
19 October 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Types and Roles for Web Security

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/104254 since

1

Types and Roles for Web Security
Silvia Ghilezan, Svetlana Jakšić, Jovanka Pantović andMariangiola Dezani-Ciancaglini

Abstract—This paper summarises results obtained by the
authors in studying security and privacy issues of web data.
The proposed approach is based on typed process calculi that
appear to be suitable for controlling access rights.

Index Terms—types, security, XML, process calculi, role based
access control.

I. I NTRODUCTION

As information networks become more open and dynamic,
the need for protecting security and privacy of data is increas-
ingly important in many fields of human activities. Systems
must be able to exchange data and processes while preserving
security. In case we are given a target security policy for a
distributed system containing XML data, how can we check
weather the system behaves according to the policy? One
solution is to suitably annotate the security relevant events, to
classify them according to a type system and to verify security
properties by typing. Using a process calculus representation
of a distributed network, in [1], [2] we assign security levels to
the data and the processes of the network and prove relevant
security properties. In [3] we extend our previous work with
means for more efficient dynamic change of access rights.
Below, we give an example which points out similarities and
differences between our two approaches.

An example

Let us consider a simple distributed system consisting of
four principals: an online music store, a visitor, a registered
user and the owner of the store. Let the online store, written
in XML notation, have the shape:

< store >
< lyrics >

title
< /lyrics >
< download >

song
< /download >

< /store >

The store contains lyrics of a song undertitle and the filesong
for download. In order to describe the behaviour of the visitor,
the registered user and the owner we use process calculus
notation. So we will write

readstore/lyrics(χ)

S. Ghilezan, S. Jakšić and J. Pantović are with Faculty
of Technical Sciences, University of Novi Sad, Serbia, e-
mail:{gsilvia,sjaksic,pantovic}@uns.ac.rs.

M. Dezani-Ciancaglini is with Dipartimento di Informatica, Università di
Torino, Italy, e-mail:dezani@di.unito.it

for a visitor wishing to read lyrics. The process

readstore/download(χ)

represents a registered user wishing to download music and
the process

changestore/download(χ, demo).enablestore(visitor)

represents the owner of the store replacing thesong file with
a demo file and then offering the whole contents of the store
to any visitor for free. It is reasonable to ask that the store
behaves according to the following security conditions:

1) a visitor of the store is allowed to read the lyrics,
2) a registered user is allowed to read the lyrics and

download the music,
3) only the owner can decide to change access rights to the

data in the store.

The first approach [1], [2] assigns security levels to data and
processes, so the online store becomes:

< store >
< lyrics >

title1

< /lyrics >
< download >

song2

< /download >
< /store >

More precisely in the calculus of [1], [2] the online store is
represented by the following data tree

store [lyrics [title1] | [download [song2]] (1)

The security level of the lyricstitle is 1 and the security level
of the song file is 2. If we convene that an agent of levelh
can read data of level less than or equal toh and we assign
level 1 to the visitor and level2 to the user, then the first two
security conditions will be satisfied. In this case the ownerto
show the demo to the visitor should replace thesong file of
level 2 with a demo file of level 1

changestore/download(χ, demo1) (2)

since this approach does not allow changes of access rights.
The access control has to be modified by changing the data,
so we can not say that the third security condition is satisfied.
Therefore we have considered a new approach in which the
emphasis is on dynamic changes of access right controls.

In order to accomplish that, in [3], we have introduced role-
based access control into our model. Firstly let us take the

2

online store to be:

< store role = visitor >
< lyrics role = visitor >

title
< /lyrics >
< download role = user >

song
< /download >

< /store >

or in the syntax of our calculus (using obvious abbreviations):

store
{visitor}[ly.{visitor}[title]|[down.{user}[song]] (3)

In this way we have assigned a set of roles to each tag. Let
the rolesvisitor, user and owner belong to a countable
set of roles which is a lattice for the partial order⊑. We
consider the rolevisitor to be lower than the roleuser
and the roleuser to be lower than the roleowner, i.e.:
visitor ⊑ user ⊑ owner. As expected, we assign the
role visitor to the visitor, the roleuser to the registered
user and the roleowner to the owner of the online music
store. We say that the tag (or the edge when we use tree
representation of XML documents)store is accessible to the
process with rolevisitor or higher. The pathstore/lyrics
is accessible to the process with the rolevisitor since both
tags are accessible to it, while the pathstore/download is
not. In this approach the locations have policies which regulate
changes of access rights. For example if the store’s location
policy is

({visitor}, {({owner}, visitor)}, {({owner}, user)})
(4)

then the processes with a role lower thenvisitor can not
access the music store at all and that the owner may allow
visitors or ban users to access the store. After the owner places
demo file and allows all visitors to access, the store becomes:

< store role = visitor >
< lyrics role = visitor >

title
< /lyrics >
< download role = {visitor, user} >

demo
< /download >

< /store >

In this way also the last security condition is satisfied.
In the rest of this presentation we will relay on the given

example and we will omit almost all technical details that can
be found in the papers [1]–[3].

Paper Content

Sections II and III describe the syntax, types and security
properties of the Xdπ calculus with security levels follow-
ing [1] and its extended and revisited version [2]. SectionsIV
and V describe calculus, types and security properties of the
Xdπ-calculus with role-based access control following [3].
Section VI discusses related papers.

II. M ODELLING DYNAMIC WEB DATA

Our starting point is the Xdπ of Gardner and Maffeis,
introduced in [4], [5], which we equip with security levels.We
model a peer-to-peer network as a set of connected locations,
where each location has a security level and consists of a
data tree and a process. Processes can, as in pure Xdπ,
communicate with other processes, migrate to other locations
and update the local data. The novelty is that all these actions
are controlled by security levels.

The typed version of Xdπ syntax is given in Table I. The
presented data model is unordered edge-labelled rootedtree
with leaves containing empty trees, scripts and pointers. A
script is a static process embedded in a tree that can be
activated by a process from the same location. Apath identifies
nodes in a tree. In a path, “a” denotes a step along an edge
a, “// ” denotes any node, “..” a step back, “•” the path
from the root to the current node, “x” a variable and “/ ”
the path composition. Apointer, p@λ, refers to the set of
data identified by the pathp in the tree at the locationλ. The
symbolλ ranges over location names and variables. Other data
terms, besides the scripts, the pointers and the trees, can be
easily accomodated. There are three kinds ofprocesses:

• the processes0, P |P , (νcTv)P , γ̄〈v〉 and γ(x).P from
π-calculus of Milner, Parrow and Walker, [6], [7], model
local communication;

• thego command as indπ-calculus of Hennessy [8] allows
processes to migrate from one location to another;

• the run command activates the execution of scripts that
are embedded in the local data tree and theupdate com-
mand modifies the local data tree. These two commands
allowing interaction between processes and data were
introduced by Gardner and Maffeis in [4].

A value is either a channel name super-scripted with a value
type, a script, a location name super-scripted with a security
level, a path or a tree. Apattern is either a script pattern,
or a pointer pattern, or a data-less tree variable, or a tree
variable. The commandrunp finds all the scripts in the local
tree identified by the pathp and it activates their parallel
execution. The update commandupdatep(χ, V) finds all the
data terms identified by the pathp and pattern matches these
data terms withχ. For each successful pattern matching it
replaces the found data with the termV in which the matched
data substitutesχ. In order to improve readability of the
examples we wrotereadp(χ) instead ofupdatep(χ, χ) and
changep(χ, V) instead ofupdatep(χ, V) whenV 6= χ.

Reduction rules

The reduction relation→ describes three forms of interac-
tions:

• processes can communicate with each other within a
location;

• processes can move between locations;
• processes can interact with the local data.

The reduction relation is the least relation on networks which
is closed with respect to structural equivalence and reduction
contexts. The definitions of structural equivalence, reduction

3

T ::= tree
∅ empty rooted tree
x tree variable
T | T composition of trees, joining the roots
a[T] edge labeleda with subtreeT
a[�Π] edge labeleda with script �Π
a[p@λ] edge labeleda with pointerp@λ

p ::= a | // | .. | • | x | p/p path
V ::= �Π | p@λ | T data term

P ::= process
0 the nil process
P |P parallel composition of processes
(νcTv)P restriction of s channel name
γ̄〈v〉 output of valuev on channelγ
γ(x).P input parametrised by a variablex
!γ(x).P replication of an input process
go λ.P migrates to locationλ, continue asP
go � .P migrates to source location, continue asP
runp runs the scripts identified by pathp
updatep(χ, V).P updates data identified by pathp and

matching withχ

v ::= cTv | �P | lh | p | T value
χ ::= �xj | y⋆@xj | xDL | x pattern

N ::= network
0 empty network
N | N parallel composition of networks
lh[T ‖ P] location
(νcTv)N restriction of a channel name

TABLE I
THE Xdπ SYNTAX

contexts and reduction relation can be found in [1] and [2].
Here we only give an example of reduction.

Example 1: Let the location of the online music store be
namedm, have a security level2 and contain the data tree
Ts and the processPo. If we takeTs to be the data tree (1)
andPo to be the process (2), then the network containing only
locationm reduces as follows

m2[Ts ‖ Po] → m2[T ′
s ‖ 0]

whereT ′
s ≡ store [lyrics [title1] | [download [demo1]].

III. SECURITY LEVELS AND TYPES

A type system, in general, splits elements of the calculus
into sets called types and makes certain behaviours (actions)
illegal on the basis of the types that are thus assigned. The
goal of our work is to verify the security properties by typing.

A. Types

Many type systems controlling the use of resources and
the mobility of processes have been proposed for thedπ
calculus [9] and for related calculi [10]–[12]. Our type system
is based on types for locations, data and processes, expressing
security levels and it is essentially inspired by the security
types checking access rights forπ-calculus of [13]. Its main
goals are to control communication of values, access to data
and migration of processes between locations. The syntax of
types introduced in [2] is the content of Table II.

The access and mobility rights of a process depend on the
security level of the “source” location of the process itself, i.e.

Ch(Tv) type of channels communicating values of
type Tv

Loc(i) type of locations at security leveli
Script(i) type of scripts at security leveli
Path type of paths, not containing•
PathLocal type of paths, possibly containing•
Pointer(i) type of pointers, not containing local paths, at

security leveli
PointerLocal(i) type of pointers, possibly containing local

paths, at security leveli
DTLTree type of data-less trees
Tree type of trees, not containing local paths
TreeLocal type of trees, possibly containing local paths
Proc(i) type of processes, not containing local paths,

at security leveli
P rocLocal(i) type of processes, possibly containing local

paths, at security leveli
Net type of networks

wherei ∈ L andTv ranges over value types defined by

Tv ::= Ch(Tv) | Loc(i) | Script(i) | Path⋆ | DTLTree | Tree⋆

TABLE II
THE SYNTAX OF Xdπ TYPES

of the location where the process was in the initial network
or where the process was created by the activation of a script.
More details on the types and the type assignment rules can
be found in [1], [2].

B. Properties

Our system satisfies the property of subject reduction which
means that a well-typed network reduces to a well-typed
network. It is formally stated in the following theorem.

Theorem 1 (Subject reduction): Let ⊢ N : Net and N →
N

′, then⊢ N
′ : Net.

Using the subject reduction, we can show some more
meaningful properties of typed networks:
PL0 A channel in a process whose source location has levelh

can communicate only the values whose security levels
are less than or equal toh;

PL1 A process whose source location has levelh can migrate
to a location of levelj only if j ≤ h;

PL2 A process whose source location has levelh can copy
from the local tree only the data of levelj with j ≤ h;

PL3 A process whose source location has levelh can modify
in the local tree only the data of levelj with j < h, unless
the process itself was generated by running a script of
security levelh in a tree at pathp, and in this case it can
modify scripts which are both of the security levelh and
reachable by the pathp;

PL4 A script of levelj which is a leaf of a tree in a location
of level i can be activated only ifj ≤ i.

We have formalised the network properties assured by our
type system using the notions of network invariant and initial
network as in [14]. For more details and all proofs we refer
to the paper [2], while here we give an example.

Example 2: Let us consider the locationm of the online
music store of Example 1. We can assign typeTree to the
data treeTs. If the source location of the processPo is at
security level 3, then the locationm has typeNet. If the

4

source location of the processPo is at security level 2, then
the locationm is not typeable in our typing system because,
according to the security property PL4, a process whose source
location is of level2 can only modify data of security level1.
In other words, our typing system would rule out the user of
security level2, “pretending to be the owner”, which aims to
modify song file.

IV. ROLE BASED ACCESSCONTROL IN Xdπ

In the example given in the Introduction we have stated
the motivation for designing a model of dynamic web data
in a RBAC scenario. In [3] we have equipped the Xdπ-
calculus with roles and named the obtained calculusrXdπ-
calculus: the syntax ofrXdπ is the content of Table III. As
in the original calculus anetwork is a parallel composition of
connected locations. Eachlocation has a policy and consists
of a data tree labelled with roles and a process with roles. We
assume a countable set of rolesR, and user, s, t to range over
elements ofR. Let (R,⊑) be a lattice and let⊥,⊤ ∈ R be
its bottom and top element, respectively. The operation of join
is denoted by⊔. By α, ρ, σ we denote non-empty sets of roles
and byτ, ζ sets of roles containing the⊤ element. Thetrees of
rXdπ are those of Xdπ where each edge is assigned a set of
roles containing the⊤ element.Pure processes are essentially
Xdπ processes to which we add commands for administration
of access rights. The commandsread and change are in
place of theupdate command of [4]. The new commands
enable and disable change permissions to access data by
adding or removing roles from edges in the local data tree.
A process with roles is obtained from a pure process by
assigning a set of rolesρ to it or as a parallel composition of
such processes. Processes with (possibly different) rolescan
share private communication channels (restriction operator ν).
Different processes can have different sets of roles and the
same role can be assigned to different edges and different
processes. In the syntax ofpaths, we do not consider paths
containing// , .. and• and we decorate path edge labels with
sets of roles. For simplicity, in the examples of this paper,
we have omitted these decorations. There are other minor
differences betweenrXdπ and Xdπ which we will omit.

Reduction rules

Processes with roles can, as in pure Xdπ, communicate
with other processes, migrate to other locations and updatethe
local data. All these actions are controlled by roles. Moreover,
processes can administrate roles by enabling and disabling
them. More details and the formal definition of reduction
relation can be found in [3], while here we give an example.

Example 3: Let the location of the online music store be
namedm and contain the data treeTs and the processPo. If
we takeTs to be the data tree (3) andPo to be the process
enablestore(visitor)q

{owner}, then the network containing
only locationm reduces as follows

m[Ts ‖ Po] → m[T ′
s ‖ 0]

whereT ′
s is

store{visitor}[ly.{visitor}[title]|[down.{user,visitor}[song]].

T ::= tree
∅ empty rooted tree
x tree variable
T | T composition of trees, joining the roots
aτ [T] edge labeledaτ with subtreeT
aτ [�Π] edge labeledaτ with script �Π
aτ [p@λ] edge labeledaτ with pointerp@λ

p ::= aα | x | p/p path
V ::= �Π | p@λ | T data term

P ::= pure process
0 the nil process
P |P parallel composition of processes
γ̄〈v〉 output of valuev on channelγ
γ(x).P input parametrised by a variablex
!γ(x).P replication of an input process
go λ.R migrates to locationλ, continue asP
runp runs the scripts identified by pathp
readp(χ).P reads data identified by pathp and matching

with χ
changep(χ, V).P changes data identified by pathp and

matching withχ
enablep (r).P allows roler to access data identified by

pathp
disablep (r).P forbids roler to access data identified by

pathp
R ::= process with roles

Pqρ single pure process with rolesρ assigned to it
R|R parallel composition of processes with roles
(νcTv)R restriction of a channel name

v ::= cTv | �R | l | p | T value
χ ::= �x(σ,E,D) | y(α)@x(σ,E,D) | x(σ,E,D,τ,ζ) pattern

N ::= network
0 empty network
N | N parallel composition of networks
l[T ‖ P] location
(νcTv)N restriction of a channel name

TABLE III
THE rXdπ SYNTAX

V. SECURITY POLICIES AND TYPES

A location policy is the triple(σ, E ,D), whereσ is a set of
roles, andE andD are subsets of{(ρ, r) : ρ ⊆ R, r ∈ R}.
The data accessibility policy is given by the setσ, the set of
minimal roles a process is required to have to access the data
at that location. The administration policy is given by the other
sets which prescribe changes of data access rights as follows:
if (ρ, r) ∈+ E , a process with rolesρ can give the permission
to (enable) the roler to access the data; if(ρ, r) ∈− D, a
process with rolesρ can take the permission from (disable)
the roler to access the data.∈+ and∈− are defined in [3] as
extensions of∈ in order to give more flexibility to the location
policy.

A. Types

Given a location policy we can check if a data tree and
a process conform to it. The syntax ofrXdπ types is the
content of Table IV. Our type system assures that: if a process
can access an edge in a well-typed tree, then the edge is
connected to the root of the tree by a path whose edges are
all accessible to that process; only processes agreeing with the
location policy can be activated at a location and can migrate

5

Ch(Tv) type of channels communicating values of
type Tv

Loc(P) type of locations with policyP
Script(P) type of scripts which can be activated at

locations with policyP
Path(α) type of paths having the last edge with set of

roles α
Pointer(α) type of pointers whose path is typed by

Path(α)
Tree(P, τ, ζ) type of trees, which can stay at locations

with policy P , with initial branches asking
τ and which can be completely accessed by
processes with at least one role ofζ

Proc(P, ρ) type of pure processes, which can stay at
locations with policyP and which can be
assigned rolesρ

ProcRole(P) type of processes with roles which can stay at
locations with policyP

Net type of networks
Tv ranges overvalue types defined by:
Tv ::= Ch(Tv) | Loc(P) | Script(P) | Path(α) | Tree(P, τ, ζ)

TABLE IV
THE SYNTAX OF rXdπ TYPES

to it; a process can modify a subtree only if it can access all
the edges of the subtree; agreeing with the location policy,a
process can enable a role at an edge or disable a role from a
subtree if it can access the path which identifies it.

Other common features of RBAC system we did not con-
sider in [3], since we could smoothly add them to the present
calculus, are: incompatible roles, static and dynamic separation
of roles, limits on the number of users authorised for a given
role.

B. Properties

Besides subject reduction property, we can prove the fol-
lowing relevant access control properties.

Properties of location policies and communication:
PR0 All trees and processes in a location agree with the

location policy;
PR1 A process with roles can communicate only values with

at least one characteristic role lower than or equal to one
role of the process.

Properties of migration between locations:
PR2 A process with roles can migrate to another location only

if it agrees with the policy of that location.
Properties of process access to local data trees:

PR3 A process with roles looks for a path in the local tree
only if the path is accessible to the process.

PR4 A process with roles can get a data in the local tree only
if the data is accessible to the process.

Properties of manipulation of local data trees by processes:
PR5 A script is activated in a location only if the correspond-

ing process with roles agrees with the policy of that
location;

PR6 A process with roles generated by a read command in a
location agrees with the policy of that location;

PR7 A process with roles can erase a subtree of data only if
it can access the whole subtree;

PR8 A tree built by a change command in a location agrees
with the policy of that location;

PR9 A process with roles can add a role to an edge in the
local tree only if this is allowed by the location policy;

PR10 A tree built by an enable command in a location agrees
with the policy of that location;

PR11 A process with roles can erase a role from a subtree of the
local tree only if this is allowed by the location policy;

PR12 A tree built by a disable command in a location agrees
with the policy of that location.

More details on the location policies, the types, the type
assignment rules and the security properties are discussed
in [3] while here we give an example.

Example 4: Let us consider the locationm of the online
music store with location policy (4) containing the data tree
Ts of Example 3 and the processPu. The processPu cannot
be enablest(visitor)q

{user}, i.e. a process with roleuser
aiming to give permission to the rolevisitor to access the
file. Since({user}, visitor) /∈ {({owner}, visitor)}, the
processPu does not agree with the store’s policy and according
to the security property PR0, the locationm is not typeable in
our typing system. In other words, our typing system would
rule out the user, “pretending to be the owner”, wishing to
enable the visitors to access thesong.

VI. RELATED WORK

The Xdπ calculus [4], [5] models both localised, mobile
processes and distributed, dynamic, semi-structured data, al-
lowing to represent data-sharing applications. It can be seen
as an extension of the Active XML model [15]. The locations
and the processes of Xdπ are essentially those ofdπ [8],
[9] enriched with capabilities for data manipulation. The only
difference is that a process indπ can migrate to a location
independently from the existence of the location itself in the
current network, while in Xdπ such an existence is a necessary
condition for migration. The data trees of Xdπ are related to
those in [16], [17] and the treatment of shared distributed data
is inspired by [18].

In the SafeDpi calculus [19] parameterised code may be
sent between locations and types restrict the capabilitiesand
access rights of any processes launched by incoming code.
Co-actions have been introduced for ambient calculi as a basic
mechanism for regulating access to locations and use of their
resources [11], [20], [21]. More refined controls for ambient
calculi include passwords [22], [23], classifications in groups
[12], [24], mandatory access control policies [25], membranes
regulating the interaction between computing bodies and ex-
ternal environments [26].

Role based access control has been introduced in the seven-
ties and first formalised by Ferraiolo and Kuhn [27]. There isa
large amount of literature on models and implementations for
RBAC, we only mention [28]–[31]. The standard defined in
2004 is currently under revision by the Committe CS1.1 within
the International Committee for Information Technologies
Standards [32].

The most related papers to [3] are [33] and [34]. Braghin et
al. [33] equip theπ-calculus with the notion of user: they tag

6

processes with names of users and with sets of roles. Processes
can activate and deactivate roles. A mapping between roles
and users and a mapping between read/write actions and roles
control access rights. A type discipline statically guaranties
that systems not respecting the above mappings are rejected.
Compagnoni et al. [34] define a boxed ambient calculus
extended with a distributed RBAC mechanism where each
ambient controls its own access policy. A process is associated
with an owner and a set of activated roles that grant permis-
sions for mobility and communication. The calculus includes
primitives to activate and deactivate roles. The behaviourof
these primitives is determined by the process’s owner, its
current location and its currently activated roles.

REFERENCES

[1] M. Dezani-Ciancaglini, S. Ghilezan, and J. Pantovic, “Security types for
dynamic web data,” inTGC’06, ser. LNCS, vol. 4661. Springer, 2007,
pp. 263–280.

[2] M. Dezani-Ciancaglini, S. Ghilezan, J. Pantovic, and D.Varacca, “Se-
curity types for dynamic web data,”Theoretical Computer Science, vol.
402, no. 2-3, pp. 156–171, 2008.

[3] M. Dezani-Ciancaglini, S. Ghilezan, S. Jakšić, and J.Pantović, “Types
for role-based access control of dynamicweb data,” inWFLP’10, ser.
LNCS, 2011, to appear.

[4] P. Gardner and S. Maffeis, “Modelling dynamic web data,”Theoretical
Computer Science, vol. 342, no. 1, pp. 104–131, 2005.

[5] S. Maffeis and P. Gardner, “Behavioural equivalencies for dynamic web
data,” in TCS’04. Kluwer, 2004, pp. 541–554.

[6] R. Milner, J. Parrow, and D. Walker, “A calculus of mobileprocesses,
I, II,” Information and Computation, vol. 100, no. 1, pp. 1–40,41–77,
1992.

[7] D. Sangiorgi and D. Walker,The π-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.

[8] M. Hennessy,A Distributed Pi-calculus. Cambridge University Press,
2007.

[9] M. Hennessy and J. Riely, “Resource access control in systems of mobile
agents,” Information and Computation, vol. 173, no. 1, pp. 82–120,
2002.

[10] R. D. Nicola, G. Ferrari, R. Pugliese, and B. Venneri, “Types for access
control,” Theoretical Computer Science, vol. 240, no. 1, pp. 215–254,
2000.

[11] G. Castagna, J. Vitek, and F. Z. Nardelli, “The Seal calculus,” Informa-
tion and Computation, vol. 201, no. 1, pp. 1–54, 2005.

[12] L. Cardelli, G. Ghelli, and A. D. Gordon, “Types for the ambient
calculus,” Information and Computation, vol. 177, no. 2, pp. 160–194,
2002.

[13] M. Hennessy and J. Riely, “Information flow vs resource access in
the asynchronousπ-calculus,” ACM Transactions on Programming
Languages and Systems, vol. 5, pp. 566–591, 2003.

[14] A. Ahern and N. Yoshida, “Formalising Java RMI with explicit code
mobility,” in OOPSLA’05. ACM Press, 2005, pp. 403–422.

[15] S. Abiteboul, O. Benjelloun, B. Cautis, and T. Milo, “Active XML,
security and access control,” inSBBD’04, 2004, pp. 13–22.

[16] S. Abiteboul, P. Buneman, and D. Suciu,Data on the Web: From
Relations to Semistructured Data and XML, ser. Data Management
Systems. Morgan Kaufmann, 1999.

[17] L. Cardelli and G. Ghelli, “A Query Language Based on theAmbient
Logic,” in ESOP’01, ser. LNCS, vol. 2028. Springer, 2004, pp. 1–22,
invited Paper.

[18] A. Sahuguet, “ubQL: A distributed query language to program dis-
tributed query systems,” Ph.D. dissertation, Penn University, 2002.

[19] M. Hennessy, J. Rathke, and N. Yoshida, “SafeDpi: A language for
controlling mobile code,”Acta Informatica, vol. 42, no. 4-5, pp. 227–
290, 2005.

[20] F. Levi and D. Sangiorgi, “Controlling interference inambients,”Trans-
actions on Programming Languages and Systems, vol. 25, no. 1, pp.
1–69, 2003.

[21] P. Garralda, E. Bonelli, A. Compagnoni, and M. Dezani-Ciancaglini,
“Boxed ambients with communication interfaces,”Mathematical Struc-
tures in Computer Science, vol. 17, pp. 1–59, 2007.

[22] M. Merro and M. Hennessy, “A bisimulation-based semantic theory
of safe ambients,”ACM Transactions on Programming Languages and
Systems, vol. 28, no. 2, pp. 290–330, 2006.

[23] M. Bugliesi, S. Crafa, M. Merro, and V. Sassone, “Communication and
mobility control in boxed ambients,”Information and Computation, vol.
202, no. 1, pp. 39–86, 2005.

[24] M. Coppo, M. Dezani-Ciancaglini, and E. Giovannetti, “Types for
ambient and process mobility,”Mathematical Structures in Computer
Science, vol. 18, pp. 221–290, 2008.

[25] M. Bugliesi, G. Castagna, and S. Crafa, “Access controlfor mobile
agents: The calculus of boxed ambients,”ACM Transactions on Pro-
gramming Languages and Systems, vol. 26, no. 1, pp. 57–124, 2004.

[26] D. Gorla, M. Hennessy, and V. Sassone, “Security policies as membranes
in systems for global computing,”Logical Methods in Computer Science,
vol. 1, no. 3:2, p. 331353, 2005.

[27] D. F. Ferraiolo, D. R. Kuhn, and R. S. Sandhu, “Rôle-based access
control,” in NIST-NSA National Computer Security Conference, 1992,
pp. 554–563.

[28] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,”IEEE Computer, vol. 29, no. 2, pp. 38–47,
1996.

[29] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn, “A role-based access
control model and reference implementation within a corporate intranet,”
ACM Transactions on Information and System Security, vol. 2, no. 1,
pp. 34–64, 1999.

[30] S. Osborn, R. S. Sandhu, and Q. Munawer, “Configuring role-based
access control to enforce mandatory and discretionary access control
policies,” ACM Transactions on Information and System Security, vol. 3,
no. 2, pp. 85–106, 2000.

[31] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed NIST standard for role-based access control,” ACM
Transactions on Information and System Security, vol. 4, no. 3, pp. 224–
274, 2001.

[32] D. R. Kuhn, E. J. Coyne, and T. R. Weil, “Adding attributes to role-based
access control,”Computer, vol. 43, no. 6, pp. 79–81, 2010.

[33] C. Braghin, D. Gorla, and V. Sassone, “Role-based access control for a
distributed calculus,”Journal of Computer Security, vol. 14, no. 2, pp.
113–155, 2006.

[34] A. B. Compagnoni, E. L. Gunter, and P. Bidinger, “Role-based access
control for boxed ambients,”Theoretical Computer Science, vol. 398,
no. 1-3, pp. 203–216, 2008.

Silvia Ghilezan received the PhD degree in mathematics in 1993 from
the University of Novi Sad, Novi Sad, Serbia. She joined the Faculty of
Technical Sciences, University of Novi Sad, Serbia in 1984 and currently
holds a Professor position. On several occasions she has held visiting positions
at McGill University, Canada,́Ecole Normale Supérieure de Lyon, France,
University of Turin, Italy and Catholic University, The Netherlands. Her
research interests are in the areas of logic in computer science, foundations of
computer science, type theory, theory of mobile processes and mathematical
linguistics.

Svetlana Jaǩsić received the M.Sc. degree in mathematics from the University
of Novi Sad, Serbia, in 2008. She is currently a Ph.D. studentand a teaching
assistant at the Faculty of Technical Sciences, Universityof Novi Sad. Her
research interests are in the areas of process calculi, concurrency theory and
type theory.

Jovanka Pantovíc received the Ph.D. degree in mathematics from the
University of Novi Sad, Serbia, in 2000. She joined the Faculty of Technical
Sciences, University of Novi Sad, in 1993, where she is currently a Professor.
Her research interests are in the areas of multiple-valued logic, universal
algebra, discrete mathematics, and theory of mobile processes.

Mariangiola Dezani-Ciancaglini is full professor of “Foundations of Com-
puter Science” at the University of Torino since 1981. She has co-authored
more than 100 papers published in prestigious scientific journals and in
proceedings of international conferences. In the ’80s she introduced with other
researchers the intersection type assignment systems, which were largely used
as finitary descriptions of lambda-models. More recently, she studied type
systems for object-oriented and ambient calculi and session types for assuring
safety of communication protocols.

