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Abstract Given a non-uniform criss-cross triangulation of a rectangular domainΩ ,
we consider the approximation of a functionf and its partial derivatives, by general
C1 quadratic spline quasi-interpolants and their derivatives. We give error bounds in
terms of the smoothness off and the characteristics of the triangulation. Then, the
preceding theoretical results are compared with similar results in the literature. Fi-
nally, several examples are proposed for illustrating various applications of the quasi-
interpolants studied in the paper.
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1 Introduction

Spline quasi-interpolation is well known to be a good methodfor the approximation
of bivariate functions. A nice property of spline quasi-interpolants (abbr. QIs) is that
their construction does not need the solution of any system of equations. This prop-
erty is particularly attractive in the bivariate case, where the number of data sites can
be huge in practice.

In the literature, quadratic spline QIs on criss-cross triangulationsTmn of a rect-
angular domainΩ are proposed and studied by many authors (see e.g. [31, Chap.
2], [8, Chap. 8], [18, Chap. 12], [2,5,6,9,14,15,28] and thereferences therein). In
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general, they are based on B-splines with supports not completely included inΩ and
with some data points lying outsideΩ . Therefore,f has to be defined in an open
set containingΩ . In particular, in [2] and [15], some quadraticC1 QIs defined on
uniform meshes are proposed to approximatef and its partial derivatives. Moreover,
error estimates are given in the casef ∈C3(Ω).

In [20,21] spline QIs based on B-splines with supports not completely included
in Ω and all data sites inside or on the boundary ofΩ are proposed.

In [10,25,27] the authors defineC1 quadratic spline QIs onTmn, as linear com-
binations of B-splines whose supports are contained inΩ and with functionals based
on data sites lying inside or on the boundary ofΩ , for which extra values outsideΩ
are not necessary. This property can be very useful, for instance in numerical integra-
tion [19] and in the approximation of functions with boundary conditions [4,11]. In
[12], the error for two special QIs is introduced and partially studied.

In [29], quadraticC1 quasi-interpolating splines on uniform criss-cross triangu-
lations ofΩ are directly determined by setting their Bernstein-Bézier coefficients to
appropriate combinations of the given data values, withoutusing locally supported
splines spanning the spaces.

We notice thatC1 quadratic splines are those of the lowest degree having contin-
uous first partial derivatives. This property could be interesting and useful in several
applications, such as in numerical methods for PDEs (see e.g. [16]), where gradients
of the basis functions have to be computed in the space of variational approximants.
They should also provide excellent approximants of the solutions of integral equa-
tions (see e.g. [1,30]).

In this paper we investigate the approximation of a functionf , defined inΩ , by
generalC1 quadratic spline QIs on non-uniform criss-cross triangulations, based on
B-splines with supports inΩ and data sites inside or on the boundary ofΩ . Denoting
them byQ f , we take their partial derivatives as approximation to those of f . We pro-
pose an error analysis forf and its derivatives, making a particular effort to give error
bounds in terms of the smoothness off and the characteristics of the triangulation,
considering also the case of functions that are not regular enough.

Furthermore, in order to test our results, we provide several applications.

Here is an outline of the paper. In Section 2, general notations and results onC1

quadratic spline QIs and their first and second order partialderivatives are introduced
and three operators are considered: the Schoenberg-Marsden operatorS1 (see e.g.
[5–7,9,10,25,27]) and the two optimal operatorsS2 (see [25,27]) andW2 (which is
a modified version of the one introduced in [6,7]). Here and inthe following, the
expression “an optimal quadratic spline QI” has to be understood in the sense that
such a QI is exact on the space of bivariate quadratic polynomials. In Section 3,
local and global estimates on the infinity norm of approximation errors on functions
and first order derivatives are given. Local estimates are provided for second order
derivatives in the interior of each triangular cell of the given triangulation of the
domain. More specific results are given in Section 4 for uniform meshes. In Section
5, for the QIsS1, S2, W2 and their derivatives, specific error bounds are derived from
the general results given in Sections 3 and 4. Finally, in Section 6, some examples
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and applications are proposed where the above QIs are compared with other existing
QIs of the literature.

2 Quadratic spline quasi-interpolants and their partial derivatives

Let Ω = [a,b]× [c,d] be a rectangle decomposed intomnsubrectangles by the two
partitionsXm = {xi ,0≤ i ≤ m}, Yn = {y j ,0≤ j ≤ n} of the segments[a,b] = [x0,xm]
and [c,d] = [y0,yn], respectively. LetTmn be the criss-cross triangulation ofΩ , de-
fined by drawing the two diagonals in each subrectangle (see Fig. 2.2). We define the
space

S
1
2 (Tmn) = {s∈C1(Ω) : s|T ∈ P2, for each triangular cellT of Tmn},

whose dimension is(m+2)(n+2)−1, wherePℓ is the space of polynomials in two
variables of total degree less than or equal toℓ [5,18,31]. SettingKmn := {(i, j) :
0≤ i ≤ m+1, 0≤ j ≤ n+1} andK̂mn := {(i, j),1≤ i ≤ m, 1≤ j ≤ n}, let Bmn :=
{Bi j ,(i, j) ∈ Kmn} be the collection of(m+2)(n+2) B-splines spanning the space
S 1

2 (Tmn) [27], with knots

x−2 = x−1 = a = x0 < x1 < .. . < xm = b = xm+1 = xm+2,
y−2 = y−1 = c = y0 < y1 < .. . < yn = d = yn+1 = yn+2.

In Bmn, we consider themn B-splines associated with the set of indiceŝKmn,
whose restrictions to the boundaryΓ of Ω are equal to zero. To the latter, we add
2m+ 2n+ 4 boundary B-splines whose restrictions toΓ are univariate quadratic B-
splines. Their set of indices is

K̃mn := {(i,0),(i,n+1),0≤ i ≤ m+1;(0, j),(m+1, j),1≤ j ≤ n}.

The Bernstein-B́ezier coefficients (BB-coefficients) and the supports of theinner B-
splines{Bi j , 2≤ i ≤ m−1, 2≤ j ≤ n−1} are given in [22], the other ones can be
found in [24,26]. Some examples of B-spline supports are shown in Fig. 2.2(a). The
B-splines are positive and form a partition of unity.

In S 1
2 (Tmn), we consider QI operatorsQ : C(Ω) → S 1

2 (Tmn), defined by

Q f(x,y) = ∑
(i, j)∈Kmn

λi j ( f )Bi j (x,y), (2.1)

whereBi j ∈ Bmn andλi j : C(Ω) → R are linear functionals of the following form:

λi j ( f ) =
p

∑
µ=1

w(i, j)
µ f (x(i)

µ ,y( j)
µ ), (2.2)

involving only a finite fixed number,p≥ 1, of mesh-points(x(i)
µ ,y( j)

µ ) in the support

Σi j of Bi j , and of real non-zero weightsw(i, j)
µ . Moreover, we assume that theλi j ’s are

such thatQ f = f for all f ∈ Pℓ, 0≤ ℓ ≤ 2.
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We remark that if(x,y) ∈ Ω is such thatxr−1 ≤ x≤ xr , ys−1 ≤ y≤ ys, 1≤ r ≤ m,

1 ≤ s≤ n, then it lies in the interior of one of the four triangular cells T(k)
rs of Tmn,

k = 1,2,3,4 or in a common edge of twoT(k)
rs or in in an external edge or it is the

common vertex of the four triangles (see Fig. 2.1). Moreover, every triangleT(k)
rs is

covered by the supports of exactly seven B-splinesBi j , whose indices belong to the

set I(T(k)
rs ) := {(i, j) : Σi j ∩ int(T(k)

rs ) 6= /0}, whereint(T(k)
rs ) denotes the interior of

T(k)
rs .

Fig. 2.1 Triangular cellsT(k)
rs , k = 1,2,3,4.

Now, we considerQ f and its partial derivatives

Qα f (x,y) := DαQ f(x,y) = ∑
(i, j)∈I(T(k)

rs )

λi j ( f )DαBi j (x,y). (2.3)

with 0≤ |α| ≤ 2, (x,y) ∈ T(k)
rs for |α| = 0,1 and(x,y) ∈ int(T(k)

rs ) for |α| = 2, where
α = (α1,α2) and|α| = α1 +α2.

In (2.3), we compute the values of the B-splines and their derivatives by means of
their BB-coefficients [26] and the de Casteljau algorithm for triangular surfaces [13,

18]. SinceBi j is a polynomial of total degree two inT(k)
rs , it is described by six BB-

coefficients, ensuring theC1 smoothness. Consequently, its first partial derivatives are
polynomials of total degree one in such triangle, where theyare described by three
BB-coefficients ensuring theC0 smoothness, while the second partial derivatives are

constant polynomials insideT(k)
rs .

Now we consider some quadratic spline QI operators. In orderto do it we define
the mesh-points:

si =
xi−1 +xi

2
, t j =

y j−1 +y j

2
, (i, j) ∈ Kmn, (2.4)

that are themn intersection points of diagonals in each subrectangle, the2(m+ n)
midpoints of the subintervals on the four edges, and the fourvertices ofΩ , see Fig.
2.2(b).

2.1 The quasi-interpolantS1

The first operator is the Schoenberg-Marsden near optimal operator (see e.g. [5–7,9,

10,25,27]) and it is obtained by assuming, in (2.2),p = 1, w(i, j)
1 = 1 and(x(i)

1 ,y( j)
1 ) =
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(a) (b)

Fig. 2.2 (a) Some supports of inner and boundary B-splines.(b) Grid points(xi ,y j ) and mesh-points
(si , t j ) defined in (2.4).

(si , t j), (i, j) ∈ Kmn, given in (2.4), i.e.

S1 f (x,y) = ∑
(i, j)∈Kmn

f (si , t j)Bi j (x,y).

It is exact for bilinear polynomials and‖S1‖∞ = 1, where‖·‖∞ is the infinite norm.
We notice that the number of data sites required byS1 is

NS = mn+2m+2n+4. (2.5)

2.2 The quasi-interpolantS2

In order to defineS2, for 0≤ i ≤ m+1, 0≤ j ≤ n+1, we set:

ai = −
π2

i π ′
i+1

πi+π ′
i+1

, ci = −
πi(π ′

i+1)
2

πi+π ′
i+1

, a j = −
ζ 2

j ζ ′
j+1

ζ j+ζ ′
i+1

, c j = −
ζ j (ζ ′

j+1)
2

ζ j+ζ ′
j+1

,

bi j = 1− (ai +ci +a j +c j),

with a0 = c0 = am+1 = cm+1 = a0 = c0 = an+1 = cn+1 = 0, b00 = bm+1,0 = b0,n+1 =

bm+1,n+1 = 1 andπi = hi
hi−1+hi

, π ′
i =

hi−1
hi−1+hi

= 1−πi , ζ j =
k j

k j−1+k j
, ζ ′

j =
k j−1

k j−1+k j
=

1−ζ j , for 1≤ i ≤ m+1 and 1≤ j ≤ n+1, with hi = xi −xi−1, k j = y j −y j−1.
The quadratic spline QIS2 [25,27] is defined as follows:

S2 f (x,y) = ∑
(i, j)∈Kmn

λi j ( f )Bi j (x,y),

with coefficient functionals obtained assuming, in (2.2),p= 5,w(i, j)
1 = bi j , w(i, j)

2 = ai ,

w(i, j)
3 = ci , w(i, j)

4 = a j , w(i, j)
5 = c j and

(x(i)
1 ,y( j)

1 ) = (si , t j) , (x(i)
2 ,y( j)

2 ) = (si−1, t j) , (x(i)
3 ,y( j)

3 ) = (si+1, t j) ,

(x(i)
4 ,y( j)

4 ) =
(
si , t j−1

)
, (x(i)

5 ,y( j)
5 ) =

(
si , t j+1

)
,

wheresi andt j are given in (2.4). The operatorS2 is optimal and, since

|ai |, |ci |, |a j |, |c j | ≤ 1/2 and |bi j | ≤ 3, (2.6)

then ‖S2‖∞ ≤ 5, see [25]. Moreover, we can notice that the number of data sites
requested byS2 is equal toNS given in (2.5).
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2.3 The quasi-interpolantW2

The third quasi-interpolantW2 is defined as follows:

W2 f (x,y) = ∑
(i, j)∈Kmn

λi j ( f )Bi j (x,y),

where the coefficient functionals are obtained assuming, in(2.2), p = 5, w(i, j)
1 = 2,

w(i, j)
2 = w(i, j)

3 = w(i, j)
4 = w(i, j)

5 = −1
4 and

(x(i)
1 ,y( j)

1 ) = (si , t j) , (x(i)
2 ,y( j)

2 ) = (xi−1,y j−1), (x(i)
3 ,y( j)

3 ) = (xi−1,y j),

(x(i)
4 ,y( j)

4 ) = (xi ,y j−1), (x(i)
5 ,y( j)

5 ) = (xi ,y j).

The definition ofW2 involves two kinds of data sites: the points(si , t j) given in (2.4)
and the grid points(xi ,y j), see Fig. 2.2(b). Moreover the number of data sites re-
quested byW2 is

NW = 2mn+3m+3n+1. (2.7)

The operatorW2 is optimal and‖W2‖∞ ≤ 3. We remark that in [6,7] an operator
similar toW2, but based on B-splines with octagonal support not completely included
in Ω , has been introduced.

3 Local and global error bounds for functions and derivatives

In this section general techniques to bound the errors on functions and partial deriva-
tives (of order at most 2) are presented, which are valid for all the operators defined
in Section 2. The results will be specified in Section 5 for each type of operator.

Let T(k)
rs be a triangle ofTmn and

Eα,ν(x,y) := Dα ( f −Q f)(x,y), (3.1)

where 0≤ |α| ≤ 2, (x,y) ∈ T(k)
rs for |α| = 0,1, (x,y) ∈ int(T(k)

rs ) for |α| = 2 and
ν ≥ |α| is an integer related to the smoothness off .

SinceQ reproduces polynomials belonging toPℓ, there results that (3.1) is equiv-
alent toEα,ν(x,y) = DαRν(x,y)−DαQRν(x,y), where

Rν(x,y) := f (x,y)−qν(x,y), (3.2)

for anyqν ∈ Pν and anyf such thatDα f (x,y) exists, with 0≤ |α| ≤ ν ≤ ℓ≤ 2. Since

|Eα,ν(x,y)| ≤ |DαRν(x,y)|+ |DαQRν(x,y)| , (3.3)

in Theorem 3.1 and Theorem 3.2, we give upper bounds both for|DαRν(x,y)| and
|DαQRν(x,y)| and finally, in Theorem 3.3, for|Eα,ν(x,y)|. In order to do it, we need
the following two lemmas, that give upper bounds for∑

(i, j)∈I(T(k)
rs )

∣∣DαBi j (x,y)
∣∣ and

∣∣λi j (Rν)
∣∣.

First of all, we need to introduce the following notations:
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- hr = xr −xr−1, ks = ys−ys−1, for 0≤ r ≤ m+1, 0≤ s≤ n+1;
- ∆̂rs = max{hr ,ks}, 0≤ r ≤ m+1, 0≤ s≤ n+1;
- hr = maxr−1≤i≤r+1{hi}, hr = minr−1≤i≤r+1{hi ,hi 6= 0}, 2≤ r ≤ m−1,

h = max
1≤i≤m

{hi}, h = min
1≤i≤m

{hi};

- ks = maxs−1≤ j≤s+1
{

k j
}

, ks = mins−1≤ j≤s+1
{

k j ,k j 6= 0
}

, 2≤ s≤ n−1,
k = max

1≤ j≤n

{
k j
}

, k = min
1≤ j≤n

{
k j
}

;

- ∆rs = max
{

hr ,ks
}

, ∆ rs = max
(i, j)∈I(T(k)

rs )

{
∆i j
}

, δrs = min{hr ,ks};

- ∆ = max
{

h,k
}

, δ = min{h,k};

- Σ (k)
rs =

⋃
(i, j)∈I(T(k)

rs )
Σi j ;

- ‖·‖∞,B = ‖·‖B = supremum norm overB, with B compact set inR2;
- ω (Dν f , t,B) = max{ω (Dα f , t,B) , |α| = ν}, where

ω (ϕ, t,B) = max{|ϕ(P1)−ϕ(P2)| ;P1,P2 ∈ B,‖P1−P2‖ ≤ t}

is the modulus of continuity ofϕ ∈C(B), and‖·‖ is the Euclidean norm;

- ‖Dν f‖B = max
|β |=ν

∥∥∥Dβ f
∥∥∥

B
.

Lemma 3.1 Let T(k)
rs be a triangular cell ofTmn, (x,y) ∈ T(k)

rs for |α| = 0,1 and

(x,y) ∈ int(T(k)
rs ) for |α| = 2. Then

∑
(i, j)∈I(T(k)

rs )

∣∣DαBi j (x,y)
∣∣≤ K|α|(hr)

−α1(ks)
−α2, (3.4)

with K0 = 1;

K1 =

{
4, if r = 1,m and/or s= 1,n
2, otherwise;

(3.5)

K2 =

{
12, if r = 1,m and/or s= 1,n
6, otherwise.

(3.6)

Proof For |α| = 0, due to the B-spline partition of unity, (3.4) is an equality, with

K0 = 1. In the case|α| = 1, sinceDαBi j is a linear polynomial in the triangleT(k)
rs

with verticesA1, A2, A3, we have
∣∣DαBi j (x,y)

∣∣≤ max
{∣∣DαBi j (A1)

∣∣ ,
∣∣DαBi j (A2)

∣∣ ,
∣∣DαBi j (A3)

∣∣} .

If |α| = 2, thenDαBi j is a constant insideT(k)
rs . Using the values of theBi j ’s BB-

coefficients, we can easily deduce the inequality (3.4) and the constantsK1 andK2.
We remark that the constantsK1 andK2 are bigger for the triangles near the boundary
of Ω . ⊓⊔

Lemma 3.2 Let f ∈Cν(Σ (k)
rs ), with 0≤ ν ≤ ℓ ≤ 2. For any(i, j) ∈ I(T(k)

rs )

∣∣λi j (Rν)
∣∣≤C(i, j)

ν ∆ ν
i j ω
(

Dν f ,
∆i j

2
,Σ (k)

rs

)
, (3.7)
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where C(i, j)
ν is a constant dependent onν , i and j. If, in addition, f∈ Cℓ+1(Σ (k)

rs ),
then ∣∣λi j (Rℓ)

∣∣≤C(i, j)
ℓ+1 ∆ ℓ+1

i j

∥∥∥Dℓ+1 f
∥∥∥

Σ (k)
rs

, (3.8)

where C(i, j)
ℓ+1 is a constant dependent onℓ, i and j.

Proof We set
(ν

β
)

= ν !
β1!β2! and, in (3.2), we choose asqν the Taylor polynomial in

the expansion off at the midpoint(ξ0,η0) of the external edge ofT(k)
rs , i.e.

qν(x,y) =
1
ν ! ∑

|β |≤ν

(
ν
β

)
Dβ f (ξ0,η0)(x−ξ0)

β1(y−η0)
β2. (3.9)

Then, for 0≤ ν ≤ ℓ and(u,v) in the segment joining(x,y) to (ξ0,η0), from (3.2) and
(3.9) (see e.g. [6]),

Rν(x,y) =
1
ν ! ∑

|β |=ν

(
ν
β

)[
Dβ f (u,v)−Dβ f (ξ0,η0)

]
(x−ξ0)

β1(y−η0)
β2. (3.10)

Moreover, from (2.2), we have

∣∣λi j (Rν)
∣∣≤

p

∑
µ=1

∣∣∣w(i, j)
µ

∣∣∣
∣∣∣Rν(x(i)

µ ,y( j)
µ )
∣∣∣ . (3.11)

Without loss of generality, we consider(ξ0,η0) = (0,0). Therefore, from (3.10), for
µ = 1, . . . , p, we get

Rν(x(i)
µ ,y( j)

µ ) =
1
ν ! ∑

|β |=ν

(
ν
β

)[
Dβ f (u,v)−Dβ f (0,0)

]
(x(i)

µ )β1(y( j)
µ )β2. (3.12)

Since(u,v) lies in the segment joining(x(i)
µ ,y( j)

µ ) to (0,0), it is possible to find a real

constantσ (i, j)
µ , depending onµ , i and j, such that

∥∥∥(x(i)
µ ,y( j)

µ )− (0,0)
∥∥∥≤ σ (i, j)

µ
∆i j

2
. (3.13)

Then, in (3.12),

∣∣∣Dβ f (u,v)−Dβ f (0,0)
∣∣∣≤ ω

(
Dβ f ,σ (i, j)

µ
∆i j

2
,Σ (k)

rs

)
≤ ⌈σ (i, j)

µ ⌉ω
(

Dβ f ,
∆i j

2
,Σ (k)

rs

)
,

(3.14)
where⌈z⌉ = min{integersi : i ≥ z}, for all z> 0. Similarly, it is possible to find a

real constantρ(i, j)
µ , depending onµ , i and j, such that

(
|x(i)

µ |+ |y( j)
µ |
)
≤ ρ(i, j)

µ ∆i j . (3.15)
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Therefore, from (3.12), (3.14) and (3.15)

∣∣∣Rν(x(i)
µ ,y( j)

µ )
∣∣∣ ≤ 1

ν !

[
|x(i)

µ |+ |y( j)
µ |
]ν

⌈σ (i, j)
µ ⌉ω

(
Dν f ,

∆i j
2 ,Σ (k)

rs

)

≤ 1
ν !

(
ρ(i, j)

µ ∆i j

)ν
⌈σ (i, j)

µ ⌉ω
(

Dν f ,
∆i j
2 ,Σ (k)

rs

)
.

(3.16)

So, from (3.11) and (3.16), we get (3.7), with

C(i, j)
ν =

1
ν !

p

∑
µ=1

∣∣∣w(i, j)
µ

∣∣∣⌈σ (i, j)
µ ⌉

(
ρ(i, j)

µ

)ν
. (3.17)

Finally, if, in addition, f ∈Cℓ+1(Σ (k)
rs ), then, from (3.10)

Rℓ(x,y) =
1

(ℓ+1)! ∑
|β |=ℓ+1

(
ℓ+1

β

)
Dβ f (u,v)(x−ξ0)

β1(y−η0)
β2, (3.18)

with (u,v) lying in the segment joining(x,y) to (ξ0,η0). Following the same logical
scheme used in the first part of the proof and assuming(ξ0,η0) = (0,0), from (3.18),
for µ = 1, . . . , p

∣∣∣Rℓ(x
(i)
µ ,y( j)

µ )
∣∣∣ ≤ 1

(ℓ+1)!

∥∥Dℓ+1 f
∥∥

Σ (k)
rs

[
|x(i)

µ |+ |y( j)
µ |
]ℓ+1

≤ 1
(ℓ+1)!

∥∥Dℓ+1 f
∥∥

Σ (k)
rs

(
ρ(i, j)

µ ∆i j

)ℓ+1
.

(3.19)

Therefore, from (3.11) and (3.19), we obtain (3.8), with

C(i, j)
ℓ+1 =

1
(ℓ+1)!

p

∑
µ=1

∣∣∣w(i, j)
µ

∣∣∣
(

ρ(i, j)
µ

)ℓ+1
. (3.20)

⊓⊔

Remark 3.1More details about the computation of the constantsσ (i, j)
µ andρ(i, j)

µ will
be given in Section 5, with reference to the three operators there considered.

Theorem 3.1 Let f ∈Cν(Σ (k)
rs ), with 0≤ |α| ≤ ν ≤ ℓ≤ 2, (x,y) ∈ T(k)

rs for |α|= 0,1

and(x,y) ∈ int(T(k)
rs ) for |α| = 2. Then

|DαRν(x,y)| ≤
1

(ν −|α|)!

(
∆̂rs

2

)ν−|α|

ω

(
Dν f ,

∆̂rs

2
,Σ (k)

rs

)
. (3.21)

If, in addition, f ∈Cℓ+1(Σ (k)
rs ), then

|DαRℓ(x,y)| ≤
1

(ℓ+1−|α|)!

(
∆̂rs

2

)ℓ+1−|α|∥∥∥Dℓ+1 f
∥∥∥

Σ (k)
rs

. (3.22)
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Proof From (3.10), assuming(ξ0,η0) = (0,0) and(x,y) = (x,y), since(u,v) lies in

the segment joining(0,0) to (x,y) and‖(x,y)− (0,0)‖ ≤ ∆̂rs
2 , then

|DαRν(x,y)| ≤ ω
(

Dν f , ∆̂rs
2 ,Σ (k)

rs

)
1

(ν−|α|)! (|x|+ |y|)ν−|α|

≤ ω
(

Dν f , ∆̂rs
2 ,Σ (k)

rs

)
1

(ν−|α|)!

(
∆̂rs
2

)ν−|α|
,

that is (3.21). If, in addition,f ∈Cℓ+1(Σ (k)
rs ), then, from (3.18), we get (3.22). ⊓⊔

Theorem 3.2 Let f ∈Cν(Σ (k)
rs ), with 0≤ |α| ≤ ν ≤ ℓ≤ 2, (x,y) ∈ T(k)

rs for |α|= 0,1

and(x,y) ∈ int(T(k)
rs ) for |α| = 2. Then

|DαQRν(x,y)| ≤C|α|,ν ∆ ν−|α|
rs ω

(
Dν f ,

∆ rs

2
,Σ (k)

rs

)
, (3.23)

where

C|α|,ν = K|α|Cν

(
∆ rs

δrs

)|α|

, Cν = max
(i, j)∈I(T(k)

rs )

{
C(i, j)

ν

}
, (3.24)

C(i, j)
ν is given by (3.17) and K|α| is defined as in Lemma 3.1. If, in addition, f∈

Cℓ+1(Σ (k)
rs ), then

|DαQRℓ(x,y)| ≤C|α|,ℓ+1∆ ℓ+1−|α|
rs

∥∥∥Dℓ+1 f
∥∥∥

Σ (k)
rs

, (3.25)

where

C|α|,ℓ+1 = K|α|Cℓ+1

(
∆ rs

δrs

)|α|

, Cℓ+1 = max
(i, j)∈I(T(k)

rs )

{
C(i, j)

ℓ+1

}
(3.26)

and C(i, j)
ℓ+1 is given by (3.20).

Proof The proof is a consequence of Lemmas 3.1 and 3.2. Indeed, from(2.3), (3.4)

and (3.7), we get (3.23) and (3.24). If, in addition,f ∈Cℓ+1(Σ (k)
rs ), then, from (2.3),

(3.4) and (3.8), we get (3.25) and (3.26). ⊓⊔

Theorem 3.3 Let f ∈Cν(Σ (k)
rs ) andṪ(k)

rs = T(k)
rs if |α| = 0,1 andṪ(k)

rs = int(T(k)
rs ) if

|α| = 2, with 0≤ |α| ≤ ν ≤ ℓ ≤ 2, then

‖Eα,ν‖Ṫ(k)
rs

≤ MQ
|α|,ν ∆ ν−|α|

rs ω
(

Dν f ,
∆ rs

2
,Σ (k)

rs

)
, (3.27)

with error constant

MQ
|α|,ν =

1

2ν−|α|(ν −|α|)!
+C|α|,ν (3.28)

andC|α|,ν given in (3.24). If, in addition, f∈Cℓ+1(Σ (k)
rs ), then

∥∥Eα,ℓ+1
∥∥

Ṫ(k)
rs

≤ MQ
|α|,ℓ+1∆ ℓ+1−|α|

rs

∥∥∥Dℓ+1 f
∥∥∥

Σ (k)
rs

, (3.29)
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with

MQ
|α|,ℓ+1 =

1

2ℓ+1−|α|(ℓ+1−|α|)!
+C|α|,ℓ+1 (3.30)

andC|α|,ℓ+1 given in (3.26).

Proof From (3.3), Theorem 3.1 and Theorem 3.2, since∆̂rs ≤ ∆ rs, we get (3.27) and
(3.29). ⊓⊔

Remark 3.2If we consider a triangular cell sufficiently far from the boundary ofΩ ,
the error constantsMQ

|α|,ν , MQ
|α|,ℓ+1, |α| = 1,2, are smaller. Indeed, in those cases,K1

andK2, given by (3.5) and (3.6), are equal to 2 and 6, instead of 4 and12, respectively.

The local estimates lead immediately to the following global results for|α|= 0,1.

Theorem 3.4 Let f ∈Cν(Ω), with 0≤ |α| ≤ ν ≤ ℓ ≤ 2, |α| = 0,1, then

‖Eα,ν‖Ω ≤ M
Q
|α|,ν ∆ ν−|α|ω

(
Dν f ,

∆
2

,Ω
)

,

with error constantM
Q
|α|,ν = 1

2ν−|α|(ν−|α|)!
+K|α|Cν

(∆
δ
)|α|

, K|α| defined as in Lemma

3.1 and Cν given in (3.24). If, in addition, f∈Cℓ+1(Ω), then

∥∥Eα,ℓ+1
∥∥

Ω ≤ M
Q
|α|,ℓ+1∆ ℓ+1−|α|

∥∥∥Dℓ+1 f
∥∥∥

Ω
,

with M
Q
|α|,ℓ+1 = 1

2ℓ+1−|α|(ℓ+1−|α|)!
+K|α|Cℓ+1

(∆
δ
)|α|

and Cℓ+1 given in (3.26).

Remark 3.3In (3.27) and (3.29), the error constants for|α| = 0 are independent of

the mesh ratios
(

∆ rs
δrs

)
and therefore, iṅT(k)

rs we getQ f → f as∆ rs → 0.

In case|α| = 1,2, the error constants depend on the above mesh ratios. When

such ratios are bounded, from (3.27) and (3.29), we can conclude that inṪ(k)
rs

DαQ f → Dα f as ∆ rs → 0. (3.31)

For example, this condition occurs in case of uniform triangulationTmn. Moreover,
if we assume that the sequence of partitions{Xm×Yn} of Ω is γ-quasi uniform i.e.
there exists a constantγ > 1 such that 0< ∆/δ ≤ γ, then (3.31) holds. From the local
convergence properties, we immediately get global convergence results for|α|= 0,1.

4 The case of uniform triangulations

If we consider the specific case of a uniform triangulation, for which hi = k j = ∆ ,
1 ≤ i ≤ m, 1 ≤ j ≤ n, using a technique similar to the one proposed in [15], we
get error constants that we expect to be substantially reduced, as shown in Section
5 for the QIsS1, S2 andW2, considered in Section 2. Moreover their computation is
easier, because, in this case, the BB-coefficients of the B-splines are independent of
the triangulation.
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First of all, we writeQ f in the “quasi-Lagrange” form. From (2.1), (2.2) and
(2.3), if Dmn := {(x(i),y( j)), (i, j) ∈ K mn} is the set of all mesh-points used in the
definition ofQ f , for a proper set of indicesK mn, then

Qα f (x,y) = ∑
(i, j)∈K mn

f (x(i),y( j))DαLi j (x,y),

where{Li j , (i, j)∈K mn} are the fundamental splines obtained, from (2.1) and (2.2),
as linear combinations of B-splines{Bi j , (i, j) ∈ Kmn} (see e.g. [15]). Also the fun-
damental splines have local supportSi j , obtained by the union of the B-spline sup-

ports involved in their definition. Given a point(x,y) ∈ T(k)
rs only a finite number

of fundamental splines are non zero at this point, whose indices belong to the set

J(T(k)
rs ) := {(i, j) : Si j ∩ int(T(k)

rs ) 6= /0}. Moreover, we defineS(k)
rs =

⋃
(i, j)∈J(T(k)

rs )
Si j .

Now, if (x,y) ∈ Ṫ(k)
rs and we consider the Taylor expansion off at (x,y), then

f (x,y) = q̂ν(x,y)+ R̂ν(x,y), with remainder term

R̂ν(x,y) =
1
ν ! ∑

|β |=ν

(
ν
β

)[
Dβ f (u,v)−Dβ f (x,y)

]
(x−x)β1(y−y)β2,

for 0≤ ν ≤ ℓ and(u,v) lying in the segment joining(x,y) to (x,y). It is easy to verify
thatR̂ν and its derivatives are 0 at(x,y). SinceQ is exact onPl , from (3.3) we obtain

|Eα,ν(x,y)| ≤ ∑
(i, j)∈J(T(k)

rs )

∣∣∣R̂ν(x(i),y( j))
∣∣∣
∣∣DαLi j (x,y)

∣∣ . (4.1)

Denoting|x(i) − x|+ |y( j) − y| = ∆τi j (x,y) and beingθi, j a constant dependent oni

and j, such that
∥∥∥(x(i),y( j))− (x,y)

∥∥∥≤ θi, j
∆
2 , then, in (4.1)

∣∣∣R̂ν(x(i),y( j))
∣∣∣ ≤ 1

ν ! ω
(

Dν f ,
∥∥∥(x(i),y( j))− (x,y)

∥∥∥ ,S(k)
rs

)(
|x(i) −x|+ |y( j)−y|

)ν

≤ 1
ν ! ⌈θi, j⌉ω

(
Dν f , ∆

2 ,S(k)
rs

)
(∆τi j (x,y))

ν .

(4.2)
Consequently, from (4.1) and (4.2),

|Eα,ν(x,y)| ≤ ω
(

Dν f ,
∆
2

,S(k)
rs

)
∆ ν 1

ν ! ∑
(i, j)∈J(T(k)

rs )

⌈θi, j⌉(τi j (x,y))
ν ∣∣DαLi j (x,y)

∣∣ .

(4.3)
We can bound the last term in (4.3) as follows

1
ν ! ∑

(i, j)∈J(T(k)
rs )

⌈θi, j⌉(τi j (x,y))
ν ∣∣DαLi j (x,y)

∣∣≤ M̂Q
|α|,ν ∆−|α|, (4.4)

where the constant̂MQ
|α|,ν is dependent onα andν and can be evaluated, for anyQ,

by a technique similar to the one used in [15, Theorem 1]. From(4.3) and (4.4), we
obtain

‖Eα,ν‖Ṫ(k)
rs

≤ M̂Q
|α|,ν ∆ ν−|α|ω

(
Dν f ,

∆
2

,S(k)
rs

)
. (4.5)
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Finally, if, in addition, f ∈Cℓ+1(S(k)
rs ), then it is easy to deduce

∥∥Eα,ℓ+1
∥∥

Ṫ(k)
rs

≤ M̂Q
|α|,ℓ+1∆ ℓ+1−|α|

∥∥∥Dℓ+1 f
∥∥∥

S(k)
rs

. (4.6)

5 Error bounds for specific quasi-interpolants

In this section, we detail the general error constants of Sections 3 and 4 for the three
specific operators introduced in Section 2.

5.1 The quasi-interpolantS1

By Theorem 3.3, we obtain the following error constants for the operatorS1:

MS1
0,0 = 4, MS1

0,1 = 5, MS1
1,1 =

[
1+18

(
∆ rs

δrs

)]
, (5.1)

MS1
0,2 =

5
4
, MS1

1,2 =

[
1
2

+
9
2

(
∆ rs

δrs

)]
, MS1

2,2 =

[
1+

27
2

(
∆ rs

δrs

)2
]

. (5.2)

Indeed, if for the sake of simplicity, we considerk = 3, i.e. the triangleT(3)
rs , from

(3.28), (3.24) and (3.17), we notice that the only value related to the particular choice
of the QI operator isCν . Moreover, it is easy to verify that

Cν = max
(i, j)∈I(T(3)

rs )

{
C(i, j)

ν

}
= C(r,s+1)

ν =
1
ν !

⌈σ (r,s+1)
1 ⌉

(
ρ(r,s+1)

1

)ν
.

Therefore, we have to computeσ (r,s+1)
1 andρ(r,s+1)

1 .

Since, from (3.13), the valueσ (r,s+1)
1 is such that

∥∥∥(x(r)
1 ,y(s+1)

1 )− (0,0)
∥∥∥≤σ (r,s+1)

1
∆r,s+1

2 ,

after some algebra, we getσ (r,s+1)
1 = 3. Similarly, from (3.15), since the valueρ(r,s+1)

1

is such that
(
|x(r)

1 |+ |y(s+1)
1 |

)
≤ ρ(r,s+1)

1 ∆r,s+1, after some algebra, we getρ(r,s+1)
1 = 3

2.

ThereforeCν = 3
ν !

(
3
2

)ν
and, from (3.28),

MS1
|α|,ν =

1

2ν−|α|(ν −|α|)!
+K|α|

3
ν !

(
3
2

)ν (∆ rs

δrs

)|α|

, (5.3)

whereK|α| is defined in Lemma 3.1. From (5.3), immediately we obtain (5.1).

If in addition f ∈C2(Σ (k)
rs ), then, following the same logical scheme, from (3.30),

(3.26) and (3.20), we getC2 = C(r,s+1)
2 = 1

2

(
3
2

)2
and

MS1
|α|,2 =

1

22−|α|(2−|α|)!
+K|α|

1
2

(
3
2

)2(∆ rs

δrs

)|α|

. (5.4)

From (5.4), immediately we obtain (5.2).
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We reach the same results if we consider another triangleT(k)
rs .

As noticed in Remark 3.2, in trianglesT(k)
rs lying sufficiently far from the bound-

ary of Ω , the error constants for the first and second derivatives, in(5.1) and (5.2),
are smaller and become

MS1
1,1 =

[
1+9

(
∆ rs
δrs

)]
, MS1

1,2 =
[

1
2 + 9

4

(
∆ rs
δrs

)]
, MS1

2,2 =

[
1+ 27

4

(
∆ rs
δrs

)2
]
. (5.5)

For uniform meshes andT(k)
rs sufficiently far from the boundary ofΩ , from (4.5) and

(4.6), we get:

M̂S1
0,0 = 2.7, M̂S1

0,1 = 2.5, M̂S1
0,2 = 0.5, M̂S1

1,1 = 6.3, M̂S1
1,2 = 1.3, M̂S1

2,2 = 5.

We remark that these constants are smaller than those we could get by (5.1), (5.2) and
(5.5), assuming uniform meshes.

5.2 The quasi-interpolantS2

By Theorem 3.3, we provide the following error constants forS2:

MS2
0,0 = 17, MS2

0,1 = 61
2 , MS2

0,2 = 245
8 ,

MS2
1,1 =

[
1+120

(
∆ rs
δrs

)]
, MS2

1,2 =
[

1
2 +122

(
∆ rs
δrs

)]
, MS2

2,2 =

[
1+366

(
∆ rs
δrs

)2
]
,

(5.6)

MS2
0,3 =

45
8

, MS2
1,3 =

[
1
8

+
269
12

(
∆ rs

δrs

)]
, MS2

2,3 =

[
1
2

+
269
4

(
∆ rs

δrs

)2
]

. (5.7)

Indeed, by the same technique used for the operatorS1, we consider the triangleT(3)
rs ,

but in this case, we have

Cν = max
(i, j)∈I(T(3)

rs )

{
C(i, j)

ν

}
= C(r,s+1)

ν =
1
ν !

5

∑
µ=1

|w(i, j)
µ |⌈σ (r,s+1)

µ ⌉
(

ρ(r,s+1)
µ

)ν
.

After some algebra, taking also into account (2.6), we compute the valuesσ (r,s+1)
µ ,

ρ(r,s+1)
µ , µ = 1, . . .5, obtaining

Cν ≤
1
ν !

[
3·3

(
3
2

)ν
+

1
2

(
5

(
5
2

)ν
+4

(
5
2

)ν
+

(
1
2

)ν
+4

(
5
2

)ν)]

and

MS2
|α|,ν =

1

2ν−|α|(ν −|α|)!
+K|α|Cν

(
∆ rs

δrs

)|α|

, (5.8)

whereK|α| is defined in Lemma 3.1. From (5.8), immediately we get (5.6).
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If in addition f ∈C3(Σ (k)
rs ), then we get

C3 = C(r,s+1)
3 =

1
3!

[
3

(
3
2

)3

+
1
2

((
5
2

)3

+

(
5
2

)3

+

(
1
2

)3

+

(
5
2

)3
)]

and

MS2
|α|,3 =

1

23−|α|(3−|α|)!
+K|α|C3

(
∆ rs

δrs

)|α|

. (5.9)

From (5.9), immediately we obtain (5.7).

As noticed in Remark 3.2, in trianglesT(k)
rs lying sufficiently far from the bound-

ary of Ω , the error constants for the first and second derivatives in (5.6) and (5.7) are
smaller and become

MS2
1,1 =

[
1+60

(
∆ rs
δrs

)]
, MS2

1,2 =
[

1
2 +61

(
∆ rs
δrs

)]
, MS2

1,3 =
[

1
8 + 269

24

(
∆ rs
δrs

)]
,

MS2
2,2 =

[
1+183

(
∆ rs
δrs

)2
]
, MS2

2,3 =

[
1
2 + 269

8

(
∆ rs
δrs

)2
]
.

(5.10)

For uniform meshes andT(k)
rs sufficiently far from the boundary ofΩ , from (4.5) and

(4.6), we get:

M̂S2
0,0 = 4.4, M̂S2

0,1 = 5.4, M̂S2
0,2 = 3.8, M̂S2

0,3 = 0.55,

M̂S2
1,1 = 14.1, M̂S2

1,2 = 11.4, M̂S2
1,3 = 1.7, M̂S2

2,2 = 40.7, M̂S2
2,3 = 6.7.

(5.11)

We notice that, also in this case, the constants in (5.11) aresmaller than those we
could get by (5.6), (5.7) and (5.10), assuming uniform meshes. Moreover, in the case
f ∈C3(Ω), we get the same error constants given in [15].

5.3 The quasi-interpolantW2

By Theorem 3.3, we provide the following error constants forW2:

MW2
0,0 = 11, MW2

0,1 = 18, MW2
0,2 = 131

8 ,

MW2
1,1 =

[
1+70

(
∆ rs
δrs

)]
, MW2

1,2 =
[

1
2 +65

(
∆ rs
δrs

)]
, MW2

2,2 =

[
1+195

(
∆ rs
δrs

)2
]
,

(5.12)

MW2
0,3 =

131
48

, MW2
1,3 =

[
1
8

+
65
6

(
∆ rs

δrs

)]
, MW2

2,3 =

[
1
2

+
65
2

(
∆ rs

δrs

)2
]

. (5.13)

Indeed, by the same method used forS1 andS2, we consider the triangleT(3)
rs and, in

this case, we have

Cν = max
(i, j)∈I(T(3)

rs )

{
C(i, j)

ν

}
= C(r,s+1)

ν =
1
ν !

5

∑
µ=1

|w(i, j)
µ |⌈σ (r,s+1)

µ ⌉
(

ρ(r,s+1)
µ

)ν
.
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After some algebra, we compute the valuesσ (r,s+1)
µ , ρ(r,s+1)

µ , µ = 1, . . .5, obtaining

Cν =
1
ν !

[
2·3

(
3
2

)ν
+

1
4

(
5

(
5
2

)ν
+5

(
5
2

)ν
+3

(
3
2

)ν
+3

(
3
2

)ν)]

and

MW2
|α|,ν =

1

2ν−|α|(ν −|α|)!
+K|α|Cν

(
∆ rs

δrs

)|α|

, (5.14)

whereK|α| is defined in Lemma 3.1. From (5.14), immediately we get (5.12).

If in addition f ∈C3(Σ (k)
rs ), then we get

C3 = C(r,s+1)
3 =

1
3!

[
2

(
3
2

)3

+
1
4

((
5
2

)3

+

(
5
2

)3

+

(
3
2

)3

+

(
3
2

)3
)]

and

MW2
|α|,3 =

1

23−|α|(3−|α|)!
+K|α|C3

(
∆ rs

δrs

)|α|

. (5.15)

From (5.15), immediately we obtain (5.13).

As noticed in Remark 3.2, in trianglesT(k)
rs lying sufficiently far from the bound-

ary of Ω , the error constants for the first and second derivatives in (5.12) and (5.13)
are smaller and become

MW2
1,1 =

[
1+35

(
∆ rs
δrs

)]
, MW2

1,2 =
[

1
2 + 65

2

(
∆ rs
δrs

)]
, MW2

1,3 =
[

1
8 + 65

12

(
∆ rs
δrs

)]
,

MW2
2,2 =

[
1+ 195

2

(
∆ rs
δrs

)2
]
, MW2

2,3 =

[
1
2 + 65

4

(
∆ rs
δrs

)2
]
.

(5.16)

For uniform meshes andT(k)
rs sufficiently far from the boundary ofΩ , from (4.5) and

(4.6), we get:

M̂W2
0,0 = 8.3, M̂W2

0,1 = 8.7, M̂W2
0,2 = 5.5, M̂W2

0,3 = 0.79,

M̂W2
1,1 = 19.5, M̂W2

1,2 = 15.1, M̂W2
1,3 = 2.3, M̂W2

2,2 = 55.5, M̂W2
2,3 = 9.4.

(5.17)

We notice that the constants in (5.17) are smaller than thosewe could get by (5.12),
(5.13) and (5.16), assuming uniform meshes.

6 Some examples and applications

In this section we present some examples and applications, developed in Matlab,
related to the QIsS1, S2, W2 and comparisons with other quadraticC1 spline QIs on
criss-cross triangulations, proposed in the literature.
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6.1 Quasi-interpolant error constants for functions and partial derivatives

We compare the optimal QIsS2 andW2 with other optimal ones defined in [29] and
[2], on uniform criss-cross triangulations withhi = k j = ∆ , ∀i, j.

In [29], the authors introduce an optimal quadraticC1 quasi-interpolating spline
Q f , on a uniform criss-cross triangulation of a rectangular domainΩ , directly deter-
mined by setting the BB-coefficients of the spline to appropriate combinations of the
given data values. In case off ∈C3(Ω), they provide error bounds given by

‖Dα( f −Q f )‖
T(k)

rs
≤ MQ

|α|,3

∥∥D3 f
∥∥

Ω ∆ 3−|α|, |α| = 0,1,2.

In the first four columns of Table 6.1 we compare the constantsMQ

|α|,3, |α| = 0,1,2
with the corresponding ones forS2 andW2, obtained in (5.7) and (5.13), assuming

uniform triangulations. In [29], the authors also remark that if T(k)
rs is sufficiently far

from the boundary ofΩ , the constantsMQ

|α|,3 are smaller. In such a case, the compar-
isons with the error constants ofS2 andW2, given in (5.11) and (5.17), respectively,
are reported in the last four columns of Table 6.1. We can notice thatMQ

|α|,3 are al-

ways bigger than our constantŝMS2
|α|,3 andM̂W2

|α|,3, |α| = 0,1,2. However, in [29], the
authors were not interested in obtaining good constants in the estimates of the error
but in defining directly a quasi-interpolant by setting its BB-coefficients.

Case of an arbitrary Case of a triangular cellT(k)
rs

triangular cellT(k)
rs sufficiently far from the boundary ofΩ

|α| = 0 |α| = 1 |α| = 2 |α| = 0 |α| = 1 |α| = 2

MS2
|α|,3 5.625 22.54 67.75 M̂S2

|α|,3 0.55 1.7 6.7

MW2
|α|,3 2.73 10.96 33 M̂W2

|α|,3 0.79 2.3 9.4

MQ

|α|,3 [29] 18 274.5 867 MQ

|α|,3 [29] 5.33 82 258

MQ0
|α|,3 [2] 0.40 0.96 2.8

M
Q−1/16
|α|,3 [2] 0.40 0.93 2.7

Table 6.1 Error constants for some optimal QIs.

In [2] the authors construct a class of optimal QIs based on bivariate quadratic
C1 B-splines on uniform criss-cross triangulations of the plane R

2. The coefficient
functionals are obtained by imposing the exactness onP2 and minimizing a constant
appearing in the leading term of an appropriate error estimate. They also propose
error bounds for two particular operators, denoted byQ0 andQ−1/16, in case of func-
tions f ∈C3(R2),

∥∥Dα( f −Qγ f )
∥∥

T(k)
rs

≤ M
Qγ
|α|,3

∥∥D3 f
∥∥

Ω
T

(k)
rs ,γ

∆ 3−|α|, |α| = 0,1,2, γ = 0,−
1
16

,

whereΩ
T(k)

rs ,γ
is an appropriate neighbourhood ofT(k)

rs . We remark thatQ0 is the same

operator given in [15,23] and [17, Chap. 3]. The error constants forQ0 andQ−1/16
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are reported in the last four columns of Table 6.1 and they arecomparable with those
we have obtained forS2 andW2. However, as noticed in [2], sinceQ0 andQ−1/16 are
defined onR2, then, if we consider a bounded regionΩ , they require function values
outsideΩ .

6.2 Estimate for the maximum steplength∆ such that‖ f −Q f‖Ω is less than a fixed
toleranceε

From the error estimates given in Theorem 3.4 and from (5.2),(5.7), (5.13), one can
compute∆ in order to have‖ f −Q f‖Ω less than a given toleranceε. Indeed, if we
consider the function error estimates, from Theorem 3.4, with α = (0,0), we have

‖ f −S1 f‖Ω ≤ 5
4∆ 2

∥∥D2 f
∥∥

Ω , ‖ f −S2 f‖Ω ≤ 45
8 ∆ 3

∥∥D3 f
∥∥

Ω ,

‖ f −W2 f‖Ω ≤ 131
48 ∆ 3

∥∥D3 f
∥∥

Ω .

Then, if we choose

∆ <

√
4ε

5‖D2 f‖Ω
for S1, ∆ < 3

√
8ε

45‖D3 f‖Ω
for S2, ∆ < 3

√
48ε

131‖D3 f‖Ω
for W2,

(6.1)
we are sure that‖ f −Q f‖Ω ≤ ε.

For example, if we consider the test function (see Fig. 6.1(a))

f1 = 1
3 exp

(
−81

16

((
x− 1

2

)2
+
(
y− 1

2

)2
))

on Ω = [0,1]2 and we assumeε = 5 ·10−3, then, from (6.1), we get∆ < 5.2 ·10−2

for S1, ∆ < 3.9·10−2 for S2 and∆ < 5.0·10−2 for W2.
In Fig. 6.1 we report the graphs off1,W2 f1 and| f1−W2 f1|, computed on a 300×

300 uniform rectangular gridG of evaluation points inΩ , considering a uniform
triangulation withm= n = 21 (this choice ensures∆ < 5.0 ·10−2). We remark that
max(u,v)∈G |( f1−W2 f1)(u,v)| ≤ 2.7·10−5.

The above procedure can be usefully applied to get error bounds in numeri-
cal evaluation of 2D integrals by quadrature rules based on bivariate spline quasi-
interpolation.

(a) (b) (c)

Fig. 6.1 The graphs of(a) f1, (b) W2 f1 and(c) | f1−W2 f1|.
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6.3 Approximation of functions and first partial derivatives

In this section we propose some numerical examples, where wetake the first partial
derivatives ofS1 f , S2 f andW2 f as approximations to those of the functionf . We
consider the two test functions

f2(x,y) = 3(1−x)2exp(−x2− (y+1)2)−10
(

x
5 −x3−y5

)
exp(−x2−y2)

−1
3 exp(−(x+1)2−y2)

and f3(x,y) = (xy)
5
3 +sin(xy), defined on the square domainsΩ = [−4,4]2 andΩ =

[−1,1]2, respectively. We notice thatf3 ∈ C1(Ω). For a given functionf and for
Q = S1, S2, W2, we define

f error= max
(u,v)∈G

|( f −Q f)(u,v)|, D1 f error= max
|α|=1

{D(α1,α2) f error}, (6.2)

with D(α1,α2) f error=max(u,v)∈G |D(α1,α2)( f −Q f)(u,v)|, |α|= 1, whereG is a 300×
300 uniform rectangular grid of evaluation points inΩ . We remark that the QIsS1

andS2 are based onNS, given in (2.5), data sites, whileW2 is based onNW > NS,
given in (2.7), data sites.

In Table 6.2, for increasingm andn, we report the values (6.2), forf = f2, con-
sidering uniform criss-cross triangulations and comparing the performances of the
operatorsS1, S2 andW2 with those ofQ0 andQ−1/16, proposed in [2]. We can notice
that the results related to the optimal operatorsS2,W2, Q0 andQ−1/16 are comparable.
However, we remark thatQ0 andQ−1/16 need evaluation points outsideΩ . In Fig.
6.2 we report the graphs off2, S2 f2 and| f2−S2 f2| computed on the gridG, consid-
ering m = n = 128. In Figs. 6.3-6.4 we report the graphs ofD(1,0) f2, D(1,0)S2 f2,∣∣∣D(1,0)( f2−S2 f2)

∣∣∣ and D(0,1) f2, D(0,1)S2 f2,
∣∣∣D(0,1)( f2−S2 f2)

∣∣∣, respectively, com-

puted onG, consideringm= n = 128.

S1 S2 W2 Q0 [2] Q−1/16 [2]
m= n f2 error

32 3.8(-1) 5.6(-2) 4.5(-2) - -
64 9.7(-2) 4.4(-3) 3.7(-3) 4.1(-3) 4.8(-3)
128 2.5(-2) 3.8(-4) 3.5(-4) 3.8(-4) 4.2(-4)
256 6.1(-3) 3.9(-5) 3.8(-5) 3.9(-5) 4.2(-5)

m= n D1 f2 error
32 1.3(0) 4.5(-1) 4.2(-1) - -
64 3.4(-1) 9.8(-2) 1.0(-1) 1.2(-1) 1.2(-1)
128 8.3(-2) 2.6(-2) 2.6(-2) 3.0(-2) 3.0(-2)
256 2.2(-2) 6.6(-3) 6.7(-3) 8.4(-3) 8.4(-3)

Table 6.2 f2 error andD1 f2 error.

Now, we consider two kinds of non-uniform triangulations. In order to construct
them, we consider the following univariate non-uniform partitions of an arbitrary in-
terval[a,b], Xm = {xi , i = 0, . . . ,m} andX̄m = {x̄i , i = 0, . . . ,m} (see e.g. [3]), where,
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(a) (b) (c)

Fig. 6.2 The graphs of(a) f2, (b) S2 f2 and(c) | f2−S2 f2|.

(a) (b) (c)

Fig. 6.3 The graphs of(a) D(1,0) f2, (b) D(1,0)S2 f2 and(c)
∣∣∣D(1,0)( f2−S2 f2)

∣∣∣.

(a) (b) (c)

Fig. 6.4 The graphs of(a) D(0,1) f2, (b) D(0,1)S2 f2 and(c)
∣∣∣D(0,1)( f2−S2 f2)

∣∣∣.

for m even

x0 = a, xi = a+

(
ln
(

1+ i
q

)

ln(2)

)
b−a

2 , i = 1, . . . ,q−1, xq = a+b
2 ,

xi+q = b−

(
ln
(

1+ q−i
q

)

ln(2)

)
b−a

2 , i = 1, . . . ,q−1, xm = b,

(6.3)

and

x̄0 = a, x̄i = a+b
2 −

(
q−i
q

)2
b−a

2 , i = 1, . . . ,q−1, x̄q = a+b
2 ,

x̄i+q = a+b
2 +

(
i
q

)2
b−a

2 , i = 1, . . . ,q−1, x̄m = b,
(6.4)

with q = m
2 and knots thickening around the midpointa+b

2 (similarly for modd). It is
easy to show that the sequence of partitions{Xm} is γ-quasi uniform, withγ = 2 and
the sequence{X̄m} is locally uniform with constantA = 3. We recall that a sequence
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of univariate partitions{X̄m} is locally uniform if there exists a constantA≥ 1 such
that 1

A ≤
x̄i+1−x̄i
x̄ j+1−x̄ j

≤ A, for all i and j = i ±1. Similarly, we construct the partitionsYn

andȲn of [c,d], by using the same scheme given in (6.3) and (6.4), respectively. We
consider the corresponding criss-cross triangulationsTmn andT̄mn, based onXm, Yn

andX̄m, Ȳn, respectively.
In Table 6.3 we compute (6.2), forf = f3 andQ = S1, S2, W2, defined onTmn

andT̄mn, for increasing values ofm andn, with m= n. For the above operators, in
case of a sequence of partitions{Xm×Yn}, thanks to Remark 3.3, the convergence
of {DαQ f} to Dα f , for |α| = 1 is guaranteed whenm,n → ∞. For the second se-
quence of partitions{X̄m×Ȳn} we have only numerical evidence for the convergence
of {DαQ f} to Dα f , for |α| = 1, whenm,n → ∞. We can notice that the use of the
non-uniform triangulationT̄mn allows to get better results.

S1 S2 W2 S1 S2 W2

non-uniform triangulations non-uniform triangulations
Tmn T̄mn

m= n f3 error
4 3.3(-2) 9.0(-3) 6.6(-3) 4.2(-2) 1.4(-2) 1.1(-2)
8 1.0(-2) 2.4(-3) 1.4(-3) 1.8(-2) 2.4(-3) 2.6(-3)
16 2.8(-3) 6.9(-4) 3.6(-4) 5.5(-3) 3.4(-4) 3.4(-4)
32 8.4(-4) 2.1(-4) 1.0(-4) 1.4(-3) 4.4(-5) 3.5(-5)
64 2.6(-4) 6.2(-5) 2.9(-5) 3.5(-4) 5.6(-6) 3.7(-6)
128 8.1(-5) 2.0(-5) 9.3(-6) 8.8(-5) 7.2(-7) 4.3(-7)

m= n D1 f3 error
4 3.1(-1) 1.9(-1) 1.3(-1) 2.2(-1) 1.3(-1) 9.5(-2)
8 1.8(-1) 9.8(-2) 6.1(-2) 7.4(-2) 3.5(-2) 2.9(-2)
16 9.9(-2) 5.0(-2) 2.7(-2) 2.8(-2) 7.9(-3) 7.9(-3)
32 5.3(-2) 2.3(-2) 9.7(-3) 1.1(-2) 2.0(-3) 2.0(-3)
64 2.5(-2) 7.8(-3) 5.2(-3) 4.9(-3) 4.9(-4) 4.9(-4)
128 9.7(-3) 1.5(-3) 2.7(-3) 2.4(-3) 1.3(-4) 1.3(-4)

Table 6.3 f3 error andD1 f3 error, in case of non-uniform triangulationsTmn andT̄mn.

In Figs. 6.5-6.6 we report the graphs off3,W2 f3, | f3−W2 f3| andD(0,1) f3, D(0,1)W2 f3,∣∣∣D(0,1)( f3−W2 f3)
∣∣∣, respectively, computed onG, consideringm= n = 128 and the

triangulationT̄128,128. The other first derivativeD(1,0) is symmetrical and we do not
report it.

7 Conclusions and final remarks

In this paper we have analysed the error between a functionf and a generalC1

quadratic spline quasi-interpolant,Q f , defined on a non-uniform criss-cross trian-
gulation of a rectangular domainΩ . We have given error estimates for the infinity
norms of f −Q f , of the first derivativesDα( f −Q f), |α| = 1, and of the second
derivativesDα( f −Q f), |α| = 2 (in this case in the interior of each triangle ofTmn).
We have also considered the specific case of a uniform triangulation and, by a differ-
ent technique, we have reduced the constants in the error bounds.
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(a) (b) (c)

Fig. 6.5 The graphs of(a) f3, (b) W2 f3 and(c) | f3−W2 f3|, with T̄128,128.

(a) (b) (c)

Fig. 6.6 The graphs of(a) D(0,1) f3, (b) D(0,1)W2 f3 and(c)
∣∣∣D(0,1)( f3−W2 f3)

∣∣∣, with T̄128,128.

Then, we have considered three local QI operators, we have computed their partial
derivatives and bounded their errors.

Finally, we have proposed some applications concerning theapproximation of
functions and their partial derivatives by using the above QIs and we have compared
the obtained results with those obtained from otherC1 quadratic spline QIs proposed
in the literature.

References

1. Allouch, C.: Quasi-interpolants splines et applicationauxéquations int́egrales. Ph.D. Thesis, Universi-
ties of Oujda (Marocco) and Rennes 1 (France) (2011)
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