage a comparable relationship between TE and mutualism? 

Stable genetic transformation of AMF has not yet been achieved [44], but Helber et al. [ 45 ] recently used 
HIGS (host-induced gene silencing) as a tool to silence AMF genes expressed in planta (discussed below). 
Since the RNA silencing is based on the movement of RNA molecules, the success of HIGS with AMF opens 
the fascinating question of whether horizontal gene transfer events (HGT) have occurred at the plant
fungus interface, where there has been intimate contact between the partners for more than 400 million 
years. The parasitic plant Striga hermonthica, which forms an invasive organ called haustorium to allow 
transfer of nutrients form the host plant, has recently provided an example of eukaryotic eukaryotic HGT 
[ 46]. 

New insights into nutrient exchange in the AMF symbiosis 

Nutrient exchange has probably been at the heart of the plant glomeromycotan interaction since the 
earliest days of plants on land. Evidence comes from a recent study showing that AMF colonization of a 
thalloid liverwort, a member of the most ancient extant clade of land plants, significantly promoted plant 
fitness through fungal-enhanced acquisition of phosphorus and nitrogen [47]. 

Perhaps surprisingly, oligoarrays based on the Glomus EST sequences did not show a drastic transcriptional 
reprogramming in the different stages of the fungal life cycle, as changes in abundance were only observed 
for a relatively small percentage of transcripts [ 26 ] ( Table 1). Unfortunately, these are mainly ascribed to 
orphan genes of unknown function, but they surely deserve investigation, with priority given to those 
expressed in the IRM. Here, at least on the basis of genes with known function, the activation of 
metabolism of sterol/lipid, chitin and transporters was observed ( Figure 2). Investigations of the ERM are 
also desirable since, unlike most obligate biotrophs that live completely embedded within the host, a large 
portion of AMF mycelium develops in the soil. Glomus is equipped with tools to exploit soil resources and 
assimilate major nutrients: nitrogen and sulfur acquisition pathways are not lost (as in other obligate 
biotrophs [ 39 and 40]) and, most importantly, these are active in both the IRM and the ERM. On 
paper, Glomus has astonishing saprotrophic potentials [ 48 and 49]. 
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Figure 2.  

Gene expression during different life stages of an AMF. Hyphae germinated from a spore branch extensively in the proximity of the roots 
upon perception of root exudates; the fungus then differentiates a hyphopodium on the root surface, before epidermal cell penetration. 
In the inner cortical layers highly branched intracellular structures (arbuscules) are formed. In addition to the intraradical mycelium 
(IRM), the symbiotic phase includes an extraradical mycelium (ERM) that is highly efficient in the exploration and exploitation of soil 
resources. Based on data from Tisserant et al. (2012) [ 26 ], a selection of genes related to transport processes and P and N metabolism 
expressed in the IRM and the ERM are shown (those in bold are upregulated in IRM versusERM). Note that an intense metabolism occurs 
not only in the in planta phase but also in the ERM. A remarkable example of this pattern is the monosaccharide transporter MST2 [ 45
]. MST2 is likely to support xylose/glucose uptake at the plant fungal interface in the IRM but also from the soil matrix in the ERM. 

Based on the preliminary genome data, Helber et al. [ 45 ] identified the first monosaccharide transporter 
in AMF, probably responsible for the uptake of C compounds at the symbiotic interface. The gene MST2 is 
highly expressed in the in planta phase (arbuscules and intercellular hyphae). Several findings make this 
study of particular interest. First, the high affinity and transport capability for xylose residues suggest the 
use of derivatives from plant cell wall polymers as an additional or alternative carbon source, which is 
consistent with the apparent absence of an invertase gene within the Glomus transcriptome [ 26 ]. 
Secondly, MST2 expression in the ERM, which is indeed able to take up glucose and xylose, again underlines 
a certain degree of metabolic independence from the host plant. 

To establish a mutualistic symbiosis, a functional linkage between C and P exchange under a fine control of 
both partners is likely to occur. The P availability is clearly a key factor in the control of nutrient exchanges 
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[50 and 51]. Indeed, MST2 expression correlates with, and even anticipates, the expression of M. 
truncatula MtPT4, a well known plant marker of a functional symbiosis responsible for the uptake of P 
delivered by the AMF [ 52]. Moreover, in planta MST2 expression is downregulated by high P, as is the plant 
mycorrhiza-specific MtPT4 [ 45 ]. On the contrary, an active control by the fungus of the transfer of 
nutrients at the interface seems also to occur [ 53, 54 and 55]. This view has been further enlarged with the 
work by Kiers et al. [ 56 ], who elegantly demonstrated that both the plant and the fungus can perceive 
changes in the resources supplied by the reciprocal partner and then adjust the allocation of their own 
resources accordingly. Using the in vitro culture system, they showed that more C was supplied to the more 
cooperative fungus, defined as the one that was more efficient in terms of plant growth response and costs 
of C per unit of P transferred. This cooperative species responded to C rewards with a reciprocal P transfer 
increase, whereas the less-cooperative species stored P in the host-inaccessible form of long-chained 
polyphosphates. Remarkably, signalling concerning resource allocation may even precede the in 
plantaphase, since changes in plant C metabolism already occurred upon perception of AMF diffusible 
molecules [ 57]. 

Conclusions 

Our understanding of AMF at every level from cell to ecosystem is increasingly benefiting from gene-based 
studies. Progress will accelerate immeasurably once we have complete sequences of some AMF genomes. 
With preliminary data, our improved expertise in sample preparation, and the rapid developments in DNA 
sequencing technology, this is an eminently achievable goal for the next two years. 

Meanwhile, DNA sequencing will provide tools to investigate the forces that are shaping AMF communities 
and the impact these have on ecosystem functioning. At a more intimate scale, there is a clear urgency to 
characterize the repertoire of AMF putative effectors and compare them with the evolutionary strategies 
that distantly related plant-interacting organisms (bacteria, fungi, oomycetes, nematodes) have evolved. 
The molecular basis of the intimate and stable integration in AM symbiosis, based on reciprocal rewards 
through resource allocation, is another challenge in mycorrhizal research. Finally, we cannot ignore the 
enigmatic role of the AMF endobacteria, which are a third component of the complex interphylum network 
of the AM symbiosis. 
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