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Abstract Given a non-uniform criss-cross triangulation of a rectdagdomaing,

we consider the approximation of a functiérand its partial derivatives, by general
C! quadratic spline quasi-interpolants and their derivatiWe give error bounds in
terms of the smoothness éfand the characteristics of the triangulation. Then, the
preceding theoretical results are compared with similaulis in the literature. Fi-
nally, several examples are proposed for illustratingowegiapplications of the quasi-
interpolants studied in the paper.
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1 Introduction

Spline quasi-interpolation is well known to be a good metfaydhe approximation
of bivariate functions. A nice property of spline quasieirolants (abbr. QIs) is that
their construction does not need the solution of any systieegaations. This prop-
erty is particularly attractive in the bivariate case, whire number of data sites can
be huge in practice.

In the literature, quadratic spline QIs on criss-cross\gidationsZm, of a rect-
angular domaim2 are proposed and studied by many authors (see e.g. [31, Chap.
2], [8, Chap. 8], [18, Chap. 12], [2,5,6,9,14,15,28] and ithkerences therein). In
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general, they are based on B-splines with supports not agiplincluded inQ and
with some data points lying outsid®. Therefore,f has to be defined in an open
set containing. In particular, in [2] and [15], some quadrat® Qls defined on
uniform meshes are proposed to approximagand its partial derivatives. Moreover,
error estimates are given in the cdse C3(Q).

In [20,21] spline Qls based on B-splines with supports notgietely included
in Q and all data sites inside or on the boundaryo#re proposed.

In [10,25,27] the authors defirf@" quadratic spline QIs ot¥mn, as linear com-
binations of B-splines whose supports are containgd amnd with functionals based
on data sites lying inside or on the boundarydffor which extra values outsid@
are not necessary. This property can be very useful, faamestin numerical integra-
tion [19] and in the approximation of functions with boungaonditions [4,11]. In
[12], the error for two special Qls is introduced and palgiatudied.

In [29], quadraticC! quasi-interpolating splines on uniform criss-cross gian
lations of Q are directly determined by setting their Bernsteigzir coefficients to
appropriate combinations of the given data values, withsinig locally supported
splines spanning the spaces.

We notice thaC! quadratic splines are those of the lowest degree havingneont
uous first partial derivatives. This property could be iegting and useful in several
applications, such as in numerical methods for PDEs (se¢l&]), where gradients
of the basis functions have to be computed in the space d@ti@ral approximants.
They should also provide excellent approximants of thetswia of integral equa-
tions (see e.g. [1,30]).

In this paper we investigate the approximation of a functipdefined inQ, by
generalC! quadratic spline QIs on non-uniform criss-cross triangoites, based on
B-splines with supports i and data sites inside or on the boundaryofDenoting
them byQf, we take their partial derivatives as approximation to ¢hafsf. We pro-
pose an error analysis fdrand its derivatives, making a particular effort to give erro
bounds in terms of the smoothnessfoénd the characteristics of the triangulation,
considering also the case of functions that are not regulaugh.

Furthermore, in order to test our results, we provide séagalications.

Here is an outline of the paper. In Section 2, general natatamd results o@6*!
guadratic spline Qls and their first and second order paltidavatives are introduced
and three operators are considered: the Schoenberg-MaogdeatorS; (see e.g.
[5-7,9,10,25,27]) and the two optimal operat8sqsee [25,27]) and\b (which is
a modified version of the one introduced in [6,7]). Here andhia following, the
expression “an optimal quadratic spline QI” has to be urtdetsin the sense that
such a QI is exact on the space of bivariate quadratic poljedemn Section 3,
local and global estimates on the infinity norm of approxioraerrors on functions
and first order derivatives are given. Local estimates apgiged for second order
derivatives in the interior of each triangular cell of thevegi triangulation of the
domain. More specific results are given in Section 4 for unifneshes. In Section
5, for the QIsS;, S, Ws and their derivatives, specific error bounds are deriveh fro
the general results given in Sections 3 and 4. Finally, irti&e®, some examples
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and applications are proposed where the above Qls are cethpéh other existing
QIs of the literature.

2 Quadratic spline quasi-interpolants and their partial derivatives

Let Q = [a,b] x [c,d] be a rectangle decomposed imtm subrectangles by the two
partitionsXm = {x,0 <i <m}, Yy = {y;,0 < j < n} of the segmentga, b] = [Xo, Xm]
and|c,d] = [yo,Yn], respectively. Let7,, be the criss-cross triangulation &, de-
fined by drawing the two diagonals in each subrectangle (geR). We define the
space

3 (Tmn) = {s€ CH(Q) : s|t € P,, for each triangular cell’ of Jpn},

whose dimension iém+2)(n+2) — 1, whereP is the space of polynomials in two
variables of total degree less than or equal {8,18,31]. SettingZmn:= {(i,]) :
0<i<m+1,0<j<n+1}andZmn:={(i,j),1<i<m1<j<n} letBm =
{Bij, (i, ]) € #mn} be the collection ofm+ 2)(n+ 2) B-splines spanning the space
3 (Fran) [27], with knots

Xo=X1=a=X <X <...<Xm=b=Xnr1=Xmi2,
Yo=Y 1=C=Yo<Y1<...<¥n=0=Yni1=Yns2.

In Bmn, we consider thenn B-splines associated with the set of indicéﬁ;n,
whose restrictions to the boundafryof Q are equal to zero. To the latter, we add
2m+ 2n+ 4 boundary B-splines whose restrictionstare univariate quadratic B-
splines. Their set of indices is

Hn:={(i,0),(i,n+1),0<i <m+1;(0,]),(m+1,}),1< j <n}.

The Bernstein-Bzier coefficients (BB-coefficients) and the supports ofitiner B-
splines{Bjj, 2<i <m-1, 2< j <n-—1} are given in [22], the other ones can be
found in [24,26]. Some examples of B-spline supports arevahin Fig. 2.2a). The
B-splines are positive and form a partition of unity.

In #3(Zmn), we consider QI operato@: C(Q) — .#2(Fmn), defined by

Qfxy)= 5 Aj(NBij(xy), (2.2)
(i,J)€Hmn
whereBjj € ZmnandAjj : C(Q) — R are linear functionals of the following form:

B i) g o) (D)
Aij(f) =S W F O, yu'), 2.2)
u=1

involving only a finite fixed numbemp > 1, of mesh—point$xﬂ),yﬁ)) in the support

Zjj of Bjj, and of real non-zero Weigh‘mﬂ’j). Moreover, we assume that thg's are
suchthaQf = f forall f e Py, 0< £ < 2.
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We remark that ifX,y) € Q issuch thai 1 <X <X, Y51 <Y<Yy 1<1r<m,
1 <s<n, then it lies in the interior of one of the four triangular IeeTr<sk> of Zn,
k=1,23,4 or in a common edge of twﬁg‘) or in in an external edge or it is the
common vertex of the four triangles (see Fig. 2.1). Morepgeery triangIeTr(sk> is
covered by the supports of exactly seven B-spliBgswhose indices belong to the
setl (Tr(sk)) =A{3,)): 5N int(Trgk)) # 0}, whereint(Tr(sk)) denotes the interior of
T,

Ys

Ya—1

Fig. 2.1 Triangular ceIIsTr<sk), k=1,234.

Now, we considef f and its partial derivatives

QUf(xy) :=DQf(xy)= 5  Aj(f)DB;j(X,y). (2.3)
(i.pel ()

with0 < |a| <2, (Xy) € T for la] =0,1and(x,y) € int(T,(Sk)) for |a| = 2, where
a = (01,a2) and|a| = a1+ ap.

In (2.3), we compute the values of the B-splines and theivdtves by means of
their BB-coefficients [26] and the de Casteljau algorithmtf@ngular surfaces [13,

18]. SinceB;; is a polynomial of total degree two m(sk), it is described by six BB-
coefficients, ensuring th@' smoothness. Consequently, its first partial derivatives ar
polynomials of total degree one in such triangle, where #reydescribed by three
BB-coefficients ensuring the® smoothness, while the second partial derivatives are
constant polynomials insid‘é&k).

Now we consider some quadratic spline QI operators. In daldo it we define
the mesh-points:

_ Xi-1+X

_Yi-1tYi
2 Y )

S t] > (i,]) € Hn, (2.4)
that are themn intersection points of diagonals in each subrectangle2the+ n)
midpoints of the subintervals on the four edges, and theYettices ofQ, see Fig.

2.2(b).

2.1 The quasi-interpolarg;

The first operator is the Schoenberg-Marsden near optineabtgr (see e.g. [5-7,9,
10,25,27]) and it is obtained by assuming, in (22} 1,w\" = 1 and(x{",y{") =
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@ R

Fig. 2.2 (a) Some supports of inner and boundary B-splingg. Grid points(x;,y;) and mesh-points
(s,tj) defined in (2.4).

(s,tj), (i,]) € Hmn, givenin (2.4), i.e.
Sfxy) = >  f(st)Bijkxy).
(i,J)€mn
It is exact for bilinear polynomials ani5; ||, = 1, where|-|, is the infinite norm.
We notice that the number of data sites require&bis

Ns = mn+2m+2n+4. (2.5)

2.2 The quasi-interpolai®

In order to defin&, for0<i <m+1,0< j<n+1, we set:
N 7'427'4,+1 G = — 75("%/+1)2 = — ZJ'ZZJ'/H = _Zi(zj,ﬂ)z
T T, 0 G+¢la ! G+
bij = 1— (& +¢ +aj +Tj),
Withag=Co=am1=Cni1=380=Co=anr1 =Cny1=0, b00k= bmi10= l1I)(o,n+1 =
hi _ o hia o j _ K1
bmyiner =1 andrg = [ n‘l = ﬁjh. =1-r, Z] = kj,1]+kj’ ZJ/ = kj,JlJ:kj =
l—Zj,fOI’lS i<m+land 1< j<n+1,withhy=x—X_1, kj =Yj—VYj-1.
The quadratic spline @ [25,27] is defined as follows:
Sfxy)= 5  Aj(f)Bij(xy),

(i,1)€Hmn

ai:

with coefficient functionals obtained assuming, in (22} 5, w(li’j> =hyj, w(zi’j)
Wg"]) =G, Wg’” =aj, W.(Sl’” =Cj and

=a;,

o) =), 06 e) = (s-aty), 068 = (shaty),
048 = (s.-1) , 08/ W8 = (81tj4)
wheres andt; are given in (2.4). The operat8s is optimal and, since
‘ai|v|ci‘a|éj|v|éj|§1/2 and|bij|§3v (2.6)
then |$||l, < 5, see [25]. Moreover, we can notice that the number of daés si
requested by, is equal toNs given in (2.5).
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2.3 The quasi-interpolaints

The third quasi-interpolam is defined as follows:

Wef(xy)= 5  Aij(f)Bij(xy),

(i,§)€%mn
where the coefficient functionals are obtained assumin@®.2), p = 5, W(li’j) =2,
W(zl-,l) _ WgJ) _ Wihl) _ Wg,l) _ _‘;1 and
04" 9) = (s.4), 06)95)) = 06-1.yi-1), 068 = (6-1,¥9),

(4 e) = (6.yj-0), () 98)) = (%.y)).
The definition oW involves two kinds of data sites: the poiriss, tj) given in (2.4)
and the grid pointgx;,y;), see Fig. 2.2b). Moreover the number of data sites re-
quested by\, is

Nw = 2mn+3m+3n+1. (2.7)

The operatoM, is optimal and|Ws||,, < 3. We remark that in [6,7] an operator
similar toW,, but based on B-splines with octagonal support not comiglateluded
in Q, has been introduced.

3 Local and global error bounds for functions and derivatives

In this section general techniques to bound the errors octifurs and partial deriva-
tives (of order at most 2) are presented, which are valid lfdha operators defined
in Section 2. The results will be specified in Section 5 forheigpe of operator.

Let Tr(sk) be a triangle of%,,and
Eav(Xy) ;=D (f —Qf)(X,y), (3.1)

where 0< |a| < 2, (X,Y) € T for la| = 0,1, (X,y) € int(Tr(sk)) for |a] = 2 and
v > |al is an integer related to the smoothnesg of

SinceQ reproduces polynomials belongingltg, there results that (3.1) is equiv-
alent toEq v (X,¥) = DR, (X,¥) — DYQR, (%), where

RV (X7 y) = f(X7 y) —Qu (X’ y)7 (32)
for anyq, € P, and anyf such thaD? f (Xy) exists, with 0< |a| < v < ¢ < 2. Since
|Ea.V(7(>y)‘ S |DGRV(7(,V)|+|DGQRV(7(7V)|, (33)

in Theorem 3.1 and Theorem 3.2, we give upper bounds bot/DfoR, (X,y)| and
IDYQR, (%,y)| and finally, in Theorem 3.3, f{dEq v (X,y)|. In order to do it, we need
the following two lemmas, that give upper bounds [o(lrj) ) |DYBjj (%,y)| and
[Aij (Rv)].

First of all, we need to introduce the following notations:

el(T&
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- =% -%X-1,k=Y¥s—Y¥s-1,for0<r<m+1,0<s<n+1;

- As=max{h;,ks},0<r<m+1,0<s<n+1;

- hr =max_1<i<crra{hi}, by =min_a<i<ra{hi,hi #0},2<r <m-1,
h= max{h} h= m|n {h.}

- kamaXa 1<]<s+1{kj} ks =mins_ l<]<S+l{kjakJ 7£0} 2<s<n-1,
k= max {kj}, k= min {kj};

1<j<n 1<j<n
- Arsf max{hr,ks},Arsf max {A”} 5{3* mln{hr7ks}
(i.j)el(T8)

- A =max{h,k}, 5 =min{h,k};
s

25" = Uy e a2
- |llwg = |I-lg = Supremum norm oveB, with B compact set iiR?;
- w(DVf,t,B) =max{w(D"f,t,B),|a| = v}, where

w(¢,t,B) =max{|¢(P) — ¢ (R)[; P, P2 € B, [|PL— R <t}

is the modulus of continuity ap € C(B), and||-|| is the Euclidean norm;
IDVf|g = maxHDBfH .
1Bl=v B

Lemma 3.1 Let Trs be a triangular cell of I, (X,y) € Trs for |a] = 0,1 and
(x,y) € mt(Tr(S ) for |a| = 2. Then

S DBy (RY)] < Kig)(hy) (k) 2, (3.4)
(i)el(T¢)
with Kg = 1;
4, ifr=1,mand/ors=1n
Ki= { 2, otherwise; (35)
12 ifr =1 mand/ors=1n
Ko = { 6, otherwise. (3.6)

Proof For |a| = 0, due to the B-spline partition of unity, (3.4) is an equalitith
Ko = 1. In the casea| = 1, sinceD?B;; is a linear polynomial in the triangFé,(sk)
with verticesAq, Ao, Az, we have

|D?Bij (%,y)| < max{|DYBjj(A1)|,|D"Bij(A2)|,|DYBjj (A3)|} -

If |a| =2, thenDB;; is a constant insida, . Using the values of th&;;'s BB-
coefficients, we can easily deduce the inequality (3.4) Aedconstant&; andKo.

We remark that the constari{s andKj are bigger for the triangles near the boundary
of Q. O

Lemma 3.2 Let feC"(Zr(Sk)), with0O<v </¢<2 Forany(i,j) € I(Trgk))

|Xij (R)| < CJ VA (DVf = 255))7 3.7)
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where ¢ is a constant dependent an i and j. If, in addition, fe C+1(5&),
then

A (R)| < cfagof 0" (3.8)

where C§'+'1> is a constant dependent @ni and j.

Proof We set(g) =BG 'B ; and, in (3.2), we choose af the Taylor polynomial in

the expansion of at the midpoin{&p, no) of the external edge (ilfr(S ), i.e.

axy)= 2 (g) D (&o,10) (x— &) (y— 0)=. (3.9)

Then, for 0< v </ and(u,v) in the segment joiningx, y) to (o, no), from (3.2) and
(3.9) (see e.qg. [6]),

R(CY) = o Y (;) [DP(u.v) ~DP (&0,0) | (x— &) (y—1i0)>.  (3.20)
|B]=v
Moreover, from (2.2), we have
p
[Xij (R)| < Z\ )

Without loss of generality, we considéfy, o) = (0,0). Therefore, from (3.10), for
u=1,...,p, we get

Ry xu),yL))‘. (3.11)

Ry (1, yi) = ‘B; ( ) Dﬁf (u,v) —DP£(0,0)] () Pr(y)P.  (3.12)

Since(u, v) Iies in the segmentjoinin(yui ,y“- ) to (0,0), it is possible to find a real
constantru dependlng o, i andj, such that

H(xﬂ),yﬂ) (0,0) H <0“ )Azij. (3.13)
Then, in (3.12),
B B Be 008 s B Au K)
D f(u,v) — D f(0,0)‘gw D104V SL 5 ) < Top 1w (DP1, S50 ).,
(3.14)

where[z] = mln{lntegers i > z}, for all z> 0. Similarly, it is possible to find a
real constanp“ D , depending omu, i and j, such that

(a1 +1%"1) < i . (3.15)



Approximation of functions and partial derivatives by quatdr spline quasi-interpolants 9

Therefore, from (3.12), (3.14) and (3.15)

o A
RO | < & [0 1+ 1] Tt e (Dv 1,4, 2
1 (0D A ) Teplioh) ve i 5K (3.16)
So, from (3.11) and (3.16), we get (3.7), with
i _ 1 (i) 1y (D)
i :WZJWH'“(G“'J}(pH'J) . (3.17)
I £

Finally, if, in addition, f € C**(5¥)), then, from (3.10)

, 1 CH1Y 0B £ (0.9) (X— E9)B (y — o) 2
R =gy 3 ()P enec oty eas

with (T,V) lying in the segment joiningx, y) to (o, o). Following the same logical
scheme used in the first part of the proof and assurfdggo) = (0,0), from (3.18),
foru=1,...,p

R ,yu>>\_ ; o [ )
B\ (3.19)
< k) (py AIj) .
Therefore, from (3.11) and (3.19), we obtain (3.8), with
+1
clhl) = T z ‘ ]( ) . (3.20)
O

Remark 3.1More details about the computation of the constaxﬁ,ié) andpﬂ’” will
be given in Section 5, with reference to the three operabmetconsidered.

Theorem31LetfeC"(Zﬁs)),withog|a|§v§£§2, ()f(f)eTrS for ja]=0,1
and(x,y) € mt(Trs ) for |a] = 2. Then

~ v—|a| ~
o 1 A A K
DRy (R.Y)| < w—lap! (;) w (va7;72r<s>> - (3.21)

If, in addition, feC‘fH(ZrS ), then

1 A\ (+1-a|
DIR(RY)| < —" [ =2 Di*1f 22
PRI = i 7ap ( 2 ) H s (322)

s
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Proof From (3.10), assuminfo, no) = (0,0) and(x,y) = (X, V), since(u,v) lies in
the segment joining0, 0) to (X,y) and||(X,y) — (0,0)|| < Afs , then

oo K -
DUR,(9)| < (0714, 58) ey (R i)
s k ATS V- Ia‘
< w(DVf,AZ ) o (%)
that is (3.21). If, in additionf € C+1(5&)), then, from (3.18), we get (3.22). O

Theorem 3.2 Let f € C"(Zg‘)), withO<|a|<v<(<2,(Xy) € T for la| =
and(x,y) € int(Tr(sk)) for |a| = 2. Then

QR (x5)| <GBy oo (01,5228 (3:29)
where
— A\ (i.i)
Clapw =Kl [ 32) , Co= max {Cv' } (3.24)
Os ()el (1)

Cf,i’j) is given by (3.17) and [, is defined as in Lemma 3.1. If, in addition,&f
C“l(Zr(sk)), then

—(+1—|a|

IDYQR/(X,Y)| < Cla|r+141s (3.25)

where

lal
A ..
Ciale+1 = Kia|Cry1 ( 6:5 > y Cra= . ')m|?$<")) {Célﬁl)} (3.26)
L])€l(lrs

and C§'+’1) is given by (3.20).

Proof The proof is a consequence of Lemmas 3.1 and 3.2. Indeed,(#&)) (3.4)
and (3.7), we get (3.23) and (3.24). If, in additidne C*+1(5&)), then, from (2.3),
(3.4) and (3.8), we get (3.25) and (3.26). O

Theorem 3.3 Let f ¢ C"(ZrS ) andTrS = TrS if |a| =0,1and T}(sk) = int(Tr(sk)) if
la|=2,with0< |a| <v </ <2, then

A
[Eaulyp <M 85 0 (071,522, (3:27)

with error constant

M2

1 _
jalv = 2v=Tal(y —|a|)! +Clajv (3.28)

andCq, given in (3.24). If, in addition, £ C/*1(2), then

—(+1—|a|

|Eaesallipo < MR 118 " (3.29)

o], 0+1
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with 1
Q B _
M\al,l,ﬂrl_ 25+17\a|(£_~_ 1—|a))! +Clale1

(3.30)
andCiq| s+1 given in (3.26).

Proof From (3.3), Theorem 3.1 and Theorem 3.2, sifige< As, we get (3.27) and
(3.29). |

Remark 3.2If we consider a triangular cell sufficiently far from the molary of Q,

the error constanwl‘?ﬂ o M\?}r|.é+1' |a| = 1,2, are smaller. Indeed, in those cad¢s,

andKj, given by (3.5) and (3.6), are equal to 2 and 6, instead of 4.@ncespectively.
The local estimates lead immediately to the following globaults forja| =0, 1.

Theorem 3.4 Let f e CV(Q), withO< |a| <v <{<2, |a|=0,1, then

. B A
|Eawllo <MP,AY “w(D"f,TQ) 7

with error Constantxi/l‘%lﬁv = Wm +Kiq|Cy (%)‘al, Kq) defined as in Lemma
3.1 and G given in (3.24). If, in addition, £ C*1(Q), then

[Eariallg < MR 008 44

D€+1fH
Q7

With M3 g = -+ +KialCe41(4) %l and G..1 given in (3.26).

___1r
20+1-lal(¢4-1—|a|

Remark 3.3In (3.27) and (3.29), the error constants fat = 0 are independent of

the mesh ratio %) and therefore, iﬁ"r(Sk) we getQf — f asA;s — 0.

In casela| = 1,2, the error constants depend on the above mesh ratios. When
such ratios are bounded, from (3.27) and (3.29), we can adadhat in'I"r(sk>

DYQf —DYf as A — 0. (3.31)

For example, this condition occurs in case of uniform tridaton Jp,,. Moreover,
if we assume that the sequence of partiti§ig, x Yy} of Q is y-quasi uniform i.e.
there exists a constapt> 1 such that 6< A/ <y, then (3.31) holds. From the local
convergence properties, we immediately get global comvrerg results fojor| =0, 1.

4 The case of uniform triangulations

If we consider the specific case of a uniform triangulatiam,\Which h; = kj = A,
1<i<m, 1< j<n, using a technique similar to the one proposed in [15], we
get error constants that we expect to be substantially estjues shown in Section

5 for the QIsS, $ andW,, considered in Section 2. Moreover their computation is
easier, because, in this case, the BB-coefficients of thpliBes are independent of
the triangulation.



12 Catterina Dagnino et al.

First of all, we Wr|tle in the “quasi-Lagrange” form. From (2.1), (2.2) and
(2.3), if Zmn:= {(xV,y1)), (i,]) € A mn} is the set of all mesh-points used in the
definition of Qf, for a proper set of indices m, then

Aty = Y fV DL (xy),

(i,})€# mn

where{Lij, (i, j) € # mn} are the fundamental splines obtained, from (2.1) and (2.2),
as linear combinations of B-spling8;;, (i, j) € Zmn} (see e.g. [15]). Also the fun-
damental splines have local supp§it, obtained by the union of the B-spline sup-
ports involved in their definition. Given a poifk,y) € Tr(sk> only a finite number

of fundamental splines are non zero at this point, whosecé@sdbelong to the set

I = (G0, i) s,—mm(n@);&m}.Moreover,wedefiné$§>: Ui jpearr, Si

Now, |f (X,y) € TrS and we consider the Taylor expansion foft (X,y), then
y)

f(x,y) = Gu(xy) + Ry (xy), with remainder term
Ro(xy) = o 2, (;) [DPf(uv) - DPF(R5)] (x—R)P1(y—9)P

for 0 <v </and(u,v) lying in the segment joiningx,y) to (X,y). Itis easy to verify
thatR, and its derivatives are 0 &,y). SinceQ is exact orl?|, from (3.3) we obtain

Eaw®RIS Y[Ry DL (R )] (4.1)
(i,1)€3(Ts")
Denoting|x(® y(j) —y\ = AT (%,y) and being8, j a constant dependent on
andj, such thalH (7(,7)” < 6,5, then, in (4.1)
~ . v
Ry(x,y)| < %w(ovn |, y9) — (z,y )( )X+ Iy —y))
< L(8lw (D"f,g, ) AT.,xy
(4.2)

Consequently, from (4.1) and (4.2),

vzl <o (071588 ) 270 5 78511 (%9) 0Ly (k)]

(i.1)eaTs’)
(4.3)
We can bound the last term in (4.3) as follows
1 - _
o 2 leilmxy) Y IDYLij (R,Y)| SME,LVA lal, (4.4)

(i) eaTd)

where the constamlll(g‘ , is dependent o andv and can be evaluated, for aQy
by a technique similar to the one used in [15, Theorem 1]. H#8) and (4.4), we

obtain
|Eavll i <M, A" |“w(DV S%) (4.5)
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Finally, if, in addition, f € C**(S¥), then it is easy to deduce

AZ+17‘G|

HEG,Z+1H-|'-r(k < M& o1 (4.6)

5 Error bounds for specific quasi-interpolants

In this section, we detail the general error constants ofi@es3 and 4 for the three
specific operators introduced in Section 2.

5.1 The quasi-interpolarg

By Theorem 3.3, we obtain the following error constants ffier dperato;:

M§10f4 MOlfS er [1+18<A5:>] (5.1)
— 2
5 1 9/A 27 (A
s[5 (5)) i 15 (5) ] o2

Indeed, if for the sake of simplicity, we consider= 3, i.e. the triangIeTr@, from
(3.28), (3.24) and (3.17), we notice that the only valueteglao the particular choice
of the QI operator i€, . Moreover, it is easy to verify that

C,= max {ciVl—clrstd 7(Urs+l)-| plrstD) v
’ <i,j>el<Tr‘s3)>{ W) =c 7 (el)

Therefore, we have to compuﬁér st andp(r’S+1

Since, from (3.13), the valug{"*"" is such thaH o,y — (0,0) H <ogfPet s
after some algebra, we gﬂffs+1 — 3. Similarly, from (3.15), since the valyg"*™
is such tha(\xl |+ Iy \) <plstd
ThereforeC, = 2 (3)” and, from (3.28),

7N\ lal
& 133 (B
v~ mna o (3) (&) 53

whereK 4 is defined in Lemma 3.1. From (5.3), immediately we obtait 5.

1)
Ar 541, after some algebra, we gay D) %

Ifin addition f € C2(5¥), then, following the same logical scheme, from (3.30),
(3.26) and (3.20), we g& = Cy"**V = 1 ()% and

s 1 1/3\? [ As la|
ey e (a) (51) - e

From (5.4), immediately we obtain (5.2).
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We reach the same results if we consider another tria‘ﬁﬁie

As noticed in Remark 3.2, in triangl@e‘sk) lying sufficiently far from the bound-
ary of Q, the error constants for the first and second derivative&.it) and (5.2),
are smaller and become

M3 = [1+9(%2)], M3, = {;+3(g§)},l\ﬂ§g=[l+zj(g§)2} (5.5)

For uniform meshes anT;I(sk) sufficiently far from the boundary d®, from (4.5) and
(4.6), we get:

We remark that these constants are smaller than those wegetiby (5.1), (5.2) and
(5.5), assuming uniform meshes.

5.2 The quasi-interpolai®

By Theorem 3.3, we provide the following error constantsSpr

Mle: [”120 &)} Mfzz: [%+122(%)} , M3% = {1+366<%:)2 ,
(5.6)

1+ 269(A6rs>2] . (5.7)

Indeed, by the same technique used for the ope&tave consider the triangl‘q'?),
but in this case, we have

_ (i,§) rs+1 rs+1 Y
CV_(LJE?%U{CV }_ ol Z' 1(pu ) .

45 1 269 /A
g [ 5 (57 e

After some algebra, taking also into account (2.6), we cdmiplue valuesvi(,"s*l),

P(rsﬂ),u 1,...5, obtaining
1 3 v 1 5 v 5 vV 1 v 5 v
<= 13.3(2 - 2 2 1 5
o< p(3) 360 ) ()
and
ME 1 o Brs a1 -
v = e —fant B 8

whereK 4 is defined in Lemma 3.1. From (5.8), immediately we get (5.6).
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If in addition f € C3(Zr(sk>), then we get
3(3) L ((5Y (8L (Y (8
2 2 2 2 2 2

ME =t kel ‘ 5.9
\a\,3_23—|a\(3_|a|)!+ a3\ 5e : (5.9)

From (5.9), immediately we obtain (5.7).

As noticed in Remark 3.2, in triangl@ék) lying sufficiently far from the bound-
ary of Q, the error constants for the first and second derivatives.8) @nd (5.7) are
smaller and become

M= [ o0(F2)] wia= (1 en(Be)] M= [+ 8 (%))
(5.10)
M35 = [1+183(§;§)1 M = {ﬁ 229(?‘5)2] |

For uniform meshes anT;I(sk) sufficiently far from the boundary d®, from (4.5) and
(4.6), we get:

1
Ca= Cér,srrl) _ 3

and

(5.11)

We notice that, also in this case, the constants in (5.11¥muadler than those we
could get by (5.6), (5.7) and (5.10), assuming uniform mesktreover, in the case
f € C3(Q), we get the same error constants given in [15].

5.3 The quasi-interpolaits

By Theorem 3.3, we provide the following error constants/br

W W, W _ 131
M 0_11, M071_18 Moz—Tv

M = [1+70(§s)] Mis = [3+65(%: )| M5 = [1+195(§;:)2

(5.12)
—_ 2
131 1 65/A 1 65/A
MW — =2 (e | 2 PP Es MW2 ') . 5.13
=Tt [+ 5 (5 2"2\s) | OP

Indeed, by the same method used$pandS,, we consider the triangl‘é{f’) and, in
this case, we have

- 5 -
{ei} =cl= = 5 i 1o ()

Cy

I
3
5
53

(i.i)el (1)
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After some algebra, we compute the valag&® ™, pi "

o3 eo(3) (2 o (2) o) o(2))

lal
+K‘G‘CV (Adrs) , (5.14)

whereKq is defined in Lemma 3.1. From (5.14), immediately we get (.12
If in addition f € C3(Zr<_lf>), then we get

(406

W l er ‘G‘
Miaj3 = 23_|a(3_|a|)!+*<a|03(%> : (5.15)

From (5.15), immediately we obtain (5.13).

As noticed in Remark 3.2, in triangl@ék) lying sufficiently far from the bound-
ary of Q, the error constants for the first and second derivativeS.it2) and (5.13)
are smaller and become

it = [ 0s(%)] it = [+ % (%)) it = 1+ 8 (%))

_ 2 - \2
195( A 1 65 (A
My% — {1+2((§§) },M\Z/f%: {2+4(5§) }

, U=1,...5, obtaining

and

Maly = 27-Tal(v ~Ja)]

and

(5.16)

For uniform meshes anTi(sk) sufficiently far from the boundary d®, from (4.5) and
(4.6), we get:

Mg5 = 8.3, Mg2 = 8.7, Mg5 = 5.5, My5 = 0.79,

%0~ 0% 2o 03 (5.17)
My% =195, Mf% = 15.1, M} = 2.3, My% = 555, My = 9.4.

We notice that the constants in (5.17) are smaller than tiveseould get by (5.12),
(5.13) and (5.16), assuming uniform meshes.

6 Some examples and applications

In this section we present some examples and applicati@welaped in Matlab,
related to the QIS;, S, Wo and comparisons with other quadrafit spline Qls on
criss-cross triangulations, proposed in the literature.
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6.1 Quasi-interpolant error constants for functions antiglalerivatives

We compare the optimal QB andW, with other optimal ones defined in [29] and
[2], on uniform criss-cross triangulations with= k; = A, Vi, j.

In [29], the authors introduce an optimal quadratfcquasi-interpolating spline
2f, on a uniform criss-cross triangulation of a rectangulandim Q, directly deter-
mined by setting the BB-coefficients of the spline to appiatprcombinations of the
given data values. In case bfc C3(Q), they provide error bounds given by

HDa(f_Qf)”Tr(sk) \a|3HD3fHQA3 \Cf| ‘(J| 0,1,2.

In the first four columns of Table 6.1 we compare the consmmg la| =0,1,2
with the corresponding ones f& andWs, obtained in (5.7) and (5 13), assuming
uniform triangulations. In [29], the authors also remarattif Trs> is sufficiently far
from the boundary of2, the constantl!:/lm| 5 are smaller. In such a case, the compar-
isons with the error constants 8f andW,, given in (5.11) and (5.17), respectlvely,
are reported in the last four columns of Table 6.1. We carr:edhatMla‘ g are al-

ways bigger than our constarmzﬁ andM al. 3 la| =0,1,2. However, in [29], the

authors were not interested in obtaining good constantseirestimates of the error
but in defining directly a quasi-interpolant by setting i8-Boefficients.

Case of an arbitrary Case of a triangular ce'II,(sk>

triangular ceIlTr(sk) sufficiently far from the boundary a@
la[=0 | Ja[=1 ] |a]=2 A la[=0 | Ja|=1 | |a|=
M@S 5.625 | 2254 | 67.75 Mfajz‘g 0.55 17 6.7
‘a‘ 3 2.73 10.96 33 ‘a‘ 3 0.79 2.3 9.4
m 3 [29] 18 274.5 867 ‘a‘ 3 [29] 5.33 82 258
Mgﬁ 5121 0.40 0.96 2.8
Moy | o040 | 093 | 27

Table 6.1 Error constants for some optimal Qls.

In [2] the authors construct a class of optimal Qls based wvartaite quadratic
C! B-splines on uniform criss-cross triangulations of thenpl®&?. The coefficient
functionals are obtained by imposing the exactnesBoand minimizing a constant
appearing in the leading term of an appropriate error estinihey also propose
error bounds for two particular operators, denote@pyndQ_ 16, in case of func-

tions f € C3(R?),

ars _ Qy 3 3-a| — —0 =
[D7(F = Qg <Ml a0, A% lal =012, y=0-F¢
WhereQ is an appropriate neighbourhood’lﬁa@k We remark tha® is the same

operator glven in [15,23] and [17, Chap. 3]. The error camstéor Qo andQ_1 16
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are reported in the last four columns of Table 6.1 and thegamgparable with those
we have obtained fd&, andW,. However, as noticed in [2], sinc@ andQ_y ;¢ are
defined orR?, then, if we consider a bounded region they require function values
outsideQ.

6.2 Estimate for the maximum steplengttsuch that| f — Qf|| , is less than a fixed
tolerancee

From the error estimates given in Theorem 3.4 and from (£627), (5.13), one can
compute in order to have|f —Qf||, less than a given toleranee Indeed, if we
consider the function error estimates, from Theorem 3.ty wi= (0,0), we have

If =Sifllg < 34%(D%f ||,  [If —Sfllo < FA3(|D3|,,
I —Wef| o < 2543 D3|, .

Then, if we choose

4¢ 8¢ 48¢
A —— f A 3 — —  f A 3 — — _  f
<\ 5per], O A < aspoe, O 4 <\ wagppery, M

(6.1)
we are sure thgtf — Qf||5 <e&.
For example, if we consider the test function (see Fig(&)1

= Sen(- % (- 37+ 0-3)7))

on Q = [0,1]? and we assume = 5-1073, then, from (6.1), we gefh < 5.2-102
for S, A < 3.9-10 2 for S, andA < 5.0- 102 for We.

In Fig. 6.1 we report the graphs &f, W, f1 and| f; —\W f1|, computed on a 300
300 uniform rectangular griés of evaluation points in2, considering a uniform
triangulation withm = n = 21 (this choice ensures < 5.0-102). We remark that
max e |(fr —Wof1)(u,v)| <2.7-107°.

The above procedure can be usefully applied to get error dsim numeri-
cal evaluation of 2D integrals by quadrature rules basediariate spline quasi-
interpolation.

0.4 0.4 3
0.3 03

0.1 0.1

o 0
0 0
05 05
10 1o

05 !
)

1

05
(b)
Fig. 6.1 The graphs ofa) f1, (b) Wof1 and(c) |f1 —Wafq].

(a
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6.3 Approximation of functions and first partial derivatve

In this section we propose some numerical examples, whetalkeethe first partial
derivatives ofS f, S f andW.xf as approximations to those of the functibnWe
consider the two test functions

fa(x,y) = 3(1—x)2exp(—x2 — (y+1)2) — 10(% —x3 —y°) exp(—x2 — y?)
—exp(—(x+1)2—y?)

andfs(x,y) = (xy)g +sin(xy), defined on the square domaifds= [—4,4]2 andQ =
[—1,1]?, respectively. We notice tha € C1(Q). For a given functionf and for
Q=S S, W, we define

f_error= max |(f —Qf)(u,v)|, D*f_error= max{D%-92)f error}, (6.2)
(uv)eG lal=1

with D(%1:92) f_error=mayxy)cc |D(@%) (f —Qf)(u,v)|, |a| = 1, whereG is a 300x
300 uniform rectangular grid of evaluation points We remark that the QIS;
and S, are based oM, given in (2.5), data sites, whiMs is based orNy > Ns,
given in (2.7), data sites.

In Table 6.2, for increasing andn, we report the values (6.2), fdr= f,, con-
sidering uniform criss-cross triangulations and compatime performances of the
operatorsS;, S andWs, with those 0fQp andQ_y 16, Proposed in [2]. We can notice
that the results related to the optimal opera®r$\b, Qo andQ_y /16 are comparable.
However, we remark tha@o andQ_1,1¢ Need evaluation points outside. In Fig.
6.2 we report the graphs d%, S, f, and|f, — S fo| computed on the gri, consid-
eringm = n = 128. In Figs. 6.3-6.4 we report the graphs@f? f,, DLOS; fy,

D(1~°)(f2—82f2)’ and DOV f,, DOV, DOV (f, — S f,)|, respectively, com-
puted onG, consideringn=n= 128.

S | S [ W [ Q2 [ Qs

m=n fo_error
32 | 38(1) | 56(2) | 45(-2) | - -
64 | 9.7(2) | 4.4(-3) | 3.7(-:3) | 41(:3) | 4.8(=3)
128 | 2.5(-2) | 3.8(-4) | 3.5(-4) | 3.8(-4) | 4.2(-4)
256 | 6.1(-3) | 3.9(-5) | 3.8(-5) | 3.9(-5) | 4.2(-5)

m=n DIf,_error
32 | 1300) | 45(1) | 42(1) | - -
64 | 3.4(-1) | 9.8(-2) | 1.0(-1) | 1.2¢1) | 1.2(-1)
128 | 8.3(-2) | 2.6(-2) | 2.6(-2) | 3.0(2) | 3.0(-2)
256 | 2.2(-2) | 6.6(-3) | 6.7(-3) | 8.4(-3) | 8.4(-3)

Table 6.2 f,_error andD!f,_error.

Now, we consider two kinds of non-uniform triangulations.order to construct
them, we consider the following univariate non-uniformtjtieans of an arbitrary in-
terval[a,b], Xm={X, i =0,...,m} andXm={X, i =0,...,m} (see e.g. [3]), where,
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10 10 4
) )
0 0 2 H“l
- e - - Il
- -
K 2 4 K 2 4 3 2 4
0 o 2 0 0o 2 0 0 2
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10 10 0.02
a0 A acph A

0 0 0.01

19 v 19 A4 9

2 4 2 4 2 4
0 2 0 2 0 2
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20 20 0.03
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0 - 0 - 0.01
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-19 < -10 < 9
2 4 2 4 2 4
0 0 2 0 0 2 0 3 2
2 44 2 2 44 2 2 44 2
(@) (b) (©

Fig. 6.4 The graphs ofa) DOV f,, (b) D0V S, f, and(c) )D<°11)(f2 - Szfz)‘.

for meven

and )
X_():a, X_lz%bf(%) b;zaai:]-w"aqfla )?q:%ba
b

v at i 2 b—a ; va (6'4)
Xiq= 32+ (ﬁ) >, i=1...,g-1, Xm=Db,

with g = %‘ and knots thickening around the midpoﬁ# (similarly for modd). It is
easy to show that the sequence of partitidXs} is y-quasi uniform, withy = 2 and
the sequencéXy} is locally uniform with constanf = 3. We recall that a sequence
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of univariate partitiong X} is locally uniform if there exists a constaft> 1 such
that; < % <A foralliandj =i+ 1. Similarly, we construct the partitiont
andY;, of [c,d], by using the same scheme given in (6.3) and (6.4), respécthive
consider the corresponding criss-cross triangulati@ns and Jmn, based oXm, Yy
andXn, Y, respectively.

In Table 6.3 we compute (6.2), fdr= f3 andQ = S, S, Wo, defined onZn,
and Jmn, for increasing values ah andn, with m = n. For the above operators, in
case of a sequence of partitiofé, x Yn}, thanks to Remark 3.3, the convergence
of {D9Qf} to DUf, for |a| = 1 is guaranteed whem,n — . For the second se-
quence of partitiongXm x Yo} we have only numerical evidence for the convergence
of {D?Qf} to DUf, for |a| = 1, whenm,n — . We can notice that the use of the
non-uniform triangulatiornZy,, allows to get better results.

S 1 S [ W S 1 S [ W
non-uniform triangulations || non-uniform triangulations
ymn 9mn
=n fz_error
4 3.3(-2) | 9.0(-3) | 6.6(-3) || 4.2(-2) | 1.4(-2) | 1.1(-2)
8 1.0(-2) | 2.4(-3) | 1.4(-3) || 1.8(-2) | 2.4(-3) | 2.6(-3)
16 2.8(-3) | 6.9(-4) | 3.6(-4) || 5.5(-3) | 3.4(-4) | 3.4(-4)
32 8.4(-4) | 2.1(-4) | 1.0(-4) || 1.4(-3) | 4.4(-5) | 3.5(-5)
64 2.6(-4) | 6.2(-5) | 2.9(-5) || 3.5(-4) | 5.6(-6) | 3.7(-6)
128 8.1(-5) | 2.0(-5) | 9.3(-6) || 8.8(-5) | 7.2(-7) | 4.3(-7)
m=n D1f5_error
4 3.1(-1) | 1.9(-1) | 1.3(-1) || 2.2(-1) | 1.3(-1) | 9.5(-2)
8 1.8(-1) | 9.8(-2) | 6.1(-2) || 7.4(-2) | 3.5(-2) | 2.9(-2)
16 9.9(-2) | 5.0(-2) | 2.7(-2) || 2.8(-2) | 7.9(-3) | 7.9(-3)
32 5.3(-2) | 2.3(-2) | 9.7(-3) || 1.1(-2) | 2.0(-3) | 2.0(-3)
64 25(-2) | 7.8(-3) | 5.2(-3) || 4.9(-3) | 4.9(-4) | 4.9(-4)
128 9.7(-3) | 1.5(-3) | 2.7(-3) || 2.4(-3) | 1.3(-4) | 1.3(-4)

Table 6.3 f3_error andD! f3_error, in case of non-uniform triangulatiotn, andﬂ;m.

In Figs. 6.5-6.6 we report the graphsfgfW fs, | f3 — W f3| andD(Ob f3, DIODW, f5,
DO (f5 —szg)‘, respectively, computed d®, consideringn= n = 128 and the

triangulation.710g108. The other first derivativ®19 is symmetrical and we do not
report it.

7 Conclusions and final remarks

In this paper we have analysed the error between a fundtiand a generaC!
guadratic spline quasi-interpolar@® f, defined on a non-uniform criss-cross trian-
gulation of a rectangular domai. We have given error estimates for the infinity
norms of f — Qf, of the first derivativeD?(f — Qf), |a| = 1, and of the second
derivativesD?(f — Qf), |a| = 2 (in this case in the interior of each triangle &y).
We have also considered the specific case of a uniform triatign and, by a differ-
ent technique, we have reduced the constants in the errodsou
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' <™ " ™ " huh

Fig. 6.6 The graphs ofa) D1 f3, (b) DOYW, f; and(c) ‘D(O‘:I')(fg 7\/\&f3)‘, with FAsg126.

Then, we have considered three local QI operators, we hawmpwied their partial
derivatives and bounded their errors.

Finally, we have proposed some applications concerningafipgoximation of
functions and their partial derivatives by using the abol® &d we have compared
the obtained results with those obtained from otbequadratic spline Qls proposed
in the literature.
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